
DETECT FORGERY VIDEO BY PERFORMING TRANSFER LEARNING ON DEEP

NEURAL NETWORK

A Thesis

Presented to

The Faculty of the Department of Computer Science

Sam Houston State University

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science

by

Zhaohe Zhang

May, 2019

DETECT FORGERY VIDEO BY PERFORMING TRANSFER LEARNING ON DEEP

NEURAL NETWORK

by

Zhaohe Zhang

APPROVED:

Qingzhong Liu, PhD
Thesis Director

Bing Zhou, PhD
Committee Member

Hyuk Cho, PhD
Committee Member

John B. Pascarella, PhD
Dean, College of Science and Engineering
Technology

iii

ABSTRACT

Zhang, Zhaohe , Detect forgery video by performing transfer learning on deep neural
network. Master of Science (Computing and Information Science), May, 2019, Sam
Houston State University, Huntsville, Texas.

Nowadays, the authenticity of digital image and videos becomes hard while the

forgery techniques are more advanced. Given the recent progress on Generative Neural

Network (GNN) development that may generate realistic images and videos, it becomes

more difficult to detect the authenticity of digital photographs. In this thesis, we expose a

popular open-source video forgery library called “DeepFaceLab” by making use of deep

learning. We retrain the existing state-of-the-art image classification neural networks to

capture the features from manipulated video frames. After passing various sets of forgery

video frames through a well-trained neural network, a bottleneck file is created for each

image, it contains the features and artifacts in forgery video that could not be captured by

the human eye. Our testing accuracy is over 99% when testing DeepFake videos. We

also examined our method on FaceForensics dataset and achieved good detection results

on both testing set and validation set. Experiments under different data sizes confirm the

effectiveness and efficiency of the proposed method.

KEY WORDS: Forgery detection, Transfer learning, Deep neural network, Face
Forensics, DeepFake

iv

TABLE OF CONTENTS

Page

ABSTRACT ... iii

TABLE OF CONTENTS ... iv

LIST OF TABLES .. v

LIST OF FIGURES ... vi

I INTRODUCTION .. 1

Statement of the Problem .. 1

Deep Network & Autoencoder ... 2

TensorFlow Hub & Transfer Learning ... 4

Retraining Module .. 5

Remaining Chapter Description .. 7

II RELATED RESEARCH .. 8

Synthesized facial reenactment ... 8

GAN related forgery ... 8

Face Morphing .. 9

Forgery video detection .. 9

III DEEPFACELAB & WORKFLOWS ... 11

Main concept ... 11

Training Models for DeepFakes ... 12

Convert Options .. 13

IV METHODOLOGY ... 15

Breaching the DeepFakes videos .. 15

v

Common flaws that DeepFakes and GAN generated image possess 15

Transfer learning & Approach .. 17

Advantage of Inception V3 ... 18

Advantage of MobileNet V1 ... 19

Image Feature Vectors .. 20

Creating Image Feature Vectors ... 20

V EXPERIMENT ... 23

Dataset... 23

Hyperparameters ... 25

Retraining .. 26

VI RESULTS & DISCUSSIONS .. 27

VII CONCLUSION & FUTURE WORK ... 37

Conclusion .. 37

Future Work .. 37

REFERENCES ... 38

APPENDIX ... 43

VITA ... 47

vi

LIST OF FIGURES

Figure Page

1 Typical 3-layered CNN structure. ... 3

2 Autoencoder and Decoder. .. 4

3 Transfer Leaning. .. 5

4 Standard Convolutional Filters vs MobileNet Depthwise Separable

Convolutions. .. 6

5 Comparison of dlib and MTCNN facial extraction. ... 11

6 Original face (Left) vs Compressed DeepFake product (Right). 15

7 Parallel filter structure of Inception V3. ... 18

8 Filter factorization for Inception filter (Szegedy, 2016). 19

9 Image feature Vector creation process. ... 20

10 Creation process for Image Feature Vector. ... 22

11 A Typical Parameter Set Used When Training... 26

12 MobileNet V1 Accuracy on 1000 FaceForensics Images. 28

13 MobileNet V1 Cross Entropy on 1000 FaceForensics Image. Cross entropy =

0.0122 at step 4999. .. 29

14 MobileNet V1 Accuracy on 5000 FaceForensics Images. 29

15 MobileNet V1 Cross Entropy on 5000 FaceForensics Images. 29

16 MobileNet V1 Accuracy on 25000 FaceForensics Images................................... 30

17 MobileNet V1 Cross Entropy on 25000 FaceForensics Images. 30

18 InceptionV3 Accuracy on 1000 FaceForensics Images. 30

19 InceptionV3 Cross Entropy on 1000 FaceForensics Images. 31

vii

20 InceptionV3 Accuracy on 5000 FaceForensics Images. 31

21 InceptionV3 Cross Entropy on 5000 FaceForensics Images. 31

22 InceptionV3 Accuracy on 25000 FaceForensics Images. 32

23 InceptionV3 Cross Entropy on 25000 FaceForensics Images. 32

24 Inception V3 Accuracy on DeepFake Elon test set. ... 33

25 Inception V3 Cross Entropy on DeepFake Elon test set. 33

26 Inception V3 Accuracy on DeepFake Nic Cage test set. 34

27 Inception V3 Cross Entropy on DeepFake Nic Cage test set. 34

28 MobileNet Accuracy on DeepFake Elon test set. ... 35

29 MobileNet Cross Entropy on DeepFake Elon test set. ... 35

30 MobileNet Accuracy on DeepFake Nic Cage test set. .. 36

31 MobileNet Cross Entropy on DeepFake Nic Cage test set. 36

32 Inception V3 Bottleneck layer structure. .. 43

33 MobileNet V1 Bottleneck layer structure. .. 44

34 Initial parameter settings. .. 45

35 Parameter settings for retraining on 1000, 5000 and 25000 FaceForensics

data. ... 45

36 Parameter settings for retraining on DeepFake dataset. .. 46

1

CHAPTER I

Introduction

Statement of the Problem

Watching video is one of the most common methods for information gathering.

Every day, millions of videos are shared through social media and video websites such as

YouTube. In this era of information explosion, it is vital to be able to distinguish

between the authentic information from the forgery. Just five years ago, forging video

was a daunting task which requires enormous amounts of money and resources. Movie

studios in Hollywood has spent millions of dollars trying to create most realistic

Computer Graphical (CG) effects that could amaze their audiences. Nowadays, with the

advance of neural network, people without any professional equipment or CGI

experience could achieve the same result by just a few mouse clicks.

