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ABSTRACT 

Jenkins, Kelsey Meredith, Tooth implantation and dental morphology of Palacrodon. 
Master of Science (Biology), May, 2018, Sam Houston State University, Huntsville, 
Texas. 
 

Palacrodon browni, a reptile known from the Early Triassic strata of South 

Africa, is of uncertain phylogenetic affinities, and its relationships have been argued for 

over a century. Additionally, its presumed diet is also uncertain. Using computed 

tomography and the literature, features of the dentition are revealed that indicate 

Palacrodon is a procolophonid. Furthermore, computed tomography reveals two parallel 

ridged beneath the teeth of Palacrodon, a unique feature unknown in any other tetrapod. 

Comparison to the dentition of other taxa and the severe wear seen on the teeth of 

Palacrodon also indicate that Palacrodon was likely either an herbivore or an omnivore. 

KEY WORDS: Triassic, Karoo, South Africa, paleontology, procolophonids, 
Rhynchocephalia 
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CHAPTER I 

Literature Review 

For over a century the taxonomic standing of Palacrodon has been questioned due 

to the limited amount of material available and the unusual morphology of its teeth. 

Palacrodon has acrodont dentition, which leads paleontologists to group it with other 

acrodont organisms such as rhynchocephalians and procolophonids (Broom, 1906a; 

Malan, 1963), although the material is not substantial enough to classify it further than 

diapsid (Gow, 1992, 1999). Additionally, the unique dental morphology led to multiple 

conflicting diet reconstructions (Gow, 1999; Nicolas and Rubidge, 2010; Smith et al., 

2012). In the last few decades numerous dentaries and maxillae belonging to Palacrodon 

were recovered from Early Triassic sediments at Driefontein, near Paul Roux in the Free 

State Province of South Africa. With this larger sample I will use computed tomography 

(CT) and comparative and statistical methods to address two questions: 1) What 

taxonomic group shares more morphological similarities with Palacrodon? and 2) what 

was the most likely principle food source for Palacrodon? 

The dentition and small body size of Palacrodon, and its restriction to the Early 

Triassic makes it an intriguing study organism. Palacrodon is part of the recovery fauna 

which existed after the Permian mass extinction (Hancox and Rubidge, 2001; Neveling et 

al., 2005; Rubidge, 2005; Nicolas and Rubidge, 2010). Extant groups of tetrapods such as 

Anura, Mammalia, Archosauria, and Lepidosauria have origins in the Triassic (Romer, 

1956; Carroll, 1969; Pyron, 2010). The origins of these groups are uncertain because they 

are missing many early taxa, which are presumed to be small, often poorly preserved, and 

understudied in comparison to the larger-bodied fauna which evolve later in these 



2 

 

lineages (Carroll, 1969). There is the potential that Palacrodon is a stem member of one 

of these lineages because it has similar dental morphology to other early Triassic 

tetrapods (e.g. rhynchocephalians, trilophosaurs) making this research crucial for the 

study of Early Triassic tetrapod relationships.  

BACKGROUND 

Geologic Setting. The Triassic dated from 251.9 to 201.4 million years ago, and 

is subdivided into the Early (251.9-246.8 mya), Middle (246.8-237.0 mya), and Late 

Triassic (237.0-201.4 mya; Ogg et al., 2016). During the Triassic the continents were 

positioned together as a single landmass called Pangaea (Wegener, 1920; Fraser, 2006; 

Fig. 1) surrounded by an ocean termed Panthalassa (Suess, 1885; Wegener, 1920). The 

large singular landmass and the high carbon-content of the atmosphere allowed for 

extreme conditions marked by increased climatic instability (Holser and Magaritz, 1987; 

Fraser, 2006). As such, the Triassic was much hotter and more arid than the present-day, 

with some areas characterized by intense monsoon seasons (Fraser, 2006; Benton, 2016). 

