
Proceedings of the 53rd Hawaii International Conference on System Sciences | 2020

Attack Modeling and Mitigation Strategies for Risk-Based Analysis of 
Networked Medical Devices

Bronwyn J. Hodges 
Dept of Info. Systems Technology 

School of Computing 
University of South Alabama 

bjh1521@jagmail.southalabama.edu

Michael Jacobs
USA Simulation Program 

Division of Academic Affairs 
University of South Alabama 

mjacobs@southalabama.edu

J. Todd McDonald 
Dept of Computer Science 

School of Computing 
University of South Alabama 

jtmcdonald@southalabama.edu

Maureen Van Devender 
Dept of Info. Systems Technology 

School of Computing 
University of South Alabama 

mvandevender@southalabama.edu

William Bradley Glisson 
Cyber Forensics Intelligence Center 

Dept of Computer Science 
Sam Houston State University 

glisson@shsu.edu

J. Harold Pardue 
Dept of Info. Systems Technology 

School of Computing 
University of South Alabama 
hpardue@southalabama.edu

Abstract

The escalating integration of network-enabled 
medical devices raises concerns for both 
practitioners and academics in terms of introducing 
new vulnerabilities and attack vectors. This prompts 
the idea that combining medical device data, security 
vulnerability enumerations, and attack-modeling data 
into a single database could enable security analysts 
to proactively identify potential security weaknesses 
in medical devices and formulate appropriate 
mitigation and remediation plans. This study 
introduces a novel extension to a relational database 
risk assessment framework by using the open-source 
tool OVAL to capture device states and compare 
them to security advisories that warn of threats and 
vulnerabilities, and where threats and vulnerabilities 
exist provide mitigation recommendations. The 
contribution of this research is a proof of concept 
evaluation that demonstrates the integration of OVAL 
and CAPEC attack patterns for analysis using a 
database-driven risk assessment framework.

1. Introduction

The escalating integration of technology into the 
healthcare sector enables new and innovative ways 
for medical personnel to interact with patients, 
capture additional data, and enhance healthcare 
delivery. It is being argued that technological 
advancements such as robotic surgeries, implantable 
cardiac devices, physiological monitors, and Internet 
of Things (IoT) devices generate additional data that 

are valuable to medical professionals, ultimately 
leading to big data analysis opportunities while 
concurrently inspiring evolution to an overall 
pervasive healthcare environment [1-3]. In addition 
to the benefits, technology exposes healthcare to the 
risks that are inherent to digital settings, which 
fosters an environment that is conducive to 
adversarial cyberattacks [4-6]. These concerns are 
being raised by practitioners [7], the government [8], 
and academics [6, 9-15] for medical equipment and 
any devices that communicate with this equipment.

As with any network-enabled device, medical 
devices are susceptible to cyber threats, including 
ransomware, data breaches, distributed denial of 
service attacks (DDoS), insider threats, and many 
more. Certain threats may allow attackers to gain 
access to patient data and/or alter the functionality of 
a device while connected to a patient. A 2019 survey 
reveals that healthcare executives see medical device 
security as one of the top five risks they face and that 
they lack effective strategies to address their concerns 
[16]. Support for this stance is visible in a recent 
article describing how a series of widely used 
infusion pump-linked workstations contain security 
flaws [17]. This environment provides the impetus 
for this research and exploration into the use of an 
open-source vulnerability scanner known as Open 
Vulnerability Assessment Language (OVAL) [18] to 
scan devices connected to medical devices and 
identify community standard vulnerabilities. These 
vulnerabilities are then linked to attack patterns in 
MITRE Corporation’s Common Attack Pattern 
Enumeration and Classification (CAPEC) framework 
[19] to identify how an attacker could leverage these 
vulnerabilities as well as identify how to mitigate 
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identified threats. The study presented in this paper is 
part of an MSc Thesis [20] that integrates OVAL and 
CAPEC into a Threat-Vulnerability-Asset risk 
framework known as MedDevRisk [11, 12]. The 
contribution of this research is a proof of concept 
evaluation that demonstrates the integration of 
OVAL and CAPEC for analysis using a database- 
driven risk assessment framework.

The remainder of the paper is organized as 
follows: Section 2 provides background on key 
cybersecurity concepts and standards; Section 3 
provides an overview of the case-study methodology 
performed to evaluate integration of new concepts 
such as attack models, OVAL assessments, and risk 
using real-world data; Section 4 details results and 
analysis from the study. Finally, section 5 
summarizes the work and provides recommendations 
for future work.

