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Abstract
Background: Comprehensive evaluation of common genetic variations through association of 
single nucleotide polymorphisms (SNPs) with complex human diseases on the genome-wide scale 
is an active area in human genome research. One of the fundamental questions in a SNP-disease 
association study is to find an optimal subset of SNPs with predicting power for disease status. To 
find that subset while reducing study burden in terms of time and costs, one can potentially 
reconcile information redundancy from associations between SNP markers.

Results: We have developed a feature selection method named Supervised Recursive Feature 
Addition (SRFA). This method combines supervised learning and statistical measures for the chosen 
candidate features/SNPs to reconcile the redundancy information and, in doing so, improve the 
classification performance in association studies. Additionally, we have proposed a Support Vector 
based Recursive Feature Addition (SVRFA) scheme in SNP-disease association analysis.

Conclusions: We have proposed using SRFA with different statistical learning classifiers and 
SVRFA for both SNP selection and disease classification and then applying them to two complex 
disease data sets. In general, our approaches outperform the well-known feature selection method 
of Support Vector Machine Recursive Feature Elimination and logic regression-based SNP selection 
for disease classification in genetic association studies. Our study further indicates that both genetic 
and environmental variables should be taken into account when doing disease predictions and 
classifications for the most complex human diseases that have gene-environment interactions.
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Background
Correlating DNA sequence variations with phenotypic 
differences has challenged biomedical research commu­
nity for decades. Substantial efforts have been made to 
identify all common genetic variations in humans, includ­
ing single nucleotide polymorphisms (SNPs), deletions 
and insertions [1]. The International HapMap Project has 
collected genotypes of millions of SNPs from populations 
with ancestry from Africa, Asia and Europe and made this 
information freely available in the public domain [2-4]. 
Millions of SNPs have been identified so far, yet, how to 
best use this information is not always clear. Due to the 
relatively low power of each SNP amidst the huge number 
of total SNPs, most researchers are unable to perform a 
whole genome-wide association study directly based on 
the genotypes or allele frequencies of individual markers. 
Nonetheless, a great need exists to develop, both concep­
tually and computationally, robust algorithms and 
advanced analytical methods for characterizing genetic 
variations that are non-redundant. Through this charac­
terization, one can then identify the target SNPs that are 
most likely to affect the phenotypes and ultimately con­
tribute to disease pathogenesis.

To date the efficiency of searching for optimal set of SNPs 
has not been efficient. To counter this trend, we propose 
reconciling information redundancy from associations 
between SNP markers. This method not only successfully 
identifies the approximate optimal set of SNPs but also 
potentially reduces the burden involved with genetic asso­
ciation studies such as time and cost [5].

One primary cause for the lack of success in searching for 
optimal sets of SNPs is that the high dimensionality and 
highly correlated features of SNPs hinder the power of 
identifying small to moderate genetic effects connectable 
to complex diseases. The need to incorporate covariates of 
other environmental risk factors as effect modifiers or 
confounders further worsens “the curse of dimensionality 
problem” in mapping genes associated with complex dis­
eases [6].

How do we evaluate the searching for optimal SNPs? It 
must be predetermined prior to searching how SNPs are 
needed to provide enough predicting power of disease sta­
tus. This is not a new question; it comes out of the overall 
recent statistical and computational endeavors that focus 
on feature selection from massive and highly dimensional 
genomic data. Specifically, in genome-wide disease asso­
ciation studies, various models and algorithms have been 
proposed for selecting an optimal subset of SNPs [7-13]. 
Linkage Disequilibrium-based methods for selecting a 
maximally informative set of SNPs for disease association 
analyses have been developed first [14-18]. Zhang and Jin 
[19] introduced a tagSNPs criterion based on pair-wise 

Linkage Disequilibrium (LD) and haplotype r2 measure 
for case control association studies. Anderson and 
Novembre [20] and Mannila et al. [21] proposed finding 
haplotype block boundaries using minimum description 
length. The method presented by Beckmann et al. [22] 
showcases the flexibility of Mantel statistics using haplo­
type sharing. This method was employed to correlate tem­
poral and spatial distributions of cancer in a generalized 
regression approach for SNP selections and disease gene 
mapping. He and Zelikovsky [23] proposed tagSNPs for 
unphased genotypes based on multiple linear regressions. 
Other test statistic approaches such as scan statistics by 
Levin et al. [24]; score statistics by Schaid et al. [25], and 
weighted-average statistics [26] were proposed for disease 
gene mapping in case-control studies and for SNP selec­
tion in genetic association studies. By using spliced 
expressed sequence tags, Yang et al. investigated the con­
nection between “bidirectional gene pair” and cancer 
[35].