Mass Extinction. The Triassic follows the end-Permian mass extinction. That 

extinction is considered the most devastating extinction event in the history of the planet, 

accounting for the extinction of over 50% of all marine families and 80% of marine 

genera, and 77% for all land animals (Raup and Sepkoski, 1982; Benton, 2003; 

MacLeod, 2013). As such, the animals that survived into the Triassic act as a recovery 

fauna that diversifies and characterizes the period and much the Mesozoic (R. Smith and 

Botha, 2005; Sahney and Benton, 2008; Sues and Fraser, 2010).  

The groups that survived the Triassic act as the stems from which many extant 

tetrapod lineages develop, including archosaurs, squamates, mammals, and turtles 
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(Sahney and Benton, 2008; Sues and Fraser, 2010; Chen and Benton, 2012). Throughout 

the Triassic insects such as beetles, flies, and giant insects like titanopterans proliferate, 

and the first representatives of conifers and ferns evolve (Sues and Fraser, 2010). In the 

marine realm calcareous nannoplankton, scleractinian corals, and teleost fish make their 

first appearances in the Triassic (Arratia, 2001; Stanley, 2003; Erba, 2006; Hurley et al., 

2007; Sues and Fraser, 2010). With the appearance of these organisms in the Triassic, the 

designation “Dawn of the Modern Ecosystems” is appropriate for that period (Sues and 

Fraser, 2010:1). 

The Karoo Basin. The Karoo basin spans the majority of South Africa (du Toit, 

1918), and is one of the most thoroughly investigated strata in terms of its vertebrate 

faunal record (e.g., Lucas, 1998; Ward et al., 2000; Rubidge, 2005), providing a unique 

and detailed record of terrestrial extinction at the end of the Permian and faunal recovery 

in the Triassic (Hancox and Rubidge, 2001; Damiani, 2004; Neveling et al., 2005; Ward 

et al., 2005; Nicolas and Rubidge, 2010). The deposits of the Karoo basin span from the 

Late Carboniferous to the Middle Jurassic and are nearly 12 km thick in some areas (R. 

Smith, 1995; Catuneanu et al., 1998). The Karoo basin is categorized as a retroarc 

foreland basin (Catuneanu et al., 1998), meaning the basin is a geologic structure adjacent 

to a mountain belt and occurs on the overriding plate where two tectonic plates converge, 

resulting in a depression of rock (Dickinson, 1978). 

The strata which mark the Permo-Triassic transition are known as the Beaufort 

group (du Toit, 1918; Keyser, 1979; R. Smith, 1995; Hancox, 2000). These strata are 

predominantly fluvio-lacustrine rocks, meaning the area is predominantly composed of 

sediments indicative of a deltaic system with many rivers, lakes, and floodplains (du Toit, 
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1918; Theron, 1975; Van Dijk et al., 1978; R. Smith, 1990). The Beaufort group is 

further divided into formations which are characterized by biostratigraphic assemblages 

when fossils are abundant (Fig. 2; Seeley, 1892; Broom, 1909; Hotton and Kitching, 

1963; Kitching, 1977; Keyser, 1979; Rubidge, 1990, 1995). The Permo-Triassic 

transition is marked by the Katberg Formation and the Lystrosaurus assemblage zone 

(LAZ), and the rest of the Early Triassic is marked by the Burgersdorp Formation and the 

Cynognathus assemblage zone (CAZ; Rubidge, 1990, 1995; Hancox, 2000; Hancox and 

Rubidge, 2001). These formations are defined by changes in lithostratigraphy of the rocks 

and the assemblage zones are determined using biostratigraphy, or changes in the faunal 

composition, particularly the change from the theraspid Lystrosaurus to the theraspid 

Cynognathus. As the term biostratigraphy implies, the discovery of certain taxa within a 

sedimentary sequence may help identify the age of the strata in which those taxa are 

found. As such, the LAZ and CAZ are characterized by different sets of tetrapods. 