2. Background

Previous academic research focusing on the risk 
assessment of networked medical devices led to the 
production of a database-driven risk assessment 
framework called MedDevRisk [11], illustrated in 
Figure 1. MedDevRisk utilizes constructs such as 
STRIDE [21] and Threat Vulnerability Asset (TVA) 
[22, 23] in schema relationships that connect 
Common Vulnerability Scoring System (CVSS) [24] 
risk assessment criteria and Common Vulnerability 
and Exposures (CVE) [25] incident reports. 
MedDevRisk schema is implemented in a relational 
database management system (RDBMS). Through 
the use of Structured Query Language (SQL), 
MedDevRisk can produce a risk assessment of 
medical devices stored in the database targeted at 
both low-and-high-level managers. This research 
extends the original data sources and data 
relationships by integrating OVAL reporting [18] 
[12] and CAPEC attack patterns [19].

Data Relationships Queries

Figure 1. MedDevRisk Extensions [11]
STRIDE [26] is a threat model that classifies 

threats into six attack vectors, which include

Spoofing, Tampering, Repudiation, Information 
Disclosure, Denial of Service, and Elevation of 
Privilege. TVA [22, 23, 27] is another threat 
framework utilized by MedDevRisk to establish a 
relationship between the assets stored in the database, 
identified threats, and vulnerabilities. MedDevRisk 
uses CVEs [25] to link public vulnerability 
classifications to assets and uses CVSS [24] to assign 
a numerical risk value to identified vulnerabilities.

2.1 OVAL

OVAL [12] is an open international community 
standard for the assessment and reporting of the 
machine state of a computer. It includes an XML 
language for expressing machine state and reference 
implementations and repositories of information 
written in the OVAL XML language. OVAL 
provides for the representation of system 
configuration states for testing and evaluation. Figure 
2 provides an overview of the OVAL process [18], 
illustrating how OVAL definitions are paired against 
specific system characteristics to generate analysis 
and results.

Figure 2. OVAL Process [18]
The OVAL language has three core schema types: 

definitions, system characteristics, and results. 
Definition schemas define systems in two areas: 
security advisories that warn of threats and 
vulnerabilities, and government agency best practice 
policies for system security. The definition schemas 
are structured to specify the configuration 
information that is to be collected from an individual 
system in order to compare it to a definition. The 
OVAL process is a comparison of an OVAL 
definition to the system characteristics which yields 
an OVAL result that follows the results schema 
format and identifies whether the system is 
vulnerable or not vulnerable. OVAL identifies system 
vulnerabilities through the application of Common 
Vulnerability Enumerations (CVEs) [25] and
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Common Platform Enumerations (CPE) [28], which 
is now a NIST standard.

2.2 CAPEC

The Common Attack Pattern Enumeration and 
Classification (CAPEC) [19] attack framework was 
created by MITRE Corporation to identify an 
adversarial viewpoint of a system weakness. An 
attacker’s viewpoint is perceived by identifying the 
skill level needed to pull off an attack, attack patterns 
used to gain access to weaknesses, and the attack 
steps that are taken to exploit weaknesses. CAPEC 
also identifies mitigation strategies for these attack 
patterns. CAPEC not only provides an attacker’s 
viewpoint of a weakness but also includes security 
tactics to combat an attack.

CAPEC delineates attack patterns into two high- 
level abstractions, which are domains of attack and 
mechanisms of attack [19]. For example, CAPEC 
documents the classic buffer overflow exploit as 
pattern 100 (Overflow Buffers), which represents 
both a software-based attack (its domain) as well as 
an example of manipulating data structures (its 
mechanism). As with a typical pattern, CAPEC 
pattern 100 provides: 1) a description, 2) likelihood 
of attack (high), 3) typical severity (very high), 4) 
relationships to other CAPEC items, 5) an execution 
flow detailing exploration, experimentation, and 
exploitation, 6) prerequisites for the attack (for 
example: ‘targeted software inadequately performs 
bounds-checking’), 7) skills required, 8) resources 
required, 9) indicators, 10) consequence and 11) 
mitigations [19]. Each CAPEC pattern is further tied 
to one or more related CWE weaknesses [29], which 
provides an even greater amount of documented 
examples and mitigations.

