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ABSTRACT

Ermis, Alfred J., A Three-Valued Logic. Master of Arts
(Mathematics), August, 1973, Sam Houston State
University, Huntsville, Texas,

The logic used in mathematics today asserts that any
statement is either true or false, It is the function of
logic to establish a way of determining the truth or falsity
of a given statement. However, the truth or falsity of some
statements either has not been, or can not be determined in
the classical logic. Thus, these statements cannot be used
in logical arguments since their truth value has not been
established, Thus the question arises, "Could a three-
valued logic be developed in which the statements mentioned
above would receive a third value, say M for maybe?"

Several three-valued systems of logic have been
developed. The basic truth tables used for the development
in this paper were defined in 1938 by S. C. Kleene, However,
Kleene adheres strictly to the classical definition of what
is meant by a formula being a tautology, Thus in his develop-
ment, the formula p—P» p is not a tautology. The notion of
a formula being a tautology has been defined in this paper
in such a way that the formula p —» p is a tautology in the
three-valued logic. Thus many formulas which would not be
tautologies in Kleene's original system are tautologies in
the system developed here,

The concepts of equivalence, substitution, and

consequence are defined in the three-valued logic in the

same way as they are in the classical logic, Their properties



and relationship with the new notion of tautology in the
three-valued logic are compared with those in the classical
logic, Many of the properties which hold true in the class-
ical logic are also true or partially true in the three-
valued logic,

A topic of interest in the classical logic is that
of truth functions which generate all possible functions of
two arguments. Two such functions, the stroke (/) and the
dagger (&) function are defined in this paper in such a
way that they generate all the functions of two arguments
which contain only the usual connectives=,V, A, => and &> .
However, they do not generate all the possible truth functions
of two arguments in the three-valued logic. Thus, a truth
function, the square (9 ) function was defined in such a
way that it would generate all possible truth functions of

two arguments in the three-valued logic,

Approved:

Herbert O, Muecke
Supervising Professor
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CHAPTER I
INTRODUCTION

The logic used in mathematics today asserts that
any statement is either true or false., It is the function
of logic to establish a means by which one can determine
whether a given statement is true or false in a given mathe-
matical system, However, a German logician K. Gddel showed
that there existed statements which could not be proven or
disproven, Also statements such as Fermat's Last Theorem
have never been proven or disproven, Thus the truth or
falsity of these statements cannot or has not been established.
Hence, questions arise as to the universality of two-valued
logic. In view of this situation one may ask himself: "Is
it possible to develope a three-valued logic, and how would
the properties of this logic compare with those of the class-
ical logic?", The logic investigated in this paper is a
three-valued logic in the sense that a statement p can be
assigned exactly one of three values, T(true), M(maybe), or
F(false),

Some preliminary notions must be defined before the
development of the three-valued logic can proceed, The con-
nectives from classical logic, A (and), V (or), — (not), and
—(implies) will be used, A composite sentence will be a
declarative sentence in which one or more of the connectives
appear. A prime sentence will be a declarative sentence in
which none of the above connectives appear, or one which is
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by choice "indivisible”, For example, "3 is a prime number”
is a prime sentence, whereas "3 is a prime number and 5 is
not a prime number” is a composite sentence. Now a sentence
will be a statement if it can be classified as exactly one of
true, maybe, or false. Prime statements will be represented
by lower case letters such as p, q, r, s, etc, Composite
statements will be represented by upper case letters such as
P, Q, R, S, etc., Other concepts and symbols will be defined
as they are needed in the development of the logic.

Before the truth tables for the above mentioned
connectives are defined, it is appropriate that the motivation
for the definition be discussed. It is assumed that any
statement is either true or false. However, the truth value
of a statement cannot always be determined. These kinds of
statements will be assigned the value M and will be called
"maybe statements", Now, what truth value could be assigned
to p/A\ q when p has value T and q has value M? Assuming q
either true or false in the classical sense, suppose q is true.
In this case, from classical logic, pA q has value T, How-
ever, supposing q is false, then p /\ q would classically
have the value F. Thus whenever p has value T and q has
value M, p/A q is not definitely true nor is it definitely
false, thus p A q will be assigned the value M, If however,
p has value F and q has value M, then regardless of what
value q might assume, p A q will have value F, Similar

reasoning is used to motivate the definitions of pV q,

-p, and p=-3q.
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The truth values for statements containing only the
connectives =, A, V and =, are now defined in the form of a
truth table below. This truth table has been defined
previously by S, C, Kleene in 1938, (1, Rescher, page 34)
However, his development of a three-valued logic differs from
the development in this paper. This difference will be
pointed out later,

pAd pVa pP—>»q pP&Pq
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Note that for assignments to the prime statements
which consist of only the values T or F, the composite
statements are assigned the same values they would have in
the classical two-valued logie,

Consider now the set of all prime statements,
Adjoin to this set the set of statements which can be formed
using and possibly repeating and in all possible ways the
various connectives mentioned above, and where the truth
value for a given assignment to the prime statements is in
accordance with the truth table above, The members of the
combined sets will be called formulas, The prime statements
will be called prime formulas, and the other statements will

be called composite formulas, The prime statements which
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compose a formula will be called prime components, Formulas
will be represented symbolically in the same way that prime
and composite statements are represented,

Observe that each of the connectives l\, V and —>
above defines a way of associating with each ordered pair of
values consisting of T, M, or F, one of the values T, M, or
F, Let W= {T, M, F}. Note that the connective /N is a
function on WX W into W, It maps the ordered pairs (T, T)
into the element T, (T, F) into F, etc. Similarly, the
connectives V and —» are also functions on W X W into W,
Indeed, if P is any composite statement, composed of prime
statements p;, Py, . . . , P,y it defines a function from wh
into W no matter what the connectives are, These functions
are called truth functions, Clearly, a truth table defines
a truth function and conversely, a truth function defines a
truth table, Truth functions will be treated in greater
detail in Chapter III,

