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ABSTRACT 

Holmes, Amy Sorensen, The collection, preservation, and processing of DNA samples 
from decomposing human remains for more direct disaster victim identification (DVI).  
Doctor of Philosophy (Forensic Science), May 2018, Sam Houston State University, 
Huntsville, Texas. 
 
 

Forensic DNA analysis plays a vital role in forensic casework and mass fatality 

incidents to identify victims. In these situations, human remains are often subjected to 

extreme heat, humidity, possible mutilation or fragmentation, microbial activity, 

decomposition and putrefaction, which can all complicate disaster victim identification 

(DVI). In many cases, the disaster event results in damage to the local infrastructure 

causing a loss of electricity and lack of facilities with refrigeration to house large numbers 

of human remains. Without refrigeration, the DNA in tissues become more degraded and 

damaged making traditional short tandem repeat (STR) typing more difficult. Therefore, 

immediate and simple in-field collection and stabilization of DNA samples from 

decomposing human remains without the need for refrigeration would be of great benefit 

to the forensic community.  

In addition, quick victim identification is also a goal for DVI operational teams as 

they attempt to bring closure to the victim’s families, and assist government agencies that 

must account for the deceased. As a result, the demand for a rapid turnaround time is often 

stressed; however, due to the overwhelmingly large number of samples requiring 

processing, this may not be feasible. Significant rate-limiting steps in the STR typing 

workflow are DNA extraction (approx. 3-4 hours), DNA quantification (1-2 hours), and 

standard PCR amplification (approx. 2-3 hours).  Digestion of dense connective tissues 

such as skin and muscle prior to DNA purification may add another 8-12 hours, or hard 
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tissues such as bone or teeth another 24-48 hours to the overall time required for generating 

an STR profile.  If some of these procedures could be reduced (or avoided) during a mass 

fatality incident involving thousands of victims, sample throughput could be substantially 

increased.  

This doctoral research focuses on testing various in-field DNA collection and room 

temperature preservation methods for decomposing human remains as mock DVI samples. 

We compared rapid DNA purification protocols or direct amplification approaches that 

will eliminate unnecessary steps in the DNA analysis workflow, increasing the throughput 

and reducing the costs of analysis. Overall, results indicate that sufficient DNA can be 

collected and preserved at ambient temperature using some of these methods, provided that 

DNA is not already severely degraded before collection.  

In-field sample collection from human remains using biopsy punches or simply 

making an incision in the skin and swabbing the underlying muscle with cotton or foam 

swabs proved to be the most successful and easiest methods of DNA collection. Biopsy 

punches should be immediately stored in a modified TENT preservative, and swabs 

allowed to dry for transport to the laboratory for refrigeration, or stored until DNA analysis 

is possible. TENT and swab samples were processed with both traditional DNA analysis 

workflows and a direct PCR approach. In all cases, complete profiles were obtained from 

fresh tissues using all methods tested in this study. However, severely decomposed tissues 

were more challenging, with most samples yielding partial (or no) STR profiles.  

We proposed a method for triaging swab samples based on the quantification results 

of samples prepared for direct PCR in order to increase the first-pass success rate. Results 

indicate that foam swabs used to collect from muscle tissue may generate the most 
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complete STR profiles for the majority of decomposed tissues, with cotton swabs yielding 

similar results. In addition, aliquots of TENT containing DNA leached from tissues were 

successfully diluted and directly added to the PCR reaction, thereby skipping DNA 

extraction and quantification all together. This protocol is the quickest of all methods 

tested, generating STR profiles in a fraction of the time it takes for traditional DNA 

processing. If this first-pass approach fails due to insufficient amounts of DNA, then the 

tissue itself stored in the TENT buffer can be quickly extracted in under 20 minutes with 

the PDQeX DNA extraction system. We found that this method generated the most 

complete STR profiles from severely decomposed tissues.  

Overall, we have demonstrated that tissues preserved in a modified TENT buffer 

or collected and stored using cotton and foam swabs show potential as alternate methods 

for the immediate in-field collection and preservation of DNA at room temperature for 

human identification purposes. However, these methods warrant further investigation to 

optimize protocols to achieve more efficient DNA preservation and higher STR success 

rates from severely decomposed human tissues.  

 

KEYWORDS:  Forensic science, STR typing, Mass disasters, Disaster victim 
identification, DNA collection, DNA preservation, Rapid purification, Direct amplification
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Polymerase Chain Reaction  The method used to replicate a specific region of 
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millions of copies of a particular sequence. 

Degraded DNA  Double stranded DNA that has broken into small 
fragments. 

Damaged DNA  Destruction of the DNA molecule resulting in base 
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Decomposition  A process that occurs in human remains after 
death. 

PCR Inhibition  Any factor that prevents the process of 
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Direct PCR  The process of adding DNA sample directly to the 
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CHAPTER I 

Introduction 

Every year mass disasters claim the lives of hundreds to thousands of people around 

the world [1, 2]. These disasters are categorized as natural (hurricanes, tsunamis, 

earthquakes, floods, tornadoes, typhoons) or man-made events (terrorist attacks, airplane 

and train crashes, acts of genocide and wars) [2-7]. Each disaster event poses unique 

challenges and involves varying approaches for the recovery and identification of human 

remains [5]. Disaster victim identification (DVI) is a necessary action in mass fatality 

events providing legal and general closure to the victims’ families [1, 3, 6]. Many factors 

complicate identification efforts such as the number of victims, severity of body destruction 

and fragmentation, exposure to harmful degradation processes, the speed and accessibility 

of body/sample collection, and availability of reference samples [3, 6]. In most cases, the 

aftermath of events such as Hurricane Katrina and the 2004 Indian Ocean tsunami, pose 

even more difficult challenges to identification methods due to extreme heat, humid 

conditions or bodies submerged in water, and microbial activity [8, 9]. The responsibility 

of forensic personnel is to quickly recover all human remains and process the disaster site 

according to the International Criminal Police Organization (INTERPOL) DVI Guidelines 

[10].  

The process of identifying victims of mass disasters is multidisciplinary, which 

typically involves forensic pathologists, anthropologists, radiologists, odontologists, 

fingerprint examiners, and forensic biologists [3, 6, 10, 11]. Other methods and techniques 

can be employed for screening or triage of victims’ remains including visual examination 

of the body, recognition of the face and markings on the body such as birthmarks, scars 
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and tattoos, any personal effects recovered with or on the body, and unique medical 

features such as numbered implants or prosthetics [4, 6]. These methods may not be 

entirely reliable, especially for severely decomposed or fragmented remains, and therefore 

are typically used as secondary identifiers. The primary methods of identification include 

dental and fingerprint comparisons, and DNA analysis [1, 4, 11, 12]. Only experts in these 

fields can establish and report an identification [11], and often the consensus of an expert 

panel or reconciliation team is required [13].   

Forensic odontology is the science that deals with evidence surrounding dental 

structures and matching the post-mortem (after death) dental examination with ante-

mortem (before death) records [2]. Likewise, fingerprint pattern analysis can generate 

many positive identifications, in many cases, using the Automated Fingerprint 

Identification System (AFIS) to search ante-mortem prints [13]. However, in many 

circumstances, bodies are severely fragmented, commingled, burned, or decomposed. 

These first two primary methods can only make identifications on largely intact remains, 

and rely on the availability of previously collected ante-mortem data [2, 4]. But DNA can 

theoretically be recovered from any biological material [1, 4, 7], and multiple DNA 

reference sources (personal items or family members) for comparison are often available 

[3]. Personal items such as a hairbrush, toothbrush, or unlaundered clothing may be used 

for direct comparison; however, if these items are not available, family members of the 

victim can provide DNA samples for identification via kinship analysis [14]. Therefore, 

forensic DNA typing is usually the last identification method to be employed, as it is the 

most timely and costly of the three primary methods. However, when other methods are 

exhausted, DNA analysis is always performed.   
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DNA Typing  

The process of forensic DNA typing involves five steps consisting of DNA 

extraction, DNA quantification, short tandem repeat (STR) amplification, capillary 

electrophoresis that separates and detects the amplified products resulting in a STR profile, 

and data analysis. STR typing has been the gold standard in forensic DNA analysis for 

human identification since 1993 after the Waco siege, when the more than 70 people that 

died in a fire outbreak were identified by DNA analysis [3, 4]. STRs are small stretches of 

DNA units typically between two and seven nucleotides in length (eg. TCAT), which 

repeat a variable number of times within a particular region in the genome [15]. The 

number of times the repeat occurs at each site (locus) is variable among unrelated 

individuals, and the human genome contains thousands of these STR markers spread across 

all chromosomes [16]. With the advancement of the polymerase chain reaction (PCR), 

multiple STR loci can be simultaneously amplified (multiplexing) from a small quantity of 

DNA resulting in complete STR profiles in the vast majority of high-quality DNA samples 

[7, 15, 17]. In the forensic community, a core set of thirteen loci were originally selected 

for human identity testing and databasing in the United States via the Combined DNA 

Index System (CODIS) [3].  However, the CODIS core loci has more recently expanded 

to 20 loci making it more useful globally and increasing the data sharing efforts with 

international law enforcement [18-20]. The combination of these core STR markers enable 

a higher power of discrimination for profile “matching” and identification purposes to 

reduce the likelihood of adventitious matches [18, 19].  

In addition, multiplexing of these 20 loci is achieved by utilizing different 

fluorescent dyes and varying the sizes of PCR products [15]. Current commercial STR kits 
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have expanded from 5-dye to 6-dye chemistries in order to incorporate more loci (20-24) 

under 450 base pairs (bp) in a single PCR reaction [18]. The 6-dye STR kits used within 

the USA include Investigator® 24plex QS Kit (QIAGEN, Hilden, Germany), GlobalFilerTM 

PCR Amplification Kit (Thermo Fisher Scientific, Waltham, MA, USA), and PowerPlex® 

Fusion 6C System (Promega, Madison, WI, USA). These newer commercial STR kits have 

more sensitive chemistries, are more tolerant to PCR inhibitors, and have shorter 

processing times (60-80 minutes) [18]. However, successful STR typing is still impacted 

by severely degraded template (<200 bp) and low amounts of DNA (<100 pg) [21]. 

DNA Damage and Degradation 

In routine casework, a sample from the deceased would be collected in the morgue 

and stored at very low temperatures (<4C) to inhibit DNA degradation by enzymatic and 

microbial activity [17]. As the level of sample degradation increases DNA breaks into 

smaller and smaller fragments, typically resulting in the longer loci (>250bp) failing to 

amplify during PCR producing partial STR profiles [17, 22, 23]. The reduced genetic 

information results in a lower power of discrimination for identification, and may also 

increase the chances of adventitious matches [17], especially between family members that 

are victims in the same mass disaster. The use of mini-STRs has become the most common 

approach for increasing the success rate from highly degraded DNA samples since the 

World Trade Center attacks in 2001, where severe disruption of remains led to unsuccessful 

STR typing [4]. With mini-STRs, the target amplicon size is reduced by moving the PCR 

primers closer to the repeat sequence [17, 21]. Commercial mini-STR kits such as 

AmpFℓSTR® MiniFiler™ PCR Amplification Kit (Thermo Fisher Scientific) and 

PowerPlex® S5 System (Promega) were developed specifically for the forensic market to 
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improve the profiling success from degraded DNA templates by complementing standard 

autosomal STR kits when the larger loci in these kits failed to amplify [15]. However, 

autosomal STR kits such as GlobalFilerTM, PowerPlex® Fusion, and Investigator® 24plex 

QS have been designed to maximize the number of small loci (<220bp) in each kit to more 

successfully amplify degraded and problematic samples [18].  

Other approaches for genotyping highly degraded samples include the analysis of 

single nucleotide polymorphisms (SNPs) [7, 14, 21, 23-25] and mitochondrial DNA 

(mtDNA) [7, 14, 26]. Analysis of SNPs may provide higher success with severely degraded 

DNA as the amplicons are very short (45-80bp) [23, 25], whereas mitochondria are 

organelles that contain maternally inherited DNA and are abundant in cells compared to a 

single copy of nuclear DNA [26, 27]. In addition, maternal relatives separated by several 

generations can be used for comparison due to lack of recombination [26, 28]. For this 

reason, mtDNA is commonly performed in mass disasters, missing persons cases, or war 

remains for HID of skeletal remains [26, 28, 29].  An analysis method relatively new to the 

field of forensic biology is massively parallel sequencing (MPS). This technology holds 

great promise for forensic analysis, as it enables deeper interrogation of the genome in 

multiple samples in parallel [7, 30]. MPS has been used to analyze samples for HID 

purposes using identity markers such as SNPs, microhaplotypes, STRs, and mitochondrial 

DNA [25-27, 31-34]. However, these alternate methods for genotyping highly degraded 

samples were not an area of focus for this project. 

In order to maximize the STR typing success from biological material, analysts aim 

to amplify adequate amounts of DNA template (0.5ng-1ng) that is as pristine as possible 

(little or no DNA damage, degradation, or PCR inhibition). Although DNA can be 
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recovered from essentially all biological tissues (except red blood cells), the condition of 

the sample is an important factor in determining the quantity and quality of the DNA 

retrieved [1, 5]. This is a significant consideration when identifying human remains after a 

mass disaster as severe DNA damage and degradation can occur in tissues exposed to harsh 

environmental conditions [4, 22].  

When a cell or an organism dies, the DNA in each cell is susceptible to damage and 

degradation by endogenous nucleases and exogenous insults such as microbial activity 

[12]. Cell death is a result of apoptosis (programmed cell death) or necrosis. Characteristic 

cell changes after apoptosis include condensation of cytoplasm, nuclear fragmentation, 

chromosomal DNA fragmentation, and an overall reduction in cell volume [35]. Necrosis 

of cells is a passive energy process and is accelerated by higher ambient temperatures. This 

pattern of cell death is associated with a temporary increase in cell volume, swelling of 

cytoplasmic organelles, and condensation of chromatin, which causes rupturing of the cell 

membranes, organelle breakdown, and leakage of lysosomal enzymes. As a consequence, 

the DNA is released into the surrounding environment and exposed to damaging enzymes 

and external insults resulting in a random pattern of degradation [35]. Other forms of DNA 

damage that may complicate DNA typing include radiation, oxidative and hydrolytic 

damage causing base modifications, strand breaks, crosslinks, and mismatches [22, 35]. 

Prolonged exposure to heat, ultraviolet (UV) radiation, humidity, and 

microorganisms further increases the rate of DNA damage and degradation [4, 22, 36, 37]. 

Microbial activity is common in humid environments and increases the vulnerability of the 

DNA to degradation processes like hydrolytic damage [35, 36]. The bond between the 

deoxyribose backbone and nucleic bases is most susceptible to cleavage and hydrolytic 
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attacks leading to loss of bases [22, 35, 38]. Single strand breaks or “nicks” in the DNA 

can lead to fragmentation (double strand breaks) if they are on opposite strands and in close 

proximity to one another. Single strand breaks can also result in fragmentation during the 

first step of PCR (denaturation of double stranded DNA into single strands) [22]. Because 

STR analysis is based on size differences in the DNA, these damaging processes that lead 

to fragmentation of the DNA template into progressively smaller pieces, may result in poor 

or complete failure of PCR amplification [35]. Therefore, successful DNA-based 

identification is reliant on timely sample collection after death to ensure the optimal tissues 

are sampled, and adequate preservation of the DNA sample prior to processing.  

DNA Collection 

The preferred sample type for DNA collection following mass fatality incidents are 

buccal swabs or blood from fresh remains [1]. When human remains are moderately 

decomposed or fragmented, human soft tissue is collected including skeletal muscle, organ 

tissue, and skin [3]. However, hard tissues like bone and teeth (or hair or nails) must be 

collected when the soft tissues have undergone severe decomposition and putrefaction, or 

extensive commingling of remains have occurred [1, 3, 8, 39]. DNA methods for bone and 

teeth are more complicated, costly, time-consuming, and requires specialized equipment 

and analyst training [29]. Therefore, these samples are typically used as a last resort [1]. 

Despite their resistance to degradation and damage, extreme environmental conditions can 

still degrade DNA in bones and teeth [39], but by necessity hard tissues are relied on as the 

last source of DNA for HID.   

Swabs are another type of sample routinely processed by forensic crime 

laboratories.  Various types of swabs are used to collect DNA from biological stains or 
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items that have been touched in order to link a suspect or victim to a crime scene. Humans 

shed several thousands of epithelial cells when they come into contact with items [40]. 

Therefore, these touched evidentiary items may contain tens to hundreds of shed epithelial 

cells depending on several factors including the amount of time the item was held, whether 

the person was a good shedder or a bad shedder, and the surface of the item (rough versus 

smooth surface) [41, 42]. One study by Albujja et al. tested the effectiveness of swabbing 

the skin surface of living volunteers for reference DNA samples compared to buccal swabs, 

and found skin surface cells to be a viable source for DNA typing [16]. This principle could 

be applied to disaster victim identification samples by swabbing the skin of human remains 

to recover epithelial cells more easily and immediately in the field.  

Typically, tissues and swab samples would be housed in a refrigerator until DNA 

analysis is performed or archived in freezers. However, in the aftermath of a mass fatality 

incident, local mortuaries and DNA laboratories are not usually prepared to quickly store 

and identify thousands of victims. In fear that human remains will cause a disease 

epidemic, decomposing bodies are often buried in temporary mass graves without 

identification or sample collection [43]. The lapse of time between death and recovery of 

these remains will complicate DNA typing. Therefore, the condition and preservation of 

these biological samples collected from the deceased are also important considerations for 

DNA-based identification [5]. 

DNA Storage and Preservation 

Although DNA is a relatively stable molecule, it can be subjected to degradation 

by endogenous and exogenous enzymes, microbial activity, hydrolysis, oxidation, and 

ultraviolet light [22, 35]. It is common practice to store DNA samples at low temperatures 
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to inactivate damaging nuclease enzymes and slow down other degradation processes [35]. 

However, in many cases refrigeration of samples may not be possible. Several methods 

have been developed to store DNA at room temperature for later analysis. Some studies 

have investigated room temperature storage of swabs prior to DNA analysis [16, 44-47]. 

Swabs treated with chemicals to lyse cells and inhibit microbial activity have also been 

studied [45-48]. Another alternate solution may be to collect a small tissue sample from 

each cadaver immediately in the field and store it on a Whatman® FTA® (fast technology 

for analysis) card or in a chemical preservative at room temperature until it can be 

processed weeks or months later. This process could potentially prevent DNA damage and 

degradation in the tissue sample without the requirement for cold or freezing temperatures. 

Classic FTA® cards are treated papers with chemicals intended to capture and lyse 

cell membranes for stabilization of DNA molecules until later processing [12, 49-51]. On 

the contrary, FTA® Elute cards are specifically designed to release DNA into solution prior 

to STR typing [52]. These cards also contain proprietary chemicals to inhibit microbial 

activity and chelating agents to inactivate nucleases [12, 51]. FTA® cards have been shown 

to be effective for storing blood and saliva samples at room temperature for long periods 

of time [12, 51, 53, 54]. Studies have also looked at storage of other biological samples 

such as vitreous fluid and bone marrow [8], cerebrospinal fluid [55], vaginal fluid [56], 

organ tissues and tumors [57], and trace DNA samples on steering wheels [58]. However, 

no studies have looked at decomposing tissues for storage on FTA® cards. 

Several studies have also investigated the potential for alternate methods and room 

temperature storage of biological tissue samples prior to genotyping. These treatments 

range from dehydration and desiccation to storage in chemical preservatives to inhibit the 
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destructive nuclease activity that leads to DNA degradation [5, 9]. The utility of 

commercial products such as RNAlater RNA Stabilization Reagent (QIAGEN) [9, 59, 60] 

and DNAgard® Tissues & Cells (Biomatrica, San Diego, CA, USA) [9, 59], as well as 

various in-house solutions have been reported [9, 59]. These in-house preservative 

solutions include a lysis, storage, and transportation (LST) buffer [1], DESS [9, 59], and 

TENT buffer [9]. These buffers are quick and easy to make, and contain chemicals that are 

commonly used in laboratories.  This is a substantial benefit when responding to mass 

disasters, as they often occur unexpectedly, and personnel need to mobilize quickly. 

Commercial products may not be available for immediate purchase in the large amounts 

required, or cannot be shipped to isolated locations in a timely fashion. These products 

could be purchased and stored in preparation for a mass disaster, but they often have short 

shelf lives (6–12 months) and would require regular restocking. Therefore, the 

development of an in-house DNA preservative, which can preserve DNA in human tissue 

samples would be of great benefit for DVI operations. 

The constituents of common tissue preservatives include salts (most commonly 

NaCl), detergents, chelating agents, and alcohols [9, 60]. Salts in solid form desiccate the 

tissues by removing moisture, which inactivates endogenous nucleases and inhibits 

microbial growth.  In an aqueous form, salt also denatures proteins.  Detergents, such as 

Tween 20, lyse cell membranes and aid in the release of genomic material. Chelating 

agents, such as ethylenediaminetetraacetic acid (EDTA), inhibit nuclease activity by 

binding to metal ions that are required for normal function of nucleases. Ethanol is the most 

commonly used alcohol for tissue preservation because it inhibits microbial activity, 

removes water from the sample, and denatures proteins [9]. Dimethyl sulphoxide (DMSO) 
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increases the permeability in tissues and promotes absorption of chemicals across cell 

membranes, although it is not thought to directly protect the DNA from degradation [9, 

60].  

Previous studies have shown that the liquid preservatives investigated in this 

project (LST, TENT, DESS, DNAgard®, and RNAlater) preserve the integrity of DNA 

within biological tissues to various degrees [1, 9, 60]. However, in order to make the 

process of DNA extraction faster, it would be ideal if DNA could be isolated directly from 

the storage solution surrounding the tissue sample. The ability of these tissue preservatives 

to promote the lysis of tissue and release “free” DNA into solution, while also protecting 

that DNA in solution from further degradation has not been widely investigated.  

One study conducted by Graham et al., 2008 investigated the use of tissue 

preservatives that could potentially aid DNA-based DVI.  Two preservative solutions, LST 

buffer and OrageneTM DNA self-collection kit (DNA Genotek, Ottawa, ON, Canada), were 

evaluated based on their ability to preserve fresh human muscle at room temperature over 

a 12-month period. The findings of this study concluded that both preservatives were 

effective over this time period. The OrageneTM solution yielded the highest DNA 

quantities. However, the LST buffer was superior in the quality of DNA recovered from 

the liquid preservative [1]. 

The utility of tissue preservatives to suspend DNA damage and degradation without 

the need for refrigeration was also investigated by Allen-Hall et al., 2012. The DNA 

quantity and quality was assessed from fresh human muscle in eight preservatives (salt, 

DESS, ethanol, ethanol with EDTA, TENT buffer, RNAlater, DNA Genotek Tissue 

Stabilizing Kit, and DNAgard®) stored at 35°C with high humidity (9-26%) to mimic 
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harsh, tropical climates. The results of this investigation showed that DNA was effectively 

preserved in the tissue after one month of storage in solid salt, DESS, ethanol-based 

preservatives, DNA Genotek, and DNAgard®. One interesting observation in that study 

was that various amounts of good quality DNA was leaching into the surrounding liquid 

preservative when muscle was stored in DESS, DNA Genotek, and DNAgard®. The 

ethanol-based preservatives failed to produce DNA in the liquid preservative, but 

effectively preserved DNA in the tissue. RNAlater was relatively poor at providing good 

quality DNA for genotyping in tissue, and also failed to leach DNA into the liquid 

preservative. Of all the preservatives tested in that study, the TENT buffer yielded the 

highest quantities of DNA in the surrounding solution, but the DNA degraded quickly, 

resulting in partial STR profiles [9]. In addition, several tissue preservative solutions have 

been shown to be effective for fresh human tissue [1, 9]. However, none have been tested 

on decomposed cadaveric tissue. 

If DNA from decomposing human tissues can successfully be preserved from 

further DNA degradation processes either in chemical preservative or bound on swabs or 

FTA® cards, then the lengthy tissue digestion step can be avoided and DNA extraction and 

purification methods can be performed more rapidly. 

DNA Extraction and Rapid Purification Methods 

The traditional DNA analysis workflow includes DNA extraction as the first step 

to purify DNA from cellular debris and remove PCR inhibitors that interfere with 

downstream STR typing [61]. Several methods of DNA extraction such as organic 

extraction with phenol-chloroform, Chelex®, and silica based methods have been used by 

the forensic DNA community for several decades [7, 39, 61]. Organic extractions are 
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inexpensive but require toxic chemicals such as phenol-chloroform [39]. In addition, 

Centricon® spin columns are often used as part of this extraction to clean up and 

concentrate the DNA, but significant loss of DNA has been contributed to Centricons® 

[42]. The Chelex® method is based on an ion-exchange principal, where polar resin will 

bind to polar substances, and denatured non-polar DNA and RNA will remain in solution 

[7]. Chelex® is sometimes preferred as it is quick and does not require toxic chemicals, but 

this method does not efficiently remove PCR inhibitors in the sample [7, 61]. In fact, the 

Chelex® resin is itself a PCR inhibitor, capturing ions such as Magnesium (Mg2+) ions 

required for the Taq polymerase during PCR [61]. In addition, studies have shown that cell 

free DNA obtained in many biological samples is lost in the supernatant during Chelex® 

extractions, resulting in a reduction of starting DNA material [62]. 

Silica-based extractions like QIAGEN’s QIAamp® DNA Investigator Kit follow 

four basic steps: 1) disruption of cell membranes with enzymes, heating and shaking, 2) 

binding of DNA to a silica column in the presence of chaotropic salts, 3) several washes 

with buffers to remove proteins and contaminates, and 4) elution of DNA off the silica 

column into a new tube [7, 61].  This extraction method is the most successful in removing 

PCR inhibitors and concentrating the DNA in a small volume (50-100µL). The numerous 

steps of chemical additions, incubations, and centrifugation make this extraction method 

laborious and time consuming, especially when hundreds of samples require processing 

[39]. In addition, it has been reported that irreversible binding of DNA to the silica columns 

can lead to significant loss of sample, especially for samples already in low template 

amounts [63, 64]. In a similar fashion, DNA purification using silica-coated magnetic 

beads has emerged as one of the most popular approaches for DNA extraction in forensic 
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laboratories [7]. The method is based on DNA binding to the silica-coated magnetic beads 

in a certain ionic charge, while unbound contaminates are removed [7].  These DNA 

purification systems also allow for automation via various DNA extraction platforms, 

thereby reducing human manipulation and the risk of personnel error [7, 39, 61].  

A relatively new rapid DNA extraction platform, the PDQeX System (ZyGEM 

Hamilton, New Zealand) [65], with enzyme-based buffers is currently being explored by 

the forensic DNA community [66, 67]. This novel DNA extraction utilizes the enzymatic 

activity of Antarctic Bacillus sp. EA1, which is used to lyse cells and degrade nucleases 

and proteins in a sample in under 20 minutes [66]. A cocktail of other enzymes is 

customized for particular DNA samples, such as animal tissues vs plant tissues, and also 

used to help lyse cells to obtain the DNA [65]. This instrument utilizes several incubation 

steps, where the various enzymes function at certain temperatures and deactivate at higher 

temperatures (>95°C) during the final step [66]. The resulting lysate contains DNA, 

cellular debris, and denatured proteins that is then extracted through a proprietary column 

designed to remove PCR inhibitors and enzymes [65].  