3. Methodology

This research explores the use of OVAL to 
identify device-specific and community classified 
vulnerabilities in networked medical devices. 
CAPEC is used to provide an adversarial viewpoint 
of identified vulnerabilities along with community 
provided mitigation techniques to combat an attack. 
Expanding the functionality of MedDevRisk to 
incorporate OVAL and CAPEC, this research 
conducts a case study as defined by Oates [30] on 
devices used in an academic medical setting. The 
following tasks were completed to achieve this 
integration:

1. Device Data Collection: OVAL was executed on 
four devices provided by the Human Simulation 
Unit at the University of South Alabama

2. Framework Data Collection: XML files 
containing CVE and CAPEC data were used to 
import framework data into MedDevRisk

3. Schema Expansion: Modified a peer-reviewed 
MedDevRisk schema to incorporate OVAL and 
CAPEC as well as eliminate normalization issues

4. Data Entry: Python scripts were used to import 
gathered data to reduce errors introduced by 
human interaction with MedDevRisk

5. Query Configuration: Queries were created to 
highlight new framework functionalities

6. Result Reports: Queries were executed and 
results analyzed

3. 1 Device Data Collection

Before modifying the peer-reviewed database 
schema for MedDevRisk [12], a solid understanding 
of the data produced by OVAL is needed. This 
knowledge was gained through the help of a technical 
specialist employed in the Simulation Unit at the 
University of South Alabama. This specialist 
executed OVAL on four Apple Mac OS devices 
connected to medical equipment. This collection 
process corresponds to steps 1-5 of the OVAL 
process described in Figure 2. A tool called OVAL 
Interpreter (version 5.10.1.7) was installed on each 
case-study computer in the Simulation Unit and used 
to conduct a comparison between the OVAL 
Definitions and System Characteristics files. The 
operating systems on the case study machines 
included Apple macOS X Mavericks versions 10.9.2 
and 10.9.5 and macOS Sierra version 10.12. Four 
OVAL results files were produced from this 
comparison. The following data were provided in 
each Result file: ‘OVAL ID’, ‘Result’, ‘Class’, 
‘Reference ID’ and ‘Title’.

The ‘OVAL ID’ specifies the specific OVAL 
definition that was tested. The ‘Result’ data specifies 
if the system being evaluated was compliant or 
incompliant with a certain ‘OVAL ID’. ‘Class’ data 
categorizes the specific definition into the categories 
of vulnerability, inventory, miscellaneous, patch, or 
compliance. This research only utilizes definitions 
that are in the vulnerability category. ‘Reference ID’ 
identifies a specific CVE or CPE ID connected to a 
specific ‘OVAL ID’. ‘Title’ provides a description of 
the ‘OVAL ID’.

3. 2 Framework Data Collection
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MITRE, a Federally Funded Research Center, 
provides XML files containing data relevant to CVE 
and CAPEC definitions. These files were used in a 
Python script that extrapolated the XML file data 
collected from case-study machines and imported the 
data into corresponding tables in MedDevRisk. The 
data gathered includes: CAPEC ID, CAPEC Name, 
Description, Attack Steps, Attack Techniques, 
Mitigation Strategies, CWE ID, CVE ID, CVE 
Description, Impact Score, Attack Vector, Attack 
Complexity, Confidentiality, Availability, Integrity 
and CWE ID.

The OVAL results gathered from the case study 
machines were linked to CVE records and CAPEC 
records. Each OVAL record contains a reference to a 
CVE, which helps us gain more information on the 
vulnerability from the National Vulnerability 
Database. Since CVE records contain references to 
CWEs, OVAL results can be tied to specific CAPEC 
records. Connecting these three frameworks allows 
for a holistic understanding of a vulnerability found 
in a medical device for both upper management and 
device security specialists. Figure 3 shows two new 
tables (tblOval and tblCAPEC) that were required to 
support integration into the MedDevRisk relational 
database and provide connecting points using CVE 
and CWE identifiers: required schema expansion of 
MedDevRisk is discussed next.