The development of the three-valued logic from this
point on, through Chapter II, will closely parallel Robert R,
Stoll's development of the classical two-valued logiec, (2,
Stoll, pages 171-182) As in the classical logic, interest
will be centered on formulas which have value T for all
assignments of truth values to their prime components, In
classical logic, a formula which has value T for all assign-
ments of truth values to the prime components is called a
tautology, or alternately, a valid statement, However, in

this three-valued logic it is impossible to obtain a formula
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which will have value T in accordancé with the truth table
above whenever all the prime components have value M,
Observe in the truth table that the last line in the table
assigns to each connective the value M, This situation
motivates the following definition., A formula will be called
a tautology if it is assigned the value T for all assignments
of truth values to the prime components, except for the
assignments which assign the value M to each of the prime
components, If the formula P is a tautology, it will be
written FP, Note that if P is a tautology in the three-
valued logic it is also a tautology in the classical logice,
for if P has value T for all assignments to Pgs Pps + o« » Py
except when all are M, then P certainly has value T for
those assignments to Pyr Pos o+« » Py which consist of
only T's or F's, This definition is the main difference
between Kleene's system of logic and the system developed
in this paper, Kleene adheres strictly to the classical
definition of tautology. (1, Rescher, page 34) Therefore
in his system, the statement p —> p is not a tautology since
it is assigned the value M whenever p has value M, However,
according to the definition given above, p—» p is a tautology
since p—y» p is assigned the value T whenever p has value T
or P,

Some additional tautologies will now be stated,
That they are tautologies can easily be verified by means of
truth tables. Some of the truth tables will be given as a

means of illustration. The reader should refer to the basic



truth table defined above as an aid to understanding the
truth tables used here, The following formulas are

tautologies:

I. F(pAqd)— (p Va)

Proof':

P @ PAqd prVa (pAg)—(pVa)

T 17 5 T T
T+

T F L T
B b S N —r
TIM | M T :
F_|M F M 4
M|T | M T ¥
M |F | F M T
MM | M M N

II. E(p>q)V (¢g—> p)

Proof:

P 4@ pP—>»q gq—>p (p—=>q)V(g— p)
(T[T | T A T
T|F F T
[F|T | 7T F_ T
F|F T T ¥
[T IW | M T T
FIM T M T
M [T T M T
M |F M T T
M M M M M

L k& [p—> (p Va)| VEI—) (quz,
Proof: The truth table is left to the reader.

IV, #Bp/\q)—)g \"4 Ep/\q)—)QJ
Proof: The truth table is left to the reader,

E[eADS 6 a] v [(pA @)= (@ p)]
Proof: The truth table is left to the reader.



VI. E j(pA ) zJV [r—-)(p\/q;]

Proof:

p g r (pAqg)—>r r—>(pVyq) l_—(p/\ q)—>r]v
['r-—>(qu)
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It has already been said that every tautology
in the three-valued logic is also a tautology in the
classical logic., It would be interesting to determine what
properties, if any, tautologies in the classical logic have
in the three-valued logic, There is, in fact, an interesting
property which classical tautologies have in the three-
valued logic., Before this property of classical tautologies
can be presented, some definitions must be made and some

properties of the three-valued logic established,



One of the terms which needs to be defined is the
notion of two formulas being equivalent. For convenience
sake, formulas will be interpreted as truth functions, Let
P and Q be any formulas with Pys Pos ¢+« » Pp and
Qgs Qv+ o o 9 Qe being their prime components respectively.
Now, formula P is equivalent to formula Q (written P eq. Q)
if they are equal as truth functions of the list of variables
tl. tz, « o 9 tm where ti appears as a prime component of
at least one of P and Q forall i =1, 2, . ., . , m
Observe that P can be expressed as a function of Pys Pps »
e+ 0 Ppo @4y Qa0 o . .y G variables simply by treating
Qe Qpr - » Q) as "dummy" variables, Similarly for Q.
In terms of truth tables, the definition simply means that
if 61’ tz, i o tm} is the union of the sets of prime
components contained in P and Q respectively, then one
could compute the truth tables of P and Q as if both
contained tl' tz. @& tm ags prime components, Then
P eq. Q if the resulting truth tables are the same,

Some of the equivalent formulas which are important
in the classical logic are presented here in the setting of
the three-valued logic. The truth tables for some will be
given, and the others will be left to the reader., The

following are equivalent formulas:

I. p—»qeq. mpVa

Proof:



P @ pP—>4q 1p mpPV4Q
R
T F
Fl T T | T T |
F T z T
T M M F M
FIM[ T T I
M| T T M T
M| F M M M
M| M M M M

II. p—>»qeq.=q=—> "1p

Proof':
P Q@ 1P 11qQ 1@g—>Tp p—>q
Ed F T T
fq- T F F
F| T | T| F T T
F| F T T T
(TI M| FI W M N
Fl M| T | M T T
M| T| M| F ol T
M{ F| M| T M M
M M| M| M M M
III. v (p A q) eq.mp V1q
IV, (p Aq) eq. ((ipV —q)
V. =1(p Vaq) eq. " PA ™
VI, (pAq) V(pVva)e. (pVa)
VII. (p€>q) eq. (p—>a) A (g—> p)
VIII. (pVq)V reg. pV(gVvr)
Proof:
p g r (pVa) (pVaA)Vr (@gVr) pV(qVvr)
T 71| T T_ T T
T{ T| F T % % %‘
T F[T T K 2
T|{ F|F | T T F_ T
FIT|T ~ T T T T
CF| T| F T I T
FIF[T | F. T T ;i
F| F| F F F F F
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IX., (pAa)Areg. pA(gAr)

X. pPA (@Vr)eg. (pAQ)V (pPAT)

XI. pV(qgATr) eq. (pVa)A (pVr)
XII,. (p=>»q) A (p—>r) eq. p~» (qA )
XIII. (p—> )V (p=»r) eq. p—> (qVr)
XIV, (p—>r)A (gq=¥» r) eq. (pV qg)—r
XV, (p=>r)V (q—>r)eq. (pPAg)=dr
XVI. (pAq)—>r eq. p=~» (g—P» )
XVII. (p=>q)—™ [(pl\ r)—)(ql\r_)] eq.