Recently, Schwender and Ickstadt [27] demonstrated logic 
regression [28] based identification of SNP interactions 
for the disease status in a case-control study and proposed 
two measures for quantifying the importance of feature 
interactions and classifications. In comparison with some 
well-known classification methods such as CART [29], 
Random Forests [30] and other regression procedures 
[17], logic regression has been claimed to perform better 
when applied to SNP data [27].

In this paper, we developed a feature selection method 
named Supervised Recursive Feature Addition (SRFA). It 
not only allows for the selection of genomic information 
but helps to identify the optimal subset of SNPs necessary 
for finding the variations associated with disease. This 
method combines supervised learning and statistical 
measures for the chosen candidate SNPs and/or environ­
mental variables to reconcile redundancy information for 
improving the classification and prediction performance. 
We implemented SRFA with different statistical learning 
classifiers for both SNP selection and disease classification 
and then compared their performances with popular clas­
sification models, such as logic regression and Support 
Vector Machine Recursive Feature Elimination (SVMRFE). 
Additionally, we proposed a Support Vector based Recur­
sive Feature Addition (SVRFA) scheme for SNP-disease 
association analysis. To evaluate and to demonstrate the 
proposed methods, we applied them to two complex 
SNP-disease data sets, the Myocardial Infarction Case & 
Control (MICC) data set and a subset of The North Amer­
ican Rheumatoid Arthritis Consortium (NARAC) data, for 
both SNP selection and disease classification.
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Results
Fig. 1 displays the testing accuracies of NBC, NMSC, SVM, 
and UDC in the analysis of the MICC data set. The legend 
marks the different feature selections. Fig. 1 shows that, 
with the use of the four learning classifiers, both SRFA and 
SVRFA (including MSW-MSC, MMW-MSC, NBC-MSC, 
NMSC-MSC, and DENFIS-MSC) outperform the well- 
known feature selection method SVMRFE. The SRFA 
methods, NBC-MSC and NMSC-MSC, are better than oth­
ers including SVRFA. Especially under the low feature 
dimension, the advantage of SRFA is noticeable. Regard­
ing the classification performances of different learning 
classifiers, on average, NBC, NMSC, and SVM performed 
better than UDC.

Fig. 2 shows the average testing accuracies on the NARAC 
CHR18SNP case/control data from feature dimension 1 to 
200, by applying learning classifiers NBC and NMSC to 
the following feature selections: MSW-MSC, MMW-MSC, 
NBC-MSC, NMSC-MSC, SVMRFE, TTEST, and nonpara­
metric RANKSUM. Regarding the testing accuracy, SRFA, 
SVRFA, and SVMRFE outperform TTEST and RANKSUM.

In addition to feature selection, learning classifier is 
important to the testing performance. MSC combined 
with RFA helps to improve the classification accuracy. The 
best testing accuracy is obtained by applying NMSC to the 
SRFA feature selection, NMSC-MSC. In our view, the 
weakness of TTEST and RANKSUM is that selection 
ignores the redundancy and interaction among the SNPs. 
By contrast, the other approaches may detect the epistatic 
effects (gene-gene interactions). The detection of higher 
dimensions of many epistatic effects requires even more 
complex models.

Overall, regarding the testing accuracies, the feature selec­
tion method NMSC-MSC performed the best, followed by 
NBC-MSC, MMW-MSC, MSW-MSC and SVMRFE; TTEST 
and RANKSUM performed the worst. Comparing NBC to 
NMSC, the performance of NMSC is, on average, superior 
to NBC. Figs. 1 and 2 also show that classification tech­
niques are strictly paired up with feature selections. The 
performance of NMSC-MSC was not improved by the use 
of NBC, but with the use of NMSC, the feature selection 
method NMSC-MSC performed the best.