Although most current STR kits have been developed to be more sensitive to lower 

amounts of DNA template and more tolerant to common PCR inhibitors, a robust and valid 

DNA extraction or rapid purification method should ideally yield sufficient DNA quantities 

and remove PCR inhibitors from the sample in order to produce complete STR profiles. 

PCR Inhibitors 

PCR inhibitors are often co-extracted with DNA complicating downstream 

analysis. Common PCR inhibitors recovered from forensic casework samples include 

indigo dyes from clothing and denim, melanin from hair, bile salts in feces, hemoglobin 
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from blood, humic acid from soil, myoglobin from skeletal muscle [68], calcium and 

collagen from bone [39]. In addition, chemicals on swabs and FTA® cards used to lyse 

cells and stabilize DNA could also contribute to PCR inhibition, making direct PCR more 

challenging [49]. Similarly, many chemicals used during the DNA extraction process itself 

such as EDTA, phenol/chloroform, salts and detergents can also cause PCR inhibition [39].  

PCR inhibitors vary in their activity by affecting the template DNA, nucleotides, 

primers, Mg2+ and/or the DNA polymerase [69]. Severe inhibition can cause complete 

amplification failure, and produce false negative profiles, or produce similar patterns as 

severely degraded DNA, where most commonly smaller loci are preferentially amplified 

[35, 70]. However, some PCR inhibitors also have a tendency to affect particular sequences 

of DNA and the dropout of alleles can be more random. Some of these PCR inhibitors 

(such as collagen and urea) have a mixed mode of inhibition, affecting both the DNA 

template and the DNA polymerase. However in general, most PCR inhibition will result in 

the drop-out of larger loci. This is most likely because longer sequences require more 

interaction with the DNA polymerase and there is more sequence variation [70]. 

One common technique to eliminate PCR inhibition prior to amplification is simple 

dilution of the sample to reduce the amount of inhibitor added to the reaction [69, 70]. 

However, this also dilutes the DNA in a sample. When a sample with high amounts of good 

quality DNA is diluted, no negative affect on the downstream STR profile is observed, but 

dilution may significantly affect the genotyping success of low template samples [70, 71]. 

Another common strategy to overcome PCR inhibition is the addition of Bovine Serum 

Albumin (BSA) to the PCR reaction [39, 69].  BSA has been found to significantly reduce 

PCR inhibition and increase alleles reported during STR typing [39]. Due to the 
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effectiveness of this PCR enhancer, most forensic STR amplification kits contain BSA in 

their PCR master mixes [39, 72, 73]. Other methods that remove PCR inhibitors include 

silica-based methods (QIAquick® Spin Columns and MinElute® Spin Columns, QIAGEN) 

including magnetic beads, synchronous coefficient of drag alteration (SCODA), and 

organic extraction with phenol-chloroform [71].  

Although the DNA extraction methods commonly used within forensic laboratories 

are robust and have been shown to effectively remove many PCR inhibitors, some samples 

may still contain various levels of inhibitory agents [71]. Therefore, the assessment of 

sample quality is necessary before timely and costly STR typing is performed. 

DNA Quantification and Assessment of DNA Quality 

The second step in the traditional DNA analysis workflow is DNA quantification 

to determine the concentration of DNA (ng/µL) in an extracted sample. During the 

extraction process, other sources of DNA from bacteria, fungi, or other animals may be co-

extracted with the human DNA of interest. Therefore, it is important to quantify the amount 

of human-specific DNA for downstream genotyping [74]. The amount of human DNA 

must be normalized prior to PCR because of the narrow concentration range (0.5-1ng) for 

optimal STR typing [74, 75]. Too much DNA will result in sample overload with artifacts 

such as split peaks, off-scale markers, exaggerated stutter peaks, and pull-up of peaks from 

other dye channels making interpretation of true alleles in the electropherogram difficult, 

while too little DNA input will most likely result in the significant loss of reportable alleles 

or false negative results [75].  

A wide range of DNA quantification methods exist; however, methods such as UV 

spectrophotometry, PicoGreenTM assay, agarose gel electrophoresis, and slot blot 
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hybridization are unable to distinguish human DNA from non-human DNA and/or assess 

intact DNA versus degraded [74]. With the advancement of PCR, a more sensitive and 

human-specific quantification method called real-time or quantitative PCR (qPCR) was 

developed. During qPCR, the concentration of amplifiable DNA in a sample is determined 

rather than the total amount of DNA in a sample [74, 75]. The qPCR instrument consists 

of a thermal cycler, an integrated excitation light source, a fluorescence detection system, 

and typically connected to a computer with analysis software that displays the results [76]. 

The process works by incorporating fluorescent dyes into the reaction, either as a double 

strand DNA (dsDNA) intercalating dye or a fluorophore-labeled probe. SYBR® Green is 

an intercalating dye that binds to the minor groove of dsDNA, and as the target products 

are amplified cycle by cycle, more fluorescence is incorporated into the increasing copies 

of dsDNA and the fluorescence signal increases. Because SYBR® Green binds to all 

dsDNA, it will also bind to nonspecific products and primer-dimers, and as a result may 

overestimate the DNA in a sample. On the contrary, fluorophore-labeled probes are 

oligonucleotides that contain a fluorescent reporter dye on the 5’end suppressed by a 

quencher on the 3’ end, which bind to a specific sequence of DNA between the forward 

and reverse primer. As the DNA polymerase extends the new sequence using a single 

strand of DNA as a template, the reporter dye is cleaved and emits fluorescence [75, 76]. 

The most common use of such primer and probe combinations is known as the TaqMan® 

assay, and is used by most of the commercial forensic DNA quantification systems [74, 75, 

77-79].  

The qPCR process occurs in four phases: baseline, exponential, linear, and plateau 

[75]. The baseline phase occurs at the beginning when the signal of fluorescence is similar 
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to normal background levels, and when the fluorescence increases beyond these levels, the 

process enters the exponential phase [75]. A cycle threshold (CT) is set at the beginning of 

this phase, and the starting DNA template is measured in an inversely proportional fashion 

to the number of amplification cycles at which this occurs for each sample [74, 75]. During 

the linear phase, the reagents required for PCR are in sufficient quantities for amplification 

of DNA to continue, but as the reagents are depleted then amplification of products begin 

to slow down and enter into the plateau phase. During the exponential phase, reagents are 

at their optimum concentrations and amplification of DNA product is theoretically 

performing at 100% efficiency. Therefore, the exponential phase is where fluorescence 

versus cycle number is measured. The CT value at which this occurs is then compared to a 

set of known concentrations of DNA (DNA standards) to determine the DNA concentration 

of the sample [75]. In forensic DNA analysis, qPCR amplification of a small DNA target 

(approximately 80-90bp) is used to determine how much DNA sample should be added to 

a downstream assay.  

Multiplexing qPCR using multiple fluorescent dyes allows for more than one target 

to be amplified in order to assess more information about the quality of a given DNA 

sample, such as detecting any PCR inhibition [76].  The Quantifiler Human DNA 

Quantification Kit (Thermo Fisher Scientific) was one of the first multiplex qPCR kits 

specifically designed for forensic use, utilizing two TaqMan® probes labelled with two 

different reporter dyes. One dye is used to detect the amplified sequence of a human 

autosomal target (human telomerase reverse transcriptase gene, hTERT) while the other 

detects a synthetic piece of DNA not resembling any sequence in the human genome 

(serving as an internal PCR control, IPC) [80]. The IPC is contained in the master mix and 
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amplified simultaneously with the human DNA sample. Therefore, the IPC amplification 

should be constant for all samples if there is no PCR inhibition [70, 80]. Any delay in 

amplification as detected by an increased CT value for a sample compared to the known, 

pristine DNA samples (standards) indicates PCR inhibition (see Fig. 1.1.) [70]. 

 

Fig. 1.1. An example amplification plot from HID Real-Time PCR Analysis Software, 
where fluorescence signal (ΔRn) is plotted against cycle number. The horizontal line is CT. 
The figure shows a delay in a sample’s IPC target amplification in green compared to the 
five standards on the left, indicating a delay of approximately 6 cycles 

 

Prior to the addition of an IPC target in qPCR, negative quantification results could 

not be distinguished between lack of DNA, or PCR inhibition [80].  In addition to detecting 

PCR inhibition, forensic DNA quantitation kits have been expanded to also detect other 

quality metrics such as the level of DNA degradation. Therefore, samples can be 

simultaneously assessed for sample quantity and quality, making it an important tool for 

triaging samples.  Analysts may decide based on the quantification results to re-extract or 
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dilute a sample prior to STR typing or employ a totally different analysis method such as 

Y-STR typing, mitochondrial DNA, SNP, or INDEL typing.  

More recently, commercial DNA quantification kits used in forensic laboratories 

include four targets: 1) a small human autosomal target, 2) a large human autosomal target, 

3) a male (Y-chromosome) target, and 4) and an internal PCR control (IPC). Current kits 

on the market include the Quantifiler Trio DNA Quantification Kit (Thermo Fisher 

Scientific), Investigator® Quantiplex Pro Kit (QIAGEN), PowerQuant® System (Promega), 

and InnoQuant® HY (InnoGenomics Technologies). The small autosomal target is 

typically employed to normalize the DNA input for PCR, while the large target is used to 

determine the level of DNA degradation based on the ratio of the concentration of the small 

DNA target over the large DNA target (degradation index, DI). The male target is used to 

determine the amount of male DNA in a given sample or determine if a mixture of female 

and male DNA is likely present based on a ratio of the small human DNA target 

concentration to male DNA. Lastly, the IPC target in these kits is simultaneously amplified 

with the human targets to detect PCR inhibition.  

The various DNA quantitation kits vary in their design. Differences in the human 

and IPC targets chosen, and buffer chemistry will affect the quantitation results, sensitivity, 

and tolerance to PCR inhibitors for each kit. For example, a recent study showed that an 

IPC target with a long sequence would provide an increased detection for PCR inhibitors 

[70]. However, the IPC sequence is often proprietary. Therefore, it would be beneficial for 

laboratories to test each qPCR kit and decide which kit is best suited for their application 

and sample types. For example, this research project would benefit from using a qPCR kit 

that has a small target tolerant to the chemicals and buffers used in this study in order to 
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provide the most accurate quantification result, or at the very least one that is a reliable 

predictor of inhibition in the sample. However, other applications may benefit more from 

a qPCR kit that better predicts the level of DNA degradation, or is able to detect the 

presence of minute amounts of male DNA in mixtures. 

DNA quantification is required by the Federal Bureau of Investigation (FBI) for all 

samples other than reference samples [81]. Therefore, for DVI samples these informative 

DNA quantification assays could serve as a tool for triaging samples based on the quantity 

and quality of DNA for more direct amplification and maximum first pass success rates. 

Standard PCR and Direct Amplification of DNA Samples 

In order to simplify and standardize procedures and STR markers for CODIS and 

international databases, commercial STR kits include pre-mixed primers (including those 

for the core CODIS loci) and a cocktail of DNA polymerase, dNTPs, and other required 

constituents and buffers [15]. In previous years, amplification of samples would take three 

to four hours amplifying 15 STR loci simultaneously [82, 83]. However, current STR kits 

now only take one to two hours to perform amplification of more than 20 loci in a single 

reaction with the use of fast chemistries and more rapid cycling conditions. The new 

chemistries include polymerases with faster activation times and increased extension rates 

to shorten the overall time of amplification [83]. 

Recent studies comparing current commercial STR kits reported that the 

GlobalFilerTM Kit offers the highest sensitivity with low template DNA, the Investigator® 

24plex QS Kit demonstrated the highest tolerance to common inhibitors [18, 84], and the 

PowerPlex® Fusion 6C Kit generated better heterozygote balance which would benefit 

mixture samples [18].  
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On the other hand, direct amplification (direct PCR) is the addition of DNA samples 

without prior DNA extraction and quantification directly to PCR reactions [85, 86]. Direct 

amplification is currently utilized in forensic DNA laboratories for single source reference 

and databasing samples. This method utilizes amplification of the same CODIS loci, but 

the analysis time is greatly shortened by skipping DNA extraction and quantification steps 

altogether [49, 85, 87]. For example, databasing laboratories can process samples in less 

than 2 hours [87]. In addition, labor and reagent costs can be significantly reduced for these 

types of samples.  

As forensic databasing samples do not undergo a DNA extraction step to produce 

pure DNA extracts for amplification, improvements are made in the direct PCR kits’ 

chemistry in order to address the challenges of “dirty” DNA samples and presence of 

inhibitors that would normally be extracted out of the sample [49, 51, 54]. In addition, these 

kits are more tolerant with large quantities of DNA input (up to 10 ng) [86]. Current direct 

PCR kits include PowerPlex 18D (Promega), IdentiFiler Direct and GlobalFiler Express 

(Thermo Fisher Scientific), Investigator 24plex GO! and ESSplex SE GO!  (QIAGEN) to 

meet the demand of rapidly amplifying reference samples worldwide [82]. 

Unlike any of the other direct STR kits available, the Investigator® 24plex GO! Kit 

contains two novel quality sensors (QS1 and QS2) to monitor PCR success and detect PCR 

inhibition in a sample (See Fig. 1.2.) [18, 84, 88]. This kit provides an advantage for direct 

PCR analysis when DNA quantification and assessment of the sample quality is not 

performed. These quality sensors therefore serve in the place of an IPC target in 

quantification to determine PCR success or failure. For example, if drop-out of larger loci 

is observed in the profile but the quality sensors are both present (and balanced) then the 
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sample most likely contains degraded DNA, whereas if the sample shows a similar pattern 

but one or both sensors’ peaks are missing from the profile then the sample most likely 

contains PCR inhibitors. 

 

Fig. 1.2. A representative electropherogram (purple channel only) containing the quality 
sensors, which indicate PCR success and minor DNA degradation via ski-slope (top) versus 
PCR failure due to inhibition of the QS2 sensor (bottom) 

 

 

Direct PCR kits are designed for use with FTA® cards and swabs [50, 54, 87, 88]. 

But direct PCR has also proven to be a successful approach for touch samples that may be 

degraded and low template, as well as difficult samples containing PCR inhibitors [63, 85, 

86, 89, 90]. Significant amounts of DNA are lost during the extraction and quantification 

steps [86]. Furthermore, cell-free DNA that could contribute to more successful DNA 

typing for low template samples can also be lost during extraction [62, 86]. Therefore, the 

Organization of Scientific Area Committees for Forensic Science (OSAC) has recently 
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published a document requesting more research for optimization of forensic casework type 

samples and direct amplification, especially for low template samples [91]. This 

recommendation and shift in the forensic field may also be useful for other DNA-based 

human identification samples such as those encountered after mass disasters. 

Statement of the Problem 

One of the most important considerations following mass fatality incidents is the 

recovery and identification of human remains in a timely manner. Ideally, bodies (and 

DNA samples) are collected in a laboratory and stored at freezing or refrigerated 

temperatures prior to DNA typing. However, human remains may be subjected to harsh 

environmental conditions following mass disaster situations. In addition, DNA laboratories 

may take several months to set up before they can begin to process or transport samples, 

and the DNA in those tissues will begin to degrade and fragment into smaller pieces making 

successful DNA typing more difficult. Often by the time the bodies are retrieved, the soft 

tissues are too decomposed to be used for STR typing, and therefore DNA laboratories 

must rely on sampling the skeletal remains (bone and teeth) in order to obtain enough DNA 

for STR or mitochondrial DNA typing. However, these methods are more laborious, time 

consuming, expensive and require specialized equipment and analyst training.  Therefore, 

methods need to be optimized for faster and easier collection of DNA samples in-field that 

can also be preserved without refrigeration. Because DNA analysis is the most costly and 

time-consuming DVI method, this process would also benefit from faster and more cost-

efficient methods. 

The aims for this project focused on providing solutions to the aforementioned 

problems of sub-optimal DNA based methods for DVI are: 
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1. Evaluation of several commercial and home-made DNA preservatives that 

facilitate lysis of tissue from fresh and decomposing human remains, leaching of 

DNA into solution, and preservation of that DNA from further degradation for 

successful STR typing. 

2. Comparison of DNA preservatives based on their ability to facilitate lysis of tissue 

and leaching of DNA, thereby skipping DNA extraction completely, allowing 

direct PCR methods for successful STR typing. 

3. Identify the concentration of salt in the TENT buffer that facilitates better DNA 

preservation but also allows successful direct PCR amplification. 

4. Evaluation of several forensic DNA quantification kits to compare their ability to 

detect DNA degradation and inhibition in challenging samples. 

5. Assessment of in-field collection and preservation methods for tissues in liquid 

preservative and on FTA® cards that produces comparable STR typing results using 

both traditional DNA analysis and direct PCR methods. 

6. Investigation of methods to directly collect DNA from decomposing human tissues 

using various types of swabs and processed using both traditional and direct DNA 

analysis workflows for successful STR typing. 
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CHAPTER II 

Preservation and Rapid Purification of DNA from Decomposing Human Tissue 

Samples1 
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Abstract 

One of the key features to be considered in a mass disaster is victim identification. 

However, the recovery and identification of human remains are sometimes complicated by 

harsh environmental conditions, limited facilities, loss of electricity and lack of 

refrigeration. If human remains cannot be collected, stored, or identified immediately, 

bodies decompose and DNA degrades making genotyping more difficult and ultimately 

decreasing DNA profiling success. In order to prevent further DNA damage and 

degradation after collection, tissue preservatives may be used. The goal of this study was 

to evaluate three customized (modified TENT, DESS, LST) and two commercial DNA 

preservatives (RNAlater and DNAgard®) on fresh and decomposed human skin and 

muscle samples stored in hot (35°C) and humid (60–70% relative humidity) conditions for 

up to three months. Skin and muscle samples were harvested from the thigh of three human 

cadavers placed outdoors for up to two weeks. In addition, the possibility of purifying DNA 

directly from the preservative solutions (“free DNA”) was investigated in order to 

eliminate lengthy tissue digestion processes and increase throughput. The efficiency of 

each preservative was evaluated based on the quantity of DNA recovered from both the 

“free DNA” in solution and the tissue sample itself in conjunction with the quality and 

completeness of downstream STR profiles. As expected, DNA quantity and STR success 

decreased with time of decomposition. However, a marked decrease in DNA quantity and 

STR quality was observed in all samples after the bodies entered the bloat stage 

(approximately six days of decomposition in this study). Similar amounts of DNA were 

retrieved from skin and muscle samples over time, but slightly more complete STR profiles 

were obtained from muscle tissue. Although higher amounts of DNA were recovered from 
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tissue samples than from the surrounding preservative, the average number of reportable 

alleles from the “free DNA” was comparable. Overall, DNAgard® and the modified TENT 

buffer were the most successful tissue preservatives tested in this study based on STR 

profile success from “free DNA” in solution when decomposing tissues were stored for up 

to three months in hot, humid conditions. 

 

Keywords:  Forensic science, STR typing, Tissue preservation, Disaster victim 

identification (DVI)
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Introduction 

Mass disasters may occur due to natural (hurricanes, tsunamis, and earthquakes), 

accidental (airplane and train crashes), or man-made events (terrorist attacks and war) and 

may result in the loss of hundreds or thousands of lives [1,2]. In hot and humid climates, 

rapid decomposition and putrefaction of bodies create a public health risk, and also makes 

human identification more difficult [3]. As bodies decompose, DNA starts its degradation 

process. When a cell or an organism dies, the DNA is susceptible to damage and 

degradation by endogenous cellular nucleases and exogenous insults. Oxidative and 

hydrolytic damage may cause base modifications, strand breaks, crosslinks, and 

mismatches [4,5]. Prolonged exposure to heat, humidity, ultraviolet (UV) radiation, and 

microorganisms further increases the rate of DNA damage and degradation resulting in 

fragmentation of the DNA molecule into smaller lengths [4,6,7]. Although DNA typing 

using short tandem repeats (STRs) is currently the gold standard for human identification 

purposes [3], highly degraded samples often result in partial STR profiles because the 

larger loci (>250bp) commonly fail to amplify due to fragmentation of the DNA structure 

[4–8]. Successful DNA typing of mass disaster victims may therefore be reliant on the 

speed of sample collection and the immediate preservation of the sample [1,2]. This is 

particularly true in tropical climates, as warm temperatures and high humidity accelerate 

the entire decomposition process [9], and therefore storage of samples at 4°C or -20°C 

conditions are recommended to prevent further DNA damage and degradation [1,10,11]. 

However, after a mass fatality event, the loss of electricity and lack of adequate storage 

facilities often prevent this action [2,3,9]. Recommendations published by the DNA 

Commission of the International Society for Forensic Genetics state that tissue samples 
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may be stored in a chemical preservative at room temperature (with the exception of 

formalin) [1]. Several studies have investigated the potential for room temperature storage 

of biological samples for DNA analysis [2,3,9,11–14]. These treatments range from 

dehydration and desiccation [3,9,12] to storage in various chemical preservatives in order 

to inhibit the nuclease activity that leads to DNA degradation [2,9,11–14]. Several 

preservative solutions have been shown to effectively preserve fresh human tissue 

[2,3,9,11]. However, none have been tested on decomposed human tissues. Therefore, 

three customized (modified TENT, DESS, LST) and two commercial DNA preservatives 

(RNAlater and DNAgard®) were evaluated in this study to determine which solutions most 

effectively preserve DNA in skin and muscle tissues from decomposing human cadavers. 

The quantity and quality of DNA released from these tissues into the preservative solution 

(“free DNA”) were also investigated. If DNA of high quantity and quality can be extracted 

directly from the preservative solution, this will reduce sample-processing time by 

avoiding the long tissue digestion process prior to DNA purification. Previous studies have 

shown that DNA can be released from tissues into chemical preservatives (“free DNA”) 

[2,9,14], but the quantity and quality of that DNA may not be adequate for successful 

genotyping, or stable over time. A study by Allen-Hall [9] reported that high amounts of 

DNA leached into solution when tissues were stored in TENT buffer, but downstream STR 

profiling often failed suggesting that TENT did not preserve the “free DNA” during 

storage. Therefore, in this study we modified the TENT buffer by increasing the salt 

concentration in an effort to retain the leaching effectiveness of the buffer, but improve 

preservation of the “free DNA” over time. This study assessed the quantity and quality of 

DNA released from decomposing human skin and muscle samples into the preservative 
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solution and compared to the DNA preserved in the tissue itself when stored at 35°C in 

humid conditions (60–70%) over a three-month period. 

Materials and Methods 

Sample Collection 

Skin and muscle samples were collected from three human cadavers provided by 

the Applied Anatomical Research Center (AARC) at Sam Houston State University, 

Huntsville, Texas, USA. The cadavers were caged to prevent animal scavenging and left 

outdoors for two weeks in October 2013. The weather during those two weeks was 

moderate (high: 24°C, low: 12°C) with high humidity (average 76%). It also rained four 

days out of the two weeks (Days 0, 1, 3, and 12). Skin samples were taken from the left 

thigh and muscle tissue was removed from the left quadriceps muscle group (directly under 

the skin sample) of each cadaver at day 0, 2, 4, 6, 8, 10, and 12. 

Chemical Preservation 

Skin or muscle tissue (30mg) was added to each of the five preservative solutions 

(300µL) tested in this study (Table 2.1.). Control samples (no preservative) consisted of 

tissue (30mg) with 20µL of distilled water to prevent desiccation. Samples were stored at 

35°C with relative humidity of 60–70% in a Forced Air Lab oven (SHEL LAB, Cornelius, 

OR, USA) for one, two, and three months. Control tissue samples (no storage or 

preservation) were also collected from each cadaver every second day and processed 

immediately. 
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Table 2.1. Chemical Preservatives 

Preservatives Constituents 

DNAgard® Tissues & 
Cells 

Proprietary (Biomatrica) 

RNAlater RNA 
Stabilization Reagent 

Proprietary (QIAGEN) 

LST Buffer a 0.1M Tris-HCL, 0.5M KCl, 4.5% IGEPAL CA-630, 
4.5% Tween 20, 1% NaN3 (100mL, pH 7.5) 

Modified TENT 
10mM Tris, 10mM EDTA, 2M NaCl, 2% Tween 20 
(120mL, pH 8.0) 

DESS Buffer b 20% DMSO, 0.25M EDTA, saturated NaCl (100mL, 
pH 8.0) 

a As described in Graham et al. [2]  
b As described in Allen-Hall et al. [9] 

 

DNA Extraction 

DNA extraction was performed after one, two, and three months of storage. Skin 

and muscle samples were removed from the preservative solution for separate DNA 

extraction as described in the next section (Tissue). The QIAamp® DNA Investigator kit 

was used for all DNA extractions. This kit uses MinElute® silica columns to purify double 

stranded DNA (70bp–4kb) [15]. 

Tissue 

The DNAgard® tissues were washed with ultra-pure sterile water as per 

manufacturer’s instructions before being placed into a new tube [16]. Tissue samples were 

digested with 30µL of Proteinase K (20mg/mL) and 270µL of ATL Buffer (QIAGEN) and 

incubated at 56°C overnight as per the QIAamp® DNA Investigator kit recommended 

protocol for tissues [17] with one minor change. The volume of Proteinase K and ATL 

Buffer were increased in proportion to a total volume of 300µL, which was required prior 

to loading onto the QIAcube robotic station (QIAGEN) using the forensic casework 
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samples protocol B (purification step only). If the tissue was not completely digested, 

another 10µL of Proteinase K was added and incubated for an average of 4–6h until 

complete digestion was achieved. 

Liquid Preservative 

An aliquot (100µL) of the preservative solution was removed from each storage 

tube and placed into a new tube with 200µL of PB buffer (QIAGEN) prior to loading on 

the QIAcube (QIAGEN) using the forensic casework samples protocol B (purification step 

only). 

DNA Quantification 

DNA quantification was performed on a StepOneTM Real-Time PCR System 

(Thermo Fisher Scientific, Carlsbad, CA USA). Each reaction contained 2µL of DNA, 

10µL 2X SYBR® Green PCR Master Mix (Thermo Fisher Scientific), 2µL 10µM hTERT 

primers (63bp amplicon) [18], and 6µL diH2O. To generate a standard curve, a 1:2 dilution 

series (9 standards—50ng/µL to 0.0977ng/µL) was prepared using K526 control DNA 

(Promega, Madison, WI, USA). The cycling conditions were as follows: 10min at 95°C, 

and 40 cycles of 15s at 95°C then 1min at 60°C. Data were considered reliable if the R2 

value of the standard curve was 0.99 or greater. 