(p—>q)—->[2pv r)-P(quﬂ

The statements I through VII are especially
important., Let P be any formula with Pg» Poe « « « 4 Py
as prime components., From the way the term formula was

defined, the only connectives which appear in it are™,
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V. A.'—) and €?, By applying statement VII above, P can be
written in an equivalent form say P1 using only the
connectives ™,V , A, and =», Then applying statement I
above, P1 can be written in an equivalent form say P2 using
only™,V, and A, In the application of statement I, it was
necessary to negate certain prime components in order to
obtain the equivalent form, Finally, by applying statement
Iv, Pz can be written in equivalent form, say PB' using only
-1and Vand again negating appropriate prime components,
Thus any formula P can be written in equivalent form using
only the connectives —1andV,

Some certain occurrences of the prime components in
the formula P may have to be negated in order to obtain the
equivalent form, while others may not. Thus the equivalent
form may have more prime components than P has., In fact, it
may have at most 2n prime components, The prime components
may be written Pys Pos = = v v Ppo Ppygr o v o s Py where
Pprti ia-vp:.L as may required by the procedure above.

An interesting property which some classical
tautologies have in the three-valued logic will now be
presented, For emphasis, the property will be stated in the
form of a theorem.

Theorem 1,1. Suppose P is any formula with prime
components Pys» Pps ¢ « + » Pp and can be written by the
above procedure as p; V LY ... .VPVP .,V ...V .
Then if P is a classical tautology, P has no F values in the

three-valued logic.
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Proof: Suppose P is a formula with prime components
Pys» Pos o+« » Py which can be written equivalently as
P, VP,V .. .vp. Vo V.. .Vp. Assume that P is
a classical tautology. Suppose for some assignment ¢ to
Pyr Pos « + « Py in the three-valued logic, P has the value
F, Now < must assign to at least one of the prime components
the value M, or else all would have value T or F, and for
this assignment, P would have value T since it is a classical
tautology. Now since one of the prime components say p; has
value M, then even if all the other prime components had
value F, p,V P,V . . .V P,V Ppyq.. VP would still have
value M. This is clearly a contradiction to the assumption
that P had value F for the assignment ®, Thus any classical
tautology which can be written in the form above will have no
F values in the three-valued logic.

It is believed that a more general form of
Theorem 1,1 is true, that is, that no classical tautology
has F values in the three-valued logic, However, a proof
has not been established for this more general statement,

It is interesting to observe the relationship
between formulas P and Q being equivalent and the formula
P €> Q being a tautology. In the classical logic, P eq. Q
if and only if EP€>» Q. This, however, is not the case in
the three-valued logic, A weaker relationship holds in the
three-valued logic as the next theorem will state, But
first an observation must be made. Any formula P with

Pys Pos o . P, as prime components will have value M
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whenever all the prime components have value M, This
property is apparent from observing the basic truth table,
Note that the last row in the table assigns to each of-=p,
PAa PVa P=>q, and p&>q the value M. Hence any
combination of these connectives will also have value M,
The following lemma must be proved before the theorem can
be stated,

Lemma 1,1, If P and Q are any formulas such that
FP¢» Q, then P and Q have the same prime components,

Proof: Suppose P and Q are any formulas with
prime components Pys Poy + « « » Py and Qqs Qos « .+ 9 Qp
respectively, and FP €3> Q, Suppose Q has a prime component
say q4 which does not appear in Pys Pos « o« » P, Then
for any assignment of values which assigns M to each of
Py» Pos + « ¢« v Py and a value T or F to Q0 P has value M,
Now, regardless of what value Q has for this assignment,
P&>» Q does not have value T (refer to basic truth table
for €»). This contradicts the assumption that FP¢2Q,
Thus each prime component of Q must appear in Pys» Ppy -+
e+ v Ppe A similar argument shows that each prime
component of P must appear in Qge Qs+« o 9 Qpe

Lemma 1.1 does not hold in the classical logic.
For example, fp (—)[P N (@ V= q] in the classical sense,
but the prime component q does not appear in the prime
formula p. The theorem can now be stated and proved,

Theorem 1.2. If P and Q are any formulas

such that FP¢> Q, then P eq. Q.
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Proof: Suppose P and Q are any formulas such that
FP€>Q, By lemma 1.1, P and Q have the same prime components

say Pys Ppy + + + » P,. Now for any assignment to py, Py .

n
.« » Py which does not assign to each Py the value M,
P> Q has value T, Since interest is concentrated on the
connective €, P and Q may be treated as prime formulas.
From the basic truth table observe that P &> Q has value T
only when P and Q are both T or both F, So for any assign-
ment to Pys Pos o o« s Py for which they do not all have
value M, P and Q have the same truth value, Hence for those
assignments, their truth tables are identical, It has
already been observed that whenever p,, Py . . . » P all
have value M, P and Q both have value M, Thus the truth
tables for P and Q are identical. So P eq. Q.

Notice that the converse of theorem 1.2 does not
hold in the three-valued logic., It has been shown that
(pVaq)Vreg pV (aVr), However, when p and q have
value F and r has value M, then (pV q)\Vr and pV (¢V r)
both have value M which means that [(pV )V rJ <«

[p\l (q\/r)] has value M and hence is not a tautology.

Another interesting relationship between
tautologies and equivalent statements is given in the
following theorem,

Theorem 1,3. If the formula P is such that

P and P eq. Q where P and Q have the same prime components,

then Q.
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Proof: Suppose P and Q are any formulas with the
same prime components say Pgs Poe o« o s Py such that
FP and P eq. Q. For any assignment to Pys» Pos o o« 0 Py
which does not assign to all Py» Pos + « « s Py the< value
M, P has the value T, Since P eq. Q, Q also has value T
for this assignment to Pys Pos « o« s Ppe

This concludes the introduction to this three-
valued logic., In the next chapter, the notion of consequence
will be defined for the three-valued logic, and its properties
will be compared with those of consequence in the classical
two-valued logic. Also the behavior of formulas formed by
substitution of formulas for prime components in a given

formula will be investigated,



CHAPTER II
SUBSTITUTION AND CONSEQUENCE

The properties of substitution which hold in the
classical logic will now be examined in the setting of the
three-valued logic. Some of the corresponding properties
remain true in the three-valued logic, and some do not.