Figure 1ccuracies of NBC, NMSC, SVM, and UDC for the MICC data set
Testing accuracies of NBC, NMSC, SVM, and UDC for the MICC data set. The legend marks the different feature selection 
methods.
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Figure 2ccuracies of NBC and NMSC for the NARAC CHR18SNP data set
Testing accuracies of NBC and NMSC for the NARAC CHR18SNP data set. The legend marks the different feature selection 
methods.
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Tables 1 and 2 list the testing accuracies and the standard 
errors associated with the highest training accuracies for 
given classifiers (NMSC, NBC, SVM, UDC) under different 
feature selections (two SVRFA: MSW-MSC, MMW-MSC; 
three SRFA: NBC-MSC, NMSC-MSC, DENFIS-MSC; three 
popular approaches: SVMRFE, Logistic-Wald-t, LOGICFS) 
for the MICC data set and NARAC CHR18SNP, respec­
tively. In Table 1, the testing accuracies of LOGICFS were 
obtained from the 31 SNPs in the MICC data set without 
environmental variables. Although the MICC data set 
integrates SNPs with environmental variables, due the 
limit of the number of the features, the differences 
between the accuracy levels of the tests were not noticea­
ble, although one SVRFA (MMW-MSC) got the best result 
with the use of NMSC. Table 2 shows that supervised 
learning-based feature selection NMSC-MSC with the use 
of NMSC outperforms other combinations, followed by 
NBC-MSC with the use of NMSC. Support vector based 
feature selections are superior to LOGICFS, and LOGICFS 
is better than parametric and non-parametric based fea­
ture selections. Regarding support vector based feature 
selection, on average, MMW-MSC outperformed MSW- 
MSC and SVMRFE.

Discussion
Since it is still too expensive to genotype all available 
SNPs across the human genome, we need advanced 
approaches to mine the minimum SNPs with the highest 
prediction accuracy for complex diseases. Our method of 
exploiting information redundancy from associations 
among SNP markers provides an efficient and relatively 
inexpensive method of searching for the optimal or 
approximate optimal subset of SNPs in genetic associa­
tion studies. In this paper we specifically propose super­
vised learning-based strategies, SRFA and SVRFA, to 
reconcile the redundancy in the highly correlated SNP 
data to identify the subset of SNPs that enables the most 
efficient classification of individuals at risk for disease. We 
evaluated SRA and SVRFA against some popular methods 
for SNP-disease association studies, and were able to evi­
dence the improvement made by our proposed methods.

Compared with the well-known feature selection meth­
ods SVMRFE and LOGICFS, our methods evidenced a 
higher testing accuracy. When SRFA is associated with two 
learning classifiers, we have two feature selection meth­
ods, NMSC-MSC and NBC-MSC. On average, NMSC-MSC 
performed better. Among the support vector based feature 
selection methods, MSW-MSC, MMW-MSC, and SVMRFE, 
in general, MMW-MSC is the best performer. In compari­
son SRFA with SVRFA, SRFA performed better than the lat­
ter. Our study shows that supervised-learning based MSC 
feature selection not only reduces the redundancy, but 
also improves the classification accuracy.

An important factor in the evaluation of testing accuracy 
worth expounding upon is the training model. In our 
experiments, training with the use of DENFIS and other 
neural network classifiers always achieved high training 
accuracy but the testing accuracy was comparatively not 
good and over-fitting often happened. Since complex evo­
lutionary learning and classification models, such as 
DENFIS, almost always require large sample size to elicit 
their effects, the over-fitting problem is probably related 
to the relatively small sample sizes. While the complexity 
of the model increases to achieve higher training accuracy, 
the requirement for more training samples also increases. 
If the sample size is not large enough, the relation and 
model mined from the training samples are not suitable 
for testing and, as a result, over-fitting happens. This is the 
reason that complex models fit training samples but not 
necessarily testing samples very well.

Another point worthy of mentioning is that the learning 
classifier and feature selection are strictly paired. For 
instance, NMSC-MSC with the use of NMSC performed 
the best in the experiments on NARAC CHR18SNP, but 
NMSC-MSC with the use of NBC was not as good.