The LAZ is associated with an abundance of the synapsid Lystrosaurus, a 

dicynodont theraspid, and a low diversity of reptiles (Broom, 1906b; Rubidge, 1995; 

Hancox, 2000). A number of tetrapods are found in these sediments including 

amphibians, captorhinids, younginiformes, squamates, rhynchosaurs, protosaurs, 

archosauriforms, dicynodonts, therocephalians, and cynodonts (see Appendix A for full 

list of species; Rubidge, 1995, Hancox, 2000; Neveling, 2004). Aside from tetrapods, 

fossil millipedes, ferns, woody plants, and vertebrate burrow complexes also are found 

within the LAZ (Rubidge, 1995). Although Lystrosaurus is the predominant tetrapod 

found in this assemblage zone, it is often found in association with the procolophonid 

Procolophon (Rubidge, 1995, Neveling, 2004). 
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The CAZ is defined by the therapsids Cynognathus, Diademodon, and 

Kannemeyeria (Broom, 1906b; Kitching, 1977; Rubidge, 1995, Neveling, 2004). 

Tetrapods associated with the CAZ include amphibians, captorhinids, rhynchosaurs, 

archosaurs, dicynodonts, therocephalians, and cynodonts (see Appendix A for list of 

species; Rubidge, 1995; Neveling, 2004). Palacrodon is only found within the CAZ. 

Fish, mollusks, ferns, woody plants, arthropod trails, vertebrate burrows, and worm 

burrows also are found within the CAZ (see Appendix A; Rubidge, 1995; Hancox, 2000).  

Driefontein Locality. Driefontein is located on a farm in the Nketoana Local 

Municipality near the town of Paul Roux in the northeastern Free State Province of South 

Africa (Fig. 3; Gow, 1999; Damiani and Jeannot, 2002; Bender and Hancox, 2003; Yates 

et al., 2012).  The strata of Driefontein are assigned to the Kestrosaurus assemblage zone, 

which is of the CAZ, subzone A (Hancox and Rubidge, 2001; Yates et al., 2012). 

Subzone A correlates with the Olenekian stage of the Early Triassic which began 249.7 

million years ago and ended 245.0 million years ago (Damiani and Jeannot, 2002; 

Gradstein et al., 2004). Though the stratigraphy of the site was not thoroughly 

investigated until more recently (Gaetano et al., 2012; Yates et al., 2012), fossils were 

found from this area starting in 1989 (Gow, 1999; Damiani and Jeannot, 2002; Hancox et 

al., 2010). The strata are composed of finely laminated lacustrine muds and channelized 

sandstones that incorporate lag layers, deposits left by fluvial processes (Bender and 

Hancox, 2004; Hancox et al., 2010; Gaetano et al., 2012; Yates et al., 2012). 

Environmental reconstruction of the strata from Driefontein is interpreted to have been a 

dried lake bed and those sediments were soured and redeposited, depositing fossils in 

those strata (Yates et al., 2012). The deposits at Driefontein incorporate blue-grey 
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sandstones and red-green mudstones, typical of the fluvial systems that characterize 

Beaufort group and the CAZ (Damiani and Jeannot, 2002; Gaetano et al., 2012). 

The lag deposits at Driefontein preserve mostly disarticulated fossils. This 

includes the temnospondyls Parotosuchus sp. (Damiani, 1999), Parotosuchus haughtoni 

(Damiani, 2002), Kestrosaurus kitchingi (Shishkin et al., 2004), and Bathignathus 

poikilops (Damiani and Jeannot, 2002). Fish fossils from this locality include 

actinopterygian jaw fragments, chondrichthyan fin spines, and lungfish tooth plates 

(Bender and Hancox, 2003; Ortiz et al., 2010). The only synapsid material found includes 

two incisors and five post canine teeth from an unnamed cynodont and two more 

postcanines from the cynodont Langbergia modisei (Abdala et al., 2006, 2007; Gaetano 

et al., 2012). In 1996 a partial dentary and maxilla belonging to Palacrodon were found 

at Driefontein, leading to the synonymy of Palacrodon and Fremouwsaurus (Gow, 

1999). Since then nearly one hundred specimens of Palacrodon have been found, with 39 

available for research at the Evolutionary Studies Institute, University of the 

Witwatersrand, Johannesburg. All the specimens of Palacrodon are partial tooth-bearing 

elements. Much of the material from Driefontein is not yet described, but includes 

remains of numerous fish, procolophonids, archosaurs, and therocephalians (Hancox et 

al., 2010; Gaetano et al., 2012). Thousands of coprolites are found at the site with some 

containing freshwater bivalves (Yates et al., 2012), and an arthropod trackway was 

recovered in 2011. Fossils are still collected from Driefontein on a nearly yearly basis. 