In recent years, AI DeepFakes or “Deepfaking”, is emerging through social

media. Initially Nicolas Cage’s face appeared on various video clips in which he did not

participate; then a user on Reddit posted a clip that shows a pornographic wherein a porn

actress face is replaced with a famous movie actress face. Even though the post has been

discovered and deleted quickly, the technology used to produce such clips is still

available to the public on GitHub. As its popularity increases, by possessing a high-

performance GPU, anyone with moderate computer skills could make a seamless

DeepFake video that looks like made by Hollywood special effect team. In early 2018, a

video published by BuzzFeed shows president Obama was addressing to the public

(BuzzFeedVideo, 2018). In reality, the same forgery technique was used to morph actor

Jordan Peels’ face to be president’s look-a-like. Just within a year, thousands of clips are

2

created with many celebrities’ faces but without their consent. These DeepFake Videos

have caught many public figures amidst of confusion and panic.

Deep Network & Autoencoder

Deep Neural Networks (DNNs), which employ materialized deep learning

algorithms to capture the meaningful representation of input dataset (Bengio, 2013), is a

very popular research topic in recent years. There are many types of DNNs differentiated

by their structures, serving different purposes; however, these functions can be

categorized into several areas such as classification, feature extraction and language

processing. Some notable deep learning structures like Convolutional deep neural

networks (CNNs) and Recurrent neural network (RNN) have built solid foundation to

produce several state-of-the-arts neural networks.

The most fundamental component of the neural network is called artificial

neurons. The artificial neurons receive one or more inputs and produce the summation as

the output. Each neuron usually has a separate weight that could affect the output value.

The output is passed through an activation function, usually sigmoid function (Wikipedia,

2019), that could transfer the output into a binary number which represents the neuron

either “Fire” or “Off” (Wikipedia, 2019). A mathematical representation of each

neuron’s function is given below:

Let x be the input from previous neurons, w be the weight, m represents the

number of previous neurons, and sigma will be the activation function, then we have

formula:

𝑦𝑦𝑘𝑘 = 𝜎𝜎(�𝑤𝑤𝑘𝑘𝑘𝑘𝑥𝑥𝑘𝑘

𝑚𝑚

𝑘𝑘=0

)

3

Once the formula for single neuron is established, the neurons can be organized

into different structures. A basic CNN is a layered-structure network, each layer is

composed by different numbers of neurons. When data is fed into the network, the first

layer is called input layer, this layer transforms the input data into appropriate size of

matrices for next layer; the next few layers can be various in size and structures

depending on the task; however, the last two layers are generally fully-connected, the

function of these layers is to transform the features that are captured by previous layers

into the number of classes that are predefined in the network, thus the final output is the

prediction probability on the classes. Figure 1 demonstrates a typical three-layered CNN

structure.

Figure 1. Typical 3-layered CNN structure.

With various structure in neural network, autoencoder is a network structure that

can effectively encode the features of input data then generate new data based on the

encoded information. Autoencoder is mainly used in reducing the dimension of dataset

and feature extraction at beginning; it is also used to regenerate lost data in recent years.

4

Autoencoder has two parts: 1) encoder reduces the dimension of input data and captures

the useful feature to encode; and 2) decoder takes the compressed results from encoder

and decompresses them into original information. Figure 2 shows the structure and

general functionality of a full autoencoder. While encoder and decoder can work

separately and unsupervised, the generated result from decoder can be used to compare

with the original input. The process is similar to Generative Adversary Network or GAN,

which is described in the fundamental process of creating DeepFake videos.

Figure 2. Autoencoder and Decoder. Notice that decoder can either work separately from
encoder, or working together as GAN.

TensorFlow Hub & Transfer Learning

This section introduces TensorFlow for a widely used open-source deep learning

library (Clark, 2018).

TensorFlow has become the most ubiquitous open-source deep learning library

for many years (Hale, 2018). Not only TensorFlow supports the high-performance

computation through its cloud service, but also it has a well-established community for

the library update and maintenance. TensorFlow Hub is a library for reusable machine

learning modules. A reusable machine learning module is a self-contained piece of a

5

TensorFlow graph, along with its weights and assets that can be reused across different

tasks in a process known as transfer learning (TensorFlow, 2019). Compared to normal

training process of a neural network module, a module trained by transfer learning is

usually trained with a smaller dataset, other advantages such as improved generalization

and increasing training speed could also be gained from transfer learning. To develop a

modern image recognition module from scratch, it normally requires hundreds of GPU-

hours or more (TensorFlow, 2019). By applying transfer learning on a trained module,

the size of training dataset can be greatly reduced, such technique could be used to solve

the classification problems with relatively small datasets. Figure 3 shows how transfer

learning replaces the original layer and creates a new layer to classify new labels.

Figure 3. Transfer Leaning. The Original Layer will be replaced with a layer which its
weight and bias are fine-tuned for classifying images on new labels.

Retraining Module

This section introduces the neural networks that are retrained in our experiments.

Since the main library used in this experiment is TensorFlow, we conduct our experiment

with two of most prominent neural networks modules that are developed by google:

MobileNetV1 and InceptionV3.

6

MobileNet V1. MobileNet is a light weighted neural network designed for deep

learning experiment on mobile devices (Howard, 2017). While other Deep

Convolutional Neural Networks focus on improving the overall accuracy, MobileNets are

proposed for mobile and embedded vision applications. MobileNets are based on a

streamlined architecture that uses depth-wise separable convolutions to build light weight

deep neural networks. MobileNetV1 is a Convolutional Neural Network (CNN) that uses

depthwise separable convolutions which means it could drastically decrease the number

of parameters and computational cost. Figure 4 shows the structure difference between

depthwise separable convolution filters and standard convolution filters.

Figure 4. Standard Convolutional Filters vs MobileNet Depthwise Separable
Convolutions. (a) Standard convolution filter parameters, where 𝐷𝐷𝑘𝑘 represents the size of
input and N represent the number of input channel; (b)(c) Depthwise separable
convolution (Howard, 2017).

7

Inception V3. Google’s Inception networks are heavy-parameter and well-

engineered deep neural networks. Since Inception V1 was announced in 2014, the

network structure has become even more complex, from Inception V1 with 22 layers to

Inception V3 with 42 layers (Tsang, 2019); however, the deeper network structure comes

with improved accuracy. The Inception V3 module was proposed with Inception V2 in

December 2015. Based on the V2 module, Inception V3 factorized a 7×7 into two series

connected 1×7 and 7×1 network in order to reduce the computational cost; it also

introduced a new optimizer to achieve a better gradient: RMSProp. Detailed

explanations will be presented in methodology section.

Remaining Chapter Description

In the next few chapters, we will first discuss the one of the newest DeepFake

Apps, namely DeepFaceLab (Iperov, 2019). In order to get a good grasp on the subject,

we will then explore DeepFaceLab to estimate the time and quality of this tool.