Figure 3. Key Schema Interactions

3. 3 Schema Expansion

This research expands the original MedDevRisk 
framework by Seale et al. [11]. The author’s database 
schema provides a peer-reviewed starting point for 
potential integration of new concepts such as attack 
patterns (CAPEC), real-time vulnerability assessment 
(OVAL), and continued use of standard frameworks 
such as CVE and CWE. Figure 4 shows the original 
schema, and Figure 5 shows the adapted version 
produced to support this case study. The original 
tables were either maintained (seen as brown in 
Figure 5) or modified (seen as green in Figure 5), and 
new tables and relationships were required (seen as 
yellow in Figure 5). Maintained tables with original 
intent include Cause, Control, ControlType, Threat Figure 4. Original MedDevRisk Schema [15]
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(FK)

Figure 5. Revised MedDevRisk Schema

Action, ThreatCategory, VulnerabilityType, and 
VulnerabilityClass. The Control table is used to 
identify potential mitigation strategies for identified 
vulnerabilities that either do not have a corresponding 
CVE or CWE, which means these vulnerabilities do 
not have CAPEC values to identify community 
standard mitigation strategies. Table ControlType 
identifies what type of control the suggested 
mitigation is such as whether the control revolves 
around ‘Software Security’ or ‘Training and 
Awareness’. The ThreatAction table identifies 
whether a vulnerability is a threat to disclosing or 
manipulating health information through a specific 
attack, for example, a man-in-the-middle attack or a 
SQL injection attack. Table ThreatCategory groups 
specific threat actions together based on whether the 
threat will disclose information or manipulate 
information. Finally, table VulnerabilityClass 
classifies vulnerabilities by identifying to what 
technical area the vulnerability relates. For example, 
if a vulnerability is identified in a software 
application, the VulnerabilityClass would categorize 
that vulnerability in the ‘Software’ group.

Schema expansion during the case study also led 
to repurposing the Vulnerability table from an 
intersection table into a central combiner of data 
related to identified vulnerabilities and any related 
attributes. A new AssetVulnerability table now links 
assets, threats, and controls (mitigations). The 
Vulnerability table provides the storage location for 
the CVE links (found in the National Vulnerability 
Database [31]), the impact score (from community 
derived CVSS calculations and the version of CVSS 
used to compute it), associated the CWE identifier 
(MITRE’s type classification), and the relationship of 
the vulnerability to the traditional Confidentiality, 
Integrity, and Availability (CIA) security triad.

The implementation of this case study required 
the development and addition of new tables to the 
MedDevRisk schema. Table AssetModel contains 
information from both tblDevice and tblInventory 
from the original schema such as device name, model 
number, intended settings, and logging. The table 
AssetModel provides general information about an 
asset with a primary key that is automatically 
populated and incremented with each new record.

The AssetUnit table contains data about an 
individual serialized device. The data in this table are 
the individual instantiations of models in 
tblAssetModel. It contains information such as device 
serial number, purchase date, and location. The 
primary key for this table is a composite key of the 
primary key from tblAssetModel and the device’s 
serial number, which forms a one-to-many 
relationship. The AssetUnitMedComponents table
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contains the technical data related to an asset such as 
the MAC address(es), operating system, firmware, 
etc. and has a composite key of the a component ID 
that increments when a new component is added and 
keys from tblAssetUnit where there is one-to-many 
relationship (one unit, many components). The 
Manufacturer table contains the company name that 
created an asset along with an automated primary key 
that increments with the addition of a new record.

To support the analysis and integration of OVAL 
data, the OVAL table was created. Attributes such as 
device name and device IP connect records to certain 
assets and were needed to determine what records 
relate to what assets due to the potential of more than 
one asset being vulnerable to the same OVAL ID. 
Table AssetModel contains an attribute for device IP 
to connect it to the OVAL table. DeviceIP would 
have been a good attribute to use for a primary key in 
tblOVAL; however, device IP addresses could be 
considered sensitive information, which means the 
use of this data should be restricted. This led to the 
creation of an OVALrecord attribute that is 
automatically populated and incremented with the 
addition of a new record. The OVALID is the record 
identifier established by the OVAL community, 
which means one OVAL ID can be tied to many 
devices, and many devices can be connected to one 
OVAL ID. Due to a possible many-to-many 
relationship between assets and OVAL records, the 
OVAL ID is not used as the primary key. The class 
attribute identifies the type of OVAL ID definition.

For purposes of the case study, all OVALrecord 
identifiers have a class of ‘Vulnerability’; however, 
OVAL can identify other classes such as inventory, 
miscellaneous, and patch. The OVALdescription 
provides information on the vulnerability tow which 
the device could be susceptible. The Attribute 
enumerationType is the test result of an OVAL scan, 
so the data in this column will be either ‘true’, ‘false’, 
or ‘undetermined’. Finally, OVALvulnID is the 
CVEID that is connected to that specific OVAL 
definition. This record is how the OVAL table 
connects to Vulnerability table.