PALACRODON 

Taxonomy. The systematic position of Palacrodon has been uncertain since its 

initial description in 1906. Palacrodon browni was originally described as a 
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rhynchocephalian, due to a resemblance to Homoeosaurus (Broom, 1906a). Following 

that publication, it was thought to be a close relative of Acrosaurus (a basal lizard; 

Nopsca, 1907), a pleurosaur (Hoffstetter, 1955), a sphenodontid (Huene, 1956; Benton, 

1985; Whiteside, 1986), an eosuchian (Kuhn, 1969), or possible procolophonid 

(Weishampel and Kerscher, 2013). The holotype dentary that was used as the basis for 

those classifications is so fragmentary, however, that one could just as easily classify 

Palacrodon as a procolophonid, lizard, or rhynchocephalian (Malan, 1963; Benton, 1985; 

Whiteside, 1986).  

Since its initial description, Palacrodon was formally described twice more based 

upon the Antarctic specimen known as Fremouwsaurus geludens (Gow, 1992), which 

later was synonymized with Palacrodon based on the specimens found at Driefontein 

(Gow, 1999). Both descriptions place Palacrodon in Diapsida incertae sedis, and Gow 

stated that Palacrodon cannot possibly be a sphenodontid due to the placement of the 

quadrate foramen (Gow, 1999) and the presence of a lacrimal bone (Gow, 1992). Though 

Palacrodon shares similar overall morphology to procolophonids, it is distinguished by 

mesiodistal contact between the cheek teeth and inferiorly concave mesial and distal 

crown surfaces (Gow, 1999). The specimens uncovered thus far led some to believe it 

could possibly represent an early archosauromorph, trilophosaur (Hancox and Rubidge, 

2001; Rubidge, 2005), although it was also recently placed with eosuchians (Nicolas and 

Rubidge, 2010; R. Smith et al. 2012). Most recently, it was said to be a putative 

rhynchocephalian (Benton et al., 2015), despite the widespread disagreement and 

uncertainty that surrounded Palacrodon in the past century.  



8 

 

Despite the taxonomic disagreement, Palacrodon was compared to several taxa 

(namely rhynchocephalians and early lepidosaurs) and was listed as a possible, although 

perhaps doubtful, rhynchocephalian in many publications from the last century 

(Robinson, 1973; Benton, 1985; Whiteside, 1986; Chaline, 1990; Borsuk-Bialynicka et 

al., 1999; Benton et al., 2015). Palacrodon was used to show that sphenodontid marginal 

dentition evolved by the Early Triassic in a study of Clevosaurus hudsoni (Robinson, 

1973) and to establish sphenodontids in the Early Triassic (Romer 1956; Chaline, 1990). 

Palacrodon was used to support a Permo-Triassic origin of Lepidosauria (Borsuk-

Bialynicka et al., 1999), and was used to justify the soft maximum age (252.7 Ma) of the 

Triassic to accommodate it (Benton et al., 2015). It was brought up in taxonomic reviews 

of Triassic and/or diapsid organisms but was sometimes only noted as being of uncertain 

origin (Murry, 1987; Dilkes, 1998). In one of the first modern phylogenetic studies of 

lizards, Palacrodon is noted as being poorly known and omitted from phylogenetic 

analysis due to difficulty in determining character states (Gauthier et al., 1988a). No 

authors make an attempt to classify Palacrodon following this, and its taxonomy is still 

uncertain.   