The issue of environmental variables also requires discus­
sion. For the MICC data set, with the inclusion of environ­
mental variables, we greatly improved prediction and 
classification performances. Without the environmental 
variables, LOGICFS only achieved a 54.4%+/-1.5% cor-

Table 1: Testing accuracies associated with the highest training accuracies under different feature selections for the MICC data set.

Feature Selection Testing accuracy (mean value ± standard deviation, %)
NMSC NBC SVM UDC

MSW-MSC 76.0 ± 3.4 75.1 ± 3.0 73.1 ± 4.5 73.6 ± 2.9
MMW-MSC 77.4 ± 2.9 75.9 ± 3.0 74.4 ± 2.3 74.8 ± 4.6
NBC-MSC 75.1 ± 3.1 73.2 ± 2.4 74.2 ± 4.1 75.2 ± 2.6
NMSC-MSC 75.0 ± 4.5 75.0 ± 2.9 74.0 ± 3.7 72.7 ± 3.9
DENFIS-MSC 76.9± 3.2 74.2 ± 3.4 74.9 ± 4.4 75.6 ± 2.8
SVMRFE 77.0 ± 4.2 73.9 ± 2.7 73.1 ± 4.0 74.4 ± 3.2
T-TEST 75.6 ± 2.6 76.4 ± 3.0 74.5 ± 3.1 75.9 ± 3.6
LOGICFS 54.4±1.5
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Table 2: Testing accuracies associated with the highest training accuracies under different feature selections for the NARAC 
CHR18SNP data set.

Feature Selection Testing accuracy (mean value ± standard deviation, %)
NMSC NBC

MSW-MSC 71.3 ± 0.7 68.5 ± 0.7
MMW-MSC 71.4 ± 0.4 69.3 ± 0.3
NBC-MSC 74.3 ± 0.6 68.3 ± 0.7
NMSC-MSC 77.7 ± 0.7 67.7 ± 0.3
SVMRFE 67.8 ± 0.8 68.3 ± 0.8
T-TEST 65.4 ± 0.5 66.1 ± 0.8
LOGICFS 67.1 ± 2.1

rect classification rate. Also, SRFA provided a low (<60%) 
correct classification rate on the testing data when only 
using the SNPs, but a higher (>73%) correct classification 
rate after including the environmental variables as well. 
These results confirm that complex diseases usually 
involve both genetic factors and environmental cues. 
Therefore, both genetic and environmental variables 
should be taken into account when doing disease predic­
tions and classifications for the most complex human dis­
eases that have gene-environment interactions.

In our experiments, when SVM was applied to the feature 
sets extracted from the NARAC CHR18SNP genotype data, 
the classification performance was pretty poor. However, 
SVM worked well on the feature sets extracted from the 
MICC data. In our view, the difference might be caused by 
the following two reasons. First, NARAC CHR18SNP con­
sists of categorical SNP data only, while the MICC data set 
consists of many environmental variables of which most 
follow continuous distributions and have major impact 
on the classification. Second, it might be caused by the 
failure of optimizing the parameters for the SVM in testing 
NARAC CHR 18SNP.

Our study shows that, with the use of our methods, even 
small SNPs and/or environmental variables can obtain 
good predictive capacity. In the analyses of MICC data, it 
was evident that, after applying our method with 3-5 var­
iables, we can achieve up to 75% classification accuracy 
after applying our methods (Fig. 1). On the other hand, 
SVMRFE needed 20-30 variables in achieving the similar 
accuracy. In analyses of the NARAC CHR18SNP data set, 
the advantage of our method is also noticeable (Fig. 2). 
Experimental results imply that the classification accuracy 
can be improved and the cost of genotyping can be 
reduced with the use of our algorithms.

Conclusions
We proposed SRFA with different statistical learning clas­
sifiers and SVRFA for both SNP selections and disease clas­
sifications, and then applied them to two complex disease 
data sets. In general, our approaches outperform the well- 

known feature selection method of Support Vector 
Machine Recursive Feature Elimination and logic regres­
sion based SNP selection for disease classification 
involved in genetic association studies. Our study further 
indicates that both genetic and environmental variables 
should be taken into account when doing disease predic­
tions and classifications for the most complex human dis­
eases that have gene-environment interactions.