One of the properties of substituting formulas for
prime components in a formula is the following. Suppose P
is any formula with prime components Pyr Pos o o o 0 Ppo and
let P* be the result of substituting formula Q for each
occurrence of the prime component Py Now, in the classical
logic it is the case that if &P, then®P*, This, however, is
not the case in the three-valued logic, Let P be the formula
(pV=p) V(qV=q). The reader can easily verify that P is
a tautology. By substituting p A q for each occurrence of
p in P, P* is then the formula [(p/\q)\/"'(p/\q)] \Y4
(@qV=1q). But whenever p has value T and q has value M, P*
has value M and hence is not a tautology. Hence, substitution
in the three-valued logic does not preserve tautologies as
it does in the classical logic.

Another property of substitution in the classical
logic states that if T is a formula with a specific
occurrence of formula P and if '.'L‘Q is the result of
substituting Q for P in T; and P eq. Q, then Ty eq. Tq.

This property holds in the three-valued logic and is stated

in the following theorem,
16
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Theorem 2,1. If Tp is any formula with a specific
occurrence of formula P, and if TQ is the result of substi-
tuting formula Q for P in Tpy and P eq. Q, then Tp eq. Tq.
Proof: Suppose Tp is a formula with a specific
occurrence of formula P, Suppose formula Q is such that
P eq. Q and TQ is the result of substituting Q for P in Tp.
Let Pys Ppr o o« » Py and Qs Qps « « « s Qp be the prime
components of P and Q respectively. Since P eq. Q, P and Q

have the same truth value for any given assignment of values

to Pys Por v o v 0 Ppo Qs Qor = o & Qe
Let p1! pal - LI pn! qil q2- LI ] qm! ti' tz! .
o o p t,j be the prime components of TP considered as a

function of n + m + j wvariables. For any assignment of

Values tO plp ng . . L] [ ] pni q_1’ q2' L] L] . [ ] m. ti' tzl L] .
PR tj' TP has a given value as a function of Pys Ppr o

LI T ] pn' q.l' qu L] . LI ] qmi tll tz' e o e 9 tjo FOI‘ this

assignment, P as a function of n + m variables has a

specific truth value. Since P eq. Q, for this assignment

to plo p2| ¢« 8 s 9 pn' ql. q2’ s s s 9 qm. Q will have the
same value as P, Now if Q is substituted for P in TP' the

result is Tq. And since P and Q have the same truth value
for any given assignment to Py» Pos =+« 0 Ppe Qg Qo0 .
« o+ 0 Qpo then TQ whose prime components are Py» Ppr o .

LI pl’l' q1| qZ- PR | qm. tl' t2| e s o tj will have

the same value as TP for any assignment of values to

Pyr» Poo v+ o9 Ppo Qe Q0 » + - ’qm'tl'tZ""'tj'
Hence ‘I‘P eq. Tq.
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Employing the notation of Theorem 2.1, another
property of substitution which holds in the classical logic
is the following. IfFPé»Q, then T, &»T). This
property does not hold in the three-valued logic. An
example for which the above property does not hold is the
following. It has been shown that E(pA q) —> (pV q) and
E(p—» q) V (q—» p), thus both formulas have value T
whenever p and q do not both have value M. Thus F[(p/\ q)—?
(pV q)] H[(p -2 q) V(qg—> pi’ . However, [(pl\q) P
(quﬂ/\ ¥ (—)[(p—)q)V (q —>» p)]/\r is not a tautology
since the formula has value M whenever p and q have value M
and r has value T,

A property which closely related to the one
discussed here does hold in the three-valued logic. It is
stated in the next theorem again using the notation of
Theorem 2,1,

Theorem 2,2. IfEP€=»Q and FT;, then th.

Proof: Suppose P and Q are any formulas such that
EP¢>Q. Also, suppose that T, is a formula such that kT,
Now since FP¢>» Q, by Lemma 1.1, P and Q have the same
prime components., Therefore T, and TQ must have the same
prime components, By Theorem 1.2, since PP €é=>» Q, then
P eq. Q. Thus by Theorem 2.1, TP eq. Tq. Now, by
Theorem 1,3, th.

Note that under the hypothesis of Theorem 2.2, it
is the case that l-'-’TP(—) T, since both Tp and T, have value

T whenever not all the prime components of either have value M,
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Now as a prelude to the discussion of the notion of
consequence, a theorem from classical logic which allows one
to generate classical tautologies will be stated. The
theorem states that if P and Q are any formulas such that
BP and FP->Q, then Q. Although the theorem may not be as
useful in the three-valued logic in terms of generating
tautologies, it is nevertheless true, It is stated here
primarily as motivation for the definition of consequence.

Theorem 2.3. If P and Q are any formulas such that
EP and FP — Q, then FQ.

Proof: The proof is by contradiction. Suppose P
and Q are any formulas such that EP and FP —® Q. Let
Py» Pos + o o P and Qys Q0+ = = » Ty be their prime
components respectively. Let tl' t2, R R tk be the
totality of the prime components of P and Q. The contra-
diction will be presented now in two cases,

Case 1. Suppose that for some assignment of truth
values to Qgs Qps = = ¢ q, such that not all have value M,
Q has value M. This assignment of values can be extended to
also assign values to D Ppr + » = o Ppo If Pys Poo v ¢ &
+ +« Pp all have value M, then P has value M, DBut then
P~) Q has value M, This is a contradiction to the assumption
that pP—>Q, If Pys Pos + « o o Py do not all have value M,
then P has value T. But then P =—> Q has value M, This again
contradicts the assumption FP —» Q. Thus whenever
Qg Qpe + » + 0 Qp do not all have value M, Q does not have

value M,
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Case 2. Suppose that for some assignment of truth
values to Qs Qo9 o+ o Q, such that not all have value M,
Q has value F, Again, this assignment can be extended to
assign values to all of Pysr Pos « o « 4 Ppe Now, if
Pys Pos « « « » Py all have value M, then P has value M, But
since Q has value F, P =9 Q has value M, This contradicts
the assumption FP —» Q. If Py» Ppe - + . » P, do not all
have value M, then P has value T, But since Q has value F,
then P =>» Q has value F, This contradicts once again the
assumption FP —» Q.