To integrate attack models, the CAPEC table was 
created with supporting attributes. The Attribute 
attackID is the primary key that is automatically 
assigned and incremented when a new record is 
added to the table. An automatic primary key was 
necessary because some identified vulnerabilities 
(CVEs) have more than one corresponding CWE. 
One CWE can be connected to multiple CAPEC 
records, so the attackID identifies one CAPEC record 
that is connected to a specific CWE. This removes 
potential many to many relationships between 
tblVulnerability and tblCAPEC. The CAPECID 

attribute is the identifier created by MITRE that 
allows a user to find that specific CAPEC’s 
information in their online database. CAPECdesc 
delineates the attack that could be conducted when a 
device has a specific weakness. Attribute attackSteps 
describe the actions an adversary would perform 
when exploiting an asset’s weakness while 
attackTechniques identifies how an attacker gains 
information that enables him/her to complete an 
attack such as how they obtain user credentials to 
gain access to a system. The mitigation attribute 
provides data about how cybersecurity specialists can 
prevent a certain attack from occurring.

3.4 Data Entry

Python scripts were used to automatically import 
the data gathered from OVAL, CVE, and CAPEC 
definitions and to execute the case study execution on 
target computers. Python version 3.7 was used to 
extrapolate data from the XML files provided by the 
OVAL community. Three scripts were created to 
transfer the gathered data. One script gathered the 
OVAL data listed in section 3.1, and two other scripts 
were created to gather the data listed in section 3.2.

3.5 Query Configuration

After importing data into a database derived from 
the expanded MedDevRisk schema (seen in Figure 
5), existing queries from prior publications [11, 12] 
were utilized and adapted based on the extended 
schema. New queries were created to support 
extended reporting capabilities based on the addition 
of CAPEC and OVAL related data.

4. Case Study Analysis

Data from the original MedDevRisk framework 
were combined with results of the case study 
methodology outlined in Section 3. New data 
included CAPEC information and OVAL support 
definitions, as well as enhanced CVE and CWE data 
from current National Vulnerability Data feeds. An 
SQLServer database was used to implement the 
expanded MedDevRisk schema (seen in Figure 5) as 
well as to store appropriate data and results.

The OVAL data collection aspect of the case 
study ran on four Mac devices, running various 
versions of the macOS operating system, that are part 
of the University of South Alabama Simulation Unit. 
The OVAL Intrepreter software was executed on 
each case study devices to generate device specfic 
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OVAL system characteristics files. The resulting data 
was collected, and scripts were executed to populate 
appropriate tables in the MedDevRisk database with 
OVAL analysis information. Analysis of the case 
study data covers the following four aspects: OVAL 
data results, enhanced CWE and CVE data results, 
and CAPEC integration results, as well as reporting 
capabilities, developed and executed as part of the 
case study.

4.1 OVAL Data Results

After execution of the OVAL analysis, Python 
scripts parsed XML files and mapped data tags to the 
OVAL table in the MedDevRisk database (as seen in 
Figure 6). As a result, 684 records were imported into 
MedDevRisk: 640 records were derived from CVE 
relationships, and 44 were derived from CPE 
relationships. Each target machine had 167 
vulnerability records classified as unknown results, 
three classified false, and one vulnerability record 
classified true. As Figure 7 illustrates, the relational 
correlation to other tables from the OVAL records 
allowed identification of vulnerabilities based on 
specific applications installed on the four target 
machines. The results were as follows: 552 
vulnerabilities related to Adobe applications, with 
138 being distinct; 120 vulnerabilities were related to 
Microsoft applications, with 30 being distinct; and 
four vulnerabilities related to a combination of Adobe 
and Microsoft products, with one being distinct. 
Query execution allowed for the identification of 
eight vulnerabilities related to Apple security patches 
or file protocols, with two being distinct.