STR Genotyping 

Genotyping was performed using the AmpFlSTR® Identifiler® Plus PCR 

Amplification Kit (Thermo Fisher Scientific) according to manufacturer’s instructions [19] 

with the modification of using a half reaction volume (12.5µL). The target amount of DNA 

template was 0.8ng. For low quantity DNA samples (less than 0.16ng/µL), 5µL of neat 

DNA extract was added to the PCR reaction. K526 control DNA was used as the positive 
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control, and sterile water was used as the no template control. PCR was performed on a 

GeneAmp® PCR System 9700 (Thermo Fisher Scientific) using the recommended cycling 

parameters [19]. Separation and detection of PCR products was performed using a 3500 

Genetic Analyzer (Thermo Fisher Scientific) with a 50cm capillary array and POP7 

polymer with an injection time of 8s at 1.6kV. The reaction was prepared by adding 1µL 

of the amplified product or allelic ladder to a mix of 9µL Hi-DiTM Formamide and 1µL of 

LIZ 500 (Thermo Fisher Scientific). The samples were denatured using the GeneAmp® 

PCR system 9700 at 95°C for 3min. Data were analyzed with GeneMapperTM software 

v4.1 (Thermo Fisher Scientific). An analytical threshold of 100 relative fluorescence units 

(RFUs) was applied. 

Statistical Analysis 

DNA quantity was expressed as the concentration of DNA recovered from 30mg 

of tissue (skin or muscle) and 100µL of neat preservative solution. STR typing success was 

measured as the percentage of alleles that were called and were concordant with the 

reference profiles. To assess the degree of DNA degradation a Degradation Ratio (DR) was 

calculated as the average ratio of the peak heights (RFUs) of the shortest to longest markers 

in three channels on each STR profile (6-FAM, VIC and NED). The average size of the 

amplicons in each marker across the three individuals used in this study were 144bp 

(D8S1179) and 325.9bp (CSF1PO) in the 6-FAM channel, 130.1bp (D3S1358) and 

330.1bp (D2S1338) in the VIC channel, and 120.9bp (D19S433) and 298.7bp (D18S51) in 

the NED channel. A DR calculation was not possible for samples when locus drop out 

occurred at all longest markers (assigned as UND). Data were tested for statistical 

significance by Factorial ANOVA analysis with Fisher LSD post-hoc comparisons, using 
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the software Statistica 12.5 (StatSoft Inc., Tulsa, OK). P < 0.05 was accepted as the level 

of significance. 

Results and Discussion 

DNA Quantity 

Controls 

DNA from skin and muscle tissue was extracted immediately after collection on 

days 0, 4, 6, 8, 10 and 12 to determine the quantity of DNA before storage or chemical 

preservation (no storage controls). As expected, the amount of DNA recovered from the 

decomposing tissue declined with time (Fig. 2.1.). Interestingly, a rapid decrease in the 

amount of DNA recovered was observed in each cadaver after the bodies had initiated the 

“bloat” stage of decomposition at day 6, although DNA was still recovered until the 

cadavers reached advanced decomposition at day 12 (Fig. 2.1.). Similar amounts of DNA 

were recovered from skin and muscle samples (Fig. 2.1.). However, amplifiable DNA was 

detected for longer time during the decomposition process with skin compared to muscle 

(days 10 and 8 respectively) (Fig. 2.1.). These data suggest that skin may be a more resilient 

tissue to decomposition than muscle tissue. This result is consistent with other studies by 

Michaud et al. [13] and Clare et al. [20]. Tissue samples were also stored under hot and 

humid conditions for up to three months without chemical preservative (no preservative 

controls). As expected, the DNA in skin and muscle decomposed more rapidly in the 

absence of a chemical preservative (Fig. 2.1.). Only fresh tissue (day 0) for all three months 

of storage yielded amplifiable DNA (45, 10, and 28ng/µL for one, two, and three months 

storage, respectively for skin, and 27, 13, and 18ng/µL for one, two, and three months 

storage, respectively for muscle) (Fig. 2.1.). Tissue samples that were already decomposing 
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when collected (day 4 to day 12) did not yield amplifiable DNA when stored without any 

chemical preservative. Not surprisingly, these data indicate that decomposing tissues stored 

in hot and humid conditions without any chemical preservative degrade rapidly over time. 

Tissue 

The results of average DNA concentrations extracted from skin and muscle samples 

from three cadavers stored for up to three months in various preservatives are shown in 

Fig. 2.1. In general, common trends were observed in DNA quantity from skin and muscle 

samples for each preservative. DNA yields from skin and muscle samples over time of 

decomposition and storage were similar, and a decrease in DNA quantity was observed 

with each month of storage in all preservatives (Fig. 2.1.). All preservatives (except for 

LST) effectively preserved adequate amounts of DNA for STR typing (>0.2 ng/µL) in fresh 

and decomposed skin (up to day 10) for up to three months of storage (Fig. 2.1.). The LST 

buffer failed to preserve the DNA in skin after Day 6 and in muscle after day 4 for all three 

months of storage (Fig. 2.1.). Compared to the other four preservatives tested, RNAlater 

yielded the highest DNA concentrations in skin and muscle for up to three months of 

storage (Fig. 2.1.). However, these results differ from those previously reported by Allen-

Hall et al. [9], which found RNAlater to be relatively poor at preserving DNA for STR 

typing in fresh muscle tissue. These opposing results may be attributed to different DNA 

extraction methods, tissue amounts, and preservative volumes used in both studies. Higher 

amounts of DNA were recovered from skin tissue than from muscle in RNAlater, and for 

longer in the control samples, also confirms that skin is a more resilient tissue (Fig. 2.1.). 

Factorial ANOVA showed that tissue type (F6,67 = 7.8, p = 0.000002), choice of 

preservative (F30,270 = 5.2, p = 0.0000001), and time of storage (F12,1347 = 4.2, p = 000016) 
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all had statistically significant effects on the amount of DNA recovered from preserved 

tissues. 

 

 

Fig. 2.1. Average DNA concentration (ng/μL) (± SD) of the DNA from (A) skin and (B) 
muscle samples stored for up to three months at 35°C and 60-70% humidity without 
preservation (controls) or in the five preservatives tested in this study (LST, modified 
TENT, DESS, DNAgard®, and RNAlater)  

 

Liquid Preservative 

DNA was extracted directly from each preservative solution for skin and muscle 

samples stored for up to three months (Fig. 2.2.). As previously shown in Fig. 2.1., higher 

amounts of DNA were obtained from the tissues preserved in RNAlater compared to the 

other preservatives tested. However, no “free DNA” was detected in the RNAlater solution 

(Fig. 2.2.). This observation was also previously reported by Allen-Hall et al. [9]. Adequate 

amounts of DNA for STR typing (greater than 0.16ng/µL), were detected in all 

preservatives (except for DESS skin samples) for up to 8 days of decomposition stored for 

up to three months (Fig. 2.2.). The amount of purified DNA from preservative solution was 

lower than that extracted from tissue. The amount of “free DNA” recovered from DESS 
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was much higher for muscle when compared to skin (Fig. 2.2.). These data suggest that 

DESS may better promote lysis and release of DNA into solution from softer tissue than 

from more resistant tissues such as skin. Higher amounts of “free DNA” were retrieved 

from modified TENT and DNAgard® across time (day 0 to day 10) and storage (one, two, 

and three months) compared to the other preservatives tested (Fig. 2.2.). DNA yields from 

skin and muscle stored in these preservative solutions were relatively stable for up to three 

months, with little decrease in the amount of DNA recovered with longer storage (in fact, 

slight increases were observed in some cases; Fig. 2.2.). In addition, the “free DNA” 

recovered directly from DNAgard® skin samples did not notably decrease in quantity over 

the three month storage time (Fig. 2.2.). High amounts of DNA were recovered from the 

LST buffer after one month of storage. However, the DNA concentration in the LST buffer 

substantially decreased with two and three months of storage. This observation suggests 

that although LST promotes efficient release of DNA into solution, the buffer is unable to 

prevent further DNA damage and degradation over time. Factorial ANOVA analysis 

showed that tissue type (F6,55 = 4.0, p = 0.002) and choice of preservative (F24,1937 = 3.4, p 

= 000001) had significant effects on the amount of DNA recovered directly from liquid 

preservatives. In addition, the interaction between tissue and preservative was found to be 

significant (F24,1937 = 1.9, p = 0.001). Overall, the amount of DNA retrieved from all 

samples (tissue and “free DNA”) decreased over time (days of decomposition) regardless 

of tissue type (Fig. 2.1. and Fig. 2.2.). Although higher amounts of DNA were recovered 

from tissue samples when compared to “free DNA”, the amount of DNA recovered from 

skin and muscle samples over time was similar in both cases (tissue and “free DNA”). 
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Fig. 2.2. Average DNA concentration (ng/μL) (± SD) of the “free DNA” in the preservative 
solutions surrounding (A) skin and (B) muscle samples stored for up to three months at 
35°C and 60-70% humidity. Data for RNAlater is not shown in this figure as no DNA was 
detected in solution during DNA quantification 

 

STR Typing 

Controls 

When processed immediately after collection from decomposing cadavers, 

complete Identifiler® Plus profiles were generated from muscle tissue for up to 6 days of 

decomposition, and for skin up to 8 days (Fig. 2.3. – No Storage). However, when tissues 

were stored in hot and humid conditions for up to three months without a preservative, STR 

profile quality markedly decreased (Fig. 2.3. & Fig. 2.4. – No Preservative). In most cases, 

complete (or near complete) STR profiles were obtained for fresh tissues (day 0) stored for 

up to three months without a preservative, but the DNA in all decomposed tissues (day 4 
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to day 12) degraded quickly, resulting in partial or no STR profiles being obtained (Fig. 

2.3. – No Preservative). DNA degradation was evident in all decomposing tissue samples 

and increased over time as evidenced by drop-out of the higher molecular weight loci, 

increasing DR (Fig. 2.3. and Fig. 2.4.), and the “ski-slope effect” observed in STR profiles 

(Fig. 2.5.). 

Tissue 

The skin and muscle samples stored in all preservatives, except for LST produced 

complete Identifiler® Plus profiles for up to 4 days of decomposition over the span of three 

months storage at 35°C and 60–70% humidity (Fig. 2.3.). In general, the completeness and 

quality of STR profiles declined as decomposition progressed and time of storage 

lengthened (Fig. 2.3. and Fig. 2.4.). By day 6 of decomposition (time of bloat), partial 

profiles (<98% alleles) were generated in 50% of the samples. Overall, the completeness 

and quality of STR profiles from skin samples declined more rapidly than profiles from 

muscle samples (Fig. 2.4. and Fig. 2.6. A and B). STR success did not necessarily correlate 

with DNA quantity. Comparable (or slightly higher) amounts of DNA were observed for 

skin compared to muscle samples, but on average muscle samples generated more complete 

and balanced STR profiles (Fig. 2.3. and Fig. 2.4.). The higher DR of STR profiles in skin 

samples suggest that DNA may be degrading more rapidly, and that although more DNA 

was detected from skin samples over time, the DNA may be better preserved in the muscle 

tissue. This finding differs from the results of Michaud et al. [13] and Clare et al. [20] that 

compared DNA preservation in skin and muscle from porcine and equine tissues 

respectively. Both studies found that DNA from skin was better preserved than DNA from 

muscle [13,20]. It has been suggested that the cellular structure of skin remains intact while 



54 

 

resisting degradative processes for longer periods of time compared to muscle, especially 

when the skin desiccates [13]. However, deep muscle tissue may also be protected from 

harsh external conditions by the desiccated skin. Interestingly, the Federal Bureau of 

Investigation recommends red skeletal muscle as the tissue of choice if submitting soft 

tissue for forensic DNA testing of unidentified remains [10]. Our results support that 

muscle tissue may indeed provide more complete STR profiles from decomposing human 

remains than other soft tissues such as skin. As previously mentioned, the quantity of DNA 

was not always a reliable indicator of STR success. Similar observations have been 

reported in the literature [7,8,21]. Our quantification method (63bp target) likely 

overestimated the amount of amplifiable DNA in these degraded samples. We would 

expect that using a system such as Quantifiler® Trio (Thermo Fisher Scientific) or 

PowerQuant® (Promega) with longer targets (>200 bases) would better correlate the 

amount of DNA detected with downstream STR results [7,20]. The number of reportable 

alleles and quality of STR profiles from samples stored in LST buffer rapidly decreased 

over time (Fig. 2.3., Fig. 2.4., and Fig. 2.7). Substantially fewer LST samples generated 

full profiles compared to the other preservatives (18% versus 43–56% respectively). The 

higher DR of STR profiles from LST samples compared to the other preservatives suggest 

that DNA was degrading most rapidly in LST (Fig. 2.4.). The preservation efficiencies of 

modified TENT, DESS, DNAgard®, and RNAlater solutions were comparable based on 

allele recovery and degradation ratios of STR profiles. Although RNAlater recovered the 

highest DNA concentrations from fresh and decomposing tissues for up to three months of 

storage (Fig. 2.1), STR success was comparable to the other preservatives (44% samples 

with partial STR profiles compared to 58%, 56% and 44% of modified TENT, DNAgard®, 
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and DESS samples respectively) (Fig. 2.3.). Factorial ANOVA analysis showed that tissue 

type (F5,31 = 4.8, p = 0.0023) and choice of preservative (F25,116 = 3.3, p = 0.000009) had 

significant effects on the completeness of STR profiles generated from preserved tissues. 

Liquid Preservative 

Similar trends in STR success rates were observed with “free DNA” in 

preservatives as with DNA from tissues with the exception of RNAlater, which did not 

facilitate the release of DNA into solution (Fig. 2.3.). In general, the quality of STR profiles 

from “free DNA” in the preservatives of skin samples declined more rapidly than profiles 

generated from preservatives surrounding muscle samples (Fig. 2.3., Fig. 2.4., and Fig. 2.6. 

C and D). The STR degradation ratios also increased suggesting DNA was degrading more 

rapidly in skin samples (Fig. 2.4.) As with the tissues themselves, “free DNA” purified 

directly from the LST buffer also produced the least successful STR results (Fig. 2.7.). 

Complete profiles were only generated from LST surrounding fresh tissue (day 0) (Fig. 

2.3. and Fig. 2.7.). The LST buffer generated the most samples with incomplete profiles 

(81% compared to 56% for both modified TENT and DESS buffers, and 50% with 

DNAgard®) and STR profiles with the highest DRs (Fig. 2.4.). Modified TENT, DESS, 

and DNAgard® produced comparable STR results when amplifying the “free DNA” in 

solution with decomposing tissues (Fig. 2.3., Fig. 2.4., and Fig. 2.7.). Similar results were 

also observed when comparing the DR of STR profiles produced from the “free DNA” in 

these three preservatives suggesting comparable levels of DNA preservation with these 

buffers (Fig. 2.4.). Factorial ANOVA analysis showed that tissue type (F6,19 = 6.5, p = 

0.00075) and choice of preservative (F18,54 = 2.8, p = 0.002) had significant effects on the 

quality of STR profiles generated from DNA recovered directly from liquid preservatives. 
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In addition, the interaction between tissue and preservative was found to be significant 

(F18,54 = 1.9, p = 0.031). However, with the exception of cadaver 2 being too decomposed 

to collect tissue at Day 12, little difference in STR success was observed across the three 

cadavers for each day (Fig. 2.8.). Overall, STR success rates obtained from all samples 

(tissue and “free DNA” in solution) decreased over days of decomposition regardless of 

tissue type (Fig. 2.6.). The completeness and quality of STR profiles generated from “free 

DNA” in solution were similar to that obtained from the tissue itself for each sample (Fig. 

2.3., Fig. 2.4., and Fig. 2.6.). It is also important to note that similar STR results were 

obtained from the “free DNA” surrounding decomposed tissue when stored in all 

preservatives (except for LST) for up to three months (Fig. 2.9.). These results demonstrate 

that DNA can be preserved for up to three months and extracted directly from the 

preservative solution eliminating the tissue digestion step and, in this way decreasing the 

extraction process time and increasing throughput, especially when many samples need to 

be processed in short periods of time such as the case of DVI. In summary, muscle samples 

yielded slightly more complete and balanced STR profiles from both tissue and “free 

DNA” for longer days of decomposition than skin samples (Fig. 2.3., Fig. 2.4., and Fig. 

2.6.). 
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Fig. 2.3. Average STR results of all controls and experimental samples. Percentage of 
alleles correct (average of three cadavers) presented as a heat map. RNAlater results for 
the “free DNA” in preservative solution are not shown due to the lack of DNA released 
into solution. (D0 = 0 days of decomposition, 1Mo = 1 month of storage) 
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Fig. 2.4. Average degradation ratio (DR) based on STR results for all controls and 
experimental samples. The DR was calculated as the ratio between the peak heights of the 
shortest and longest markers in each channel. Average size of markers used were 144bp 
(D8S1179) and 325.9bp (CSF1PO) in the 6-FAM channel, 130.1bp (D3S1358) and 
330.1bp (D2S1338) in the VIC channel, and 120.9bp (D19S433) and 298.7bp (D18S51) in 
the NED channel. A DR calculation was not possible for samples when locus drop out 
occurred at all longest makers (assigned as UND). RNAlater results for the “free DNA” in 
preservative solution are not shown due to the lack of DNA released into solution. (D0 = 0 
days of decomposition, 1Mo = 1 month of storage) 
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Fig. 2.5. Representative STR electropherograms produced from muscle tissue over 12 
days of decomposition using the Identifiler® Plus kit 
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Fig. 2.6. STR success of the three cadavers as measured by the percentage of alleles correct 
from (A) skin and (B) muscle tissue stored in preservatives for up to three months at 35°C 
and 60‐70% humidity. Average STR success of “free DNA” in the preservative solutions 
surrounding (C) skin and (D) muscle samples stored for up to three months at 35°C and 
60‐70% humidity 
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Fig. 2.7. STR success from the three cadavers as measured by the percentage of alleles 
correct from the “free DNA” in LST, modified TENT, DNAgard1 and DESS samples 
stored for up to three months at 35°C and 60–70% humidity. STR results generated from 
“free DNA”  surrounding skin and muscle samples have been combined for each 
preservative 
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Fig. 2.8. STR success from the “free DNA” of decomposing A) muscle and B) skin 
showing the variation between the three cadavers.  Data for all three months of storage and 
four preservatives have been combined. Due to advanced decomposition, no tissue samples 
were collected for cadaver 2 on Day 12 

 

 

Fig. 2.9. Representative STR electropherograms produced from the “free DNA” 
surrounding decomposed muscle (Day 10) in LST, modified TENT, DESS, and DNAgard® 
stored for one and three months at 35°C and 60-70% humidity 
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Conclusion 

Our conclusions support those of previous authors [2,9,11,13], suggesting that the 

use of preservative solutions can be beneficial for crime scene evidence collection and 

preservation in addition to DNA-based DVI operations. We have demonstrated that all 

solutions preserved DNA in fresh (day 0) and decomposed (days 4–12) skin and muscle 

for successful STR typing after storage for up to three months. As expected, there was a 

general decrease in the amount of amplifiable DNA as decomposition progressed. 

However, we observed that DNA quantity and STR quality markedly decreased after the 

body entered the bloat stage (Day 6 in this study), demonstrating the importance of sample 

collection as early as possible, and preferably prior to bloat to maximize downstream STR 

success. We also observed that similar quantities of DNA were extracted from skin and 

muscle for both tissue and “free DNA” with increasing decomposition time, but the average 

percentage of reportable alleles was higher for muscle samples. RNAlater was found to 

preserve solution of DNA in tissues well, but it prevented the release of DNA into solution. 

On the other hand, LST, modified TENT, DESS, and DNAgard® seemed to favor the 

release of DNA into solution facilitating DNA purification without the lengthy digestion 

step. However, the LST buffer failed to preserve the “free DNA” from decomposing tissues 

and for extended periods of storage. While DESS, DNAgard®, and the modified TENT 

buffers all adequately preserved the “free DNA” in solution over time, modified TENT and 

DNAgard® may yield DNA of slightly higher quantity and generate more balanced and 

complete STR profiles from both the tissues and the liquid preservatives stored for up to 

three months at 35°C with 60–70% humidity. Although commercial products (such as 

DNAgard®) may be available for a mass disaster operation, they often have short shelf lives 
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(6–12 months) and would require regular restocking. Therefore, the development of a 

simple in-house solution that can preserve DNA in tissue samples and the surrounding 

liquid for direct purification (such as modified TENT) could be of benefit to DVI 

operations and crime scene evidence preservation in harsh environmental conditions alike. 
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CHAPTER III 

Direct-to-PCR Tissue Preservation for DNA Profiling1 
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1Sorensen A, Berry C,  Bruce D, Gahan ME, Hughes-Stamm S, McNevin D (2016) 
Direct-to-PCR tissue preservation for DNA profiling. Int J Legal Med 130:607-613. 
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Abstract 

Disaster victim identification (DVI) often occurs in remote locations with extremes 

of temperatures and humidities. Access to mortuary facilities and refrigeration are not 

always available. An effective and robust DNA sampling and preservation procedure 

would increase the probability of successful DNA profiling and allow faster repatriation of 

bodies and body parts. If the act of tissue preservation also released DNA into solution, 

ready for polymerase chain reaction (PCR), the DVI process could be further streamlined. 

In this study, we explored the possibility of obtaining DNA profiles without DNA 

extraction, by adding aliquots of preservative solutions surrounding fresh human muscle 

and decomposing human muscle and skin tissue samples directly to PCR. The preservatives 

consisted of two custom preparations and two proprietary solutions. The custom 

preparations were a salt saturated solution of dimethyl sulfoxide (DMSO) with 

ethylenediaminetetraacetic (EDTA) and TENT buffer (Tris, EDTA, NaCl, Tween 20). The 

proprietary preservatives were DNAgard (Biomatrica®) and Tissue Stabilising Kit (DNA 

Genotek). We obtained full PowerPlex®
 21 (Promega) and GlobalFiler®

 (Life 

Technologies) DNA profiles from fresh and decomposed tissue preserved at 35°C for up 

to 28 days for all four preservatives. The preservative aliquots removed from the fresh 

muscle tissue samples had been stored at −80°C for 4 years, indicating that long-term 

archival does not diminish the probability of successful DNA typing. Rather, storage at 

−80°C seems to reduce PCR inhibition. 

 

Keywords:   Disaster victim identification (DVI), Mass disaster, Tissue preservation, 

DNA profile, Direct PCR, PCR inhibition
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Introduction 

During a mass fatality event, large numbers of bodies may be decomposing rapidly 

in harsh environmental conditions.  The DNA in those tissues is also degrading which 

makes genotyping more difficult with the passage of time.  The use of a simple field 

preservative to quickly halt DNA degradation and store large numbers of tissue samples at 

ambient temperature prior to genotyping would be a valuable tool.  

As well as preserving tissue morphology, some tissue preservatives also preserve 

DNA for downstream DNA profiling.  The notable exception to this is formalin (aqueous 

formaldehyde), historically used to preserve medical and museum specimens, which 

chemically modifies DNA by crosslinking proteins and nucleic acids, making polymerase 

chain reaction (PCR) difficult [1-3].  Both INTERPOL [4] and the International Society 

for Forensic Genetics (ISFG) [5] recommend against its use for DVI, although it is possible 

to obtain at least partial profiles from formalin-fixed and paraffin-embedded tissue 

(FFPET) [6,7]. 

However, there are a range of other preservatives which have been proven to be 

effective for DNA profiling: for a review, see Allen-Hall & McNevin [8].  INTERPOL and 

ISFG guidelines state that (non-formalin) preservatives can be used to conserve soft tissue 

at room temperature and we have previously shown that some are also effective at elevated 

temperatures likely to be encountered in tropical environments [9].  We demonstrated the 

ability to obtain full AmpFℓSTR® Identifiler® (Life Technologies) STR profiles from DNA 

extracted from fresh muscle tissue preserved in salt, ethanol, TENT buffer (10mM Tris, 

10mM EDTA, 100mM NaCl, 2% Tween 20, pH 8.0), salt-saturated dimethyl sulfoxide 

solution (20% DMSO, 0.25M EDTA, saturated with NaCl, pH 8.0) and two proprietary 
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preservatives: DNAgard® (Biomatrica) and one from DNA Genotek, Inc.  Three of the 

preservatives (salt-saturated DMSO-EDTA, DNAgard and DNA Genotek) also yielded full 

profiles from DNA extracted from aliquots of the preservative solution surrounding the 

muscle tissues. 

The advantages of eliminating DNA extraction are many.  Firstly, the path from 

tissue sampling to profile reporting is quicker and less expensive, with one less step 

involved.  Secondly, there is less opportunity for loss of DNA as a result of DNA 

extraction.  Thirdly, there is less risk for contamination of samples with a number of tube-

to-tube and/or well-to-well transfers removed.  Finally, the DNA is effectively archived in 

a small volume which can be re-accessed if required.  The advantages of a direct-to-PCR 

approach have already been demonstrated for blood [10,11] hairs [12,13], fingernails [14], 

fabrics [15] and so-called “touch DNA” [16,17].  This may be a result of “cell free” DNA 

which has been demonstrated in a number of forensically relevant samples [18,19].  

Proprietary DNA profiling assays have been validated for blood and buccal samples on 

FTA® card to be added directly to PCR and these are regularly used for reference samples 

[20-24]. 

However, the direct addition of preservatives to PCR does pose some unique 

challenges.  Most of the preservatives contain high concentrations of salt and EDTA, as 

well as detergents, which are known PCR inhibitors [25,26].  Components of human tissue 

as well as the by-products of decomposition will also inhibit PCR.  These include 

haemoglobin [26,27] and hematin [28].  There may be other inhibitors in contaminating 

material from soils including humic and fulvic acids [28-30]. 
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In this study, we explored the possibility of obtaining DNA profiles without DNA 

extraction, by adding aliquots of preservative solutions surrounding fresh and decomposing 

human tissue samples directly to PCR.  This approach has potential application to disaster 

victim identification (DVI) as well as to any form of field based biological evidence or 

intelligence collection [31]. 

Materials and Methods 

Preparation of Preservative Solutions 

Only those solutions for which we have previously found DNA in the solution 

surrounding preserved tissue were considered for this study [9]. These were salt-saturated 

DMSO/EDTA (DESS), TENT buffer, DNAgard® and DNA Genotek Tissue Stabilising 

Kit (described earlier).  Solutions were prepared using purified water with a resistivity of 

at least 18MΩ∙cm at 25oC.  DESS and TENT were subsequently autoclaved at 121oC for 

20 minutes. 

Preservation of Tissue Samples 

Fresh skeletal muscle tissue samples were obtained from three volunteers 

undergoing orthopaedic surgical procedures and approximately 300mg sections were 

preserved in 1 or 2 mL of each of the four preservatives at 35oC as previously described 

[9].  After 3, 7, 14 and 28 days, a 20 or 50μL aliquot of each preservative surrounding each 

tissue was transferred to individual sterile 1.5mL microcentrifuge tubes and archived at        

-80oC for four years.    

Tissue samples for the decomposition study were sourced from two human 

cadavers provided by the Applied Anatomical Research Center (AARC) at Sam Houston 

State University, Huntsville, TX, USA.  The cadavers were placed at -20oC upon receipt 
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by AARC, and stored for up to 45 days prior to use. Both cadavers were allowed to 

equilibrate to room temperature, and then placed on the same day (in October, 2013) in an 

open field (caged to prevent predation), and left to decompose.  The AARC facility is 

adjacent to the Sam Houston State Forest with a humid, subtropical climate. The average 

temperature for the duration of this study was 18oC (average high of 24oC and low of 12oC).  