Biostratigraphy. Although there is no consensus on its phylogenetic affinity, 

Palacrodon is frequently used as a taxonomic descriptor for the CAZ (Watson, 1957; 

Benton, 1983; Neveling, 2004; Neveling et al., 2005; Cisneros, 2007; Gower et al. 2014) 

and is considered an important taxonomic indicator for strata of the Burgersdorp 

Formation (Haughton, 1963; Hancox and Rubidge, 2001; Damiani and Jeannot, 2002; 

Bender and Hancox, 2003; Gaetano et al., 2012). CAZ (and potentially LAZ) equivalent 

rocks in the Antarctic Fremouw Formation were also described using Palacrodon and its 
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synonymy Fremouwsaurus (Gow, 1992, 1999; Sidor et al., 2008; Fröbisch et al., 2010; 

N. Smith et al., 2011; Huttenlocker and Sidor, 2012). Aside from Driefontein, 

Palacrodon fossils are known from Odendallstroom farm near the Orange River in the 

Eastern Cape Province, and from Antarctica (Gow, 1992; Neveling, 2004). The holotype 

is from an unknown locality in South Africa (Broom, 1906a). 

Diet. In addition to its uncertain phylogenetic placement, the diet of Palacrodon 

is also uncertain. Palacrodon possibly was herbivorous (Gow, 1992). In studies of 

trophic analyses of Early Triassic tetrapods, it was listed as a carnivore (Nicolas and 

Rubidge, 2010) and then as an omnivore (R. Smith et al., 2012). How those diets were 

determined was not explained in any previous research. 

Dentition is often used by paleontologists to determine diet, because diet and 

tooth morphology often are strongly correlated (Kingsley, 1899; Shimer, 1914; Todd, 

1918). Occasionally other traits such as cranial morphology and body size are used to 

support certain dietary tolerances (Weishampel and Norman, 1989; MacFadden, 2000). 

Research involving enamel thickness, enamel striae, and microwear patterns also were 

used in previous diet studies (Walker et al., 1978; Kay, 1981; Ciochon et al., 1990; 

Dumont, 1995). Aside from morphology, analyses of material such as coprolites 

(fossilized feces; Shimer, 1914; Chin, 2002), phytoliths (microscopic silica-based plant 

material; Walker et al., 1978; Ciochon et al., 1990), and isotopes (Sullivan and Krueger, 

1981; Lee-Thorp and Sponheimer, 2003; Reynard and Balter, 2014) can be used to 

determine the diet of extinct animals. 
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TOOTH IMPLANTATIONS 

Tooth implantation is a character frequently used to describe and classify taxa 

(Owen, 1840; Camp, 1923; Romer, 1956; Gauthier et al., 1988a, 2012). Pedicellate, 

pleurodonty, subthecodonty, thecodonty, and acrodonty are the five major implantation 

categories (Fig. 4; Owen, 1840; Romer, 1956; H. Smith, 1958; Edmund, 1969; Zaher and 

Rieppel, 1999; Jenkins et al., 2017). Variation exists within each category, and although 

those classifications provide good initial descriptors, not all animals have teeth that fit 

discretely in each category, thus those terms do not always suffice in describing tooth 

implantation (Jenkins et al., 2017). 

Pedicellate. This mode of implantation has teeth that are attached with fibrous 

tissue or are ankylosed to a bone-like pedicle (Hughes et al., 1994; Kozawa et al., 2005). 

The pedicle, also known as the pedestal bone, cementum, or bone of attachment, unites 

the teeth to the tooth-bearing bone (Tomes, 1874; Kozawa et al., 2005). When this mode 

is exhibited in fish is it typically connected by fibrous tissue, and when this is seen in 

reptiles is it typically through ankylosis (Shellis, 1982; Hughes et al., 1994; Kozawa et 

al., 2005). Some amphibians also have pedicellate dentition, with the genus Xenopus 

forming a pedical from periodontal tissue (Kozawa et al., 2005). Pedicellate describes the 

relationship of tooth attachment to bone, while pleurodonty, subthecodonty, thecodonty, 

and acrodonty describes the position of the tooth in relation to the bone. 

Pleurodonty. Taxa exhibiting this mode of implantation have teeth that are fused 

to the lingual shelf of the marginal bones (Owen, 1840; Romer, 1956; Edmund, 1969). 