Methodology used by DeepFaceLab will be introduced in the chapter 4, followed by a

demonstration and experimentation in chapter 5. In the end, we will analyze the

performance against DeepFaceLab and discuss our future study that could improve our

proposed method. Figures and tables that appears during the experimentation will be

attached in the appendix section.

8

CHAPTER II

Related Research

Synthesized facial reenactment

Synthesized facial reenactment has gained its popularity in recent years. Similar

technology has also been used by Facebook on Facebook Camera for dynamically

generating emojis based on analysis of facial features (Matas, 2017). After Face2Face

proposed an approach to capture real-time facial movement and reenact to other RGB

videos (Thies, 2018), other alternatives methods to reenact portrait video have also been

proposed (Thies, 2018). An audio-to-lip synthesizing technique proposed by

Suwajanakorn et al. (Suwajanakorn, 2017) make use of a recurrent neural network that

could map the raw audio feature with mouth shapes.

GAN related forgery

Generative Adversarial Networks (GANs) are showing distinguished results on

generating module based on limited information. Researchers from NVDIA have

developed a style-transfer method to generate photo-realistic human facial images

(Karras, 2018). Similar results can be achieved by manipulating the attributes of encoded

image (Lample, 2017). An attribute-guided face generator was also developed by Lu et

al. (Lu, 2017) to generate high-res facial image from low-res image. A Celebrity face

generator was presented by Sharma (Sharma, 2018), this GAN based generator was

trained on a celebrity face dataset called CelebA (Li, 2018), after sixth training epochs,

the generator is capable to generate low-res facial images.

9

Face Morphing

The face morpher uses algorithms to extract feature points on original face and

then maps each feature point to the target face to create a new synthesized face. This

type of attack generally produces high resolution and natural looking facial expression.

Seibold et al. (Seibold, 2017) proposed an approach based on CNN, their team tested

their dataset on AlexNet, GoogLeNet and VGG19, and achieved around 16% to 10%

FRR and 2.2% to 1.8% FAR.

Forgery video detection

Facial reenactment. Cozzolino et al. (Cozzolino, 2017) applied a CNN to a class

of residual-based descriptors to extract the image details, and achieved 79.8% accuracy

on easy compressed videos and 55.77% accuracy on Strong compressed FaceForensics

(Rössler, 2018) videos. Bayar and Stamm (Bayar, 2016) demonstrated an 8 layers CNN-

based network: a constrained convolutional layer, 2 additional convolutional layers with

2 Max-pooling layers and 3 fully-connected layers. Their method has achieved 86.10%

accuracy on easy compressed videos and 73.63% accuracy on Strong compressed videos.

Rahmouni et al. (Rahmouni, 2017) trained a CNN with custom pooling layer to optimize

the feature extraction algorithms. By local estimates of class probabilities to predict the

label of image, they achieved 88.5% testing accuracy on easy compressed videos and

61.5% testing accuracy on Strong compressed videos on FaceForensics dataset.

Raghavendra et al. (Raghavendra, 2017) used two fully connected CNN (VGG19 and

AlexNet) to detect the feature, followed by a probabilistic collaborative Representation

Classifier (P-CRC) to detect the morphed images. They achieved 93.5% accuracy on

10

easy compressed videos and 82.13% accuracy on Strong compressed videos on

FaceForensics dataset.

DeepFake. Guera et al. (Guera, 2018) applied a CNN network for feature

extraction and concatenated with a convolutional LSTM network for sequence

processing. They tested on DeepFake video clips and 300 videos from HOHA dataset.

Their method has achieved 97% testing accuracy. Li and Lyu (Li, 2018) tested their

DeepFake dataset on VGG16, resNet50, resNet101 and resNet152 to capture the artifacts

within the video. Their AUC reached around 84.5 to 99%.

11

CHAPTER III

DeepFaceLab & Workflows

Main concept

In general, face swapping in DeepFake will first extract the important features

from original face, encode these features into a feature map, then use trained decoder to

generate destination face thus accomplish the face swapping in pictures and videos. The

process is referred to as autoencoder. DeepFaceLab is the latest development on related

face swapping apps. DeepFaceLab also brings several new features compared to its

predecessors FakeApp, including new training models, and training progress preview. It

also allows user to utilize CPU to train their model (Hui, 2018).

For extracting faces from video data, DeepFaceLab makes use of MTCNN

extractor (cyberfire, 2017). Although MTCNN can capture more false positives during

the extraction compared to DLIBCNN (King, 2009), the DLIBCNN produces less jittered

aligned faces when video frame becomes unstable. The difference between these two

facial extractors can be seen in Figure 5.

Figure 5. Comparison of dlib and MTCNN facial extraction. Left: dlib, Right: MTCNN
(Iperov, 2019).

To capture the facial frame in specific angle or obstructed by other objects,

DeepFaceLab provides a GUI extractor which allows user to extract face from a specific

12

frame and landmark face manually; this function also allows full manual extraction from

source film in order to get the most ideal results.

Training Models for DeepFakes

As we previously introduced, DeepFake Apps mainly utilize autoencoder as the

basis for producing the face masks. There are various modules in DeepFaceLab,

depending on the quality and resource allocated for create a DeepFake video, here are

some of the modules currently useable in DeepFaceLab:

H64 is a model designed for GPU with minimum 2GB memory and this module

produces relatively low resolution (64 * 64) face. This module is also used by the

FakeApp and re-implemented in DeepFaceLab with TensorFlow 1.8 SSIM loss function,

separated mask decoder and improved converter mask function. For videos containing

many straight face-on scenes H64 is a low-cost training model. H128 is variation of H64,

it provides the highest resolution for front face generation; however, user must have at

least 3GB VRAM in order to use this module.

DF produces a full-face model, it is also good for side-face generation. The result

of this module covers multiple angles of faces thus it is unlikely to find noticeable

artifacts on a fully trained model; The disadvantage of this module requests at least 5GB

VRAM and it demands the source face shapes and light condition.

Similar to DF, LIAEF128 produces a lower quality module in order to partially

fix dissimilar face shape and behaves less aggressive while morphing facial features. It

requires at least 5GB VRAM and has a problem with tracking eye blinking.

SAE is a “Face Morpher”. Compared to other generator such as LIAEF128, SAE

trainer will morph the original face to match the target video facial style. The trainer can

13

produce good resolution video, however, SAE also have a higher risk to create collapsed

facial frames.