Skin and muscle samples were collected from the thigh of each cadaver on day 0, 6, 8 and 

10.  Tissue samples (30mg) were preserved in 300μL of each preservative and stored at 

35oC for one month.  Preservation in water was included as a “no preservative” control for 

tissue samples from each cadaver in order to demonstrate any preservation effect over and 

above not preserving.  The water controls also served to mimic a high humidity 

environment, often encountered in DVI operations.  Buccal (inside cheek epithelial cell) 

swabs were obtained from the donors of all tissue samples to provide reference DNA 

profiles. 

Quantification of DNA in Preservatives 

The Quantifiler® Human DNA Quantification Kit (Life Technologies) was used to 

quantify the DNA in the preservative aliquots of all samples according to the 

manufacturer’s recommended protocol [32,33].  When required because of inhibition (as 

indicated by non-detection of the internal PCR control: IPC), a 1:10 or 1:20 dilution was 

made prior to quantification.  This was only required for DESS, DNAgard® and DNA 

Genotek samples from decomposed cadavers. The Quantifiler® Human DNA standard was 

used to prepare a dilution series to establish a standard curve.  A quantitation negative 

control was prepared with 2μL of TE buffer (10mM Tris, 0.1mM EDTA, pH 8.0) in place 
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of the DNA extracts.  Thermal cycling and fluorescence detection were performed in a 

7500 Real-Time PCR System (Life Technologies). 

STR Genotyping 

Preservative aliquots from fresh tissue were diluted where required to 0.05ng/μL 

and then 0.5ng of DNA from each aliquot was added to PowerPlex® 21 System (Promega) 

PCRs in a 25μL final volume according to the manufacturer’s recommended protocol 

[33,34].  For the decomposition study, 0.5ng of DNA from each aliquot was added to a 

GlobalFiler® PCR (Life Technologies) in a 25μL final volume according to the 

manufacturer’s recommended protocol [35].  Thermal cycling was performed according to 

the recommended protocols in a GeneAmp® PCR System 9700.  Capillary electrophoresis 

was performed on an Applied Biosystems™ 3500 Series Genetic Analyzer (Life 

Technologies) fitted with 36cm capillaries and POP-4™ polymer according to the 

recommended protocol with the following settings: HID application type, HID36_POP4 

run module, G5 (PowerPlex 21) or J6 (GlobalFiler) dye set, 1.2 kV injection voltage, 24 

second (PowerPlex 21) or 15 second (GlobalFiler) injection time and 1,500 second 

(PowerPlex 21) or 1,550 second (GlobalFiler) run time. 

For the fresh tissue samples, a volume of 1μl of each PowerPlex® 21 PCR product 

(or 1μl of PowerPlex® 21 Allelic Ladder Mix) was added individually to 2μL of CC5 

Internal Lane Standard 500 (Promega) and 10μL of Hi-Di™ formamide (Life 

Technologies) [33].  For the decomposition study, a volume of 1μl of each PCR product 

(or 1μl of GlobalFiler® Allelic Ladder Mix) was added individually to 0.4μL of 600 LIZ® 

dye Size Standard (Life Technologies) and 9.6μL of Hi-Di™ formamide (Life 

Technologies).  Immediately prior to loading, all samples were then denatured at 95°C for 



76 

 

3 minutes, and then chilled at -20oC for 3 minutes.  Electropherograms were analyzed using 

GeneMapper ID-X software (Life Technologies) with PowerPlex® 21 or GlobalFiler® STR 

panels, bins and stutter files, as appropriate.  Peak amplitude thresholds (PATs) of 175 and 

700 (PowerPlex® 21) and 175 and 600 (GlobalFiler®) relative fluorescence units (RFU) 

were used to designate reportable heterozygous and homozygous alleles, respectively.  

Where a single peak was concordant with a homozygous allele in the relevant reference 

profile for that donor and above the (higher) homozygote RFU threshold, it was counted 

as two (homozygous) alleles. 

Statistical Analysis 

Statistical analysis was performed using SPSS (IBM).  A Shapiro Wilks test for 

normality was applied before either an ANOVA (normally distributed data) or Kruskall 

Wallis test (non-normal data) for significant difference.  A p value of 0.05 was considered 

significant (with 95% confidence) [33]. 

Results 

DNA Concentrations in Preservatives 

DNA concentrations in each of the four preservative solutions surrounding fresh 

muscle samples at 3, 7, 14 and 28 days after storage at -80oC for four years are shown in 

Fig. 3.1. [33].  No PCR inhibition (as measured by a delay in CT for the IPC) was observed 

for any of the samples. The DNA yield was highly dependent on the donor tissue (Kruskall 

Wallis p value = 0.003) with the highest concentrations derived from Donor 1 across all 

preservatives.  There was a significant difference between preservatives (p = 0.005) with 

TENT buffer consistently yielding the highest concentrations and DNAgard® the least.  
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DNA concentration appears to increase with initial preservation time from 3 to 28 days but 

this result was not statistically significant. 

 

Fig. 3.1. DNA concentrations in aliquots of each of four preservative solutions surrounding 
fresh muscle tissue samples from each of three donors after 3, 7, 14 and 28 days followed 
by storage at -80°C for four years.  TENT and DESS are custom preparations as defined in 
the text.  DNA Genotek and DNAgard are proprietary preservatives.  The preservative 
solutions were added directly to Quantifiler real time PCR assays (without DNA extraction) 

 

In contrast to the preservatives surrounding fresh tissues (archived at -80°C), those 

surrounding decomposed cadavers were all inhibited (the IPC was only detected in the 

TENT buffer).  However, a 1:10 dilution for DESS and DNAgard® and a 1:20 dilution for 

DNA Genotek were sufficient to relieve inhibition.  DNA concentrations (adjusted for 

dilution) for both cadavers increased from day 0 to day 6 in both muscle and skin tissues 

(Fig. 3.2.).  Concentrations decreased to near zero at day 8 for cadaver B (skin and muscle) 
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and at day 10 for cadaver A, corresponding with the appearance of bloat in both cases.  All 

preservatives yielded more DNA than the water control.  DESS and DNAgard® yielded 

disproportionately more DNA after 6 days for muscle (both cadavers) and after 8 days for 

skin (cadaver A) suggestive of a leaching effect. 

 

Fig. 3.2. DNA concentrations (adjusted for dilution) in aliquots of each of four preservative 
solutions and water surrounding muscle (left) and skin (right) tissue samples from each of 
two cadavers after 0, 6, 8 and 10 days of decomposition and subsequent storage at 35°C 
for one month.  TENT and DESS are custom preparations as defined in the text.  DNA 
Genotek and DNAgard are proprietary preservatives. The preservative solutions were 
added directly to Quantifiler real time PCR assays without DNA extraction after no dilution 
(water control and TENT buffer), 1:10 dilution (DESS and DNAgard) or 1:20 dilution 
(DNA Genotek) 
 

STR Genotyping 

The numbers of reportable and concordant alleles (of a total possible 42 in 

PowerPlex 21) generated from aliquots of each of the preservative solutions surrounding 

each of the fresh muscle tissue samples (subsequently stored at -80oC) are shown in Fig. 

3.3. [33].  DESS and DNA Genotek yielded full profiles of 42 reportable alleles for each 

donor at each time point.  DNAgard generated full profiles for all aliquots except at day 7.  
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TENT buffer produced profiles with 26 to 42 reportable alleles.  As expected, allele peak 

heights were generally higher for lower molecular weight markers (data not shown).  

Interestingly, except for a few samples, Donor 2 exhibited the highest peaks for all loci and 

all preservatives, even though Donor 1 had significantly greater DNA concentrations (Fig. 

3.1.).  In addition, the peak heights derived from TENT buffer diminished significantly 

(relevant to other preservatives) at higher molecular weight loci (Penta D and Penta E). 

 
 
Fig. 3.3. Number of reportable alleles (of a total possible 42) in STR genotypes from 
aliquots of each of four preservative solutions surrounding fresh muscle tissue samples 
from each of three donors after 3, 7, 14 and 28 days followed by storage at -80°C for four 
years.  TENT and DESS are custom preparations as defined in the text.  DNA Genotek and 
DNAgard are proprietary preservatives.  The preservative solutions were added directly to 
PowerPlex 21 PCRs (without DNA extraction) 
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Figure 3.4. shows STR typing success for aliquots of each of the preservative 

solutions and water surrounding skin and muscle tissue samples from cadaver A and B.  

Again, a 1:10 dilution for DESS and DNAgard and a 1:20 dilution for DNA Genotek were 

required to relieve inhibition. Full GlobalFiler profiles (all 44 possible alleles reportable 

and concordant) were obtained for DESS and TENT up to 8 days from the skin of cadaver 

A.  Other preservatives were less successful but all yielded full profiles up to 6 days from 

the skin of cadaver A and all yielded full profiles at day 6 from the muscle tissue of cadaver 

B. 

 
 

Fig. 3.4. Number of reportable alleles (of a total possible 44) in STR genotypes from 
aliquots of each of four preservative solutions and water (control) surrounding muscle (left) 
and skin (right) tissue samples from each of two cadavers after 0, 6, 8 and 10 days of 
decomposition and subsequent storage at 35oC for one month.  TENT and DESS are custom 
preparations as defined in the text.  DNA Genotek and DNAgard are proprietary 
preservatives.  The preservative solutions were added directly to GlobalFiler PCRs without 
DNA extraction after no dilution (TENT buffer), 1:10 dilution (DESS and DNAgard) or 
1:20 dilution (DNA Genotek) 
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Discussion 

The advantages of eliminating DNA extraction in favour of adding DNA directly 

to PCR have been demonstrated by Swaran and Welch [36] who showed that samples 

subjected to direct PCR generated DNA profiles with higher peak heights and lower allele 

dropout when compared to samples subjected to extraction.  In this study, we have shown 

that a similar approach is suitable for DVI.  Provided that tissue samples (skin or muscle) 

are taken from decomposing corpses before they have reached full bloat or entered active 

decay and that DNA is of sufficient quantity and quality, there is good evidence to suggest 

that a full or partial DNA profile will be obtained directly from the preservative if the 

samples are submerged for up to one month in any of TENT buffer, DESS, DNAgard® or 

DNA Genotek® solutions, after appropriate dilution.  Although we did not preserve beyond 

this time, it is likely that DNA profiles could be obtained after longer periods as no decrease 

in efficacy was observed over this time (Fig 3.1. and Fig 3.3.).  Further, if these solutions 

are archived at -80oC, all preservatives except TENT are likely to produce full profiles at 

least four years later.  While DNA extraction (from either unpreserved tissue, preserved 

tissue or preservative solution) will also yield DNA [9], with potentially less inhibitors, 

this requires more time and resources.  By eliminating DNA extraction, a faster DVI 

process is possible and any increase in inhibition (derived from the preservatives 

themselves) can be easily diluted out. 

When samples were processed without storage at -80°C, both fresh and 

decomposed tissue samples exhibited substantial (or complete) inhibition for all 

preservatives except TENT.  This observation would suggest that the process of archiving 

at this temperature may relieve inhibition in these preservatives. Although the mechanism 
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is not understood, a substantial decrease (or elimination) in PCR inhibition has been 

reported when freeze-thawing serum [37] and genital and urine samples [38,39].  

Compared with DESS, DNAgard® and DNA Genotek solutions, TENT buffer produced 

less full profiles from fresh tissues after freezing (Fig 3.3.).  This seems to be largely a 

result of drop out of larger molecular weight loci (eg. Penta D and Penta E). 

In our hands, the amount of DNA retrieved from individual fresh skeletal muscle 

tissue samples and decomposed cadavers varied widely and bore no relation to the 

subsequent success of DNA profiling and the resultant allele peak heights.  The same result 

would be expected in a mass disaster where the ability to take representative tissue samples 

would be even more difficult than in our controlled laboratory and field conditions.  We 

stored our tissue samples at 35oC to simulate worst-case temperatures that may be 

encountered in a disaster but this is another variable that would be expected to influence 

DNA retrieval and genotyping success. 

Conclusions 

Our study has shown that a direct PCR approach for identifying fresh and 

decomposing tissue samples preserved at room temperature is possible.  By directly 

amplifying DNA in solution (with dilution in some cases), DNA extraction from the dense 

tissues can be avoided, and successful STR profiles can be obtained in a timelier manner. 

As a result, a significant impact can be made to address the demands for DNA preservation 

in rapidly decomposing remains and provide faster DNA identification during a mass 

disaster.  Our results are limited to decomposition of only two cadavers in one set of 

environmental conditions and further research investigating the ability to obtain 
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forensically useful DNA under varying environmental conditions could establish more 

widely applicable time frames for sampling. 
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CHAPTER IV 

Evaluation of Four Commercial Quantitative Real-time PCR Kits with Inhibited 

and Degraded Samples1 
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Abstract 

DNA quantification is a vital step in forensic DNA analysis to determine the 

optimal input amount for DNA typing. A quantitative real-time polymerase chain reaction 

(qPCR) assay that can predict DNA degradation or inhibitors present in the sample prior 

to DNA amplification could aid forensic laboratories in creating a more streamlined and 

efficient workflow. This study compares the results from four commercial qPCR kits: 1) 

Investigator® Quantiplex® Pro Kit, 2) Quantifiler® Trio DNA Quantification Kit, 3) 

PowerQuant® System, and 4) InnoQuant® HY with high molecular weight DNA, low 

template samples, degraded samples, and DNA spiked with various inhibitors. The results 

of this study indicate that all kits were comparable in accurately predicting quantities of 

high quality DNA down to the sub-picogram level. However, the InnoQuant® HY kit 

showed the highest precision across the DNA concentration range tested in this study. In 

addition, all kits performed similarly with low concentrations of forensically relevant PCR 

inhibitors. In general, the Investigator® Quantiplex® Pro Kit was the most tolerant kit to 

inhibitors and provided the most accurate quantification results with higher concentrations 

of inhibitors (except with salt). PowerQuant® and InnoQuant® HY were the most sensitive 

to inhibitors, but they did indicate significant levels of PCR inhibition. When quantifying 

degraded samples, each kit provided different degradation indices (DI), with Investigator® 

Quantiplex® Pro indicating the largest DI and Quantifiler® Trio indicating the smallest DI.  

When the qPCR kits were paired with their respective STR kit to genotype highly degraded 

samples, the Investigator® 24plex QS and GlobalFiler® kits generated more complete 

profiles when the small target concentrations were used for calculating input amount. 
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Introduction 

Short tandem repeat (STR) typing via polymerase chain reaction (PCR) is 

considered the gold standard in the forensic DNA community for human identification. As 

per the FBI’s Quality Assurance Standards for Forensic DNA Testing Laboratories, an 

optimal input amount of DNA for STR typing should be determined prior to PCR 

amplification for samples other than reference DNA [1]. In a forensic setting, 

quantification of DNA is commonly performed via quantitative real-time PCR (qPCR) [2-

4].  Forensic casework samples are often degraded, in low amounts, inhibited, or a 

combination thereof [5], which may complicate forensic STR analysis. Therefore, if 

analysts can better predict any DNA degradation or inhibition in the sample prior to STR 

amplification, costly resources and time for analysis could be reduced [2,3,6-8].  

Current commercial qPCR kits are comprised of a four-target system that enable an 

analyst to predict downstream STR typing success. These targets include small and large 

human autosomal targets, male targets, and an internal PCR control. The small and large 

targets are used to generate a degradation index (DI) which is calculated by dividing the 

small target DNA concentration by the large target DNA concentration [3,4,6-10]. The 

inclusion of the large target is beneficial as it more closely reflects the amplicon sizes in 

current STR amplification kits with large STRs up to 475 base pairs. When DNA becomes 

fragmented during degradation processes, smaller STRs may be preferentially amplified, 

and the large STRs may drop out resulting in a partial profile [8,9,11]. The same principle 

applies to quantification where the small autosomal target will be preferentially quantified 

in degraded samples [3,7]. While the small target concentration is most commonly used 

for determining DNA input for STR amplification and the large target concentration is used 
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for calculating the DI [7,8], some have suggested the use of the large target DNA 

concentration to assess the input DNA volume for autosomal STR amplification with 

samples indicating possible degradation [3,4]. Alternatively, a different genotyping method 

may be chosen if the concentration of DNA is below the detection limit for STR analysis 

such as mitochondrial testing [10,11], SNP-typing [11,12], insertion and null alleles 

(INNULS) [10], insertion/deletion polymorphisms (INDELS) [12], or massively parallel 

sequencing [12]. 

Forensic casework samples may also include co-extracted PCR inhibitors, such as 

hematin from blood, humic acid from soil, calcium from bone, melanin from hair, or salt 

in aqueous solutions [13-15].  Current commercial qPCR kits include an internal PCR 

control (IPC) to detect any inhibition. This target is a synthetic fragment of DNA that is 

amplified simultaneously with the other targets [3,4,7,10,14]. PCR inhibition is determined 

for each sample by a shift in the cycle threshold of the IPC target when compared to the 

IPC cycle threshold of the DNA standards [3,6,7,10,13,14]. PCR inhibition can also reduce 

the efficiency of the PCR reaction resulting in a lower quantification value [13].  Inhibited 

samples can also generate STR results that mimic those obtained from low template or 

degraded DNA, such as drop out of larger loci [13,14].  However, the approach one would 

take to improve STR results from samples that are inhibited differs from degraded and low 

template samples. Instead of simply increasing the template amount into PCR and thereby 

increasing the amount of inhibitor, one might dilute the sample if the DNA concentration 

permits [4,13-15], add more BSA to the reaction [13,14], or perform additional purification 

methods [4,13,14]. Extremely high concentrations of inhibitors may affect the 

concentration of the small target DNA concentration, which may be problematic for 
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downstream STR success. Therefore, it is crucial to determine whether a sample is in trace 

amounts, degraded, or inhibited; it is even more important to be able to do so prior to STR 

amplification to increase first pass success rates [2-5].  

Four commercial qPCR kits were compared in this study: 1) Investigator® 

Quantiplex® Pro Kit (QIAGEN, Hilden, Germany), 2) Quantifiler® Trio DNA 

Quantification Kit (Thermo Fisher Scientific, South San Francisco, CA, USA), 3) 

PowerQuant® System (Promega Corporation, Madison, Wisconsin, USA), and 4) 

InnoQuant® HY (InnoGenomics Technologies, New Orleans, LA, USA). These qPCR kits 

utilize four-target systems that amplify multicopy loci and an IPC; however, the base pair 

(bp) size and location of these targets vary, as well as the size of the synthetic PCR controls 

and the calculation for the level of inhibition (Table 4.1.) [3,6,7]. The Investigator® 

Quantiplex® Pro Kit contains the longest amplicon for the large target (353bp) [16], most 

closely reflecting the higher range of loci in STR amplification kits.  The large targets in 

the other kits fall between 207 and 294bp [3,6,7]. The differences in the lengths of these 

large targets may lead to varying degradation ratios [9]. The small and male targets are 

similar in size for all kits [6], but the PowerQuant® System and InnoQuant® HY contain 

two targets for the male quantification in order to increase detection sensitivity and 

minimize any effect that copy number variation may have on the quantification results 

[3,6]. The IPC targets vary in size with Investigator® Quantiplex® Pro Kit and the 

PowerQuant® System having the largest control amplicons (435bp) [6]. In addition, the 

IPC target in Investigator® Quantiplex® Pro reflects the quality sensors in its respective 

STR kits (Investigator® 24plex QS & Investigator® 24plex GO! Kits) [5]. InnoQuant® HY 

also differs from the other kits as it targets two Alu retrotransposable elements on 
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autosomal chromosomes for the small and large target [3,4]. Loftus and Pineda found that 

these markers were better candidates for more accurate, sensitive, and reproducible DNA 

results due to their high copy number (approximately 10% of the human genome) [3,4]. In 

addition, the qPCR kits also have recommended values for when samples are flagged for 

possible degradation (Table 4.1.) [6]. Investigator® Quantiplex® Pro and the PowerQuant® 

System have default flags in their respective analysis tools [6], whereas Quantifiler® Trio 

and InnoQuant® HY have recommended ranges for samples with moderate to severe 

degradation [8,10,17]. Likewise, these four qPCR kits have different flags and varying 

calculations for inhibition, but the principle for determining inhibition is the same (Table 

4.1.) [3,6,7]. Each manufacturer of these kits strongly suggests confirming or defining these 

flags during laboratory’s internal validation [16-19]. 

 
Table 4.1. Design metrics and targets of the four qPCR kits used in this study 

 Large 
Target 

Small 
Target 

Male 
Target 

IPC DI 
Degra-
dation 
flags 

IPC Δ CT 
Inhib-
ition 
flags 

Investigator® 
Quantiplex® Pro Kit 353bp*a 91bp a 81bp a 434bp a 

DNA conc. 
of small 
target 

divided by 
DNA conc. 

of large 
targetbcdef 

>10 ab 
Average of standards’ 
IPC CT minus sample 

IPC CTb 
>1ab 

Quantifiler® Trio 
DNA Quantification 

Kit 
214bpcd 80bpcd 75bpcd 130bpcd 

1-10, 
>10d 

Sample IPC CT minus 
average of standards’ 

(1-5) IPC CTcd 
>2cd 

PowerQuant® 
System 294bp*e 84bpe 

81 & 
136bpe 

435bpe >2e 

Sample’s IPC is 
compared to a 

standards’ CT (based 
on nearest quant)e 

>0.3e 

InnoQuant® HY 207bpf 80bpf 
79 & 
79bpf 

72bpf 
2.5-20, 
>20g 

Sample IPC CT minus 
average of standards’ 

(1-5) IPC CTf 
>2f 

 
a As described in Investigator Quantiplex Pro Handbook [16] and b QIAGEN Quantification 
Assay Data Handling and STR Setup Tool v2.01 
c As described in Holt et al. [7] and d Quantifiler HP and Trio DNA Quantification Kits 
User Guide, 2017 [17] 
e As described in Ewing et al. and PowerQuantTM System Technical Manual [6,19] 
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f As described in Loftus et al. and InnoQuant HY User Guide [3,18] and g van den Berge 
et al. [10] 
* Different region from the same locus as the small target 
 

All of the aforementioned design differences in these qPCR kits may affect the 

human quantification, DI, and inhibition results when used to quantify the same sample 

prior to STR typing [9]. This study aims to evaluate the performance of four qPCR kits 

with high quality, low template, degraded, and inhibited DNA samples commonly seen in 

forensic casework and discuss the importance of the quality indicators for assessment prior 

to STR amplification.  

Materials and Methods 

DNA Standards and Samples 

The accuracy and sensitivity of each kit to human DNA was tested using National 

Institute of Standards and Technology (NIST) Standard Reference Material® (SRM) 2372 

Human DNA Quantitation Standard (Gaithersburg, MD, USA). Serial dilutions were 

prepared from Components A and B, which were derived from a single male donor with a 

neat concentration of 57ng/µL and multiple female donors with a neat concentration of 

61ng/µL, respectively [20]. The following DNA concentrations were included in the 

dilution series: 20, 2.5, 0.313, 0.039, 0.005, 0.000625ng/µL. The neat samples and dilution 

series were quantified in triplicate.  

 The following forensically relevant inhibitors were tested in this study: hematin 

(ICN Biomedicals, Aurora, OH, USA), humic acid (Alfa Aesar, Ward Hill, MA, USA), 

calcium hydrogen phosphate (Sigma-Aldrich, Milwaukee, WI, USA), melanin (Sigma-

Aldrich), and sodium chloride in solution (VWR, Radnor, PA, USA). Hematin, humic acid, 

calcium, and melanin were prepared according to Thompson et al. [13]. Sodium chloride 
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in solution was prepared by dissolving 292.2g sodium chloride in 700mL deionized water 

and adjusted to a final volume of 1L. Two human male DNA standards, NIST SRM 2372 

Component A and TaqMan® Control Genomic DNA (Thermo Fisher Scientific), were used 

to spike with aliquots of these inhibitors. Each DNA standard was diluted to 1ng/µL 

followed by a 1 in 2 dilution with various concentrations of inhibitors for a final DNA 

concentration of 0.5ng/µL. The final inhibitor concentrations are listed as the concentration 

in the DNA sample (Table 4.2.).  Non-inhibited samples (0.5ng/µL of DNA) were also 

quantified as controls. All samples were quantified in duplicate. 

 
Table 4.2. Inhibitor sample concentrations 

 

 The degraded samples included DNA from bones (N=5), decomposed tissues 

(N=5), and formalin-damaged samples from embalmed tissues (N=5). Human remains 

were provided by the Applied Anatomical Research Center (AARC) at Sam Houston State 

University, Huntsville, Texas, USA. Bone samples were extracted with either QIAamp® 

Hematin 
(µM) 

Humic Acid 
(ng/µL) 

Calcium 
(mM) 

Melanin 
(ng/µL) 

Salt (mM) 

30 10 1 10 100 

50 20 1.5 25 200 

70 30 2 50 300 

90 40 2.5 75 400 

110 50 3 100 500 

500 100 15 175 600 

600 200 20 200 700 

700 250 25 225 800 

800 300 30 250 900 

900 400 35 275 1000 
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DNA Investigator Kit (QIAGEN) or PrepFiler® BTA Forensic DNA Extraction Kit 

(Thermo Fisher Scientific) following manufacturer’s instructions [21,22]. Decomposed 

tissues were extracted with the QIAamp® DNA Investigator Kit on the QIAcube® 

(QIAGEN) using the forensic casework samples protocol [23]. Embalmed samples were 

extracted with QIAamp® DNA FFPE Tissue Kit (QIAGEN) following manufacturer’s 

instructions [24]. 

DNA Quantification and Assessment 

All samples were quantified with Investigator® Quantiplex® Pro Kit, Quantifiler® 

Trio DNA Quantification Kit, PowerQuant® System, and InnoQuant® HY following 

manufacturer’s instructions [16-19]. DNA quantification was performed on a 7500 Real-

Time PCR System (Thermo Fisher Scientific) using each kit’s respective template. Data 

were analyzed using the HID Real-Time PCR Analysis Software v1.2, where a R2 value 

≥0.99 on the standard curve was accepted.  

Additional analysis was required for each kit in order to calculate the DI and 

inhibition index. The DI is generated automatically for Quantifiler® Trio, whereas the 

InnoQuant® HY kit has a macro based analysis tool (InnoQuant Degradation Index Macro) 

[18]. The IPC ΔCT values (inhibition indices) were calculated manually for Quantifiler® 

Trio and InnoQuant® HY using manufacturer’s recommendations [17,18]. The 

Investigator® Quantiplex® Pro Kit and PowerQuant® System include macro based analysis 

tools (QIAGEN Quantification Assay Data Handling and STR Setup Tool v2.01 and 

PowerQuant® Analysis Tool v1, respectively), which were used to produce the degradation 

and inhibition indices for the samples tested in this study [16,19]. Absolute values for the 
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inhibition indices from Investigator® Quantiplex® Pro were used for comparison with the 

other kits in this study.  