OVAL_ID {http://oval.mitre.org/XMLSchema/oval-definitions- 
5}definition

id

Description {http://oval.mitre.org/XMLSchema/oval-definitions- 
5}description

Class {http://oval.mitre.org/XMLSchema/oval-results- 
5}definition

result

Enumeration {http://oval.mitre.org/XMLSchema/oval-definitions- 
5}definition

result

CVE_ID {http://oval.mitre.org/XMLSchema/oval-definitions- 
5}reference

ref_id

Asset Name {http://oval.mitre.org/XMLSchema/oval-system-
characteristics-5}primary_host_name

Asset IP {http://oval.mitre.org/XMLSchema/oval-system- 
characteristics-5}ip_address

Figure 6. OVAL Integration Tags
The schema adaptation is designed to allow for 

the generation of OVAL reports continuously. It is 
also designed so that machines can be retested 
regularly, and either existing records in the schema 
are updated (for example, a required patch is applied 
that mitigates a known vulnerability), or new records 
are inserted based on new vulnerabilities identified in 
system configurations. One of the vulnerability 

results related to a weakness in a filing protocol on 
Mac operating systems 10.6.x through 10.6.4. This 
resulted in an ‘unknown’ identification. This should 
have returned a false designation since OVAL was 
only tested on machines with operating system 
versions 10.9.2, 10.9.5 and 10.12. Overall, the case 
study illustrated successful integration of OVAL data 
into the TVA relational model of MedDevRisk, as 
well as verifying that relational queries can be 
developed to link real-time/continuous threat 
monitoring with traditional threat/vulnerability 
mappings.

Figure 7. OVAL Vulnerability Identification

4.2 Enhanced CVE and CWE Data

To provide a current threat and vulnerability 
assessment, the case study also included data 
integration of National Vulnerability Database data 
from 2006 to 2018. This incorporates not only CVEs 
identified in the original MedDevRisk research [11] 
but also those CVEs that were identified through 
OVAL data integration of this case study. The data 
refresh resulted in 101,011 records imported into the 
extended MedDevRisk database. Of those records, 
75,317 contain CWEs, 640 records connected OVAL 
and NVD entries (with 160 being distinct), and 544 
records connected OVAL, CVE, and CWEs (with 
136 being distinct).

4.3 CAPEC Integration

To integrate open source CAPEC data into 
MedDevRisk, Python scripts were created and 
executed to parse XML-based CAPEC formats into 
the extended schema of the case study. As a result, 
1,206 records were imported. Of these records, 957 
records had corresponding CWEs, and 249 did not; 
933 records had a corresponding mitigation strategy, 
and 273 did not; 632 records had execution steps, and 
574 did not, and 366 records had associated attack 

Page 6512

http://oval.mitre.org/XMLSchema/oval-definitions-5%257ddefinition
http://oval.mitre.org/XMLSchema/oval-definitions-5%257ddescription
http://oval.mitre.org/XMLSchema/oval-results-5%257ddefinition
http://oval.mitre.org/XMLSchema/oval-definitions-5%257ddefinition
http://oval.mitre.org/XMLSchema/oval-definitions-5%257dreference
http://oval.mitre.org/XMLSchema/oval-system-
http://oval.mitre.org/XMLSchema/oval-system-characteristics-5%257dip_address


techniques, and 840 did not. Figure 8 summarizes the 
data. Import scripts were created that would 
continuously refresh data already in the database and 
automatically create new or update existing CVE 
records when CAPEC related data was encountered. 
CAPEC data also allows OVAL information to be 
linked through various queries to risk assessment, 
vulnerability, and mitigation reports.

■ With ■ Without

Figure 8: CAPEC Integration/Data Quality
As part of the case study, 544 imported OVAL 

records were identified with corresponding CWEs 
already in the database (corresponding to 136 distinct 
records). In terms of relating CAPEC to OVAL, the 
case study execution revealed that 6,556 records 
connect CAPEC to OVAL vulnerabilities total (with 
153 being distinct). Of these, 6,052 records have 
associated mitigations (with 113 being distinct), and 
504 records do not have mitigations (with 40 being 
distinct); 5,004 records had corresponding execution 
steps (with 72 distinct), and 1,552 records did not 
have associated execution steps (with 81 being 
distinct); 1,276 records had related attack techniques 
(with 30 being distinct), and 5,280 records did not 
have attack techniques (with 123 distinct attack 
techniques identified). Figure 9 summarizes the 
relational mappings identified through the case study.