Convert Options

One of the most important operations to identify the mask is to locate the possible

artifact boarder around the model’s face. Such boarder could be either a visible gap

between the mask edge and model or a thin line that could be easily omitted by human

eye. Luckily, this boarder region is unavoidable due to the nature of the DeepFake;

however, most DeepFake apps will use various convert operations to hide this transition

area. The details of convert operations are given below (Iperov, 2019):

Blurring. Blurring refers to the operations that use to blur the boarder of the

cropped face mask. Since the DeepFaceLab uses the predicted mask as defined broader

of as predicted source face, this broader will be visible when the blurring value is set to

negative. On the other hand, setting blurring value to high positive will derogate the

overall quality and increase the training time.

Erosion. Erosion is a parameter that essentially increases the area of the source

face when converting onto the destination face. The parameter could range from -100 to

+100, -100 represents the dilation which destination face will be completely covered by

the source face. This term was originally used in morphological image processing as a

matrix operation on binary images to reduce the boundaries of regions of foreground

pixels. Outcomes of erosion operation will enlarge the holes and shrink the original

shape (Fisher, 2019).

Seamless Erosion. Seamless Erosion will perform same operation as typical

erosion while maintaining a seamless fashion. This operation will increase the difficulty

14

to detect the visible artifacts but it also increases the training time and downgrades the

overall quality of the video.

Hist-match Threshold. Hist-match Threshold also refers to as histogram match

threshold; this parameter is used to adjust the lights that could be reflected on the model

mask. Default value in DeepFaceLab is set to the maximum, this will result in the

unnatural brightness appearing on the face mask.

Face Scale. Face Scale is a parameter to adjust the scale of source face mask

proportionally towards the center of the model face. Depending on the size difference

between the source face and destination face, this parameter could be used to adjust the

face mask size to suit the model face.

Transfer Color. Transfer Color from destination image to source face will

convert the skin color of destination model to the source face mask; however, this

transformation is not without flaws, when trained with dataset only consisting of

monolithic skin tone, color transfer will have high probability to fail.

Degrade Color Power. The reason behind this operation is deliberately

downgrading the quality of converted image to belie the details such as the boundary of

the mask and lighting. Such action could be countered by other methods that could

improve the original video quality and analyze the refined video frame by frame.

15

CHAPTER IV

Methodology

Breaching the DeepFakes videos

Generally, DeepFake videos are short in length as well as low on resolution.

Therefore, we can logically infer that if a short video contains more blurry frames,

especially it occurs around facial area, indicating a high possibility that this video is a

forgery video. Nevertheless, for research purpose, we must delve deeper into the creation

of DeepFake videos in order to understand the cause of these flaws. Figure 6 shows the

blurry around facial area after DeepFake masked the original face.

Figure 6. Original face (Left) vs Compressed DeepFake product (Right). (Iperov, 2019).

Common flaws that DeepFakes and GAN generated image possess

There are three key aspects that needs to be considered during the creation of

DeepFake videos: First will be the overall quality of the video. For example, the result of

the forgery must possess relatively high resolution, introduce less artifacts and more

natural facial expression that fit the video context; Second, speed for creating the video

should be reasonable. The training speed is predominantly affected by the size of

VRAM, as well as the structure of deep neural network and the training data size; Third,

the duration of the video. Creating longer clips require more training data and time.

Knowing these aspects can help us better understanding the creation step of DeepFake

video and discovering the weak points.

16

Most fraudulent videos generated by DeepFake apps possess certain flaws. Such

as visible artifacts, distinct resolution around the facial area and sudden change of color

when module have abrupt face movement. These flaws are caused by the DeepFake

learning algorithm when the training dataset is insufficient to cover all the angels or

lighting of the face. On the other hand, most users of the DeepFake application do not

possess enough computing resource or the time to produce a well-trained a module.

Therefore, it is very challenging to create a flawless DeepFake video.

In DeepFaceLab, a “predicted mask” will be created for destination face to match

the actual facial area that needs to be covered; however, this process will also create

visible artifacts on the mask’s edge. There are three methods used by DeepFaceLab to

eliminate the artifacts: (1) applying Gaussian filters to mask the boundary area; (2)

expanding the masking region (e.g. Include forehead and jaws); and (3) manually

adjusting the mask shape. Directly applying mask could produce fully-covered face

mask for destination face; such practice could also introduce double chain and blurry

edges. It causes most DeepFake videos produced with relatively low resolution,

especially around the facial area, compared to other synthesized videos.

Aside from the resolution, skin color and environmental lighting reflected on the

face are also important factors when detecting DeepFake video. In order to create a

perfect mask for the target face model, selecting the target source video is crucial. Since

the source model’s head movement will directly affect the size of training data.

Therefore, it is essential for a target to have less head movement while maintaining the

environment lighting consistent. As a result, we propose to use transfer learning on some

17

existing Convolutional Neural Networks (CNN) to detect graphical inconsistencies

within each frame.

Transfer learning & Approach

When applying transfer learning on an existing module, there are two parts in

affecting the training efficiency: (1) The original weight and bias from pre-trained

network; (2) Retrain the network with new dataset. Therefore, focusing on which process

will determine the effectiveness of retrained module and its classification accuracy (Li,

2018).

On the one hand, aggressively retaining the whole network will not always yield

the most effective network. This approach is appropriate when the retraining data size is

larger than the pre-trained data size; or the retraining data have little relevance with pre-

trained data. With this setting, the hyperparameters from pre-trained modules will only

serve as “initializer”; the training algorithm will need to be hyper-tuned intensively to

achieve higher accuracy, thus it will greatly increase the overall training time as well as

the risk of overfitting.

On the other hand, by using the training parameters from pre-trained module, a

passive approach only focuses on constructing the classification layer: SoftMax and

Fully-connected layer. Although the accuracy in this approach will be constrained by the

initial parameter setting of pre-trained network, the total training time can be greatly

reduced. As the data size for pre-trained module is decreased, the constrains on

hyperparameters are also eased. Inception V3 is the state-of-the-art neural network

trained on ImageNet dataset; ImageNet is a dataset contain more than 14 million images

of various objects. Therefore, the feature information (or Image feature vectors) gathered

18

from the ImageNet data are also proved to be useful when identifying the artifacts within

each frame.

Advantage of Inception V3

Avoid representation bottleneck. Representation bottleneck means after a

feature map passing through a pooling layer, the feature map dimension will be reduced,

thus increase the possibility of feature loss; however, the important features should be

always kept within the feature map, and Inception V3 suggests a pooling structure to

achieve this goal. This could provide learning stability and maximize our transfer

learning efficiency when we retraining on different sets of data.

Reduced kernel size and increasing the width of the network. As shown in

Figure 7, the Inception layer performs convolution on the input with different sizes of

kernels then concatenates the results together, which could drastically improve the

performance on capturing local features across the image.

Figure 7. Parallel filter structure of Inception V3. It is both cheap in computation and
avoid representation bottleneck (Szegedy, 2016).