STR Analysis of Degraded Samples 

STR amplification and analysis was performed on all degraded samples (N=15) to 

assess any possible relationship of the DI with downstream STR success. Each commercial 

qPCR kit was paired with its corresponding STR amplification kit: 1) Investigator® 24plex 

QS Kit (QIAGEN), 2) GlobalFiler® PCR Amplification Kit (Thermo Fisher Scientific), 

and 3) PowerPlex® Fusion 6C System (Promega Corporation) using each manufacturer’s 

instructions [25-27]. Although the InnoQuant® HY kit can be paired with any STR kit, STR 

amplification was not performed due to the limited DNA extract available. The DNA 

concentration assessed by the small target was used from each qPCR kit to target 0.8ng for 

each STR reaction, when possible. For samples with <0.053 ng/µL the maximum of 15µL 

was added to the PCR reaction. Amplification was performed on a ProFlex™ PCR System 

(Thermo Fisher Scientific) using each STR kit’s recommended cycling parameters [25-27]. 

Separation and detection of PCR products was performed on a 3500 Genetic 

Analyzer (Thermo Fisher Scientific) using a 36cm capillary array and POP4 polymer 

platform. Data were analyzed with GeneMapper ID-X Software v1.4 (Thermo Fisher 

Scientific). The following thresholds were used for data interpretation: an analytical 

threshold (AT) of 100 relative fluorescent units (RFUs) and stochastic threshold (ST) of 

200 RFUs for Investigator® 24plex QS, AT of 150 RFUs and ST of 600 RFUs for 

GlobalFiler®, and AT of 175 RFUs and ST of 400 RFUs for PowerPlex® Fusion 6C. 
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Statistical Analysis 

Data were tested for statistical significance by one-way ANOVA analysis in 

Microsoft Excel. P<0.05 was accepted as the level of significance. 

Results and Discussion 

Sensitivity, Precision, and Accuracy 

Forensic casework samples range in DNA concentration from nanograms down to 

picograms. In order to test each kits sensitivity, precision, and accuracy, we assessed the 

small and large target concentrations for two sources of human DNA and the male target 

concentration for the male DNA source. Data from two DNA sources (SRM A and SRM 

B) were combined in the logarithmic observed vs. expected graphs (Fig. 4.1. A and B). In 

general, all kits produced reliable autosomal and male DNA quantification results along 

the sensitivity range.  However, more disparity was observed in DNA concentrations that 

fell outside the concentration range for each kit’s respective standard curve (50 – 

0.0025ng/µL for Investigator® Quantiplex® Pro; 50 – 0.005ng/µL for Quantifiler® Trio; 50 

– 0.0032ng/µL for PowerQuant®; 20 – 0.005ng/µL for Innoquant® HY). These findings 

are consistent with Loftus et al. for the InnoQuant® HY kit [3]. At the lower DNA 

concentrations, the PowerQuant® System and Investigator® Quantiplex® Pro Kit were the 

least accurate for the human targets and the male target, respectively (Fig. 4.1. A-C). 

Accuracy for each of the kits is represented by the fold change and the precision along the 

dilution series can be observed with the %CV (Tables 4.3. – 4.6.). InnoQuant® HY had the 

overall lowest %CV compared to the other kits suggesting that this kit may have better 

precision across the range tested in this study (Table 4.6.). 
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Fig. 4.1. Average observed vs. expected concentrations for each commercial qPCR kit 
presented as (A) the short target, (B) the large target for SRM A & B combined, and (C) 
the male target for SRM A.  Data represents mean presented in a logarithmic scale 
 

  

C 
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Table 4.3. Sensitivity, precision and accuracy results of NIST SRM 2372 Component A and Component B dilutions for Investigator® 
Quantiplex® Pro  

Sample Source 
Expected 

Conc. 
(ng/µL) 

Observed Small Observed Large Observed Y 

Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV 

NIST A SRM 57.0 57.5 7.2 1.01 12.4% 62.1 7.7 1.09 12.5% 44.3 4.8 1.29 10.8% 
 20.0 23.7 3.2 1.18 13.5% 25.4 4.4 1.27 17.5% 20.4 2.8 1.02 13.5% 
 2.50 2.84 0.04 1.14 1.6% 2.81 0.04 1.12 1.4% 3.13 0.03 1.25 1.0% 
 0.313 0.341 0.019 1.09 5.5% 0.327 0.013 1.04 4.1% 0.468 0.011 1.50 2.4% 
 0.0390 0.0390 0.0034 1.00 8.8% 0.0390 0.0038 1.00 9.6% 0.0697 0.0029 1.79 4.1% 
 5.00E-03 5.00E-03 6.93E-04 1.00 13.9% 4.40E-03 7.21E-04 1.14 16.4% 1.05E-02 5.77E-05 2.09 0.6% 
 6.25E-04 8.00E-04 1.00E-04 1.28 12.5% 5.00E-04 1.00E-04 1.25 20.0% 1.40E-03 1.23E-03 2.24 87.8% 
              

NIST B SRM 61.0 59.6 2.0 1.02 3.3% 62.1 2.7 1.02 4.3% 0 - - - 
 20.0 22.0 0.8 1.10 3.7% 22.4 1.0 1.12 4.4% 0 - - - 
 2.50 2.78 0.16 1.11 5.8% 2.66 0.17 1.06 6.3% 0 - - - 
 0.313 0.350 0.013 1.12 3.7% 0.325 0.021 1.04 6.4% 0 - - - 
 0.0390 0.0396 0.0043 1.02 10.9% 0.0391 0.0041 1.00 10.5% 0 - - - 
 5.00E-03 5.00E-03 9.17E-04 1.00 18.3% 4.60E-03 1.32E-03 1.09 28.8% 0 - - - 
 6.25E-04 7.67E-04 1.15E-04 1.23 15.1% 3.67E-04 2.08E-04 1.70 56.8% 0 - - - 
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Table 4.4. Sensitivity and Accuracy results of NIST SRM 2372 Component A and Component B dilutions for Quantifiler® Trio 

Sample Source 
Expected 

Conc. 
(ng/µL) 

Observed Small Observed Large Observed Y 

Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV 

NIST A SRM 57.0 51.3 1.0 1.11 2.0% 55.0 3.2 1.04 5.9% 68.2 0.6 1.20 0.9% 
 20.0 18.5 0.4 1.08 2.3% 21.9 1.1 1.10 5.1% 25.4 0.5 1.27 2.0% 
 2.50 2.48 0.17 1.01 6.9% 3.11 0.11 1.25 3.4% 3.37 0.14 1.35 4.3% 
 0.313 0.278 0.013 1.13 4.6% 0.382 0.014 1.22 3.6% 0.397 0.017 1.27 4.3% 
 0.0390 0.0358 0.0042 1.09 11.6% 0.0523 0.0015 1.34 3.0% 0.0501 0.0049 1.29 9.7% 
 5.00E-03 3.55E-03 1.58E-04 1.41 4.5% 5.85E-03 1.20E-03 1.17 20.5% 5.25E-03 1.48E-03 1.05 28.2% 
 6.25E-04 5.42E-04 1.62E-04 1.15 29.9% 8.65E-04 6.24E-04 1.38 72.1% 6.74E-04 3.10E-04 1.08 46.1% 
              

NIST B SRM 61.0 41.6 9.4 1.47 22.5% 46.2 8.0 1.32 17.2% 0 - - - 
 20.0 15.3 2.2 1.30 14.2% 18.8 2.1 1.07 11.4% 0 - - - 
 2.50 1.86 0.50 1.34 26.8% 2.66 0.57 1.06 21.3% 0 - - - 
 0.313 0.288 0.058 1.09 20.1% 0.394 0.075 1.26 19.0% 0 - - - 
 0.0390 0.0262 0.0067 1.49 25.6% 0.0449 0.0095 1.15 21.1% 0 - - - 
 5.00E-03 3.55E-03 7.16E-04 1.41 20.2% 6.95E-03 8.67E-04 1.39 12.5% 0 - - - 
 6.25E-04 3.01E-04 2.16E-04 2.08 71.6% 8.66E-04 6.00E-04 1.39 69.3% 0 - - - 
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Table 4.5. Sensitivity and Accuracy results of NIST SRM 2372 Component A and Component B dilutions for PowerQuant® System 

 

 

 

 

Sample Source 
Expected 

Conc. 
(ng/µL) 

Observed Small Observed Large Observed Y 

Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV 

NIST A SRM 57.0 62.2 6.9 1.09 11.0% 61.0 1.1 1.07 1.8% 56.0 0.8 1.11 1.5% 
 20.0 21.3 1.6 1.07 7.7% 23.5 1.2 1.17 5.0% 22.0 1.6 1.10 7.2% 
 2.50 2.40 0.42 1.04 17.4% 2.67 0.25 1.07 9.3% 2.79 0.21 1.12 7.6% 
 0.313 0.295 0.009 1.06 3.0% 0.302 0.015 1.04 4.9% 0.351 0.010 1.12 2.8% 
 0.0390 0.0292 0.0017 1.33 5.9% 0.0289 0.0011 1.35 3.8% 0.0422 0.0089 1.08 21.2% 
 5.00E-03 4.04E-03 6.27E-04 1.24 15.5% 3.37E-03 4.57E-04 1.48 13.5% 6.16E-03 1.16E-03 1.23 18.8% 
 6.25E-04 3.00E-04 1.00E-04 2.08 33.3% 2.00E-04 0.00E+00 3.13 0.0% 8.00E-04 1.00E-03 1.28 125.0% 
              

NIST B SRM 61.0 60.2 3.0 1.01 5.0% 49.0 1.8 1.24 3.6% 0 - - - 
 20.0 20.1 2.3 1.00 11.4% 17.0 0.5 1.18 2.8% 0 - - - 
 2.50 2.37 0.37 1.05 15.6% 2.07 0.34 1.21 16.4% 0 - - - 
 0.313 0.324 0.017 1.03 5.3% 0.263 0.016 1.19 6.1% 0 - - - 
 0.0390 0.0345 0.0042 1.13 12.3% 0.0287 0.0042 1.36 14.8% 0 - - - 
 5.00E-03 2.84E-03 6.33E-04 1.76 22.3% 1.87E-03 3.00E-04 2.68 16.1% 0 - - - 
 6.25E-04 2.29E-04 2.62E-04 2.73 114.4% 1.65E-04 1.70E-04 3.79 103.0% 0 - - - 
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Table 4.6. Sensitivity and Accuracy results of NIST SRM 2372 Component A and Component B dilutions for Innoquant® HY 

 

 

Sample Source 
Expected 

Conc. 
(ng/µL) 

Observed Small Observed Large Observed Y 

Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV Avg. 
Quantity 

Std. 
Dev. 

Fold 
Change 

%CV 

NIST A SRM 57.0 42.0 3.6 1.36 8.6% 36.0 2.8 1.58 7.9% 46.6 2.5 1.22 5.3% 
 20.0 16.2 0.3 1.23 1.5% 14.2 0.7 1.41 4.8% 17.5 0.6 1.14 3.6% 
 2.50 2.33 0.07 1.07 2.9% 2.12 0.13 1.18 6.0% 2.40 0.09 1.04 3.6% 
 0.313 0.278 0.016 1.13 5.9% 0.240 0.021 1.30 8.8% 0.297 0.023 1.05 7.7% 
 0.0390 0.0306 0.0018 1.28 6.0% 0.0273 0.0058 1.43 21.1% 0.0334 0.0036 1.17 10.9% 
 5.00E-03 3.96E-03 1.59E-04 1.26 4.0% 3.60E-03 2.81E-04 1.39 7.8% 3.10E-03 1.37E-03 1.61 44.0% 
 6.25E-04 5.46E-04 1.83E-05 1.14 3.4% 3.66E-04 1.18E-05 1.71 3.2% 5.06E-04 - 1.23 - 
              

NIST B SRM 61.0 43.3 3.6 1.41 8.4% 33.1 1.8 1.84 5.5% 0 - - - 
 20.0 14.9 0.4 1.34 2.6% 12.0 0.5 1.66 4.4% 0 - - - 
 2.50 2.18 0.03 1.15 1.6% 1.73 0.10 1.45 5.9% 0 - - - 
 0.313 0.263 0.024 1.19 9.3% 0.209 0.010 1.50 4.9% 0 - - - 
 0.0390 0.0329 0.0023 1.19 7.1% 0.0250 0.0015 1.56 6.1% 0 - - - 
 5.00E-03 3.55E-03 2.11E-04 1.41 5.9% 3.05E-03 1.48E-04 1.64 4.9% 0 - - - 
 6.25E-04 5.77E-04 4.82E-05 1.08 8.4% 3.55E-04 5.96E-05 1.76 16.8% 0 - - - 
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Inhibition  

Control DNA sources (0.5ng/µL with no inhibitor added) were also quantified with 

each of the four commercial qPCR kits. Investigator® Quantiplex® Pro generated a small 

target DNA concentration of 0.52±0.12ng/µL, 0.44±0.18ng/µL using Quantifiler® Trio, 

0.44±0.05ng/µL with PowerQuant®, and 0.33±0.05ng/µL with InnoQuant® HY. As 

expected no PCR inhibition was detected in any control samples.  

In general, all kits provided similar inhibition indices with the lower inhibitor 

concentrations tested, but the DNA quantification results varied between kits. The 

inhibition indices for hematin were similar for all kits until the PowerQuant® System 

started flagging inhibition at 500µM, Quantifiler® Trio at 600µM, and InnoQuant® HY at 

900µM (Fig. 4.2.). The IPC targets in the Investigator® Quantiplex® Pro kit and 

InnoQuant® HY were the most tolerant to hematin as they did not flag the concentrations 

of hematin tested as inhibited (until the highest concentration). However, the DNA 

concentrations reported by these two kits gradually decreased as the concentration of 

hematin increased, similar to the other two kits (Quantifiler® Trio and PowerQuant®) that 

flagged inhibition (Fig. 4.3.). Furthermore, there was a statistically significant difference 

between kits as determined by one-way ANOVA (F3,36 = 6.4779, p = 1.28E-03). The 

Investigator® Quantiplex® Pro kit reported more accurate quantity results (average 

0.4359ng/µL when compared to 0.5ng/µL and a variance of 0.00451) for all hematin 

samples tested (Fig. 4.3.). 
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Fig. 4.2. Average inhibition indices for 0.5ng/uL standard DNA spiked with varying 
concentrations of hematin. Data represents mean  Std Dev. An x denotes when inhibition 
was flagged by a kits’ default setting (as listed in Table 4.1.) 
 

 

Fig. 4.3. Average DNA concentrations for 0.5ng/uL standard DNA spiked with varying 
concentrations of hematin. Data represents mean  Std Dev 
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Humic acid samples were not flagged for inhibition until 200ng/µL with the 

PowerQuant® System and InnoQuant® HY kit, 250ng/µL with Investigator® Quantiplex® 

Pro, and 400ng/µL with Quantifiler® Trio (Fig. 4.4). Quantifiler® Trio results are consistent 

with Holt et al. [7]. A statistically significant difference in DNA concentration between 

kits was observed, as determined by one-way ANOVA (F3,36 = 14.2939, p = 2.7E-06). The 

DNA concentrations from the Investigator® Quantiplex® Pro Kit were more accurate and 

the small target more tolerant (average 0.5075ng/µL with a variance of 0.00176), while the 

InnoQuant® HY kit was the most susceptible to high levels of humic acid (average 0.2493 

and a  variance of 0.02432; Fig. 4.5.).  

 

 

Fig. 4.4. Average inhibition indices for 0.5ng/uL standard DNA spiked with varying 
concentrations of humic acid. Data represents mean  Std Dev. An x denotes when 
inhibition was flagged by a kits’ default setting (as listed in Table 4.1.) 
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Fig. 4.5. Average DNA concentrations for 0.5ng/uL standard DNA spiked with varying 
concentrations of humic acid. Data represents mean  Std Dev 
 

 
Samples inhibited with calcium were flagged for inhibition starting at 15mM with 

PowerQuant® and InnoQuant® HY, 25mM with Quantifiler® Trio, and 30mM with 

Investigator® Quantiplex® Pro (Fig. 4.6.). There was a statistically significant difference in 

DNA concentration between kits as determined by one-way ANOVA (F3,36 = 15.2388, p = 

1.5E-06). The DNA concentrations from the Investigator® Quantiplex® Pro kit were more 

accurate and the small target was more tolerant to this inhibitor (average 0.4038 and 

smallest variance of 0.00144; Fig. 4.7.). These results suggest that Investigator® Quantiplex 

Pro kit is suitable for skeletal samples that are often inhibited with calcium from the bone 

and humic acid from the soil where the bones are often retrieved. 

 

 

 



112 

 

 

Fig. 4.6. Average inhibition indices for 0.5ng/uL standard DNA spiked with varying 
concentrations of calcium. Data represents mean  Std Dev. An x denotes when inhibition 
was flagged by a kits’ default setting (as listed in Table 4.1.)  

 

 

Fig. 4.7. Average DNA concentrations for 0.5ng/uL standard DNA spiked with varying 
concentrations of calcium. Data represents mean  Std Dev 
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Melanin samples were flagged for inhibition at 75ng/µL with the Investigator® 

Quantiplex® Pro and InnoQuant® HY kits and 175ng/µL with the PowerQuant® System 

(Fig. 4.8.). The IPC target from Quantifiler® Trio was more tolerant to melanin as none of 

the samples were flagged for inhibition (Fig. 4.8.).  There was a statistically significant 

difference in DNA concentrations between the four kits as determined by one-way 

ANOVA (F3,36 = 11.4574, p = 2E-05). However, when a separate one-way ANOVA was 

performed excluding InnoQuant® HY samples no statistical significance was detected 

between the three remaining qPCR kits. Therefore, the small target from InnoQuant® HY 

was the most susceptible to these concentrations of melanin compared to the other qPCR 

kits (Fig. 4.9.).  

 

 

Fig. 4.8. Average inhibition indices for 0.5ng/uL standard DNA spiked with varying 
concentrations of melanin. Data represents mean  Std Dev. An x denotes when inhibition 
was flagged by a kits’ default setting (as listed in Table 4.1.) 
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Fig. 4.9. Average DNA concentrations for 0.5ng/uL standard DNA spiked with varying 
concentrations of melanin. Data represents mean  Std Dev 
 
 
 

Lastly, the samples inhibited with salt were flagged for inhibition starting at 

200mM for Investigator® Quantiplex® Pro and PowerQuant® System and 400mM for 

InnoQuant® HY (Fig. 4.10.). Quantifiler® Trio showed no signs of inhibition before the 

IPC target failed to amplify at 800mM salt. There was a statistically significant difference 

in DNA concentration between kits as determined by one-way ANOVA (F3,36 = 6.8143, p 

= 9.4E-04). However, DNA quantification results could only be obtained using 

Quantifiler® Trio when the concentration of salt in the sample was greater than 500mM 

(Fig. 4.11.). Therefore, Quantifiler® Trio was more tolerant to these high concentrations of 

salt (average = 0.3142ng/µL, variance = 0.01264).  
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Fig. 4.10. Average inhibition indices for 0.5ng/uL standard DNA spiked with varying 
concentrations of salt. Data represents mean  Std Dev. An x denotes when inhibition was 
flagged by a kits’ default setting (as listed in Table 4.1.) 
 

 

Fig. 4.11. Average DNA concentrations for 0.5ng/uL standard DNA spiked with varying 
concentrations of salt. Data represents mean  Std Dev 
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Our results generally support those of Thompson et al., who also detected inhibition 

with 60µM hematin in the reaction (600µM in the sample), 25ng/µL humic acid (250 

ng/µL in the sample), and 1.5mM calcium (15mM in the sample for this study) [13]. 

However, we have found that some kits were more tolerant to certain inhibitors than others. 

Overall, Investigator® Quantiplex® Pro was more tolerant to inhibitors (except high 

concentrations of salt), whereas InnoQuant® HY was more susceptible to high 

concentrations of inhibitors (except high concentrations of hematin; Fig. 4.12.). 

 

 

Fig. 4.12. Average DNA concentrations 0.5ng/uL standard DNA spiked with varying 
concentrations of hematin (bars 1-10), humic acid (11-20), calcium (21-30), melanin (31-
40), and salt (41-50) 

 

In general, when the small target DNA concentrations were decreased by half or 

more (<0.25ng/µL) due to severe inhibition, the IPC target did indicate the presence of 

inhibitors in all kits. The results of this study support the practice of interrogating the IPC 
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information to avoid adding more extract volume into the PCR and thereby also increasing 

the amount of inhibitor. This approach could reduce STR success or result in complete 

PCR failure.  

Degradation  

The same volume of neat DNA (2µL) from bones (N=5), decomposed tissues 

(N=5), and formalin-damaged samples from embalmed tissues (N=5) was quantified with 

each of the four qPCR kits. For all of the challenging samples tested, the average DNA 

concentrations based on the small target were similar for each kit, but the large target 

concentration obtained from Quantifiler® Trio was consistently the highest (Fig. 4.13. A). 

Thus, Quantifiler® Trio generated the smallest DIs for each set of degraded samples (Fig. 

4.13. B).  When comparing the degradation flags for each kit, all samples’ DIs generated 

by Quantifiler® Trio were greater than 1 but less than 10 indicating moderate degradation. 

Investigator® Quantiplex® Pro generated the highest DIs, where all samples were greater 

than 1 but only 60% of samples indicated degradation (DI >10) (Fig. 4.13. B). The 

difference between the results generated by these two kits may be explained by the 

difference in size between the two large targets in each kit (~140bp). In addition, the 

PowerQuant® System indicated degradation in all degraded samples (DI >2), whereas 

InnoQuant® HY indicated moderate degradation in 73% of samples (2.5<DI<20) and 

severe degradation in 27% (>20).  
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Fig. 4.13. Average DNA quantification results for five bone, five decomposed, and five 
formalin-damaged samples presented as (A) average DNA concentrations obtained using 
each qPCR kit (ST = small target, LT = large target) and (B) the average degradation index 
calculated by each qPCR system.  Data represents mean  Std Dev 
 

A 

B 
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All commercial qPCR kits (except InnoQuant® HY) were paired with their 

respective STR amplification kit. The combinations of Investigator® Quantiplex® Pro with 

Investigator® 24plex QS and Quantifiler® Trio with Globalfiler® yielded the greatest STR 

success when using the small target, but the average DIs varied greatly between the two 

qPCR kits (Fig. 4.14.). Quantifiler® Trio predicted moderate degradation in all samples and 

Investigator® Quantiplex® Pro generated high DIs. Although degradation was indicated by 

both qPCR kits, full profiles were produced in 53% of samples for Investigator® 24plex 

QS and 47% for GlobalFiler® when the small target DNA concentration was used to 

determine the input volume into PCR. The PowerQuant® System indicated degradation in 

all samples similar to Quantifiler® Trio, but PowerPlex® Fusion 6C had the highest 

occurrence of allele drop out when using the small target DNA concentration (Fig. 4.14.). 

Loftus et al. and Pineda et al. have suggested using the large target DNA concentration 

from the InnoQuant® assays to assess the amount of sample required for STR typing [3,4]. 

Due to the lower first pass success of the PowerQuant® and PowerPlex® Fusion 6C 

combination with degraded samples, the use of the large target DNA concentration for 

input volume might also be beneficial for the PowerQuant® System. However, routinely 

using the large target with Quantifiler® Trio and Investigator® Quantiplex® Pro with 

degraded samples may introduce unwanted artifacts such as drop in and split peaks in the 

smaller marker region (due to too much DNA) making interpretation more difficult.  In this 

study, using the small target concentrations with Quantifiler® Trio and Investigator® 

Quantiplex® Pro yielded mostly complete downstream STR profiles. As previously 

mentioned, Investigator® Quantiplex® Pro contains the longest amplicon for the large target 

out of the four qPCR kits. If the large target concentration was used to assess input amount 
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for Investigator® Quantiplex® Pro, eight out of ten bone and decomposed samples would 

have required maximum volume into the STR reaction compared to only one sample based 

on the small target. Instead, an alternate approach may be to take the average of the small 

and large target DNA concentrations to improve STR typing success with these kits. This 

approach may find a balance between drop out of larger loci and overshooting smaller loci. 

However, we were not able to test this approach in this study due to the limited sample 

volume.  

 

 

Fig. 4.14. Average STR results and degradation indices for each set of degraded samples 
 

Consistent with previous studies [3,6,7] we also noticed with high concentrations 

of inhibitors that the large target amplification was preferentially affected, and often 

indirectly affected the DI value. As a result, these samples may be incorrectly flagged as 
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severely degraded. Therefore, it is important to note the DI information in conjunction with 

the IPC data to assess the integrity of the sample prior to STR amplification.  

Conclusion 

As may be expected, all kits performed similarly with high quality DNA samples 

and with low levels of inhibitors. All four qPCR kits were able to detect sub-picogram level 

of DNA and generate reliable, reproducible and accurate DNA quantification data. 

However, the InnoQuant® HY kit showed the highest precision across the DNA 

concentration range tested in this study. For the highly inhibited samples, Investigator® 

Quantiplex® Pro was the most tolerant kit to the inhibitors tested in this study and provided 

more accurate quantification results (except with high concentrations of salt). Quantifiler® 

Trio provided more stable DNA quantification results for salt compared to the other three 

qPCR kits. Generally, the other two kits (PowerQuant® and Innoquant® HY) were more 

sensitive to high concentrations of the various inhibitors; but the IPC target indicated 

significant levels of inhibition when the small target DNA concentration was decreased 

and thereby differentiating them from low template samples.  

For degraded samples, each kit generated comparable small target DNA 

concentrations but predicted varying degrees of degradation. When samples were STR 

typed with each qPCR kit’s respective STR kit (besides InnoQuant® HY), STR results 

varied with Investigator® 24plex QS and GlobalFiler® generating more complete profiles 

than PowerPlex® Fusion 6C. Using more input DNA for samples flagged as severely 

degraded during quantification may increase the chances of first pass successful STR 

typing for some samples, but might also introduce unwanted artifacts in others. Future 

research might include a more thorough investigation on increasing first pass STR success 
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with degraded samples testing various approaches such as using the large target DNA 

concentration for determining sample input into amplification or taking the average of 

small and large target DNA concentrations.  The results of this study demonstrate the 

importance of assessing both the degradation and inhibition indicators. However, DI and 

inhibition flags should be defined within each laboratory to best streamline the laboratory’s 

workflow, as per manufacturers’ recommendations [16-19]. With the use of these 

commercial qPCR kits in the DNA analysis workflow, analysts may better predict the 

integrity of each sample and triage evidence prior to expensive and time-consuming genetic 

analyses for human identification purposes.  
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CHAPTER V 

In-field Collection and Preservation of Decomposing Human Tissues to Facilitate 

Rapid Purification Methods1 
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Abstract 

Short tandem repeats (STR) are currently the gold standard in human identification 

for forensic casework purposes, and successful STR typing is dependent on sufficient 

quantity and quality DNA.  In the aftermath of a mass disaster and some forensic cases, 

human remains are recovered for identification in various stages of decomposition, and 

ideally these remains are transported to a refrigerated facility in order to halt the 

decomposition process and preserve the integrity of DNA within the tissue. However, in 

situations where refrigeration is not available (e.g., after a mass disaster or in rural forensic 

casework), remains continue to be exposed to environmental insults after collection, 

causing further DNA damage and degradation. Therefore, successful STR typing is 

dependent on the time of collection and preservation of the DNA sample. This study aims 

to test two simple in-field collection and preservation methods for decomposing human 

tissues that are subsequently stored at room temperature for up to six months either in a 

tissue preservative solution (modified TENT buffer) or on an FTA® Elute Card. In addition, 

these collection and preservation methods were tested for their ability to facilitate more 

direct and faster processing of DNA from preserved tissues or DNA leached into the 

surrounding TENT preservative solution for STR typing. Pre-PCR methods tested in this 

study include a quick lysis of FTA® Elute Cards, silica-based purification (QIAquick®), 

enzyme-based extractions (PDQeX), and simple dilution of liquid preservative. The 

traditional DNA analysis pipeline, which includes DNA extraction and quantification, will 

be compared to an alternate direct PCR method, thereby allowing the elimination of these 

two time-consuming and costly steps.  
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The results indicate that modified TENT preservative and FTA® Elute Cards both 

preserved DNA from relatively fresh tissue for up to six months at room temperature. 