Materials and methods
Materials
Application 1: Genes and the environment are links 
between important health conditions: Periodontal Dis­
ease (PD) and Cardiovascular Disease (CVD). Cardiovas­
cular disease is the number one cause of death and 
disability in the Western world. Almost 1 million Ameri­
cans die of CVD each year, which accounts for 42% of all 
US deaths. Numerous clinical and epidemiological stud­
ies have shown a consistent association between PD and 
CVD [36], and the link between these two diseases may be 
the result of common environmental exposures and 
potential genes that may regulate the individual response 
to these exposures. The identification of SNPs that influ­
ence the risk of diseases through interactions with other 
SNPs and environmental factors remains a statistical and 
computational challenge.

The studied Myocardial Infarction Case & Control 
(MICC) data set is a result of a population based study. 
The sample included residents of Erie and Niagara coun­
ties in New York State, and all were in age group 35 to 69 
years. There were 614 white male patients with Myocar­
dial Infarction matched with 614 control males (without 
CVD) by age (+/- 5 year) and smoking habits; 206 white 
pre- and post-menopausal females with MI matched with 
412 control females (without CVD) by age (+/- 5 year), 
menopausal status, years since menopause (+/- 2 year), 
and smoking habits. Diabetics were excluded. The features 
in the data set included 29 environmental variables, such 
as two protein variables (ACHMN and CALMEA), which 
were known to be related to periodontal disease, and 
smoking status, menopausal status, blood pressure, blood 
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cholesterol, body mass index, drinking status, etc. Selec­
tion of genetic variables was based on the well-known 
Seattle web site (http://pga.mbt.washington.edu/) by 
using the candidate approach that included 31 SNPs. This 
study evaluates the SNP-environment and variable-dis­
ease associations especially the effects of SNPs and envi­
ronmental variables to disease. The original MICC data set 
contained some missing values. In our experiments, we 
filtered out the missing values and their associated obser­
vations.

Application 2: Rheumatoid arthritis (RA) is an autoim­
mune disease that causes chronic inflammation of joints, 
tissues around joints, or other organs in body. RA affects 
more than two million people in the United States. 
Women account for 70% of patients with RA. While 
women are two to three times more likely to get RA, men 
who have RA tend to have more severe symptoms. It 
afflicts people of all races equally. Onset usually occurs 
between 30 and 50 years old. Data for this analysis was 
provided as part of Genetics Analysis Workshop (GAW) 
15. The North American Rheumatoid Arthritis Consor­
tium (NARAC), led by Peter Gregersen, has provided mic­
rosatellite and SNP scans, quantitative phenotypes, and 
clinical measures, with additional genotype data provided 
by Robert Plenge and Ann Begovich. We studied the SNP 
case-control data named “CHR18SNP.dat” offered by 
NARAC. In the data file, a dense panel of 2300 SNPs was 
genotyped by Illumina for an approximately 10 kb region 
of chromosome 18q. These markers were individually 
genotyped on 460 cases and 460 controls. Controls were 
recruited from a New York City population. The objective 
of this study is to identify SNPs of chromosome 18 that 
are significantly associated with rheumatoid arthritis. The 
significant SNPs identified here could be used as a starting 
point for biologists developing genetic tests that indicate 
increased risk of developing rheumatoid arthritis.

Methods
Supervised recursive feature addition (SRFA) algorithm for SNP 
selection
SRFA combines supervised learning and statistical similar­
ity measures among the chosen features and the candi­
dates and is presented as follows:

Step 1: Each individual feature is ranked from the highest 
classification accuracy to the lowest classification accuracy 
with the use of a supervised learning classifier.

Step 2: The feature with the highest classification accuracy 
is chosen as the first feature. If multiple features achieved 
the same highest classification accuracy, the one with the 
lowest p-value measured by score test-statistics is chosen 
as the first element. At this point the chosen feature set, 
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Step 4: A feature is recursively added to the chosen feature 
set from steps 1-3 with supervised learning and the simi­
larity measures until classification accuracy stops to 
increase.