Reduce the dimension of the filters. The input image size for Inception V3 is

299 * 299. During the inception layer, a 7 by 7 layer will be replaced with three 3 by 3

layers, a 5 by 5 layer will be replaced with two 3 by 3 layers; furthermore, the n by n

19

convolution filter will be factorized into n by 1 and 1 by n filters to reduce the

computational cost. Figure 8 shows the structure of inception layer (Szegedy, 2016).

Figure 8. Filter factorization for Inception filter (Szegedy, 2016).

Advantage of MobileNet V1

Reduce the computational cost. Unlike the normal convolution, the Depthwise

separable convolution will apply a single kernel to a single input channel. For example, a

colored picture will contain 3 input channels, for each input channel, a 3 by 3 filter will

be assigned to generate feature map; all three filters will be executed in a concurrent

manner. After Depthwise convolution, the pointwise convolution will process all the

feature map information obtained from previous step on a 1 by 1 filter. Assume the K is

representing the Depthwise convolutional kernel size and F is the size of each filer, M

will be the number of input channel and N will be the number of filters, then we have

(Howard, 2017):

 𝐷𝐷𝐾𝐾 ∗ 𝐷𝐷𝐾𝐾 ∗ 𝑀𝑀 ∗ 𝐷𝐷𝐹𝐹 ∗ 𝐷𝐷𝐹𝐹 + 𝑁𝑁 ∗𝑀𝑀 ∗ 𝐷𝐷𝐹𝐹 ∗ 𝐷𝐷𝐹𝐹

20

For VGG16, the computational cost for a 224 by 224, 3 channel input will cost:

 3 ∗ 3 ∗ 128 ∗ 64 ∗ 112 ∗ 112 = 924,844,032

However, the computational cost is much lower when using Depthwise separable:

3 ∗ 3 ∗ 64 ∗ 112 ∗ 112 + 128 ∗ 64 ∗ 112 ∗ 112 = 109,985,792

Therefore, the cost ratio between MobileNet and traditional 3-dimentional

convolution is (GHB, 2017):

 MobileNet ∶ Traditional ≈ 1 ∶ 9

Image Feature Vectors

Image Feature Vector (IFV) or transfer-value is the layer before the classification

layer. This layer contains meaningful summary of the images. Different networks will

create different IFV for each input image. There are total 2048 transfer-values for

Inception V3 and 1001 for MobileNet_V1_0.5_224. Figure 9 shows the feature vector

file in text format for an image.

Figure 9. Image feature Vector creation process. Each image will have a .txt file with
2048 either positive or negative value representing the extracted features.

Creating Image Feature Vectors

The objective of transfer learning is to recreate final layer based on new

classification labels. The weight and bias of these newly created layers will be

determined by the back-propagation results. The bottleneck value, also referred as

“Image Feature Vector”, is the classification layer just before the final output layer

21

(TensorFlow Hub, n.d.). The bottleneck layer will output a set of values that could be

used by classification layer to distinguish the new labels. Since each image will be

reused during training, the files containing bottleneck values will be written on the disk to

avoid repeat recalculation and for future use.

Because of the bottleneck files contains the feature map of each image, and the

utilization of bottleneck files are essential while constructing new softmax and FC layer,

we will discuss these functions in detail:

During the creation of bottleneck layers, there are several functions would affect

the process, a progress flowchart can be seen in Figure 10:

create_model_graph(). is loaded from TensorFlow Hub to create graph which

contain three parameters:

Resized_input_tensor. Represent the inputs to create graph.

Bottleneck_tensor. Represents the output bottleneck value.

Wants_quantization. A parameter used to quantify bottleneck file.

Run_bottleneck_on_image(). Use to feed image data into the

create_module_graph() to generate bottleneck_values. The propose of this function is to

extract the image features.

Get_or_create_bottleneck(). This function will take the bottleneck_values

generated from previous layer and save it as bottleneck_data on the local disk.

Add_final_retrain_ops(). This is the final layer that need to be changed. This

layer will redefine the weight, bias, passing softmax layer and output final_tensor based

on bottleneck_tensor. The ground_truth value represents the computational loss on output

label.

22

Save_weight(), Evaluate.py. At the end of the creation process, the weight and

bias of classification layer will be plotted and saved. The retrained module will be also

be saved as .pb file for reuse.

Figure 10. Creation process for Image Feature Vector.

23

CHAPTER V

Experiment

The experimentation will be divided into two major sections for retraining two

different neural networks. Before starting the retraining process, the image data will go

through preprocessing stage, the image mainly consists of two categories, image that

labeled as real and images that labeled as fake. The difference between most of these

images are very difficult to be distinguished by naked eye due to the low resolution and

hidden artifacts. The objective of this experiment is to analyze the performance

difference of retrained neural network on detecting the forgery videos.

Dataset

Our dataset contains three different sets of images from FaceForensics (Rössler,

2018) image set. These images are cropped face sets from multiple videos and possess

various size and resolutions. For example, set A is a lightweight set, this set includes

1000 images in total, the objective of this set is to test the neural network’s performance

when trained by small sets of images. The images are evenly divided into 50 percent of

fake images and 50 percent of real images in all three sets, they are placed in separate

directories with labels. The retraining algorithm will randomly select images from these

directories and further divide them into training, validation and testing set. More

information regarding this process will be discussed in the following section. Set B

contains 5000 images with same attributes and Set C will have 25000 images.

Furthermore, the name of misclassified images will be printed out after the testing is

completed, these images will be future studied for improving the future training session.

24

A separated dataset that consists of extracted face set from DeepFake generated

video and real video will be used to retrain both modules. Each frame in the video will

be extract as PNG file by 1 frame per second. To make sure the training dataset will only

contain the clear facial image from target actor, frames that involved multiple faces as

well as the facial obstructions will be deleted in this process. Next, the frames will be

passed into the facial recognition module (Kazemi, 2014) for facial extraction. To

prevent the false-positive results (non-facial captures) generated by the extractors, it is

beneficial to delete the outliers before fed them into the module. In addition, the

DeepFake dataset is gathered from multiple trending videos amongst DeepFake

community. More specific specs regarding to the dataset is shown in Table 1.

Table 1

Detailed Dataset Information

 Size Cropped Facial

Image size

Number of

videos contained

Real to Fake

Ratios

Set A 1000 406*406 to

420*420

1 1:1

Set B 5000 180*180 to

430*430

6 1:1

Set C 25000 150*150 to

750*750

29 1:1

Elon Set (Deep
Fake)

6659 256*256 Fake:4 / Real: 2 35:31

25

 Size Cropped Facial

Image size

Number of

videos contained

Real to Fake

Ratios

Nic Set (Deep
Fake)

7894 256*256 Fake:3 / Real:2 33:46

The real to fake ratio in Elon set is 3537:3122; and the Nic set is 3294:4600.