However, mostly partial profiles were produced from decomposed tissues (day 6 – day 14 

in this study) when stored for up to six months compared to when tissues were processed 

immediately following collection. Overall, the modified TENT preservative produced 

higher DNA concentrations and more successful STR results than FTA® Elute Cards. In 

addition, a rapid DNA extraction platform (PDQeX) generated the most successful STR 

typing results from the decomposed tissues stored in TENT for up to six months at room 

temperature. The direct PCR method used in this study generated comparable STR results 

to the traditional DNA analysis approach, warranting further investigation of direct PCR 

methods for forensic casework type samples. 

 

Keywords:   DNA collection, DNA preservation, FTA Elute, PDQeX System, STR 

typing, Disaster victim identification 
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Introduction 

Short tandem repeat (STR) typing is currently the gold standard for human 

identification. However, successful STR typing is often affected by the presence of 

inhibitors, low amounts of DNA template, and damaged and/or degraded DNA [1]. 

Refrigeration or freezing of samples is typically used to prevent further DNA damage and 

degradation [2, 3]. In the event of a mass fatality event or in rural casework, refrigeration 

is often not possible due to a lack of facilities and/or limited electricity [2, 3]. If human 

remains are left exposed to evironmental conditions such as heat, humidity, and microbial 

activity, then DNA in those tissues begins to degrade [3, 4]. The most common 

consequence of DNA degradation is the loss of larger alleles during PCR amplification 

resulting in partial STR profiles [4]. Therefore, various methods have been proposed for 

simple in-field collection and preservation of biological samples (for a review, see Allen-

Hall and McNevin [3]). Several tissue preservatives have been tested for effective ambient 

temperature storage of biological samples [2-5].  

In this study, we assessed the utility of a modified TENT buffer  (Tris, EDTA, 

NaCl, Tween 20) which has been evaluated in previous studies (although with differing 

salt concentrations) [4-6]. This preservative is ideal for storing tissue samples due to its 

ability to simultaneously facilitate lysis of tissue and leaching of DNA into solution. The 

use of this preservative has been coupled with either quick purification and traditional DNA 

analysis or direct PCR using aliquots of the DNA suspended in preservative solutions. 

Allen-Hall and McNevin tested the TENT buffer in addition to several other wet and dry 

preservatives on fresh muscle tissue in hot, humid conditions [5]. They found that TENT 

preservative containing 100mM salt (NaCl) yielded high quantities of DNA from the 
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preservative solution but failed to protect that DNA from further degradation during 

storage [5]. A further study by Sorensen et al. tested TENT and other preservatives for their 

effectiveness and ability to generate successful STR typing via a direct PCR approach using 

an aliquot of DNA suspended in liquid preservative [6]. This study used the same TENT 

buffer (100mM NaCl), in order to facilitate direct PCR without the requirement for dilution 

to remove inhibitors prior to PCR. The authors reported that all buffers tested except TENT 

generally produced complete STR profiles after storage for one month or archived at -80°C 

for 4 years [6]. Therefore, at this low salt concentration, direct PCR was possible, but DNA 

preservation was not optimal. A later study modified the TENT preservative by increasing 

the salt concentration to 2M and evaluated this modified TENT buffer in addition to other 

in-house and commercial preservatives for use with fresh and decomposed skin and muscle 

tissues [4]. Sorensen et al. found the modified TENT buffer to be the most successful in-

house preservative for tissues stored up to three months in heat and humidity [4]. However, 

Holmes et al. confirmed that the increased salt solutions were inhibitory to quantitative 

PCR (qPCR) [1]. Therefore, we investigated alternate approaches which would allow for 

both a higher concentration of salt in the TENT buffer and faster DNA purification methods 

prior to STR typing. 

A new rapid DNA extraction platform, the PDQeX 2400 System (ZyGEM, 

Hamilton, New Zealand), with enzyme-based buffers was tested for its ability to purify 

DNA from decomposing tissues preserved in TENT and aliquots of DNA suspended in 

solution while removing inhibitory compounds. This novel DNA extraction method 

utilizes the enzymatic activity of Antartic Bacillus sp. EA1, which is used to lyse cells and 

degrade nucleases and proteins at an optimal temperature of 75°C [7]. The extraction 
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occurs in a closed system with several incubation/heat steps in less than twenty minutes 

without prior lysis or any transfer steps to minimize contamination or loss of sample.  

In addition, we also explored the feasiblity of transferring DNA from decomposing 

tissues directly onto FTA® Elute Cards in an attempt to preserve DNA for storage and 

provide a suitable substrate for direct PCR. Whatman® FTA® Cards are commonly used in 

forensic DNA laboratories to collect and archive blood or saliva for reference samples [3, 

8]. Once the samples are allowed to dry, the DNA is preserved, and Cards can be stored at 

room temperature for long periods of time or be prepared for amplification via direct PCR 

[3, 8].  

The large-scale nature of mass disaster events and rural forensic casework 

necessitates the development of simple and fast in-field methods to collect and stabilize 

biological samples for identification in situations when optimal storage conditions are not 

available. In addition, rapid and more direct high-throughput methods can reduce the cost 

and time of analysis to help facilitate faster identification for victims’ families and the 

criminal justice community. Therefore, we explored the effectiveness of various 

approaches for preseverving samples from decomposing human cadavers, coupled with 

more direct and faster DNA purification and amplification strategies.  

Materials and Methods 

DNA Collection 

Samples were collected from three human cadavers placed in April 2015 at the 

Applied Anatomical Research Center (AARC) at Sam Houston State University, 

Huntsville, Texas, USA. A 4mm biopsy punch was used to collect tissue samples from the 

lower leg (skin and gastrocnemius muscle) during various stages of decomposition over a 
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two-week period (Days 0, 4, 6, 10, and 14). Two biopsy punches (~70mg tissue) were 

placed in a sterile 2mL microcentrifuge tube and processed immediately as controls 

(refered to as biopsy controls from here), or two biopsy punches were stored in 800µL of 

modified TENT buffer (10mM Tris, 10mM EDTA, 1M NaCl, 2% Tween 20; 100mL, pH 

8.0) or compressed on an Indicating FTA® Elute Micro Card (GE Healthcare Life Sciences, 

Pittsburgh, PA). The cards were pre-moistened with three drops of sterile diH2O to prevent 

the tissue from sticking and tearing the paper. The tissue was rolled around the defined 

circle of the FTA® Elute Card for approximately 20 seconds and then discarded. TENT and 

FTA® Elute Card samples were returned to the lab and stored at room temperature for one, 

three, and six months. 

DNA Lysis and Extraction 

The reference tissues (biopsy controls) were lysed overnight at 56°C  with 30µL 

Proteinase K and 270µL ATL buffer from the QIAamp® DNA Investigator Kit (QIAGEN, 

Hilden, Germany). DNA extraction was performed on the QIAcube® (QIAGEN) using the 

Casework samples protocol (purification only protocol) [9].  

An aliquot (10µL) of TENT buffer containing DNA leached from the tissues was 

used to make a 1 in 10 dilution for direct PCR. An additional 60µL aliquot of the TENT 

preservative was purified using QIAquick® PCR Purification Kit (QIAGEN) on the 

QIAcube® and eluted in 60µL of Buffer EB (QIAGEN) [10]. An aliquot of TENT 

preservative was also purified using the PDQeX 2400 System (ZyGEM) and the PDQeX 

forensicGEM Tissue Kit (ZyGEM) using the Animal Tissue DNA Extraction Protocol with 

a minor modification [11]. Liquid preservative (20µL) instead of tissue was added to a 

ZyGEM ‘premium tube’ (containing a filter) with 10µL Histosolv, 10µL ORANGE Plus 
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Buffer, and 2µL forensicGEM, then filled to a final volume of 100µL with 58µL distilled 

H2O. DNA was also extracted from the preserved tissue (~70mg) using the PDQeX 

forensicGEM Tissue Kit, but in order to fascilitate better lysis of the increased amount of 

tissue, Histosolv was increased to 15µL, forensicGEM was increased to 4µL, and distilled 

H2O was reduced to 21µL for a total volume of 50µL. The reduction in volume of water 

was critical so that the volume of sample expelled from the ZyGEM premium tube would 

not overflow the collection tube. The tissue was cut into pieces with a sterile scalpel before 

placing into a ZyGEM premium tube making sure to submerge the tissue in the master mix. 

The default ‘Tissue’ program was run on the PDQeX System for both types of samples 

(aliquot of TENT and the tissue stored in TENT).  

FTA® Elute Card samples were prepared for lysis and elution by taking two 

punches with a Harris Uni-Core Disposable 2.0mm punch (GE Healthcare Life Sciences) 

and placing them into a sterile microcentrifuge tube. An aliquot of 60µL Investigator® STR 

GO! Lysis Buffer (QIAGEN) was added to the tube, and lysis was performed at 95°C for 

5min with shaking at 1200rpm.  

DNA Quantification 

Samples were quantified with the Quantifiler® Trio DNA Quantification Kit 

(Thermo Fisher Scientific, South San Francisco, CA, USA) [12] on a 7500 Real-Time PCR 

System (Thermo Fisher Scientific) using the manufacturer’s recommended parameters 

[12]. Data were analyzed using the HID Real-Time PCR Analysis Software v1.2, where a 

R2 value ≥0.99 on the standard curve was accepted. The internal PCR control (IPC) was 

monitored for PCR inhibition using the default IPC CT threshold setting (>2CT) [1, 12]. 
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Tissue samples extracted with the PDQeX System required dilution due to severe 

inhibition detected by the IPC target in the Quantifiler® Trio DNA Quantification Kit. 

Therefore, a 1 in 10 dilution was performed on all tissue extracts prior to re-quantification 

and normalization of DNA for STR typing. 

STR Amplification and Electrophoresis 

Samples were amplified with Investigator® 24plex QS Kit (QIAGEN) using the 

manufacturer’s recommended protocol [13]. The DNA concentration of the small target 

was used to target 0.8ng of DNA for STR amplficiation. When samples were quantified at 

less than 0.053ng/µL, the maximum volume (15µL) was added to the PCR reaction. The 

TENT preservative samples (DNA suspended in TENT solution) that were diluted 1 in10 

were also amplified using a direct PCR protocol, where 2µL of sample was added to each 

Investigator® 24plex GO! (QIAGEN) reaction [14]. STR amplification was performed on 

a ProFlexTM PCR System (Thermo Fisher Scientific) following the manufacturer’s 

recommended cycling parameters [13, 14]; however, a total of 27 cycles was used with the 

direct PCR TENT samples. 

Separation and detection of PCR products was performed on a 3500 Genetic 

Analyzer (Thermo Fisher Scientific) using a 36cm capillary array and POP-4 polymer. 

Data were analyzed with GeneMapper® ID-X Software v1.4 (Thermo Fisher Scientific) 

using the following thresholds for data interpretation: an analyticial threshold of 100 

relative flurorescent units (RFUs) and a stochastic threshold of 200 RFUs. The quality 

sensors in both STR kits were monitored for PCR inhibition. 
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Statistical Analysis 

Data were tested for statistical significance using Statistica 13 (TIBCO S Software 

Inc., Palo Alto, CA). When a signficance was determined via one-way or factorial 

ANOVA, Tukey honest significant difference (HSD) post-hoc test was performed. A value 

of p <0.05 was accepted as the level of significance. 

Results and Discussion 

Biopsy Controls 

Tissue biopsies were processed immediately following each day of collection as 

baseline controls to determine the approximate quantity and quality of DNA from tissues 

recovered from the decomposing remains (Fig. 5.1.).  As may be expected, DNA 

concentration decreased while the level of degradation (as measured by the DI; small target 

divided by large target DNA concentration in Quantifiler® Trio) increased as 

decomposition progressed over the two week period (Fig. 5.1. A). Nevertheless, complete 

STR profiles were obtained from all samples but with the average peak heights declining 

as decomposition progressed, reflecting the reduced DNA quality and quantity (Fig. 5.1. 

B). The heterozygous peak height ratios remained balanced (~85%) over two weeks of 

decomposition. 
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Fig. 5.2. Average DNA quantification results (A) and STR success (B) from the biopsy 
tissue controls. STR results are from the Investigator® 24plex QS Kit. N = 15. Data 
represent mean ± std dev 

 

DNA Preservation and Rapid Purification Methods 

Biopsies collected in-field were stored in the TENT preservative or compressed on 

FTA® Elute Cards to test the efficiency of each method for preserving the DNA at room 

temperature for up to six months. No statistically significant differences in DNA 

concentrations or alleles reported were observed for all TENT or FTA® Elute Card samples 

stored for one, three, and six months (F4,432 = 0.378, p > 0.05), indicating that samples did 

not show any notable DNA degradation after one month regardless of the method. In 

addition, various methods that facilitate rapid DNA purification and/or direct PCR methods 

from either the tissue itself or the DNA that has leached into the surrounding TENT buffer 

were also investigated. Average DNA quantification and STR results for preserved tissue 

methods and rapid pre-PCR methods for leached DNA preserved in TENT are found in 

Figures 2 and 3, respectively. Similar to the biopsy controls (Fig. 5.1. A), the DNA 

concentrations decreased as the degradation index increased for all methods tested (Fig. 

5.2.).  
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Fig. 5.2. Average DIs for biopsy tissues stored in TENT (extracted with PDQeX) or 
compressed onto FTA® Elute Cards (lysed in STR GO! Lysis Buffer) and aliquots of TENT 
(purified with either QIAquick® or PDQeX and diluted 1-in-10). N = 225. Data represent 
mean ± std dev for 1, 3, and 6 months of storage 

 

Preserved tissue methods 

Tissue biopsies collected in-field were stored in the TENT buffer or compressed 

onto FTA® Elute Cards in order to determine if DNA of sufficient quantity and quality 

could be recovered from decomposing bodies using these strategies. In general, higher 

DNA concentrations and more complete profiles were obtained from tissues collected in-

field on days 0 and 4 (Fig 5.3. A and B). However, tissue biopsies (~70mg) rapidly purified 

with the PDQeX System (<20 minutes) provided sufficient DNA concentrations for up to 

10 days and more complete profiles for all days of collection, even after a 1 in 10 dilution 

was performed due to severe inhibition (detected initially via the IPC target in Quantifiler® 

Trio Kit). It is important to note that all neat DNA extracts showed significant PCR 

inhibition during quantification, but extraction blanks did not indicate any PCR inhibition. 

A 1 in 2 dilution was sufficient to overcome PCR inhibition during quantification; 
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however, when the maximum volume of 15µL was added to the STR amplification 

reaction, severe inhibition was still detected (via loss of both QS peaks). Therefore, a 1 in 

10 dilution was performed for all neat extracts, and samples were re-quantified prior to 

STR typing.     

Due to high amounts of DNA, the majority of samples (60%) required further 

dilution to target 0.8ng for optimal STR amplification, while the remainder of the samples 

required the input of the maximum volume of the diluted lysate for PCR. Only 16% of all 

STR profiles showed evidence of PCR inhibition according to the quality sensors in the 

Investigator® 24plex QS Kit, but partial profiles were still generated from these samples 

(4-69% alleles recovered). The authors believe that the inhibition detected in tissue samples 

purified with the PDQeX System was most likely due to inhibitors co-extracted from the 

tissue itself, as the PDQeX forensicGEM Tissue Kit reagent blanks did not indicate any 

inhibition via the IPC target in Quantifiler® Trio when 2µL was amplified. When the 

reagent blanks were diluted 1 in 10 (same as the DNA samples) and the maximum volume 

was added to the PCR, the quality sensors showed no signs of PCR inhibition. However, 

when 15µL of neat reagent blanks were amplified, the quality sensors indicated severe 

inhibition (via loss of both QS peaks). Therefore, additional inhibitors co-extracted from 

the PDQeX reagents could also have contributed to PCR failure. To note, we increased the 

enzyme buffers in the reaction and reduced the volume of water to ensure better lysis of 

the large amount of tissue used in this study, and this may not be the case when the 

manufacturer’s protocols are used. 

FTA® Cards are traditionally used for reference and pristine DNA samples, but we 

explored their effectiveness at storing DNA from decomposing tissues. FTA® Elute Cards 
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were used in this study because they allow elution of DNA off the card and into a solution, 

allowing quantification. In general, it appears that insufficient amounts of DNA were 

transferred from the tissue biopsies to the FTA® Elute Cards for successful STR typing 

(Fig. 5.3. A and B). Due to severe PCR inhibition from the Investigator® STR GO! Lysis 

Buffer as detected by the quality sensors in Investigator® 24plex QS Kit (also in the no 

template control), it was determined that a maximum of 6µL of lysate could be added to 

each amplification without significant levels of PCR inhibition affecting STR success. We 

did not investigate further dilution of these samples to overcome the inhibition due to the 

relatively low amounts of DNA detected (<0.1ng/µL) in the majority (67%) of these 

samples. Therefore, the FTA® Elute Cards were not a successful strategy for collecting and 

storing decomposing tissues (performed in this study), as 53% of samples resulted in PCR 

inhibition and 31% resulted in no alleles called (Fig. 5.3. B), either due to inhibition or too 

little DNA recovered.  

 

Fig. 5.3. Preserved tissue methods. A) Average DNA quantification results and B) STR 
success for tissues stored for up to six months in the TENT preservative (tissue extracted 
with PDQeX) or compressed onto FTA® Elute Cards (punches lysed in STR GO! Lysis 
Buffer). Quantitation values for the PDQeX Tissue samples reflect 1 in 10 dilutions. DNA 
was normalized and amplified with the Investigator® 24plex QS Kit. N = 88. Data represent 
mean ± std dev for 1, 3, and 6 months of storage 
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Preserved DNA in TENT and rapid pre-PCR methods 

The concentration of DNA recovered from the TENT solution surrounding the 

tissue after rapid purification using the QIAquick® or PDQeX systems, or simply diluted 

are shown in Figure 5.4.A. An aliquot of the TENT buffer (containing DNA that has 

leached from the tissue during storage) purified with a QIAquick® column (approximately 

30 minutes) produced significantly higher DNA concentrations from DNA preserved in 

TENT for up to six months (F2,132 = 18.847, p < 0.01) (Fig. 5.4. A). Likewise, the PDQeX 

System yielded sufficient DNA concentrations in less than 20 minutes (Fig 3A). The 

difference in the amount of DNA recovered may be explained by the fact that three times 

more TENT buffer was purified using the QIAquick® method than the PDQeX. Because 

of severe inhibition (due to the high concentration of salt in the TENT buffer), only 20µL 

of solution could be added to the PDQeX System, whereas a 60µL aliquot of the buffer 

was processed during the QIAquick® purification.  

According to the Quantifiler® Trio Kit’s default inhibition flag (>2 ΔCTs), none of 

the QIAquick® or PDQeX purified samples indicated PCR inhibition. Holmes et al. 

previously reported that the Quantifiler® Trio kit is extremely tolerant to high 

concentrations of salt but was completely inhibited by 1M salt in the neat TENT samples 

[1]. Therefore, in this study a simple 1 in 10 dilution was also performed on an aliquot of 

DNA suspended in TENT in order to dilute the inhibition to a level that we expected would 

facilitate successful quantification and direct PCR (~100mM). In contrast to the purified 

TENT samples (with QIAquick® and PDQeX), the diluted TENT samples still produced 

substantial levels of PCR inhibition as indicated by Quantifiler® Trio for samples collected 
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on days 6, 10, and 14. These samples were not diluted further because they most likely 

contained low amounts of highly degraded DNA. 

Average STR results for first-pass success rates are reported in Figure 5.4.B. Fresh 

tissues collected on day 0 and stored in the TENT preservative generated complete profiles 

for up to six months at room temperature. However, mostly partial profiles were obtained 

from decomposed tissues (days 6-14) with both rapid purification methods (QIAquick® 

and PDQeX) and after a simple 1 in 10 dilution (Fig. 5.4. B), indicating that TENT can 

preserve DNA of high quality very well at room temperature but may not preserve 

degraded and/or damaged DNA from decomposed tissues.  

When comparing the two purification methods, QIAquick® resulted in the highest 

DNA concentrations (Fig. 5.4. A), but STR results were generally comparable to the 

PDQeX purification of TENT samples for up to six months of storage. Our results are 

similar to those of Lounsbury et al. where they reported comparable STR results between 

the enzyme-based and silica-based extractions [7]. However, severe PCR inhibition 

(determined by the quality sensors in the Investigator® 24plex QS kit) was observed in the 

PDQeX samples when the maximum volume of 15µL was added to the STR reaction, 

resulting in no alleles being reported. These samples (38%) could be diluted and re-

amplified to help overcome this inhibition; however, these samples contained <0.05ng/µL 

DNA, and any further dilution could potentially result in insufficient DNA for 

amplification.  

In addition, a simple 1 in 10 dilution of TENT was investigated to dilute the NaCl 

concentration in the sample prior to direct PCR. Two different approaches were 

investigated: 1) DNA normalized to 0.8ng was amplified with the Investigator® 24plex QS 
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kit, and 2) 2µL of a 1 in 10 dilution (regardless of the quantification results) was added 

directly to each Investigator® 24plex GO! reaction. Average first-pass STR success results 

were similar to the purified TENT samples (QIAquick® and PDQeX) (Fig. 5.4. B). 

However, as these samples were diluted to aid in quick removal of PCR inhibitors, the 

lower amounts of degraded DNA in the decomposed tissues (days 6-14) produced mostly 

partial profiles. Regardless, it is interesting that comparable STR results were generated 

for all samples regardless of which STR kit was used, indicating that adding a simple 

dilution of a small aliquot of sample directly to PCR will likely produce similar results in 

less than half the analysis time of the traditional workflow (Fig. 5.4. B). In addition, 38% 

of samples amplified with Investigator® 24plex QS were inhibited, whereas only 4% of 

samples amplified with Investigator® 24plex GO! showed the effects of inhibition. These 

results indicate that the QIAGEN direct PCR kit is more tolerant to PCR inhibition than 

their standard casework STR-typing kit, which is common in most direct PCR kits in order 

to successfully amplify samples that have not undergone complete DNA extraction 

procedures [8]. 

 

Fig. 5.4. Preserved DNA in TENT and rapid pre-PCR methods. A) Average DNA 
quantification results and B) STR success for aliquots of TENT preservative stored up to 
six months and purified with QIAquick® columns, the PDQeX System, or diluted 1 in 10. 
DNA was normalized and amplified with the Investigator® 24plex QS Kit, or 2µL of the 1 
in 10 dilution was added directly to the Investigator® 24plex GO! Kit. N = 180. Data 
represent mean ± std dev for 1, 3, and 6 months of storage 
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Overall, none of the rapid purification methods tested in this study for tissues or 

DNA leached into TENT preservative yielded complete STR profiles from all 

decomposing tissues (Fig. 5.3. B and 5.4. B), whereas the biopsy controls processed 

immediately yielded full profiles (Fig. 5.1.B). It should be noted that despite the three 

bodies being of similar size (body mass), one of the three cadavers seemed to be slightly 

less decomposed than the other two on each day that tissues were collected.  Differences 

in the rate of decomposition due to biological variation is common when conducting this 

type of research. As a result, this one body resulted in much higher DNA yields and more 

complete profiles for each day of collection than the other two cadavers. However, the day 

of collection and degree of decomposition had a significant effect on STR success for 

stored samples (F4,198 = 92.346, p < 0.01), where days 6-14 generated significantly lower 

STR profiling success with all methods tested in this study. This is likely due to a 

combination of DNA degradation, reduced efficiency of the various purification methods 

tested, and the amount/type of sample used. For example, a small aliquot of DNA in 

preservative solution, partially lysed tissue from TENT preservative, and two punches of 

DNA collected from tissues on FTA® Elute cards was used for the various purification 

methods compared to a large piece of untreated tissue processed immediately. However, it 

may be difficult or impossible to process tissues immediately following collection in the 

field. Therefore, we have demonstrated that tissues can be preserved between one and six 

months in TENT and on FTA® Elute Cards (Fig. 5.5).   
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Fig. 5.5. All Stored Samples. A) Average DNA quantification results and B) STR success 
for tissues stored for up to six months in the TENT preservative and aliquots of TENT 
preservative purified with QIAquick® columns, the PDQeX System, or diluted 1 in 10 

 

 

The tissues stored in TENT buffer recovered significantly more quantity and quality 

DNA than the FTA® Elute Cards for fresh and decomposing tissues (F2,216 = 8.432, p < 

0.05). When deciding which TENT method may be the most successful for STR typing of 

decomposed tissues, the data indicate that the PDQeX purification of the tissue itself (in 

less than 20 minutes) generates the most complete STR profiles compared to all methods 

tested in this study (F4,198 = 5.982, p < 0.01) (Fig. 5.6.). 
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Fig. 5.6. Average alleles reported for biopsy tissues stored in TENT (extracted with 
PDQeX) and aliquots of TENT purified with QIAquick® or PDQeX and diluted 1 in 10. N 
= 225.Vertical bars denote 0.95 confidence intervals 
 

 

Conclusion 

This study investigated the effectiveness of a modified TENT tissue preservative 

and FTA® Elute Cards to collect and subsequently preserve DNA when stored at room 

temperature for up to six months. In addition, several rapid DNA purification and direct 

PCR strategies were also evaluated. We first tested the ability of a relatively new, rapid 

DNA extraction platform (PDQeX System) to purify DNA from tissues preserved in 

TENT, compared to a quick lysis of DNA recovered from tissues on FTA® Elute Cards. 
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The PDQeX System produced higher DNA concentrations and more complete STR 

profiles out of the two methods tested in this study for preserving the tissue itself 

Next, we tested two rapid purification methods (QIAquick® and the PDQeX 

System) to assess their ability to purify the DNA suspended in the TENT buffer and remove 

PCR inhibitors in under 30 minutes prior to STR typing. Alternatively, we also investigated 

the effectiveness of a simple dilution of the TENT buffer to produce quality STR profiles 

using both a traditional STR workflow and a direct PCR approach. In general, QIAquick® 

purification produced the highest DNA concentrations; however, it resulted in similar STR 

profiling success compared to TENT purified with the PDQeX System or simply diluted 

(1 in 10). It is also interesting that the direct PCR approach for diluted TENT samples 

resulted in similar STR success with a reduction in PCR inhibition effects compared to 

TENT samples that were normalized prior to traditional STR typing. 