4.4 Query and Reporting Capability

The case study resulted in the development of 
new queries, views, and generated reports through the 
MedDevRisk framework. As Table 1 summarizes, 
four distinct capabilities were developed: 1) STRIDE 
(STR) and TVA-based summary analysis; 2) OVAL­
based vulnerability reporting; 3) mitigation reporting 
and CVE identification, and 4) adversarial viewpoint 
reporting. In MedDevRisk, STRIDE values are 
determined by Threat Actions (supported by 
tblThreatAction), and they are linked to CVE threat 
descriptions. In this case study, four threat actions 

were used with the CVEs produced by OVAL: 1) 
Disclose Health Information by Application-Layer;
2) Manipulate Health Information by Application­
Layer; 3) Disclose Health Information by Backdoor 
Methods, and 4) Manipulate Health Information by 
Backdoor Methods.

Figure 9: CAPEC/OVAL Data Relationships

Table 1: Extended MedDevRisk Reporting
STR TVA OVL MIT ADV

Device Name X X X X X
Medical Device ID X X
Asset Model Descr X
Model # X
CVSS Base Score X X
Vulnerability Descr X X
Vulnerability Class X
Impact Score X X X X
Attack Complexity X X X
Attack Vector X X X
CIA X X
STRIDE Action X X
STRIDE Motivation X X
Threat Action X X X
Threat Source X X
Mitigation X X X
CVE X X
Device Name X X X X
Attack ID X
CAPEC ID X
CAPEC Name X
CAPEC Descr X
Attack Steps X
Attack Techniques X

From an adversarial view, the case study 
demonstrated a proof of concept for potential devices 
in medical environments that have known associated
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CVEs. That basic link provides the ability to link the 
device to a risk score (CVSS), the attack steps of an 
adversary, the attack techniques used, and possible 
mitigations. This information forms the basis for 
actionable steps for IT personnel and CIOs who 
manage critical assets, including medical devices. 
Because PCs and computer workstations often 
provide soft targets for attackers, the reporting also 
allows security decision-makers to take a more 
holistic view of all assets that are part of healthcare 
environments.

5. Conclusions and Future Work

Several key goals framed the case study and 
methodology of this research. These goals included 
1) expanding the current CVE data stored in 
MedDevRisk through the creation of a new entity in 
the relationship model; 2) implementing an attacker’s 
point of view by integrating CAPEC attack patterns; 
3) performing real-world system evaluation scans on 
medical devices and using OVAL to gather data from 
produced reports; 4) integrating OVAL data by 
creating tables to support relevant OVAL attributes; 
and 5) executing a risk assessment case-study using 
real-world data. These goals were accomplished 
through proof-of-concept development and a case 
study implemented in the Simulation Unit at the 
University of South Alabama.

The key contributions resulting from the case 
study are summarized in Figure 10. By adding OVAL 
and CAPEC values and expanding on CVE and CWE 
data, the MedDevRisk framework now provides 
support to cybersecurity specialists with community 
standard vulnerability data, mitigation strategies, and 
adversarial tactics for vulnerabilities medical devices 
could face. The reports created to evaluate this data 
provide upper management with information that can 
aid security specialists in creating attack models and 
mitigation strategies for networked medical devices.

The case study illustrates the real-world issues 
associated with integrating threat and vulnerability 
assessment tools into operational medical settings, 
which is normally complicated by a lack of physical 
access to machines in a healthcare domain. In part, 
the issue of access led to a smaller number of 
machines chosen for the proof of concept. The case 
study also illustrated an inability to connect CVEs to 
CAPEC records automatically (due to CWEs not 
being assigned in all cases) and also the lack of fully 
defined data in the open-source data (summarized in 
Figures 8 and 9). It is recognized that missing 
framework information causes some of the mitigation 
strategies to lack validity. While this research 

successfully created attack models and mitigation 
strategies for vulnerabilities discovered on networked 
medical devices or associated connected devices over 
a network, MedDevRisk can still be enhanced.

Figure 10: Key Contributions of Case Study
An interesting area of future work identified by 

the study is the need to create OVAL definitions 
specifically for medical devices. One main issue that 
was found during the evaluation of previous and new 
vulnerability data is that only one used CVE was 
connected to a networked medical device. In order to 
accomplish this goal, researchers need physical 
access to devices and the skill set to be able to 
correctly evaluate the devices and identify any 
hardware or software vulnerabilities. Identification of 
vulnerabilities for specific medical devices enhances 
the data produced in risk reports as well as 
strengthening the healthcare cybersecurity posture.
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