Hyperparameters

There are multiple parameters we can adjust to control the retraining process.

Learning rate (LR) controls the speed to finding local-minimum by using the gradient

descent function. In other word, higher learning rate can speed up the retraining process,

at the cost of accuracy; however, set LR too low may prolong the retraining time and

increasing the possibility of getting trapped in local minimum. Thus, choosing this value

carefully is one of the most important aspect of retaining a successful network.

For MobileNetV1 4 different “alpha value” could be selected. Ranging from ∈

{1, 0.75, 0.5, 0.25} , and resolutions from {224, 192, 160, 128} (Howard, 2017).

Choosing the appropriate “alpha value” and resolution for retraining module could strike

the balance between the efficiency and module complexity. For this experimentation, we

set alpha = 0.5 and resolution = 224 to get an equilibrium between training time and

accuracy. The resulting image feature vector (bottleneck file) size will be 1001.

For Inception V3, the input image size is fixed to 299 by 299. The input channel

will be standard 3 channels RGB image. The standard deviation and mean for the

network will be set to default. The size of image feature vector will be a 64 by 32 feature

map.

Training steps will set the limit for module to train. Increasing the number of

training steps will increase the overall training time as well as the test accuracy; however,

26

the rate of improvement will hit the celling during the retraining, and test accuracy may

decrease due to overfitting. Therefore, setting training step to an appropriate value is also

essential to retrain a module. To use the retrain script in python, Figure 11 provides some

most used parameters.

Figure 11. A Typical Parameter Set Used When Training. To apply Transfer Learning,
we must specify the training directory, bottleneck directory, as well as the value of
hyperparameters. In this case, we set Learning Rate to 0.005 (half of default value) and
training steps to 5000.

Retraining

In this experiment, the retraining process will have 5000 training steps, ten images

will be randomly selected from the training set. The bottleneck files (image feature

vector) of selected images will be feed into the classification layer to get the prediction.

Furthermore, the comparison results will be back-propagated to the classification layer

and update the layers bias and weight, thus refine the next prediction accuracy.

The FaceForensics Lab (Rössler, 2018) dataset will be divided into three different

sets: a set contains 1000 images, 5000 images and 25000 images. The MobileNet and

InceptionV3 will be trained on each set separately, results and performance will be

presented in the next chapter.

27

CHAPTER VI

Results & Discussions

In this section we provide details on the performance of our retrained modules.

Table 2 gives an overview of our experiment. From Figure 12 to 23 shows the accuracy

and cross entropy of MobileNetV1 and Inception V3, trained by FaceForensics data.

Figure 24 to 31 shows both neural networks’ performance when trained on DeepFake

dataset. The result of training set is represented by the orange line and validation set is

represented by the blue line. During the experimentation, the learning rate was set to

0.005 and the training steps was set to 5000 to demonstrate the comparability. In each

step, 10 images will be randomly selected from the training set and calculate for

prediction; image in validation set is also being used to avoid overfitting. After 5000

steps, the training accuracy and cross entropy for this module will be plotted on

TensorBoard. The x-axis marks the total training steps have taken, measuring from 0 to

5000; the y-axis shows the percentage of module accuracy or the loss on cross entropy,

measuring from 0 to 1.

A summarized training time and hyperparameters is presented in the Table 2:

Table 2

Overall Performance and Parameters at Step=4999, Learning Rate=0.005

 Training

Accuracy

Validation

Accuracy

Test

Accuracy

Training

Cross

Entropy

Training

time

(mins)

Test

Sample

Size

Mob_1000 100% 97% 96.8% 0.0123 2:40 93

28

 Training

Accuracy

Validation

Accuracy

Test

Accuracy

Training

Cross

Entropy

Training

time

(mins)

Test

Sample

Size

Mob_5000 100% 97% 96.8% 0.0346 6:15 525

Mob_25000 85% 91% 88.8% 0.5467 40:32 2484

InV3_1000 99% 98% 96.3% 0.0376 2:42 134

InV3_5000 99% 98.5% 98.1% 0.1076 5:58 523

InV3_25000 95% 93% 92.7% 0.2459 50:12 2513

Mob_Nic 99% 100% 100% 0.0037 8:45 741

Mob_Elon 100% 100% 100% 0.0095 8:50 695

InV3_Nic 99.8% 99.7% 100% 0.0163 38:35 825

InV3_Elon 99.7% 99.8% 100% 0.0206 33:12 688

Note. Nic dataset contains total 7894 images; Elon dataset contains 6659 images

Figure 12. MobileNet V1 Accuracy on 1000 FaceForensics Images. Final train accuracy
= 100.0%, validation accuracy = 97.0%, final test accuracy = 96.8% (N=93)

29

Figure 13. MobileNet V1 Cross Entropy on 1000 FaceForensics Image. Cross entropy =
0.0122 at step 4999.

Figure 14. MobileNet V1 Accuracy on 5000 FaceForensics Images. Final train accuracy
= 100.0%, validation accuracy = 97.0% (N=100), final test accuracy = 96.8% (N=525)

Figure 15. MobileNet V1 Cross Entropy on 5000 FaceForensics Images. Cross entropy =
0.0346 at step 4999.

30

Figure 16. MobileNet V1 Accuracy on 25000 FaceForensics Images. Train accuracy =
85.0%, validation accuracy = 91.0% (N=100), final test accuracy = 88.8 % (N = 2484).

Figure 17. MobileNet V1 Cross Entropy on 25000 FaceForensics Images. Cross entropy
= 0.5466 at step 4999.

Figure 18. InceptionV3 Accuracy on 1000 FaceForensics Images. Train accuracy =
99.0%, validation accuracy = 98.0% (N=100), final test accuracy = 96.3 % (N = 134).

31

Figure 19. InceptionV3 Cross Entropy on 1000 FaceForensics Images. Cross entropy =
0.0376 at step 4999.

Figure 20. InceptionV3 Accuracy on 5000 FaceForensics Images. Train accuracy =
99.0%, validation accuracy = 98.5% (N=100), final test accuracy = 98.1 % (N = 523).

Figure 21. InceptionV3 Cross Entropy on 5000 FaceForensics Images. Cross entropy =
0.1076at step 4999.

32

Figure 22. InceptionV3 Accuracy on 25000 FaceForensics Images. Train accuracy =
95.0%, validation accuracy = 93.0% (N=100), final test accuracy = 92.7 % (N = 2513).

Figure 23. InceptionV3 Cross Entropy on 25000 FaceForensics Images. Cross entropy =
0.246 at step 4999.

Figure 24 to 31 shows the performance of Inception V3 and MobileNet V1 when

trained on DeepFake image set.