Overall, the modified TENT and FTA® Elute Cards successfully preserved DNA 

from fresh tissues (before day 4) collected in-field and stored at room temperature for up 

to six months. However, decomposed tissues mostly generated partial profiles. The 

modified TENT buffer generated significantly higher DNA concentrations and more 

complete STR profiles for decomposed tissues than from FTA® Elute Cards. In addition, 

tissues preserved in the modified TENT buffer and rapidly purified with the PDQeX 

System (<20 minutes) yielded the most successful STR results from all decomposed 

tissues. 

Due to the fact that several different methods were tested on the same sample (in 

TENT buffer), we could not alter the ratio of buffer volume to the amount (mg) of tissue 

used. However, this is one factor that could be optimized in future studies to increase DNA 
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yields for optimal STR typing, especially for decomposed tissues. In addition, even when 

DNA analysis may be unnecessary due to identification of human remains by other 

methods such as fingerprint or dental analysis, a biopsy of soft tissue could be easily 

collected in the field and stored at room temperature in the TENT solution until the sample 

reaches the laboratory for refrigeration or freezing for future analysis and/or archiving 

purposes. 
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CHAPTER VI 

In-field Collection and Direct Analysis of Swabs from Decomposing Human 

Remains for DVI1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_____________________  

This dissertation follows the style and format of International Journal of Legal Medicine.   
 

1Holmes AS, Roman MG, Gangitano D, Hughes-Stamm S. In-field collection and direct 
analysis of swabs from decomposing human remains for DVI.  

A portion of these results will be published. 
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Abstract 

Swabs are one of the most commonly encountered samples in forensic casework 

due to their ease of use for collecting biological material, low cost, and storage capabilities. 

This study aims to determine if adequate amounts of DNA for successful STR typing can 

be retrieved from swabbing decomposing human remains. Cotton, foam, and nylon flocked 

swabs were used to collect DNA from the skin or muscle of cadavers during various stages 

of decomposition. Traditional DNA extraction of swabs was compared to a direct PCR 

approach using the Investigator® 24plex QS and GO! Kits, respectively. Results indicate 

that nylon flocked swabs were the least effective method, collecting the least DNA and 

producing the most allele drop-out. Cotton and foam swabs provided successful STR 

results via direct PCR and traditional processing methods. Thus, we have demonstrated a 

more efficient method for in-field DNA collection and high-throughput STR typing for 

forensic casework purposes.  

 

Keywords:   Forensic science, DNA typing, DNA collection, Cotton swabs, 

4N6FLOQSwabs, EasiCollect device, Direct amplification, Disaster victim 

identification (DVI)
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Introduction 

Mass fatality incidents are often complicated by the loss of electricity or lack of 

facilities to house large numbers of bodies for subsequent identification. Also, when crimes 

occur in remote or rural areas, it may take several hours or days for transport of remains 

and/or samples to a crime laboratory. If human remains are not refrigerated immediately, 

the DNA in those tissues is more susceptible to damage and degradation when exposed to 

various environmental insults. Therefore, a quick and easy in-field collection method for 

DNA from decomposing human remains and effective room temperature storage prior to 

analysis would be beneficial to the forensic community.  

Swabs are one of the most common samples processed for routine forensic DNA 

analysis [1-4]. Various types of swabs are used in forensic DNA laboratories to collect 

DNA from evidentiary items or as reference samples [2, 5]. Collection of DNA on swabs 

could enable immediate stabilization of DNA obtained from tissues in the field (when 

dried) without the need for refrigeration. This is particularly true for the nylon 

4N6FLOQSwabsTM, which include an anti-microbial agent that produces ideal conditions 

for DNA preservation and protection during transport and storage [6]. In addition, 

4N6FLOQSwabsTM differ from traditional cotton swabs in that the swab tips are coated 

with short nylon fibers organized perpendicular to the shaft, referred to as flocking [6-9]. 

This arrangement allows collected cells to remain on the outside of the swab, which could 

better facilitate complete elution and reduce the loss of DNA sample [3, 6-9].  

Furthermore, swabs can also be processed via direct PCR for databasing and 

reference samples, thereby avoiding DNA extraction and quantification [9-11]. This type 

of analysis is quicker and cheaper for processing large numbers of samples when the 
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amount and nature of the biological material is relatively consistent (e.g., buccal swabs) 

[9]. However, several studies have also investigated direct PCR for touched evidentiary 

items that are low template [4, 11, 12]. DNA extraction might be avoided specifically for 

these types of samples due to the high loss of DNA through several wash steps, tube 

transfers, and/or irreversible binding to silica columns [4, 9, 12]. Therefore, direct PCR of 

swabs may have potential for use after mass fatality incidents, especially when human 

remains have been subjected to harsh environmental conditions and the processes of 

decomposition.  

Many factors impact successful short tandem repeat (STR) typing such as the 

substrate of the swab, the quantity and quality of DNA collected, the time and conditions 

of storage and transport, and the analysis methods (extraction and amplification 

chemistries) [5]. Therefore, this study aims to investigate the effectiveness of various swab 

substrates to collect DNA from decomposing human tissues in sufficient quantity and 

quality for STR typing using traditional and direct PCR approaches. We also examined 

whether the swabs were capable of preserving the DNA when stored at room temperature 

for up to one month. In addition, two sampling approaches (types of tissues) were tested to 

determine which, if either, would be more suitable for decomposing human cadavers. 

Swabbing the skin of each cadaver is faster and less invasive. However, this approach has 

a high risk for contamination due to commingled remains or other sources of exogenous 

DNA. Alternatively, making a small incision in the arm or leg of a body and swabbing the 

underlying muscle might reduce the risk of contamination, but it is more invasive and 

requires more time and field equipment. Swabs were tested using traditional DNA 
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extraction methods in addition to direct PCR to determine if this direct approach is a viable 

option for these types of samples.  

Materials and Methods 

DNA Collection 

Samples were collected from three human cadavers placed in close proximity in 

April 2015 at the Applied Anatomical Research Center (AARC) at Sam Houston State 

University, Huntsville, Texas, USA. Control tissue samples were collected on the first day 

by excising ~10mg of skin and muscle. Cotton-tipped swabs (Puritan, Guilford, ME, USA), 

nylon 4N6FLOQSwabsTM for Crime Scene (Thermo Fisher Scientific, South San 

Francisco, CA, USA), and the foam heads from Whatman® EasiCollectTM Devices (GE 

Healthcare Life Sciences, Pittsburgh, PA, USA) were used to collect DNA samples from 

the surface of the skin or the underlying muscle (deltoid or biceps) via a small incision 

made in the skin. Separate cotton and nylon 4N6FLOQSwabsTM were used to collect DNA 

for time 0, 1 month storage, and direct PCR samples (N=3), whereas the foam head of each 

EasicollectTM Device was divided into quarters – one each for time 0, 1 month, and direct 

PCR analysis (N=1). Collection using all three swab types was performed when the 

cadavers were fresh (day 0-2) and decomposed (days 4-7). The swabs were moistened with 

2 drops of sterile water from AddiPak® Unit Dose Vials (TeleFlex Medical, Research 

Triangle Park, NC, USA), and swabbing was performed in a circular motion for 10 seconds 

or until the tissue appeared mascerated. The swabs were allowed to dry in a sterile biosafety 

cabinent overnight. Swab samples were either extracted immediately after drying (no 

storage) or stored at room temperature for one month prior to extraction. 
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DNA Extraction 

The control tissues (biopsy controls) were lysed overnight at 56°C  with 30µL 

Proteinase K and 270µL ATL buffer from the QIAamp® DNA Investigator Kit (QIAGEN, 

Hilden, Germany). Tissue samples were extracted on the QIAcube (QIAGEN) using the 

“Casework Samples” protocol (purification protocol). The entire cotton or 

4N6FLOQSwabsTM head was placed into a sterile tube for processing, while one quarter 

of the much larger foam head from the Whatman® EasiCollectTM Device was used. All 

swabs (including blanks) were extracted acccording to the section titled “Isolation of Total 

DNA from Surface and Buccal Swabs” following the cotton or Dacron swabs part of the 

protocol in the QIAamp® DNA Investigator Handbook [13]. All samples were eluted in 

60µL of QIAamp® ATE buffer. 

For the direct PCR approach, the entire cotton or 4N6FLOQSwabsTM head or one 

quarter of the foam head of the Whatman® EasiCollectTM Device was also prepared by lysis 

in 300µL of Investigator® STR GO! Lysis Buffer (QIAGEN) in sterile 1.5mL tubes. Swabs 

were incubated at 95°C for 5 mins with shaking at 1200rpm in a thermoshaker [14].  

DNA Quantification 

Due to the FBI requirement for quantification of casework samples [15], all swabs 

(including those lysed with STR GO! Lysis Buffer for direct PCR) were quantified with 

the Investigator® Quantiplex® Pro Kit (QIAGEN) on a 7500 Real-Time PCR System 

(Thermo Fisher Scientific) using the manufacturer’s recommended parameters [16]. Data 

were analyzed using the HID Real-Time PCR Analysis Software v1.2, where a R2 value 

≥0.99 on the standard curve was accepted. Additional analysis was performed using the 

QIAGEN Quantification Assay Data Handling and STR Setup Tool v2.01 (QIAGEN). 
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STR Amplification and Electrophoresis 

Samples were amplified with the Investigator® 24plex QS Kit (QIAGEN) using the 

manufacturer’s recommended protocol [17]. The DNA concentration of the small amplicon 

was used to target 0.8ng for STR amplification. When samples were quantified at less than 

0.053ng/µL, the maximum volume of 15µL was added to the PCR reaction. STR 

amplification was performed on a ProFlexTM PCR System (Thermo Fisher Scientific) 

following the manufacturer’s recommended cycling parameters [17].  

Direct PCR swabs were amplified with the Investigator® 24plex GO! Kit 

(QIAGEN) using the manufacturer’s recommended cycling parmeters with slight 

modifications [14]. Samples with a quantity of less than 5ng/µL determined by 

Investigator® Quantiplex® Pro Kit were amplified using 5µL of lysate for 29 cycles, and 

samples with 5ng/µL and greater were amplified using 2µL for 27 cycles. Due to severe 

PCR inhibition as indicated by the IPC target of the Investigator® Quantiplex® Pro Kit and 

the quality sensors in the Investigator® 24plex GO! Kit, 4N6FLOQSwabsTM were diluted 

1 in 2 and re-amplified using 5µL of the dilution for 29 cycles.  

Separation and detection of PCR products were performed on a 3500 Genetic 

Analyzer (Thermo Fisher Scientific) using a 36cm capillary array and POP4 polymer. Data 

were analyzed with GeneMapper® ID-X Software v1.4 (Thermo Fisher Scientific) using 

the following thresholds for data interpretation: an analyticial threshold of 100 relative 

flurorescent units (RFUs) and a stochastic threshold of 200 RFUs. 
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Statistical Analysis 

Data were tested for statistical significance by one-way and factorial ANOVA with 

Tukey honest signficant difference (HSD) post-hoc test in Statistica 13 (TIBCO Software 

Inc., Palo Alto, CA). A value of p < 0.05 was accepted as the level of significance. 

Results and Discussion 

Biopsy Controls 

Skin and muscle biopsy samples (~10mg) were collected and processed 

immediately as baseline controls (Fig. 6.1.). For DNA concentration, we performed an 

ANOVA with two independent variables (stage of decomposition and tissue type). There 

was a significant effect of stage of decomposition (F1,14 = 21.835, p < 0.01), tissue type 

(F1,14 = 14.293, p < 0.01) and an interaction between these two factors (F1,14 = 6.564, p = < 

0.05). Complete STR profiles were generated from all fresh tissues (skin and muscle) and 

decomposed skin samples, but the decomposed muscle samples produced an average of 

92% of expected alleles. In general, the skin samples provided both the highest average 

DNA concentrations and the most complete profiles from both fresh and decomposing 

human tissues (Fig. 6.1.).  
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Fig. 6.1. Average DNA quantification results and average STR results for skin and muscle 
from three human cadavers. N = 18.  Data represent the mean ± Std Dev 

 

DNA Quantification Results of Swabs 

Cotton, foam (Whatman® EasiCollectTM Device), and nylon flocked swabs 

(4N6FLOQSwabsTM) were used to collect DNA from fresh and decomposing skin and 

muscle. In addition, two analysis methods were tested to investigate whether a direct PCR 

approach would yield comparable results to traditional DNA extraction and analysis. 

Average DNA quantification results for cotton, foam, and nylon swabs processed with 

traditional DNA analysis immediately after drying overnight (Time 0) or stored at room 

temperature for one month are shown in Figure 6.2. Swabs used on fresh tissues resulted 

in sufficient quantities of DNA, which were approximately ten-fold higher than swabs used 

on decomposed tissues (Fig. 6.2.A and B).  A one-way ANOVA analysis showed that the 

stage of decomposition had a signficant effect on DNA concentrations obtained from all 

swab samples (F1,106 = 28.754, p = < 0.01). When deciding which swab type is better suited 
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for decomposed tissues, it appears that cotton and foam swabs provide sufficient quantities 

of DNA for STR typing (Fig. 6.2.B). A one-way ANOVA analysis showed that swab type 

indeed had a borderline effect  on DNA concentration from decomposed tissues (F2,69 = 

3.135, p = 0.0498), and a Tukey HSD post-hoc test showed that nylon swabs significantly 

differed from cotton swabs (p < 0.05). It is also important to note that 72% of the swabs 

used to collect DNA from decomposed tissues and processed with traditional DNA 

extraction methods were assessed as being highly degraded (degradation index, or DI, >10 

in the Investigator® Quantiplex® Pro Kit). 

In addition, the three swab types were tested for their ability to store DNA at room 

temperature for up to one month because samples collected following mass disasters or 

rural forensic casework may take weeks to transport back to a laboratory to be refrigerated. 

When cotton, foam, and nylon swabs were used to collect DNA from fresh and 

decomposed tissues, then stored for one month at room temperature (Fig. 6.2.A and B), 

DNA concentrations were significantly affected (F1,106 = 6.430, p = 0.0127). Although 

stored samples generated lower DNA concentrations than those without storage, sufficient 

DNA quantities for successful STR typing were produced from cotton and foam swabs 

after one month of storage.  
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Fig. 6.2. DNA quantification results for traditional processing of swabs. Results for DNA 
collected from A) fresh, and B) decomposed tissues on cotton, foam, and nylon swabs 
without storage (Time 0) and after storage for one month. N = 108.  Data represent the 
mean ± Std Dev. *Note: The Y axis on Graph A is 10x the scale of graph B 

 

Swabs processed using the direct PCR approach (lysis in STR GO! Lysis Buffer) 

were also quantified. Average DNA quantification results for cotton, foam, and nylon 

swabs used to collect DNA from fresh and decomposing tissues are displayed in Figure 

A 

B 



163 

 

6.3. As expected, fresh tissues provided higher DNA concentrations than decomposed 

tissues for all swab types. DNA concentrations from fresh tissues were substantially lower 

when swabs were lysed in STR GO! Lysis Buffer in preparation for direct PCR than when 

the swabs were processed using a full extraction procedure (Fig. 6.2. and Fig. 6.3.). This 

difference in DNA concentrations could be explained by the fact that the DNA was diluted 

in 300µL of STR GO! Lysis Buffer for direct PCR, compared to a 60µL elution off a 

column after purification. Almost all swabs (from fresh and decomposed tissues) produced 

high DIs when analyzed with the Investigator® Quantiplex® Pro Kit. This observation 

could also be due to low DNA concentrations artificially increasing the DI. However, the 

IPC targets also indicated severe PCR inhibition. Therefore, as has been previously 

reported with commercial qPCR kits [18], a likely reduction in the amplification of the 

large target due to inhibition could have artificially increased the DI values. This 

phenomenon was mainly observed in the nylon flocked swab samples, in which every large 

target DNA concentration was undetermined or zero. Furthermore, when considering 

which swab may collect DNA from decomposed bodies more efficiently and be processed 

with a direct PCR approach, no significant statistical difference was seen between cotton 

and foam, but the nylon flocked samples showed significantly lower DNA concentrations 

(F2,33 = 3.647, p < 0.05).   
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Fig. 6.3. DNA quantification results for direct PCR approach for swabs. Average DNA 
quantification results for cotton, foam and nylon swabs collected from skin and muscle of 
decomposing human cadavers. Swabs were lysed in Investigator® STR GO! Lysis Buffer 
prior to amplification. N = 54.  Data represent the mean ± Std Dev 

 

Overall, factorial ANOVA analysis showed that the interaction between analysis 

method, stage of decomposition, and swab type had a significant effect on DNA 

concentrations recovered (F2,84 = 4.321, p < 0.05). A Tukey HSD post-hoc test showed that 

the DNA concentration from fresh muscle for cotton, foam, and nylon swabs processed 

with traditional analysis was significantly different from  other tissue types (decomposed 

muscle and fresh or decomposed skin). This was to be expected because fresh tissue would 

have the most pristine DNA, and blood (in muscle) commonly produces high DNA 

concentrations. In addition, DNA extraction purifies the DNA, removing cellular debris 

and any inhibitors while concentrating in 60µL. Although DNA can be lost with full DNA 

extraction methods, this would more likely affect samples with already low amounts of 

DNA, such as decomposed tissues. Furthermore, the purpose of this investigation was to 
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test if a particular swab and tissue type would provide higher DNA quantities for successful 

STR typing from decomposed tissues, and if direct PCR was a viable approach for these 

types of samples. A two-way ANOVA showed that swab type (F2,60 = 4.936, p < 0.05) and 

tissue type (F1,60 = 7.402, p < 0.01) both had significant effects on DNA concentrations 

obtained from decomposed tissues regardless of the analysis method. In general, a post-

hoc test showed that DNA concentrations from muscle were significantly higher than 

concentrations from skin and that nylon swabs were less effective than cotton and foam 

swabs (p < 0.05). The type of analysis method (traditional versus direct) had little impact 

on the DNA yield from decomposed tissues (F1,60 = 1.338, p > 0.05).  

STR Results of Swabs 

 Complete or near complete (≥99% alleles) STR profiles were obtained from all 

fresh tissues with all swab types after traditional DNA analysis. However, DNA samples 

collected with nylon swabs from fresh muscle tissue and stored for one month showed an 

average of only 73% alleles. Average STR results for swabs used to collect DNA from 

decomposed tissues, processed with traditional extraction and amplified with the 

Investigator® 24plex QS Kit are shown in Figure 6.4. As expected, more allelic drop-out 

was observed in samples from decomposed tissues (Fig. 6.4.). Cotton and foam swabs 

appeared to generate more complete profiles than nylon swabs from skin samples, while 

nylon swabs generated comparable profiles from muscle tissue when processed 

immediately (time 0) (Fig. 6.4.). Although the tissue type was found to affect the amount 

of DNA recovered, tissue type did not have a significant effect on downstream STR success 

as measured by the percentage of alleles reported (F1,60 = 0.900, p > 0.05). This 
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demonstrates that both skin and muscle swabs provided sufficient quantities of DNA for 

STR typing.  

When considering the effect of storing swabs at room temperature for one month, 

the STR profiling quality did not decrease for any samples except the nylon swabs (with 

29% - 65% fewer alelles on average) (Fig. 6.4.).  Indeed, a factorial ANOVA analysis 

showed that swab type  (F2,60 = 17.107, p < 0.01), storage time (F1,60 = 7.804, p < 0.01), 

and the interaction between these two factors (F2,60 = 13.291, p < 0.01) had significant 

effects on STR results from decomposing tissues, and a Tukey HSD post-hoc test showed 

that the mean percentage of alleles for the nylon swabs stored for one month significantly 

differed from the means for cotton and foam, with and without storage (p < 0.01). These 

data suggest that regardless of whether skin or muscle was sampled, DNA may not be 

preserved as well after one month of storage at room temperature when collected using the 

nylon 4N6FLOQSwabsTM (Fig. 4.5.).  

 

Fig. 6.4. STR success for traditional processing of swabs. Average STR results for DNA 
collected from skin and muscle of decomposed bodies on cotton, foam, and nylon swabs 
processed immediately. N = 54. Data represent the mean ± Std Dev 
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Fig. 6.5. Average STR success for cotton, foam, and nylon swabs used to collect DNA 
from decomposed tissues (skin and muscle) and processed immediately or stored at room 
temperature for one month prior to traditional DNA analysis. N = 54.  Data represents mean 
and vertical bars denote 0.95 confidence intervals 

 

The STR results from direct analysis of swabs with Investigator® 24plex GO! are 

displayed in Figure 6.6. Similar to the traditional processing of swabs, complete STR 

profiles were generated from cotton and foam swabs for all fresh tissues and from nylon 

swabs used on fresh skin, while nylon swabs used to collect DNA from fresh muscle 

resulted in an average of 91% alleles reported (Fig. 6.6.). Decomposing tissues generated 

mostly partial profiles with all tissues and swab types. Due to severe degradation detected 

during quantification, the swab samples with less than 5ng/µL of DNA (85% of samples) 

were amplified using 5µL instead of the usual 2µL sample input (following manufacturer’s 

protocols), and the number of cycles was increased from 27 to 29. This resulted in more 

alleles being reported and increased RFUs for degraded and low template samples. 
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However, most nylon swabs resulted in PCR failure due to PCR inhibition (according to 

the IPC target in Investigator® Quantiplex Pro and the loss of both quality sensors in the 

STR kit). This observation was also previously reported by Dadhania et al. and Habib et 

al., where nylon flocked swabs in DNA IQTM Lysis Buffer and STR GO! Lysis Buffer, 

respectively, were shown to inhibit PCR [6, 11]. In our study, only one nylon sample 

generated a full STR profile, but significant levels of inhibition were still indicated based 

on the severe imbalance between the ‘S’ and ‘Q’ quality sensors (Fig. 6.7.). Three other 

nylon samples resulted in partial profiles (2-33% alleles reported), even when inhibition 

was indicated. Therefore, all nylon samples were diluted (1 in 2) and re-amplified (5µL 

and 29 cycles) in order to overcome inhibition without overdiluting the small amounts of 

DNA present. The amended protocol for nylon swabs slightly improved the STR results, 

producing five full profiles from fresh tissue and seven partial profiles (Fig. 4.6. – Nylon). 

However, a factorial ANOVA showed that only swab type had a significant effect on the 

STR results from decomposed tissues using this direct PCR approach (F2,30 = 14.340, p < 

0.01). In addition, samples collected with nylon swabs showed significantly fewer 

reportable alleles than the samples collected with cotton and foam swabs (p < 0.001). 

Therefore, in this study nylon flocked swabs were the least effective swab type for 

collecting DNA from decomposing tissues for direct PCR analysis due to too little DNA 

recovered and severe PCR inhibition. In contrast, Templeton et al. found nylon flocked 

swabs to be the most successful swab type for direct PCR compared to cotton and foam 

[4]. These conflicting conclusions are likely due to the difference in sample type 

(fingerprints on glass slides versus decomposing tissue) and the size of the swab (2mm2 
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portion) in their study compared to the entire swab (cotton and nylon) and a quarter of the 

foam swab used in this study. 

 

Fig. 6.6. STR success for direct PCR approach for swabs. A) Average DNA quantification 
results and B) average percentage of alleles reported for cotton, foam and nylon swabs 
collected from skin and muscle of decomposing human cadavers using a direct PCR 
protocol. Swabs were lysed in Investigator® STR GO! Lysis Buffer prior to amplification. 
N = 54. Data represent the mean ± Std Dev 
 
 

 
Fig. 6.7. Electropherogram for the single sample that generated a full STR profile and 
indicated severe PCR inhibition. Red arrows indicate the Q and S quality sensors (Q – 3312 
RFUs, S – 633 RFUs) 

 

When comparing the analysis methods for swabs used to collect DNA from 

decomposing human remains, factorial ANOVA analysis showed that analysis method 
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(F1,60 = 53.519, p < 0.01), swab type (F2,60 = 13.833, p < 0.01), and the interaction between 

these variables (F2,60 = 10.911, p < 0.01) indeed had a significant effect on STR success, 

but when a Tukey HSD post-hoc test was performed, nylon direct PCR samples 

significantly differed from cotton and foam regardless of analysis method and tissue type 

used (Fig. 6.8.). Therefore, results indicate that direct PCR of cotton and foam swabs used 

to collect DNA from decomposing remains has potential for forensic applications. The 

direct PCR protocols developed for this study allow extraction to be eliminated; however, 

the FBI requires all non-reference samples to be quantified. Therefore, we favored the 

approach of lysing swabs with STR GO! Lysis Buffer prior to amplification, as it was a 

faster method and the resultant lysis buffer could also be quantified. The quantification 

results could also be used to triage degraded and lower template samples with one protocol 

and samples with high amounts of DNA with another protocol for the best first-pass STR 

success.  
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Fig. 6.8. STR success for cotton, foam, and nylon swabs used to collect DNA from 
decomposed tissues and processed with traditional DNA analysis or a direct PCR approach. 
N = 81.  Data represent the mean, and vertical bars denote 0.95 confidence intervals 

 

Although we were initially concerned that swabbing the skin of cadavers in close 

proximity could lead to contamination, no cross-contamination was observed in any of our 

DNA samples. However, this could still be an issue when dealing with commingled 

remains and less controlled environments. For this reason, the authors believe that cotton 

and foam swabs show the most potential when used to swab the underlying muscle tissues 

of remains for collection of DNA. 

Conclusion 

Cotton, the foam head of the Whatman® EasiCollectTM Device, and nylon 

4N6FLOQSwabsTM were used to test if sufficient amounts of DNA could be collected from 

the skin surface or the underlying muscle (via a small incision) from decomposing remains 

for human identification. All swabs collected enough high quality DNA from relatively 

fresh bodies for successful STR typing. However, when human remains were more 
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decomposed, higher DNA concentrations and more complete STR profiles were generated 

from the cotton and foam swabs. In addition, when the swabs were stored at room 

temperature for one month prior to extraction, DNA seemed to be well preserved and 

generate comparable STR profiles for the cotton and foam swabs but not the nylon 

4N6FLOQSwabsTM. Overall, cotton swabs and the foam heads from Whatman® 

EasiCollectTM Devices seemed to generate the most consistent results regardless of the 

tissue type sampled. 

Furthermore, our results indicate that direct PCR of swabs taken from the surface 

of the skin or an incision in the muscle has great potential for use following mass fatality 

situations or in rural forensic casework. In general, the cotton and foam swabs prepared for 

direct PCR analysis generated sufficient quantities of DNA for STR typing. Nylon swab 

samples required an additional dilution step due to severe inhibition; therefore, this type of 

swab is the least desirable, especially for decomposed tissues that are degraded and contain 

low amounts of DNA. In addition, STR success was comparable when cotton and foam 

swabs were processed using either amplification approach (traditional DNA extraction 

method versus direct). Future investigations to optimize the DNA quantity and quality 

might include concentrating the DNA sample on the tip of the cotton swab and using a 

smaller portion of foam swab to perform lysis in a reduced volume of lysis buffer.  