This mode of implantation is typically only seen in lepidosaurs, and teeth are typically 

replaced continuously throughout the life of an animal (Camp, 1923; Romer, 1956; 
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Edmund, 1969; Rieppel, 2001). Variations found in pleurodont implantation are 

subdivided into three different types of pleurodonty, iguanian mode, agamid mode, and 

varanid mode (McDowell and Bogert, 1954; Edmund, 1960; Cooper et al., 1970; Jenkins 

et al., 2017).  

In the iguanian mode all the teeth have long roots with extensive attachment to the 

marginal bones (Lessmann, 1952; Edmund, 1960; Kline and Cullum, 1985; Rieppel, 

2001). That category accommodates most lizards and also describes the 

rhynchocephalian Gephyrosaurus (Romer, 1956; Evans, 1980; Motani, 1997; Zaher and 

Rieppel, 1999; Jenkins et al., 2017). 

In the agamid mode, only the mesialmost teeth exhibit pleurodont implantation 

while the other teeth are fused to the crest of the jaw bone (i.e., they are partially acrodont 

and partially pleurodont; Cooper, 1970; Cooper and Poole, 1973; Zaher and Rieppel, 

1999; Smirina and Ananjeva, 2007). This is seen in in agamid lizards and a possible 

version of this is seen in several rhynchocephalians (Cooper et al., 1970; Whiteside, 

1986; Fraser and Shelton, 1988; Renesto, 1995; Heckert et al., 2008; Whiteside et al., 

2016). 

In the varanid mode, the teeth are attached to the inside of the jaw bone and 

possess plicidentine, a condition characterized by dentine folds around the base of the 

tooth that aid in tooth attachment (Edmund, 1969; Cooper et al., 1970; Zaher and 

Rieppel, 1999). The dentine folds inwards, forms lamellae, and creates a honeycomb-like 

structure which ankyloses the tooth to the bone (Estes et al., 1988; Kearney and Rieppel, 

2006; Maxwell et al., 2011). When the tooth is replaced, this dentine structure many not 

be completely resorbed, leaving evidence of previously embedded teeth on the bone 
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(Bullet, 1942; Edmund, 1969; Borsuk-Bialynicka, 1996; Kearney and Rieppel, 2006). 

This mode is restricted to a few groups within Squamata, although plicidentine is found 

in other tetrapods (Estes et al., 1988; Zaher and Rieppel, 1999; Kearney and Rieppel, 

2006; Maxwell et al., 2011). 

Subthecodonty. Teeth exhibiting this mode of implantation are implanted in a 

shallow socket (Romer, 1956; Peyer, 1968; Edmund, 1969; Wild, 1973). This is thought 

to be the ancestral state in amniotes (Romer, 1956; H. Smith, 1958). A number of reptiles 

show this implantation, including stem-lepidosaurs, stem turtles, ichthyopterygians, 

choristoderes, and some early amphibians (Romer, 1956; Evans, 2009; Schoch and Sues, 

2015; Skutschas and Vitenko, 2015; Kelley et al., 2016).  

Thecodonty. Teeth exhibiting this mode of implantation are set within a bony 

socket (Owen, 1840; Romer, 1956; Edmund, 1969; Osborn, 1984; Zaher and Rieppel, 

1999). This is seen in all mammals and archosaurs, including birds (Saint-Hilaire, 1821; 

Romer; 1956; Osborn, 1984; Zaher and Rieppel, 1999; Harris et al., 2006). This mode of 

implantation also is exhibited in the extinct snake Dinilysia patagonica (Budney et al., 

2006) and mosasaurids (Caldwell, 2007; LeBlanc and Reisz, 2013). Mosasaurs may not 

be truly thecodont because there is argument if they possess a true socket (Zaher and 

Rieppel, 1999; Caldwell, 2007; Liu et al., 2016). Another term, aulacodonty, is used to 

describe ichthyosaurs, marine reptiles that possess a longitudinal groove instead of a 

bony socket (Mazin, 1983; Motani, 1997). 