33

Figure 24. Inception V3 Accuracy on DeepFake Elon test set. Train accuracy = 99.7%,
validation accuracy = 99.9% (N=100), final test accuracy = 100 % (N = 688).

Figure 25. Inception V3 Cross Entropy on DeepFake Elon test set. Cross entropy =
0.0206 at step 4999.

34

Figure 26. Inception V3 Accuracy on DeepFake Nic Cage test set. Train accuracy =
99.8%, validation accuracy = 99.7% (N=100), final test accuracy = 100 % (N = 825)

Figure 27. Inception V3 Cross Entropy on DeepFake Nic Cage test set. Cross entropy =
0.0163 at step 4999.

35

Figure 28. MobileNet Accuracy on DeepFake Elon test set. Train accuracy = 100.0%,
validation accuracy = 100.0% (N=100), final test accuracy = 100.0 % (N = 695).

Figure 29. MobileNet Cross Entropy on DeepFake Elon test set. Train cross entropy =
0.0034; validation cross entropy = 0.0095.

36

Figure 30. MobileNet Accuracy on DeepFake Nic Cage test set. Train accuracy = 99.0%,
validation accuracy = 100.0% (N=100), final test accuracy = 100.0 % (N=741)

Figure 31. MobileNet Cross Entropy on DeepFake Nic Cage test set. Training cross
entropy = 0.0024; validation cross entropy = 0.0037.

37

CHAPTER VII

Conclusion & Future Work

Conclusion

In this work, we proposed an approach to detecting the forgery videos generated

by DeepFake. Our approach is based on the limitations that current DeepFake software

can only generates short duration and low-resolution videos; Moreover, during the face

mask conversion, various setting will further downgrade the resolution around the edge

of the facial mask. Such distinctive artifacts can be captured by pre-trained deep neural

networks. The testing results from experimentation indicate that our method is effective.

Our retrained module is effective in detecting both DeepFake videos and the forgery

videos from FaceForensics. Our approach has reached average 94.9% accuracy with

significantly less training time.

Future Work

As the GAN related technology continues evolving, our detection method should

also improve accordingly. We aim to improve the reliability of results by performing

robust testing on various learning rate and different data sets; furthermore, transfer

learning is better performed when trained on a pre-build forgery detection neural

network, which requires dedicated training data set for image forgery classification. In

the future, our research could aim to build a dedicate neural network for detecting various

AI-generated forgery products.

38

REFERENCES

BuzzFeedVideo. (2018, April 17). You Won't Believe What Obama Says in This Video!

Retrieved from https://www.youtube.com/watch?v=cQ54GDm1eL0

Bengio, Y., Courvile, A., Vincent, P., August 2013. A Review and New Perspectives.

IEEE trans. Pattern Anal. Mach Intel., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.

Wikipedia contributors. (2019, February 26). Artificial neuron. In Wikipedia, The Free

Encyclopedia. Retrieved 18:29, February 26, 2019, from

https://en.wikipedia.org/w/index.php?title=Artificial_neuron&oldid=885171186

Wikipedia contributors. (2019, February 22). Activation function. In Wikipedia, The Free

Encyclopedia. Retrieved 18:30, February 26, 2019, from

https://en.wikipedia.org/w/index.php?title=Activation_function&oldid=88453756

6

Clark, D. (2018, April). KDnuggets. Retrieved February, 2019, from

https://www.kdnuggets.com/2018/04/top-16-open-source-deep-learning-

libraries.html

Hale, J. (2018, September 20). Deep Learning Framework Power Scores 2018 – Towards

Data Science. Retrieved February 20, 2019, from

https://towardsdatascience.com/deep-learning-framework-power-scores-2018-

23607ddf297a

TensorFlow Hub. (n.d.). TensorFlow Hub Introduction. Retrieved February 20, 2019,

from https://www.tensorflow.org/hub

39

Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,

M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications. CoRR, abs/1704.04861.

Tsang, S. (2019). Review: Inception-v3: 1st Runner Up (Image Classification) in

ILSVRC 2015. Retrieved February 20, 2019. from:

https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-

classification-in-ilsvrc-2015-17915421f77c.

Matas, M. J., Reckhow, M. W., & Taigman, Y. (2017). U.S. Patent No.

US20170140214A1. Washington, DC: U.S. Patent and Trademark Office.

Thies, J., Zollh246fer, M., Stamminger, M., Theobalt, C., & Nie223ner, M. (2018).

Face2Face: real-time face capture and reenactment of RGB videos. CACM.

Thies, J., Zollhöfer, M., Theobalt, C., Stamminger, M., & Nießner, M. (2018). Headon:

real-time reenactment of human portrait videos. ACM Trans. Graph., 37, 164:1-

164:13.

Suwajanakorn, S., Seitz, S.M., & Kemelmacher-Shlizerman, I. (2017). Synthesizing

Obama: learning lip sync from audio. ACM Trans. Graph., 36, 95:1-95:13.

Karras, T., Laine, S., & Aila, T. (2018). A Style-Based Generator Architecture for

Generative Adversarial Networks. CoRR, abs/1812.04948.

Lample, G., Zeghidour, N., Usunier, N., Bordes, A., Denoyer, L., & Ranzato, M. (2017).

Fader Networks: Manipulating Images by Sliding Attributes. NIPS.

Lu, Y., Tai, Y., & Tang, C. (2017). Conditional CycleGAN for Attribute Guided Face

Image Generation. CoRR, abs/1705.09966.

40

Sharma, S. (2018, August 04). Celebrity Face Generation using GANs (Tensorflow

Implementation). Retrieved February, 2019, from

https://medium.com/coinmonks/celebrity-face-generation-using-gans-tensorflow-

implementation-eaa2001eef86

Li, J. (2018, June 01). CelebFaces Attributes (CelebA) Dataset. Retrieved March 17,

2019, from https://www.kaggle.com/jessicali9530/celeba-dataset

Seibold, C., Samek, W., Hilsmann, A., & Eisert, P. (2017). Detection of Face Morphing

Attacks by Deep Learning. IWDW.

Cozzolino, D., Poggi, G., & Verdoliva, L. (2017). Recasting Residual-based Local

Descriptors as Convolutional Neural Networks: an Application to Image Forgery

Detection. IH&MMSec.

Bayar, B., & Stamm, M.C. (2016). A Deep Learning Approach to Universal Image

Manipulation Detection Using a New Convolutional Layer. IH&MMSec.

Rahmouni, N., Nozick, V., Yamagishi, J., & Echizen, I. (2017). Distinguishing computer

graphics from natural images using convolution neural networks. 2017 IEEE

Workshop on Information Forensics and Security (WIFS), 1-6.