Thus whenever Qqs 930 + - - » Qp are not all \
assigned the value M, Q must have wvalue T, Hence, EQ.

Note that in the notation of Theorem 2.3, whenever
P ig true and P—>» Q is true, then Q is true, Thus it is
said that Q is a consequence of P and P—> Q. In other
words since P, and P ~» Q are tautologies, Q must also be a
tautology.

The general definition of consequence is stated as
follows. The formula Q is said to be a consequence of
formulas Pl' P2' PR R Pn if for any assignment to the
prime components of Pl’ P2. crw W T Pn' and Q which makes

P Pn have value T, then for this assignment,

% Pos o« o
Q also has value T. This definition is the same as the
definition of consequence in the classical logic. The
notation used to indicate that Q is a consequence of

Piy Poy o o o o Ppis Pyy Pyy o o oy P FQ. In the

classical logic, there are certain conditions which guarantee
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that Q@ is a consequence of P:l' P2. PR Pn' The problem
is to determine whether or not similar conditions will
guarantee consequence in the three-valued logic.

One of these conditions in the classical logic
which guarantees consequence is the following statement, If
P and Q are any formulas thenFP —® Q if and only if PF Q.
This relationship holds partially in the three-valued logic.

Theorem 2.4, If P and Q are any formulas such that
FP—>»Q, then PF Q.

Proof: Suppose P and Q are any formulas such that
FP=> Q. Let py, Pps « + « » Py @nd qq, Qs « . . » Q De
the prime components of P and Q respectively and let
t t

. ., t, be the totality of prime components which

1+ 2 k
appear in P and Q. Suppose 44 is any assignment of truth
values to tl' tz. e w tk for which the formula P has
value T. Since P has value T for the assignment e , ¢\ does
not assign the value M to all of tl’ tz, i b @ tk. Hence
P—> Q has value T for this assignment ® . Thus for the
assignment &, Q must have value T or else P —% Q would not
have value T, Hence, P F Q.

Note that the converse of this theorem does not
hold in the three-valued logic. The reader can easily verify
that (pV q) E (pV a) Vr. But when p has value M, g has
value F, and r has value M, then (p Va—> ((p Vv )V rJ
has value M and is therefore not a tautology.

A condition in classical logic which guarantees

that a formula Q is a consequence of a set of formulas say
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Py» Ppo « « .y P is the following. P,, P,, . . ., P FQ
if and only if P1/\ PZA i Bl P FQ. This condition
holds in the three-valued logic and is stated in the next

theorem,

Theorem 2,5, If Pl’ P2. A T A Pn, and Q are any
formulas, then P,, P,, . . ., P, F Q if and only if
pAPAN .. AP FaQ

Proof: Suppose P1. P2. .« & » @ Pn and Q are any
formulas such that P1, PZ' « 5 e » Pn Q. Suppose t,, t,, . .

Eh9 tk are the prime components of Pl' P2, P S e T Pn Q.
Let & be any assignment of truth values to ti' tz. e e tk
for which P, A P, A . . .NAP_ has value T. Now for this
assignment, P1, Pz, 8 Vg il ¥ Pn must each have value T since
PiA PZA . . . APn haS Value T. Since P1’ P2. . « v Pn
all have value T, and Pi' P2, R P 5 Pn E Q, then Q must also
have value T, Thus for any assignment for which P1/\ P2/\ 3 .
ita /\Pﬂ has value T, Q has value T, Hence, P, /\le\ ..
. . AP EQ

Now suppose PlAPZA “ /\Pn BQ. Let/# be any
assignment of truth values to t,, Tor o o o t, for which
P1, PZ' I R Pn all have value T. Then for any such assign-
P1/\P2 A /\Pn has value T. And since P1/\P2/\ -
Y A Pn EQ, for any such assignment /6 , Q has value T,
Thus for any assignment for which Pl' Poy o v o Pn all have

value T, Q also has value T, Hence, Py, Py, . . . P Fa.
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Note that in Theorem 2.5, P P_is
n

1 Pz . . .

actually one formula whose prime components are precisely

the prime components of Pl' Pz. & .00 P . Inview.of this

n
observation, a trivial corollary is obtained.
Corollary 2,5,1. Adopting the notation of Theorem
2.5, ifE[P, AR, N . . AP, |—q, thenr, B, L.

. o 0 PnFQ.

Proof: Suppose Pl' P2. 2 ¥l Pn and Q are
formulas such that r-'[P1 AP, A. . . /\Pn}-—) Q. Then by
Theorem 2.4, Pll\ le\ o by, APn E Q. Now by Theorem 2.5,
Piw Pou v v vy PnFQ.

Another condition in the classical logic which
guarantees that a formula Q is a consequence of P1, Pz. e
i'h Pn states that Pl' PZ' Bite 3 PnF Q if and only if
P1, P2, e Pn-l E Pn—)Q. This statement is only
partially true in the three-valued logic as the next theorem

indicates,

Theorem 2,6, If Piw Pow v 0 vy P and Q are any
formulas, and if Pl' Posr v v v s Poy F—'Pn-—) Q, then
- . . ’ Pn F Q'
Proof: Suppose Pi' P2' o« o o Pn and Q are any

Pl' P2,

formulas such that P,, P, . . . » Pn_lFPn—’ Q. Suppose

T tor o v o4 Ty are the prime components of P,, P,, . .
- Pn and Q. Let ©A be any assignment of truth values to
tl' Tow o0 oy Ty for which P,, Pos o 0 v P all have

value T, Thus for this assignment &, Pn—> Q must have
value T since Py, Py, - « « » Ppy FP —> Q. And since
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Pn has value T, Q must also have value T for this assignment

o, Thus for any assignment to 1;1, T o o e ty for which

Pi' PZ' R —— Pn all have value T, Q must also have value
T. Hence, Py, Py, . . ., P, E Q.