In conclusion, the authors suggest that making a small incision in the muscle to 

collect DNA with cotton or foam swabs from human remains has the greatest potential to 

obtain the best quantity and quality of DNA while minimizing the risk of contamination 

for successful downstream STR typing. In addition, direct PCR holds some potential for 

faster processing but warrants further investigation prior to use in forensic casework. 
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CHAPTER VII 

Conclusions 

Natural and man-made disasters are unexpected events that often leave widespread 

destruction and numerous fatalities. It is the responsibility of forensic personnel to recover 

and identify victims in a timely manner to provide closure to the victims’ families and 

communities. However, human remains may take days or weeks to be recovered, 

transported back to a laboratory, and placed in cool/freezing temperatures (if available). 

Furthermore, tissue samples for DNA identification may not even be collected until after 

the other primary identification methods (dental and fingerprints) are found to be 

unsuccessful in securing an identification. Consequently, the DNA in those decomposing 

tissues is exposed to harmful environmental conditions, fragmenting the DNA into smaller 

and smaller pieces. Therefore, immediate in-field collection and subsequent preservation 

methods to halt the harmful processes of DNA degradation as soon as possible, coupled 

with more direct and faster DNA-based identification methods is imperative. 

If human tissues can be sampled and stored in a chemical preservative solution, 

especially in situations where refrigeration is not possible, the rate of DNA damage and 

degradation can be greatly reduced. We investigated the efficacy of several tissue 

preservatives to preserve DNA from fresh and decomposing tissues at ambient 

temperatures for long-term storage. We chose three in-house (modified TENT, DESS, and 

LST) and two proprietary preservatives (RNAlater and DNAgard®) to assess the quantity 

and quality of DNA preserved in soft tissue or released into solution after storage in 35°C 

and high humidity (to mimic harsh tropical climates) over a three month period. Results 

indicated that DNA from human tissues could leach into the surrounding preservative and 
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be processed directly, thereby eliminating the need for a long tissue digestion process, 

minimizing the handling of tissue, and therefore providing faster DNA-based 

identification. We have demonstrated that all five preservative solutions (modified TENT, 

DESS, LST, DNAgard®, and RNAlater) preserved adequate amounts of DNA in fresh and 

decomposed skin and muscle for successful STR typing after storage for up to three 

months. In addition, the LST, modified TENT, DESS, and DNAgard® have the added 

advantages that DNA is released into the preservative solution during storage for direct 

purification prior to STR typing. However, of the five preservatives tested, the modified 

TENT buffer and DNAgard® most consistently yielded DNA of high quantity and quality 

from both the tissues and the liquid preservatives stored for up to three months at 35°C 

with high humidity.  

When preservatives were investigated for their effectiveness and ability to perform 

successful direct amplification from an aliquot of DNA suspended in preservative solution, 

the original TENT buffer (100mM NaCl), DESS, DNAgard®, and DNA Genotek generated 

complete or partial profiles after a simple dilution (to remove PCR inhibition), thereby 

skipping DNA extraction all together. The TENT buffer yielded the highest DNA 

concentrations in fresh tissue, but generated mostly partial profiles, whereas DESS, DNA 

Genotek, and DNAgard® generated mostly full profiles from fresh tissue archived at -80°C 

for four years. However, DNAgard® and DESS yielded the highest DNA concentrations in 

decomposing tissues stored at ambient temperature for one month. 

For ease of use, availability, cost-effectiveness, and maximum performance, we 

suggested that out of the five preservatives tested in our study the modified TENT buffer 

may be the best candidate for application in DNA-based DVI operations. The modified 
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TENT buffer (2M NaCl) preserved decomposing tissues better than the original TENT 

buffer (100mM), but was unable to facilitate direct PCR due to the excessive salt. 

Therefore, we reduced the amount of salt in the buffer (1 M) to balance the need to preserve 

DNA in solution and also facilitate direct PCR approaches. In order to assess which DNA 

quantification kit was best suited to our needs and unique sample type, we compared four 

forensic DNA quantification kits for their ability to detect PCR inhibition and DNA 

degradation in a sample. Overall, Investigator® Quantiplex® Pro was the most tolerant to 

inhibitors (except salt) and in general provided a more accurate indication of DNA 

degradation in the sample, whereas Quantifiler® Trio was the most tolerant to high 

concentrations of salt but still indicated severe PCR inhibition with 1M salt based on the 

IPC targets.  

The effectiveness of this new method of preserving tissue using the modified TENT 

buffer was compared to using FTA® Elute cards to preserve DNA from decomposing 

tissues. A tissue biopsy punch was used to collect skin and muscle tissues from 

decomposing bodies in the field for storage in the TENT buffer or compressed onto an 

FTA® Elute Card, and stored at room temperature for up to six months. Neither 

preservation method was capable of consistently producing complete STR profiles from 

all decomposing tissues, but both methods did successfully preserve DNA from all fresh 

tissues (up to 4 days of decomposition) for up to six months of storage. Overall, the pre-

PCR methods for the TENT samples produced higher DNA concentrations and more 

complete STR profiles than FTA® Elute Cards.  

We tested two methods to rapidly purify DNA from aliquots of TENT buffer; a 

silica-based purification (QIAquick®) in under 30 minutes and an enzyme-based extraction 
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(PDQeX System) in under 20 minutes. The QIAquick® method resulted in the highest DNA 

yields from aliquots of TENT but generated comparable STR results to the PDQeX System. 

A simple dilution (1 in 10) of the TENT buffer was also performed prior to normalization 

of DNA into the standard casework STR kit compared to a direct PCR approach of adding 

an aliquot of the same TENT dilution directly to the direct PCR kit. Interestingly, 

comparable STR profiles were produced by both methods, but still mostly yielded partial 

profiles for highly decomposed tissues. Therefore, the PDQeX System was tested on the 

tissue biopsy itself that was preserved in the TENT buffer, and generated the most complete 

profiles from decomposing tissues. The results of this study indicate that tissues can 

successfully be preserved at room temperature in a chemical tissue preservative and rapidly 

purified (or directly amplified), provided that tissues have not experienced severe DNA 

degradation as observed in bodies that are highly decomposed (after days 4-6 in this study).   

Lastly, a separate approach for directly collecting DNA from decomposing skin and 

muscle using various types of swabs was also investigated. Foam (Whatman® 

EasiCollectTM devices), nylon (4N6FLOQSwabsTM), and traditional cotton swabs were 

evaluated based on whether sufficient DNA could be collected for traditional DNA 

extraction or a direct PCR approach, and whether each swab type was capable of storing 

DNA at room temperature for one month without significant loss or degradation of DNA.  

In general, cotton and foam swabs provided higher DNA concentrations and more 

complete profiles than nylon flocked swabs, regardless of the analysis method used 

(traditional DNA analysis vs direct PCR). In addition, no significant difference in STR 

success was observed when cotton and foam swabs were stored for one month, but a 

significant decrease in the number of reportable STR alleles was observed from samples 
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stored on the nylon swabs, suggesting that the nylon swabs did not adequately protect the 

DNA from further degradation.   

Cotton, foam, and nylon flocked swabs were prepared for direct PCR by eluting 

cells off the substrate using a lysis buffer that also allowed for quantification prior to STR 

typing. This facilitated a triaging protocol that increased first pass success for cotton and 

foam swabs with high quantities of DNA compared to those with extremely low quantities 

of DNA. Nylon swabs were the least successful due to severe PCR inhibition and too little 

DNA collected. In addition, swabs were used to collect biological material from the skin 

of remains or the underlying muscle tissue (via a small incision in the skin). Results indicate 

that swabbing muscle may yield higher DNA concentrations, but both tissue types resulted 

in comparable STR profiles. However, there is a greater risk of contamination when 

swabbing the dermal surface of human remains, especially when bodies are in close 

proximity to one another, or severe fragmentation and commingling has occurred. 

Therefore, swabbing the underlying muscle with cotton and foam swabs have the greatest 

potential for collection of DVI samples and capable of faster and more direct STR typing.  

Final Recommendation for DVI-DNA Based Methods 

In conclusion, we have demonstrated that in-field sample collection using simple 

biopsy punches or cotton and foam swabs have the potential to immediately collect DNA 

for room temperature storage and delayed sample processing. As expected, there was a 

noticeable decline in DNA quantity and quality as decomposition progressed over a two 

week period. Therefore, the immediate collection and preservation of DNA samples from 

human remains in such circumstances are important considerations for the success of 

DNA-based identification. Tissue samples that have not already undergone severe 
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decomposition or putrefaction could be preserved in the modified TENT preservative to 

suspend DNA degradation until refrigeration or DNA analysis is possible. Cotton and foam 

swabs also have the potential for collecting biological material from decomposing bodies 

in the field and storing samples at room temperature until refrigeration or DNA analysis is 

possible.  

In addition, direct PCR methods have been proven to be a viable option for both 

sample types (TENT and swabs). The direct PCR approach used for swabs in this study 

generated STR profiles in approximately three to four hours. This approach takes more 

time due to various steps including cutting cotton or foam swabs, five minute incubation 

and lysis, quantification in order to adequately triage samples for amplification (2µL and 

27 total cycles or 5µL and 29 cycles).  However, the final modified version of the TENT 

buffer facilitated direct PCR after a quick and simple 1 in 10 dilution generating 

comparable STR results to the traditional workflow (full DNA extraction, quantification, 

and normalization of DNA prior to PCR). This method only took approximately an hour 

for dilutions and PCR amplification. Therefore, this method is the most rapid approach for 

human identification following a mass disaster, provided that tissues have not already 

undergone severe decomposition, in which case DNA typing from bones and teeth would 

be required for successful identification.  
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APPENDIX A: Cadaver Information for Chapters II and III 

 

This section contains figures displaying decomposition for cadavers A, B, and C 

and the weather information for the two week period of sample collection in October 2013. 
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Fig. A1. Days of decomposition for Cadaver A 
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Fig. A2. Days of decomposition for Cadaver B 
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Fig. A3. Days of decomposition for Cadaver C 
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Table A1. Weather data for the two weeks of photographs and sample collection from Cadavers A-C in October 2013 

2013 Temp. (°F) Dew Point (°F) Humidity (%) Sea Level Press. (in) Visibility (mi) Wind (mph) 
Precip 

(in) 
Events 

October high avg low high avg low high avg low high avg low high avg low high avg high sum   

15 86 78 71 73 70 68 96 83 57 30 29.96 29.87 10 7 2 10 5 16 0.35 Rain 

16 72 66 59 70 62 57 100 95 88 30.05 29.98 29.91 10 6 1 10 5 ~ 0.19 Rain 

17 73 64 54 57 53 49 94 78 44 30.11 30.04 29.99 10 10 7 8 3 ~ 0.01   

18 70 62 54 58 55 52 93 78 60 30.03 29.97 29.91 10 9 2 5 1 ~ 0 Rain 

19 66 57 48 58 48 39 93 74 37 30.15 30.08 29.98 10 10 10 17 6 28 0   

20 72 57 43 54 46 41 96 70 38 30.11 30.03 29.95 10 10 9 8 1 ~ 0   

21 79 69 60 64 60 55 90 75 54 30.01 29.97 29.92 10 9 2 7 4 16 0   

22 75 64 54 64 55 48 94 75 40 30.12 30.06 30 10 10 10 12 6 20 0   

23 82 66 51 53 48 45 86 60 28 30.15 30.11 30.08 10 10 6 5 1 ~ 0   

24 82 68 54 54 50 45 87 60 28 30.23 30.18 30.11 10 10 9 8 3 ~ 0   

25 73 64 55 53 52 50 93 74 49 30.38 30.29 30.23 10 10 8 6 2 ~ 0   

26 80 66 51 62 55 44 84 68 47 30.25 30.18 30.09 10 10 10 10 4 17 0   

27 72 66 60 63 60 57 96 88 68 30.12 30.07 30.02 10 6 2 13 5 28 1.81 
Rain,  

Thunderstorm 

28 81 70 60 68 64 58 96 79 62 30.14 30.07 30.03 10 10 9 5 1 ~ 0   

29 82 76 69 68 67 66 90 79 60 30.12 30.08 30.03 10 10 8 13 5 20 0   
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APPENDIX B: Minimum Time Study 

Tissues were incubated in DNA preservatives (LST, Modified TENT, DESS, and 

DNAgard) and extracted after 1 hour, 8 hours or 1, 3, 7, and 14 days to determine the 

minimum incubation time required for sufficient quantities of DNA to leach into 

preservative solution. Fresh and decomposed tissues leached sufficient DNA quantities 

into all preservatives after 1 hour of incubation generating complete STR profiles. 

 

 

Fig. B1.  DNA quantification results for minimum time study for preservatives surrounding 
fresh skin (1h = 1 hour, d1 = day 1) 
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Fig. B2.  DNA quantification results for minimum time study for preservatives surrounding 
decomposed skin (1h = 1 hour, d1 = day 1) 

 

 

Fig. B3.  DNA quantification results for minimum time study for preservatives surrounding 
fresh muscle (1h = 1 hour, d1 = day 1)
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Fig. B4.  DNA quantification results for minimum time study for preservatives surrounding 
fresh muscle (1h = 1 hour, d1 = day 1) 
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APPENDIX C: Application Note 

Chapter IV was also significantly revised and printed as a commercial application 

note for QIAGEN’s Investigator® Quantiplex® Pro Kit. To find more information, visit the 

following link: 

 

https://www.qiagen.com/us/resources/resourcedetail?id=873477a8-a5a4-45b6-87e7-9a6e13fa844e&lang=en 
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APPENDIX D: Cadaver Information for Chapters V and VI 

 

This section contains figures displaying decomposition for cadavers D, E, and F 

and the weather information for the two week period of sample collection in April 2016.
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Fig. D1. Days of decomposition for Cadaver D 
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Fig. D2. Days of decomposition for Cadaver E 
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Fig. D3. Days of decomposition for Cadaver F 
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Table D1. Weather data for the two weeks of photographs and sample collection from Cadavers D-F in April 2016 

2016 Temp. (°F) Dew Point (°F) Humidity (%) Sea Level Press. (in) Visibility (mi) Wind (mph) 
Precip 

(in) 
Events 

April high avg low high avg low high avg low high avg low high avg low high avg high sum   

1 68  57  46  48  45  42  90  63  40  30.12  29.94  29.78  10  10  10  14  6  26  0.03  Rain , Thunderstorm  

2 71  56  42  44  39  34  92  58  26  30.26  30.19  30.12  10  10  10  17  4  25  0.00     

3 75  58  42  46  38  30  82  52  23  30.26  30.18  30.10  10  10  10  8  2  -  0.00     

4 81  67  53  51  48  45  86  56  29  30.21  30.16  30.12  10  10  8  13  7  18  0.00     

5 82  68  53  51  47  44  72  49  30  30.23  30.15  30.06  10  10  8  14  6  18  0.00     

6 80  68  57  59  51  38  87  62  25  30.10  30.03  29.96  10  10  8  15  7  25  0.00     

7 84  66  48  50  43  37  77  47  19  30.05  30.00  29.94  10  10  5  9  3  -  0.00     

8 81  66  52  47  41  30  77  46  17  30.18  30.12  30.03  10  10  10  8  3  -  0.00     

9 77  64  54  55  46  36  73  52  30  30.18  30.11  30.04  10  10  10  9  2  20  0.00  Rain  

10 82  72  61  65  60  56  90  71  47  30.05  29.99  29.92  10  10  10  17  9  31  0.00     

11 79  74  69  72  69  66  91  85  76  29.97  29.92  29.82  10  8  2  20  10  34  0.02  Rain  

12 72  68  64  68  64  60  96  87  73  30.12  30.05  30.00  10  9  4  10  4  -  0.00  Rain  

13 68  64  61  63  61  58  97  91  81  30.12  30.01  29.93  10  7  2  6  3  -  0.50  Rain , Thunderstorm  

14 73  66  61  62  61  58  97  86  68  30.01  29.96  29.90  10  8  3  10  4  -  0.02  Rain  

15 79  66  54  61  57  53  97  81  48  29.95  29.89  29.82  10  7  0  6  1  -  0.00  Fog  
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VITA 

Related Work Experience 

• Sam Houston State University, Huntsville, TX 

• Forensic Science Department—Graduate Teaching Assistant, June 2015-Present 

• Forensic Science Department—Research Assistant, Jan-Aug 2014 

• Impaired Driving Initiatives—Graduate Assistant, Aug-Dec 2013 

• Houston Police Department, Houston, TX (now Houston Forensic Science Center) 

• Crime Lab, DNA/Biology Section—Intern, May-Aug 2013 

Relevant Graduate Coursework 

• Instrumental Analysis 

• Forensic Biology 

• Advanced Forensic DNA 

• Statistical Genetics for Forensic Science 

• Quality Assurance and Ethics 

• Law (including moot court) 

• Stats and Evidence Interpretation 

• Research Methods 

• Scientific Communications 

• Advanced Topics in Forensic Biology 

• Forensic Laboratory Management 

• Non-human DNA Forensics 

• Bioinformatics 

Relevant Undergraduate Coursework 

• Biochemistry I and II 

• Cell Biology 

• Molecular Biology 

• Genetics 

• Advanced Genetics 

• PCR Methods and Applications 

• Technical Writing 

• Criminology 
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Instrumentation and Technical Experience 

• Robotic Extraction Platforms (QIAcube, EZ1 xL, AutoMate, PDQeX System) 

• PCR Thermal cyclers (AB9700, ProFlex, Veriti) 

• Real-Time Quantitative PCR (StepOne, AB7500) 

• Capillary Electrophoresis (AB3500), Genemapper® ID-X Software 

• Agarose Gel Electrophoresis 

• Ion PGMTM System, S5 System, and Ion ChefTM 

• Rapid DNA Analysis Systems (RapidHitTM and DNAscan) 

• Qubit Fluorometric Quantitation 

• Stereo, Polarized Light, Digital, and Comparison Microscopes 

• UV-Visible Spectroscopy 

• In-field DNA collection from human remains 

• Stryker Autopsy Saw 

Independent Research Experience 

• Alternative methods for collection, room temperature storage, and processing of DNA 

samples from human remains: A new DVI approach. 

• Evaluation of four commercial quantitative real-time PCR (qPCR) kits with inhibited 

and degraded samples. 

• Improved sample collection and preservation of DNA from decomposing human 

remains; A direct approach for faster disaster victim identification (DVI). 

• Direct-to-PCR tissue preservation for DNA profiling. 

• Preservation and high throughput methods for human tissue samples in tropical 

climates, An improved DVI approach. 

• DNA preservation for disaster victim identification in tropical climates: A pilot study. 

Other Skills 

• Supervision, mentorship, teaching, and leading junior graduate research students 

• Conducted training on the QIAcube, StepOne and 7500 qPCR, and 3500 

• Project design, report/technical writing, literature reviews, and SOP writing 

• Technical troubleshooting/problem solving 

• Word, Excel, Powerpoint, and Apple equivalent softwares, Adobe Photoshop, 

Illustrator, and InDesign 

• R Statistical Software, Statisica Software 

• Geneious Software  

• Primer design and multiplex assay design 
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• STRmix Software 

Manuscripts in Peer Reviewed Journals 

• Amy S. Holmes, MS; Madeline G. Roman, BS; Sheree Hughes-Stamm, PhD. In-field 

collection and preservation of decomposing human tissues to facilitate rapid 

purification and STR typing. In peer-review (Forensic Science International: Genetics) 

• Amy S. Holmes, MS; Madeline G. Roman, BS; David Gangitano, PhD; Sheree 

Hughes-Stamm, PhD. In-field collection and direct analysis of swabs from 

decomposing human remains for DVI. In peer-review (Journal of Forensic Science) 

• Amy S. Holmes, MS; Rachel Houston, BS; Kyleen Elwick, BA; David Gangitano, 

PhD; Sheree Hughes-Stamm, PhD. Evaluation of four commercial quantitative real-

time PCR kits with inhibited and degraded samples. International Journal of Legal 

Medicine (2017, Accepted for publication) 

• Amy Sorensen, MS; Elizabeth Rahman, MS; Cassandra Canela, MS; David Gangitano, 

PhD; Sheree Hughes-Stamm, PhD. Preservation and Rapid Purification of DNA from 

Decomposing Human Tissue Samples. Forensic Science International: Genetics (2016) 

• Amy Sorensen, MS; Clare Berry, BS; David Bruce, PhD; Michelle Gahan, PhD; Sheree 

Hughes-Stamm, PhD; Dennis McNevin, PhD. Direct to PCR Tissue Preservation for 

DNA Profiling. International Journal of Legal Medicine (2015) 

Conference Presentations 

• Amy S. Holmes, Ryan Gutierrez, Madeline Roman, David Gangitano, Sheree Hughes-

Stamm. In-field Collection of DNA from Decomposing Remains for More Direct 

Analysis: Experiences with Investigator Quality Sensors. 7th QIAGEN Investigator 

Forum. Lisbon, Portugal (2018) Oral Presentation 

• Amy S. Holmes, Madeline G. Roman, David Gangitano, Sheree Hughes-Stamm. 

Alternate methods for collection, preservation, & processing of DNA from 

decomposing human remains. Pittsburgh Conference on Analytical Chemistry and 

Applied Spectroscopy. Orlando, FL (2018) NIJ Poster Presentation 

• Madeline Roman, Amy Holmes, David Gangitano, Sheree Hughes-Stamm. Effect of 

Body Mass and Cadaveric Bloat on DNA Quantity and Downstream STR Success. 

Seattle, WA (2018) Poster Presentation 

• Amy Sorensen; David Gangitano; Sheree Hughes-Stamm. Alternative methods for 

collection, room temperature storage, and processing of DNA samples from human 

remains: A new DVI approach. 28th International Symposium on Human Identification. 

Seattle, WA (2017) Poster Presentation 
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• Amy Sorensen; David Gangitano; Sheree Hughes-Stamm. Alternative methods for 

collection, room temperature storage, and processing of DNA samples from human 

remains: A new DVI approach. 27th Congress of the International Society for Forensic 

Genetics. Seoul, South Korea (2017) Poster Presentation 

• Amy Sorensen; Rachel Houston; Kyleen Elwick; Carrie Mayes; Kayla Ehring; David 

Gangitano; Sheree Hughes-Stamm. Alternate methods for the collection, 

preservation, & processing of DNA samples from decomposing human cadavers; A 

DVI strategy. 6th QIAGEN Investigator Forum. Prague, Czech Republic (2017) Oral 

Presentation 

• Amy Sorensen; Kyleen Elwick; David Gangitano; Sheree Hughes-Stamm. 

Comparative evaluation of three commercial quantitative PCR kits with inhibited and 

degraded samples. The 26th International Symposium on Human Identification. 

Minneapolis, MN (2016) Poster Presentation 

• Amy Sorensen; Clare Berry; David Bruce; Michelle Gahan; Sheree Hughes-Stamm; 

Dennis McNevin. Direct to PCR Tissue Preservation for DNA Profiling. American 

Academy of Forensic Sciences (AAFS)—68th Annual Scientific Meeting. Las Vegas, 

NV (2016) Oral Presentation 

• Amy Sorensen; Clare Berry; David Bruce; Michelle Gahan; Sheree Hughes-Stamm; 

Dennis McNevin. Direct to PCR Tissue Preservation for DNA Profiling. The 25th 

International Symposium on Human Identification. Grapevine, TX (2015) Poster 

Presentation 

• Amy Sorensen; Elizabeth Rahman; David Gangitano; Sheree Hughes-Stamm. 

Improved Preservation and Purification Methods for DNA in Decomposing Human 

Tissue Samples; A DVI Application. American Academy of Forensic Sciences 

(AAFS)—67th Annual Scientific Meeting. Orlando, FL (2015) Poster Presentation 

• Amy Sorensen; David Gangitano; Sheree Hughes-Stamm. Room Temperature DNA 

Preservation and Rapid Purification of Decomposing Human Tissue Samples; A DVI 

Application. The 25th International Symposium on Human Identification. Phoenix, AZ 

(2014) Poster Presentation 

• Amy Sorensen; David Gangitano; Sheree Hughes-Stamm. Room Temperature DNA 

Preservation and High-Throughput Purification of Decomposing Human Tissue 

Samples; An Improved DVI Approach. The 22nd International Symposium on the 

Forensic Sciences. The Australian and New Zealand Forensic Science Society. 

Adelaide, Australia (2014) Oral Presentation 

• Amy Sorensen; David Gangitano; Sheree Hughes-Stamm. DNA Preservation and 

Rapid Purification of Decomposing Human Tissue Samples; A DVI Application. 
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Association of Forensic DNA Analysts and Administrators (AFDAA). Houston, TX  

(2014 Summer Meeting) Oral Presentation 

Other Work Products 

• Amy Sorensen Holmes, Rachel Houston, Kyleen Elwick, David Gangitano, Sheree 

Hughes-Stamm. Comparison of four commercial qPCR kits for analyzing inhibited and 

degraded forensic samples. QIAGEN Application Note 

• Amy Sorensen, Rachel Houston, Kyleen Elwick, Sheree Hughes-Stamm. Evaluation 

of four commercial quantitative real-time PCR (qPCR) kits with inhibited and degraded 

samples. August 2017. Invited talks to QIAGEN Asian Pacific Team in Singapore, 

Department of Chemistry Malaysia, and National Forensic Service Seoul Institute  

• Amy Sorensen, Rachel Houston, Kyleen Elwick, Sheree Hughes-Stamm. How do 

modern quantification kits STACK-UP? June 2017. Forensic Magazine webinar 

sponsored by QIAGEN. 

Research Grant Funding 

• National Institute of Justice (NIJ) Graduate Research Fellowship Grant Award, 2015-

present (Award # 2015-R2-CX-0029) 

Honors/Activities 

• LTC Michael A. Lytle ’77 Academic Prize in Forensic Science Recipient (2018) 

• Traveled to Singapore, Malaysia, and South Korea to visit with QIAGEN customers 

and present my research using the latest commercial qPCR and STR kits  

• American Academy of Forensic Sciences, Forensic Sciences Foundation (FSF) Student  

Scholarship, 2016 

• American Academy of Forensic Sciences, Student Affiliate 2012-present 

• Sam Houston State University Society of Forensic Science, 2012-present 

• AEΔ Premedical Honor Society, 2009-2012 

• Lambda Sigma National Honors Society — Head of Service Committee, 2009-2010 

• President’s List/Dean’s List Honors Student, 2008-2009 

Continuing Education 

• Bloodborne/Airborne Pathogens Training 

• Physical Science Responsible Conduct of Research 

• SOP Writing for ISO 17025 Accreditation 

• Answering the NAS: The Ethics of Leadership and the Leadership of Ethics 
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• To Hell and Back: The Ethics of Stewardship and the Stewardship of Ethics 

• Introduction to Uncertainty in Forensic Chemistry and Toxicology 

• Advanced Word and Excel Training 

 