Raghavendra, R., Raja, K.B., Venkatesh, S., & Busch, C. (2017). Transferable Deep-

CNN Features for Detecting Digital and Print-Scanned Morphed Face Images.

2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops

(CVPRW), 1822-1830.

Guera, D., & Delp, E.J. (2018). DeepFake Video Detection Using Recurrent Neural

Networks. 2018 15th IEEE International Conference on Advanced Video and

Signal Based Surveillance (AVSS), 1-6.

41

Li, Y., & Lyu, S. (2018). Exposing DeepFake Videos by Detecting Face Warping

Artifacts. CoRR, abs/1811.00656.

Hui, J. (2018, April 28). How deep learning fakes videos (DeepFakes) and how to detect

it? Retrieved February 20, 2019, from https://medium.com/@jonathan_hui/how-

deep-learning-fakes-videos-DeepFakes-and-how-to-detect-it-c0b50fbf7cb9

Li, C., & Balaban, S. (2018). Transfer Learning with TensorFlow Tutorial: Image

Classification Example. Retrieved from https://lambdalabs.com/blog/transfer-

learning-with-tensorflow-tutorial-image-classification-example/

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the

Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2818-2826.

GHB. (2017, December 23). Understating Google MobileNet. Retrieved March 15, 2019,

from https://blog.csdn.net/T800GHB/article/details/78879612

cyberfire. (2017). GitHub tensorflow-mtcnn. Retrieved February 20, 2019, from

https://github.com/cyberfire/tensorflow-mtcnn.

King, D.E. (2009). Dlib-ml: A Machine Learning Toolkit. Journal of Machine Learning

Research, 10, 1755-1758.

Iperov. (2019). GitHub DeepFaceLab. Retrieved February 20, 2019, from

https://github.com/iperov/DeepFaceLabm/iperov/DeepFaceLab.

Fisher, R., & Perkins, S. (2003, May). Erosion. Retrieved February 20, 2019, from

https://homepages.inf.ed.ac.uk/rbf/HIPR2/erode.htm

42

Rössler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., & Nießner, M. (2018).

FaceForensics: A Large-scale Video Dataset for Forgery Detection in Human

Faces. CoRR, abs/1803.09179.

Kazemi, V., & Sullivan, J. (2014). One millisecond face alignment with an ensemble of

regression trees. 2014 IEEE Conference on Computer Vision and Pattern

Recognition, 1867-1874.

TensorFlow Hub. (n.d.). Create bottleneck file for Retraining an Image. Retrieved

February 20, 2019, from

https://www.tensorflow.org/hub/tutorials/image_retraining#bottlenecks

43

APPENDIX

Figure 32. Inception V3 Bottleneck layer structure. Newly formed input layer will
replace the original Softmax layer as classifier for new dataset.

44

Figure 33. MobileNet V1 Bottleneck layer structure. Input_1 layer will replace the
original Softmax and FC layer and update the value of weight and bias base on prediction
of previous testing dataset result.

45

Figure 34. Initial parameter settings. From top to bottom: Use Tensorboard monitor to
the training progress; Setting initial parameters of MobileNet V1; Parameter Help; Use
retrained module to predict the authenticity of specific picture;

Figure 35. Parameter settings for retraining on 1000, 5000 and 25000 FaceForensics data.
Left: MobileNetV1; Right Inception V3.

46

Figure 36. Parameter settings for retraining on DeepFake dataset. From top to bottom:
MobileNet V1 trained on Nic and Elon; Inception V3 trained on Nic and Elon.

47

VITA

 Zhaohe Zhang

EDUCATION

Master of Science student in Computing and Information Science at Sam Houston
State University, May 2017 – present. Thesis title: “Detect Forgery Video by
Performing Transfer Learning on Deep Neural Network.”

Bachelor of Science (August 2016) in, Sam Houston State University, Huntsville,
Texas.

ACADEMIC EMPLOYMENT

Graduate Teaching Assistant, Department of Computer Science, Sam Houston
State University, August 2017 - present. Responsibilities include: assisting
professors with the preparation and presentation of undergraduate courses,
grading, and hosting TA office hours.

Math Tutor, Academic Success Center, Sam Houston State University, August
2015 – August 2016. Responsibilities include: Providing instructions to students
and assist them improve their math skills, prepare study guides for Calculus and
Algebra students.

PUBLICATIONS

Hutchinson S., Zhang Z., Liu Q. (2018) Detecting Phishing Websites with
Random Forest. In: Meng L., Zhang Y. (eds) Machine Learning and Intelligent
Communications. MLICOM 2018. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering, vol 251.
Springer, Cham

ACADEMIC AWARDS

COSET Special Graduate Scholarship, College of Science and Engineering
Technology, SHSU, 2017 – 2019.

Computer Science Department Scholarship, Department of Computer Sciences,
SHSU, Fall 2015.

PROFESSIONAL MEMBERSHIP

Institute of Electrical and Electronics Engineers Graduate Student Member,
Southwestern USA, Houston Section.

	Detect Forgery Video by Performing Transfer Learning on Deep Neural Network
	Detect Forgery Video by Performing Transfer Learning on Deep Neural Network
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	CHAPTER I
	Introduction
	Statement of the Problem
	Deep Network & Autoencoder
	TensorFlow Hub & Transfer Learning
	Retraining Module
	MobileNet V1.
	Inception V3.

	Remaining Chapter Description

	CHAPTER II
	Related Research
	Synthesized facial reenactment
	GAN related forgery
	Face Morphing
	Forgery video detection
	Facial reenactment.
	DeepFake.

	CHAPTER III
	DeepFaceLab & Workflows
	Main concept
	Training Models for DeepFakes
	Convert Options
	Blurring.
	Erosion.
	Seamless Erosion.
	Hist-match Threshold.
	Face Scale.
	Transfer Color.
	Degrade Color Power.

	CHAPTER IV
	Methodology
	Breaching the DeepFakes videos
	Common flaws that DeepFakes and GAN generated image possess
	Transfer learning & Approach
	Advantage of Inception V3
	Avoid representation bottleneck.
	Reduced kernel size and increasing the width of the network.
	Reduce the dimension of the filters.

	Advantage of MobileNet V1
	Reduce the computational cost.

	Image Feature Vectors
	Creating Image Feature Vectors
	create_model_graph().
	Resized_input_tensor.
	Bottleneck_tensor.
	Wants_quantization.

	Run_bottleneck_on_image().
	Get_or_create_bottleneck().
	Add_final_retrain_ops().
	Save_weight(), Evaluate.py.

	CHAPTER V
	Experiment
	Dataset
	Hyperparameters
	Retraining

	CHAPTER VI
	Results & Discussions
	CHAPTER VII
	Conclusion & Future Work
	Conclusion
	Future Work

	REFERENCES
	APPENDIX
	VITA