Note that the converse of Theorem 2.6 fails to hold
in the three-valued logic, The reader can verify that
(p=>q), (g=—>r) F (p =»r), However, when p and q have
value T, and r has value M, then p —>» q has value T, but
(@ =>»r)=»(p=—>r) has value M, Thus it is not the case
that (p =P q¢)F (q=> r)—> (p—%» r).

In the classical logic, Theorem 2.4 is generalized
to the following statement. P,, P,, . . ., o BQ if and
only if FP, =3 (P, =D (. . . (P,=> Q) . . .)). A partial

generalization of Theorem 2.4 in the three-valued logic can

be made,

Theorem 2,7. If Pl' Pz, ALSTE Pn and Q are any
formulas such that FPI'—) (P,=—> (. .. (P,—2 Q) .. .)),
then Py, Py, « o .« P_FaQ.

Proof: The proof is by induction on the number of
formulas labled Pi‘ Suppose Pl' Pos « v v s Pn and Q are
any formulas such that FP,—> (B2 (. ' (P,—2Q) .. .)).

Now for n = 1, the statement above becomes FP,—» Q. And by
Theorem 2.4, then P, F Q.

Suppose the theorem is satisfied for n = k. Now for
n=k+ 1, the hypothesis of the theorem is kp,—> (p,—>
(v o (PP (Pyy™> Q) o v )). Since the theorem is

true for n = k, then Py, Py « + - » P F(Ppy ™2 Q). But by
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Theorem 2.6 it must be true that Pio Poy v v vy Prr Py Q.
Thus for any natural n, if FP, —>(P,=» ( . . . (.= Q) .
.+ 1)), thenP,, P,, . . ., P B Q.

The converse of Theorem 2,7 does not hold in the
three-valued logic, As before, (p=—Pq), (q—> r)Ep=> r,
but when p has value T, q has value M, and r has value F, the
formula (p —> q) —¥» Eq —r)—> (p— rTJ has value M, and
hence is not a tautology.

In classical logic, the rules of inference for the
statement calculus are based on two important properties.
These properties also hold in the three-valued logic, and

their proof is similar to the proof in the classical logic.
Theorem 2,_8. 1f Pl, Pz. & e lsi g Pnc ng an "N

avd" 3 Qk' and R are any formulas, then

I. Py Pou o v v Pini for i = %, 2;, . .'J & N,
II. If Py, Pyo . . . 4 Py RQyforj=1,2 ..
« 9 k. and if Qi’ sz LI I Qkp R| then
Pyw Poo o v vy P F R.

PI‘OOf: Sup‘pOBe Pl' PZ' « s o @ Pn| Q1| QZ' . .
» Q, and R are any formulas. Then I above is clearly

an immediate result of the definition of consequence.

For II above, suppose tl, tz. ooy " th are the
prime components which appear in one of P1' Pz. . = &% Pn'
Q. Q,, . » Qy, and R. And suppose that Py, P,, . .

. . ] Pn FQj for j = 1| 2’ * L] L] 1 ] k’ and Qll Q2' . . . [) Qk

ER. Let & be any assignment of truth values to t,, t,, . .

. « , %t for which each of Pi' P2, v ® 8 W Pn have value T,

h
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Since P1. PZ' Y 5. PnFQj for j =1,2, .. ., k, for
the assignment ® , each of Q. Qoo & o0 s Q must have
value T, But then since Ql' Q2, e, b Jag Qk B R, for this
assignment & to t,, to» « o v+ %, R must have value T.
Thus for any assignment of truth values to e o ooy By
for which Pi' Pz. e gtg g Pn all have value T, R has value
T, Hence, P, P,, . . ., Pnh R.

To summarize the theorems and observations discussed
in this chapter, it can be said that most of the properties
of substitution in the classical logic also hold in the
three-valued logic when restricted or modified in some way.
Similarly for the properties of consequence, However, there
is a central difference between the conditions of consequence
for the classical logic and the corresponding conditions in
the three-valued logic. In the classical logic, most of the
conditions are biconditional statements. In the three-
valued logic, with the exception of Theorem 2.5, the state-
ments are only conditional rather than biconditional as they
are in the classical logic,

In the following chapter, truth functions of two
arguments will be investigated. The definitions of the
slash and dagger functions from classical logic will be
extended for the three-valued logic. Also a truth function
will be defined which will generate all the truth functions

of two arguments in the three-valued logie.



CHAPTER III
GENERATING FUNCTIONS

A topic of interest in the classical logic is that
of generating functions, That is, functions of two argu-
ments which when composed with themselves in various ways
will generate all possible truth functions of two arguments.
In classical logic there are two such functions. The
behavior of these two generating functions will be investi-
gated in the three-valued logic., Also a function will be
defined which will generate all the possible truth functions
of two arguments in the three-valued logic,

In the classical logic, there are 16 different truth
functions of two variables, The two truth functions which
generate all of the 16 truth functions are the slash (/)
function and the dagger ( ¢ ) function., The definition of
these functions can be extended for the three-valued logic as

the following truth table illustrates,

p a pfa P #¥a
TR
T |F [ T

FYRE R N
FIFT T T
T M | M F
FIMl T | M_
M IT | M K- A
M IF | T M
M (M| M M

When the definitions of the slash and dagger

functions are extended as above, then both the slash and the

27
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dagger functions generate each of the usual functions=p,
pVa, pAq, and p —> q in the three-valued logic. The next
two theorems are the statements of this property. The
proofs are by examining truth tables. Some will be left to
the reader,
Theorem 3.1. If p/q is defined as in the truth
table above, then
I. pAaeq. (p/a)/(p/a)
II. =1p eq. p/P
III. pVaqeq. (p/p)/(a/q)
IV. p=Pq eq. [(p/p)/(plpj, / [a/4q]

Proof of I: Examine the truth table,.