Our SRFA based MSC is denoted as classifier-MSC. For 
example, if the classifier is Naive Bayes Classifier (NBC), 
we call the feature selection NBC-MSC.

Support vector based recursive feature addition (SVRFA) algorithms 
Support Vector Machines (SVMs) [14-16] have been 
widely applied to pattern classification problems and 
non-linear regressions. The basic idea of the SVM algo­
rithm is to find an optimal hyper-plane that can maximize 
the margin between two groups. The vectors that are clos­
est to the optimal hyper-plane are called support vectors. 
Guyon et al. [31] proposed a gene selection utilizing Sup­
port Vector Machine methods based on Recursive Feature
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Elimination (SVMRFE). In addition to gene selection, 
SVMRFE has been successfully applied to other feature 
selection and pattern classification issues [37]. Based on 
the SVMRFE and our SRFA discussed earlier, we propose a 
Support Vector based lowest weight (or maximum margin 
width) and the lowest correlation feature addition 
scheme, called Support Vector based Recursive Feature 
Addition (SVRFA) described as follows:

1. Train an SVM on each individual feature in the data set 
to reach an SVM with a weighted vector 
gj e C | MW(gj) = min(MW).

2. Rank features according to criterion c for feature i: ci = 
(wi)2. The features corresponding to the lowest c are 
selected as candidates. The candidate with the highest sta­
tistical significance is the first element of the feature set. At 
this point the chosen feature set, G1, consists of the first 
feature, g1, which corresponds to feature dimension one.

3. The (N+1)st dimensional feature set, GN+1 = {g1, g2, ..., 
gN, gN+1} is produced by adding gN+1 to the N dimensional 
feature set Gn = {gi, g2,...,gN}. The choice of gN+i is 
described as follows:

Temporarily add each feature gi (i * 1, 2, ..., N) outside of 
GN to GN, train an SVM on feature set GN + {gi}, update c, 
and calculate the measures after introducing gi as follows: 

vector based Minimum MW in (6) that is combined with 
Minimum SC in (2) as MMW-MSC. Both MSW-MSC and 
MMW-MSC are Support Vector based Recursive Feature 
Addition (SVRFA) algorithms.

Implementations and comparison studies
We implemented SRFA with various statistical learning 
classifiers (with different complexity) proposed in section 
2.1. The learning classifiers for feature selections were 
Naive Bayes Classifier (NBC) [32], Nearest Mean Scaled 
Classifier (NMSC) [33] and Dynamic Evolving Neuro- 
Fuzzy Inference System (DENFIS) [34]. We recorded them 
as NBC-MSC, NMSC-MSC and DENFIS-MSC. Several clas­
sifiers including NBC, NMSC, SVM and uncorrelated nor­
mal based quadratic Bayes classifier (UDC) [33] were 
applied to the feature sets selected by the above SRFA in 
order to compare their performances. Our goals are (i) to 
evaluate feature selection procedures and find the number 
of features required for the best classification accuracy; (ii) 
to evaluate various learning approaches; and (iii) to inves­
tigate the redundancy issues in SNP data for improving 
the classification performance.

We implemented and tested our SVRFA (MSW-MSC and 
MMW-MSC) methods proposed in section 2.2. For com­
parison purposes, other popular methods, such as Sup­
port Vector Machine Recursive Feature Elimination 
(SVMRFE), logistic regression based Wald t-test and Logic 
regression (LOGICFS) for SNP selection and disease clas­
sification were compared. In addition, we also applied 
SVM and other traditional neural network classifiers, such 
as Levenberg-Marquardt trained feed-forward neural net­
work classifier and back-propagation trained feed-forward 
neural network classifier [33], for different feature selec­
tions to two real data sets. Unfortunately, these learning 
classifiers didn't work well. Therefore, here we did not list 
their experimental results.

Cross-validation has been widely used for selecting tuning 
parameters and optimizing the number of selected genes 
in the context of building classifiers to avoid over-fitting. 
We split the data into training and testing samples in each 
run and built the model based on training samples only 
and evaluated the performance on the testing samples by 
using cross-validation. We performed and then tested the 
accuracy of 20 runs.
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