

mailto:tnn1001@jagmail.southalabama.edu
mailto:glisson@shsu.edu
mailto:jtmcdonald@southalabama.edu
mailto:jtmcdonald@southalabama.edu
https://hdl.handle.net/10125/64555







16.16% based off 550,000 application analyzed [28].
AnDarwin [29], a scalable framework that analyzes
Android applications for plagiarism, was used to
analyze 265,359 applications in various markets and
identified 36,106 as repackaged or rebranded
applications with 88 new wvariants of malware
discovered.

2.2 Code Cloning and Reuse Detection

As Tian et al. [30] point out, similarity-based
detection for repackaged malware faces quadratic
complexity for the number of apps analyzed, making
such techniques less appealing for large-scale
screening. Past published resecarch on general-
purpose static Android malware detection has
included techniques that analyze permissions, code
hashes, API dependencies, control flow patterns,
Android intents and activities, resources, and even
code entropy [16]. Tian et al. [30] observe the reason
many techniques are not fully effective is that
analyses are performed on the entire app, which is
some mixture (normally 80% or more) of the original
code with some additional malicious code or
manipulated advertising. Presence of benign code in
repackaged apps can thus dilute features generated by
malicious code, which results in high false negatives
or missed detection, and rescarchers have found that
a majority of false negatives are caused by
repackaged malware [31].

Code cloning and reuse detection provide an
alternate static means to identify repackaging, and
relevant work is highlighted here for completeness,
all of which are referenced in the study by Li et al.
[16]. Bari et al. [32] define code cloning as the
coping and modifying of a code block. Su et al. [33]
denote the challenges in detecting code clones based
on behavior analysis. Ideally, we want to be able to
detect not only static code cloning but also code
blocks that do not match but operate in the same
manner. In its current state, behavioral code clone
detection utilizes functional equivalence of inputs
and outputs to classify code clones. The researchers
[33] argue that advances in dynamic code clone
detection can increase general behavioral code clone
detection: thus this research provides a new technique
with potential for future study that can enhance
ongoing research in clone detection.

For mobile code cloning, Juxtapp [34] provides
indicators of buggy code, evidence of significant
code reuse, or code blocks, which are instances of
known malware. Results from 58,000 Android apps
indicate there were 463 instances of confirmed buggy
code reuse and 34 instances of known malware
instances and pirated variants of paid apps. NiCad

[22] is a near-miss clone detector that functions by
extracting the Java source code from apps to create
code signatures. Results show that NiClad can detect
95% of previously known malware clones and
pinpoint them to certain malware family based on
clone detection. ViewDroid [35] profiles interactions
between users and apps (called view graph) to deal
with the problem of obfuscated code in repackaged
applications. View graphs thus capture user
navigation behavior and generate birthmarks that
could then be compared against candidate apps: the
proposed method in this research essentially
represents the analysis of birthmarks as well, but the
birthmark is fully captured in real use interface
images. Tian et al. [30] focus on detection using
code heterogeneity features to improve the
performance of traditional methods and achieved a
low false negative rate of 0.35% when evaluating
malicious apps and a false positive rate of 2.96%
when evaluating benign apps.

3. Perceptual Hashing Methodology

Dynamic detection avoids many of the issues with
static analysis. However, all dynamic techniques
require the execution of the target code. Dynamic
approaches, like the perceptual hashing approach
evaluated in this research, overcomes the difficulty of
obfuscation, encrypted files, and virtualization. This
research specifically focuses on the usefulness of the
approach to detect repackaged apps, and so is not
evaluated against all categories of Android malware.

Due to the extensive data set of images inside an
APK, it is difficult to compare and fingerprint each
image. Cryptographic hash functions can be used for
integrity, checking the exact duplicates of an image
[36]. However, a slight change in a bit in the data can
cause major variation in the hash. This is called the
avalanche effect, where a change in a small set of
data causes a dramatic change in the hash [36]. Thus,
it is not possible to distinguish images similar to one
another. For example, changes in size, rotation, pixel
modification, etc. will cause the hash to change
completely.

A perceptual hash is a fingerprint for multimedia
to derive various features of its content [37, 38].
Unlike cryptographic hash functions which rely
heavily on slight changes in the media to produce an
entircly different hash, perceptual hashes produce
“close” hashes depending on the amount of change
involved. Thus, a cryptographic hash function is used
to measure whether two images completely match,
whereas a perceptual hash generates a fingerprint that
can be compared using hamming distance to measure
image similarity. Figure 3 illustrates a perceptual

Page 6644

















https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.idc.com/promo/smartphone-market-share/os
https://blog.drhack.net/threat-analysis-report-2019-android-malware-wins/
https://blog.drhack.net/threat-analysis-report-2019-android-malware-wins/
http://www.businessofapps.com/data/app-statistics/
https://www.trendmicro.com/
https://thenextweb.com/security/2019/07/10/agent-smith-malware-replaces-legit-android-apps-with-fake-ones-on-25-million-devices/
https://thenextweb.com/security/2019/07/10/agent-smith-malware-replaces-legit-android-apps-with-fake-ones-on-25-million-devices/
https://thenextweb.com/security/2019/07/10/agent-smith-malware-replaces-legit-android-apps-with-fake-ones-on-25-million-devices/
https://documents.trendmicro.com/assets/wp/wp-fake-apps.pdf
https://documents.trendmicro.com/assets/wp/wp-fake-apps.pdf
https://www
securityweek.com/feds-seize-alternative-android-app-markets-app-piracy
https://developer.android.com/guide/



http://www.phash.org/
http://tech.jetsetter.com/
https://www.androidauthority.com
https://github.com/jenssegers/imagehash