p/\aq »/a (p/a)/(p/a)

zqngﬂﬁwa

zzzmﬁa]mlmlee o
zwen:zme{mo—a a

== 3l=pe3 (33l

=[x mwz )3

Hence pA q eq. (p/a)/ (p/q)
Proof of II: Again examine the truth table,

P P
F
T
M -

Proofs of III and IV can be obtained in a similar

3| 'g

= rar'rjﬂ o

=

way and are left to the reader.
Thus any formula in the three-valued logic can be
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written equivalently using only the slash function. This

will also be true of the dagger function, but first a theorem
for the dagger function similar to Theorenm 3.1 must be stated.
Theorem 3,2, If p J q is defined as in the truth
table above, then
I. pVaeq. (pédq)¥ (p ¥a)
II. “pegq. p¥ p
III. pAqgeq. (p¥p) ¥ (qa ¥q)
IV. p=»q eq. [(p\‘ p) ¥ q] ¥ [(p ¥ p) \lcg
Proof of I: Examine the truth table.

p @ pPVa p¥aqa (p¥ a)¥ (p¥a)
T T F T

EE_J_I F T

- F_ T

FIF| F | T F

T |M T F T

FIM| ™ W W

M_|T T F T

MIF| M M M

MMl M M A

Hence p V q eq. (p¥ q) ¥ (p¥a)
Proof of II: Again examine the truth table,

p

P =p P

iEis

=3 N

Proofs of III and IV are obtained in a similar way

and are left to the reader.
As in the case of the slash function, any formula

in the three-valued logic can be written equivalently using
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slash function,
the dagger function, nor any combination of the two can

only the dagger function, However neither the

generate all the truth functions of two arguments in the three-
valued logic, For example, neither nor both together can
generate the function of two arguments which maps the pair (T,T)
into the element M, For when P and q both have value T, any
combination of the slash or dagger function or both, will have
value T or F,

In the three-valued logic, there are 19,683
different truth functions of two arguments, The problem now
is to find one of these functions which when composed with
itself in various ways will generate each of the other truth
functions, There exist such a function. It will be called
the square function of two arguments written r@q. The only
motivation for the definition of the function was to define
it in such a way that (pap)a@p eq. 1 p. The function will now
be defined by means of a truth table, and some composition
functions will be developed to familiarize the reader with

the behavior of the function under composition,

zszemm%mp

sz:weﬂﬂﬂqv

”F’WWFSS‘
zLLzzwh%%

1
ﬂ#ﬂxzx:sz
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[pug?ﬂ &qaq) o(p apﬂ (pep)a(qaq)

P Qq
Ty T T
2] T T L
| F1 T 4 —F
(Pl F & 5
| I| M F T
FI M F T
M1 T T T
M| F T W
M| M M M

q {(pap)c (qﬂq)}" {(pnp) a 6q°q)a(pap)]}

zzzmem[m-—a:al»u
z*u»—:rgzm!»am»al
U N N O O O O A

P q {(pap)ﬂ Eqaq)a(pap)]} U{(pnp)c(qaq)}

(T[T F
(T F F_
| F1T i
F|F F
T| M T
FIM T
M| T T
M T
MM F

To ease notational pains, some notation for the

composition functions must be introduced, Certain functions

which will be used repeatedly will be designated by upper

case letters. Also, if some function X is to be "squared"

with itself, the result will be written R(X) to indicate

X@X, If the negation of some function X is desired, it can

be obtained by the function (xa x)@X, Thus the notation
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Since only one
function is being composed, the symbol & will often be left

7X will represent the function (X®X)ayx,

out of the notation, i.e., paq will be written pq. Two
functions will now be designated by A and B, and others will
be designated as the need arises. Let A = {(pup) g(qa q)}ﬂ
{(pﬂp) 2] [(qﬂq)a (p apﬂ} and let B = {(pﬂp) a [(quq) a
(pa pﬂ} ﬂ{(pap)a (q@ q)} . Their truth tables are calculated
above,

Another composition function which will be used

repeatedly is developed in the following truth table,

p ¢ paq prB@(paq) (paqglop [pO(pﬂqﬂﬂ[(pﬂq)up]
TITT ¥ F F_ W
T[F | F F T T
FIT T ¥ F F
F|F | ™ M L4 _F
T[M | T M M E
FIM | M M T F
K|T | F 3 M T
N[F | T F_ 2 T
MM ]| F T M T

Now let A, = [pn(paq)] Epnq)ﬂp]-
Some special functions which will be very important

in the later development will now be developed. They are the
"constant functions”. That is, those functions which map
each ordered pair of WXW where W = {T, M, F} into the same

element of W. Their truth table is given below.

p q o R(A) R[RW) R(A)@R[R(A)]
T T[T M F -

T [F [T | M F I

F T[T [ ™ F T
FIF|T | M F
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P a A R(A) R [R(a) R(A) @ R[R(A))
| T M F M F T
FIMIFI M | F T
MIFIFL M | F T

M ML F] M | F -5

These functions will also be referred to as the
M-function, the F-function, and the T-function respectively.

Now another special group of equally important
functions will be generated, These are functions which are
constant except for one ordered pair of the domain. One
such function is the function which maps all the ordered
pairs into the element M except the ordered pair (M, M)
which is mapped onto F, Some functions whose functional
values vary for only one ordered pair will be developed and
then a procedure will be described by which all functions
whose values differ for only one ordered pair can be developed,

The truth tables for some of these functions are given below.

p @ A B AoB R(AOB)
T T T]F] F M
TTI‘F‘LLT F g
FIT| T|F| F
Fl F|[ T|F| F M
T M| F. T i
M T| T M
M| T| F|T| 1T M
M| F T| T M
M| M| F{ F] M F

Let Ao = R(AO B)
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P a Ay 4, p1 ap  (pq)(qp) R((pq)(qp)] 1, @
R (rq)(qp)
TN M M| M| M F m _[?_ ]
T%M M F| T T M F
T M M| T F | F i _—
Fl H M M| MI M F M F
T M M M F W —
FLM M | M W7 F & ~E
¥ g M | M| F| F ¥ = £
KA M | M| T ™ T 2 —L
M M F T | F M e 5

Let 3) =74,a R [(pa) (ap)} .

The complete truth table for these functions
becomes increasingly lengthy and for that reason will be
omitted from this paper. The reader may convince himself

of their validity by merely calculating the truth tables,

» a [A2r(ap) o & [(ap)g]
T T T
T| F T
[FIT x
FIF 3
T M F
M . -
M| T 5
M| F T
M| M -

Let C, = [Aoﬂ R(Aoz}ﬂ R[(qp)q].

{[ﬁo”(*o? a R(x,)] 1_;3 - R{[“Mﬂ [‘qph]}

=)= = a3l s3] 3] o
1

ELPHMHLF
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{q(pq)] E;::)z]} {[[A o )}DR(A J Co} i

{R(Ao) a [Aoﬂ R(AO.)P[ (m {R{(qq)(ppaﬂ -lBO}

P q
T[] T M
T M
F| T M
F| F M
L M
[FI W T
M| T M
M M
Ml M M

Let E, = {R(AO) U[Ao R(AO)B n{n[(qq)(pp)]ﬂ-uao}.
{( A, R(A,)] B R(4,)) B DJ:! R[a(ap))

O O O O O
gﬂeszJJJp

lﬁfﬂ!ﬂrﬁr’ir'xﬁelélﬁ

Let F, = {([AOUR(A 5]0 R(A ) OD}"R[q(qp)].
-lBOiLA aRr(A,) DR[(pq)(qu}

P qQ

e —
F| T M
B3 M
T M M
F| M M
M| 1 M
M M
M| M M

Let G, =B {E‘*o"ﬂ“oﬂ a R [(pq)(qq)]} ;
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5 4 {Goa R[(4,0 R(Ao))dR(Ao)} Q
((ror(i} o Ra)ar }a R[p(qp)])

| |l - a3l
O O O O

Heqeneﬁenekeﬁsﬂeh

Let Hy = {6,8 R[(4,8 R(A)))a Ruoj} o

({62 xro} © rap) @ o} orfpiar])

=~
—

!S!SEE!!MI._?
N’

sxslw—:w{m{a a] o
lrglallalallra] @

Let I0 = R(Al).

It is now a matter of calculation to show that all
of the truth functions similar to Ag,, Bye o v 0 s I, can be
generated by "squaring"™ the given functions on the left or
right by some combination of the constant functions. The
truth tables for those functions similar to I, are given

below, The others can be obtained in a gimilar manner and

are left to the reader.
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p a R(A)) TR(A;) R(A) R(A)® R(A,) R(A
8 R(A
0 e DD N B OO et e
T M M M TP “
F1T M M — i
FI T M F F
Fl F M M M F F
T| M M M M " F F
M M M M F F

M| T M M M F F
M| F M M M F F_
Mg M M M M P F

p aq R(R(A)) R(A;)OR(R(A)) R(R(A))@R(A,)

T T - 418

[T F _E I

T| F F T T

Fl T F T T

F F| F = -

T M F ;

Fl M F T a%

M| T F_ T T

M e . s B

Ml M F T T

Thus all the possible truth functions which have the
same functional value on all the ordered pairs except on
(7, T) are generated by the square function, By a similar
procedure, the other functions similar to the one above may
be generated.

Another important collection of functions which are
generated by the square function is the collection of functions
vhich have a two element range. That is, those functions
which map each ordered pair into either of two elements,

There is a general scheme Dy which any such function can be

obtained, However, first a procedure will be developed by

which any function whose range consists of the elements T

and F can be obtained.
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Suppose X is any function of two arguments whose

range consists of the elements T and F, And, suppose that

{(ui' "i) ri=1,2, ., .,nn % B}isthe set of
ordered pairs for which X has value F, Now, "square" the
T-function on the left by the function which has value F

for ("1' vl) and has value F for the other ordered pair,

and calculate the negation of the result. This procedure
generates a function X, which has value T for 8 ordered
pairs, and has value F for (ul, vl). Now square X1 on the
left by the function which has value F for (u2. v2) and
value M for the other ordered pairs, and calculate the
negation of the result, This procedure generates a function
Xz which has value F for (ul. vl) and (“2’ v2) and has value
T for all other ordered pairs. Repeating this procedure at
most n times the function X is finally obtained.

As before, to obtain the other functions similar to
functions whose range consists of the elements T and F, the
function can be squared on the left or right by appropriate
constant functions. So to generate any function whose range
consists of two elements, first generate an appropriate
function whose range consists of the elements T and F, Now
square this function on the left or right by the appropriate
constant functions to obtain the desired function.

Now there is a simple two step procedure which will

generate any function whose range consists of three elements.

Suppose Y is any such function, and sSuppose {(“i' Vi)}

the set of ordered pairs for which Y has value F and

is
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{(E'j. ;j )} is the set of ordered pairs for which Y has value

M, First square the T-function on the left by the function
which has value M for {(ui, vi)} and has value F for all
other ordered pairs. Now square the resulting function on
the left by the function which has wvalue T on {(ﬁj. ?j)}
and has value M for all other ordered pairs, Now calculate
the negation of this result to obtain a function equivalent
to Y.

Thus the square function generates all the truth

functions of two arguments in the three-valued logic.



CHAPTER 1V
SUMMARY

The three-valued logic developed in this paper
has many properties of the classical logiec, With the notion
of tautology as defined in this paper, several classical
tautologies which would not be tautologies from the classical
viewpoint, are readily obtainable in the three-valued logic.
Also the concepts of equivalence, consequence, substitution
and tautology are interrelated in some of the same ways as
they are in the classical logic., However, many of the
theorems which are biconditional in the classical logic are
only conditional in the three-valued logic, Also several of
the properties of substitution do not hold in the three-
valued logic, Nevertheless, many of the properties of
classical logic are preserved in this three-valued logic.

There are two main problems that are motivated by
this paper. One problem which is only partially solved in
this paper may warrant further study. That is proving or
disproving the statement that no classical tautology,
regardless of what form it is in, has F values in the three-
valued logic, Theorem 3.1 states that classical tautologies
which can be written in a certain form have no F values in
the three-valued logic, but the more general statement has

not been proven, Another problem which is not discussed in

this paper but which may be worthy of consideration, is that

of axiomatizing the three-valued logic. Consideration may

4o
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also be given to the feasibility of developing some rules of
inference and a predicate calculus. In reality, this paper

probably motivates more questions than it answers.
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