A subset of thecodonty is called ankylothecodonty (Edmund, 1969; Motani; 1997; 

Zaher and Rieppel, 1999). Teeth exhibiting this mode of implantation have roots that are 

firmly ankylosed to the bone and set within well-developed sockets (Edmund, 1969; 
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Chatterjee, 1974).  This is exhibited by a procolophonid (Sues and Olsen, 1993), 

thalattosaurs (Nicholls and Brinkman, 1993; Müller, 2007; Liu et al., 2013), rhynchosaurs 

(Chatterjee, 1974; Benton, 1984), trilophosaurs (Robinson, 1956; Murry, 1987), an 

ichthyosaur (Motani, 1997), and a rhynchocephalian (Reynoso, 2000). 

Acrodonty. Several definitions are associated with this term, and variably include 

traits such as location of teeth in relation to the bone, degree of fusion, and lack of 

replacement (Owen, 1840; Romer, 1956; Edmund, 1969; Osborn, 1984; Luan et al., 

2009). Authors defined acrodonty several ways. It is defined as a suppression of the walls 

of the dental groove with teeth that are ankylosed to the crest of the bone (Edmund, 1969; 

Luan et al., 2009). Acrodonty is used to describe tooth fusion to the horizontal surface or 

summit of the bone (Romer, 1956; Osborn, 1984), and a lack of replacement or extensive 

ankyloses (MacDougall and Modesto, 2011). Some see it as a conversion between 

pleurodonty and thecodonty (Estes et al., 1988; Gauthier et al., 1988a). A three-part 

definition of acrodonty is given by Augé (1997) where the tooth is not fused to subdental 

shelf or subdental shelf absent, there is occlusal wear on the labial surface of bone and 

teeth, and no tooth replacement. For the purpose of this study, I restrict acrodont to a 

positional definition, by which the tooth is on the crest of the bone, without reference to 

the degree of fusion of replacement of teeth (Jenkins et al., 2017).Many authors do not 

state which definition of acrodont they are using even though many animals are described 

as acrodont, particularly most rhynchocephalians (Günther, 1867; Simpson, 1926; 

Romer, 1956; Edmund, 1969; Rasmussen and Callison, 1981; Evans, 1994; Reynoso, 

1997, 2000; Jones et al., 2009; Jenkins et al., 2017), a few squamates such as chameleons 

and trogonophid amphisbaenians (Romer, 1956; Gans, 1960; Edmund, 1969; Augé, 1997; 
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Zaher and Rieppel, 1999), and some procolophonids (Sun, 1980; Gow, 2000; Cabreira 

and Cisneros, 2009; MacDougall and Modesto, 2011; Schoch, 2011). 

REPTILE ANATOMY 

Three reptile groups are most often suggested for Palacrodon, those being 

rhynchocephalians, trilophosaurs, and procolophonids (Broom, 1906a; Malan, 1963; 

Hancox and Rubidge, 2001; Rubidge, 2005). Though Palacrodon shows some 

morphological similarities with each of these groups, the three taxa are quite different 

from each other morphologically, and each has a distinct evolutionary history. 

Rhynchocephalians and trilophosaurs both belong to the crown group Diapsida, reptiles 

with two temporal fenestra located posterior to the orbits (Fig. 5; Williston, 1917; 

Gauthier, 1984; Modesto and Anderson, 2004; Lee, 2013). This classification is divided 

into two groups, the archosauromorphs, to which trilophosaurs belong with other 

thecodont taxa such as crocodilians, dinosaurs, and birds, and the lepidosauromorphs, to 

which both rhynchocephalians and squamate reptiles (lizards, snakes, amphisbaenians) 

belong (Benton and Clark, 1988; Gauthier et al., 1988a; Gower and Wilkinson, 1996; 

Lee, 2013). Given that archosaurs and lepidosaurs lie within the crown group reptiles, 

they do share more morphological similarities with each other (e.g., diapsid temporal 

state) than with procolophonids, which are from a larger clade of parareptiles, a group 

which lies outside of “true reptiles” and includes several basal reptile groups from the 

Permian and Triassic (Gauthier et al., 1988b; Laurin and Reisz, 1995; Modesto and 

Anderson, 2004; Tsuji and Müller, 2009). 

Rhynchocephalia. Though Sphenodon is only one living representative, 

rhynchocephalians were a diverse group with a broad geographic range in the Mesozoic 



15 

 

(Jones, 2008; Evans and Jones, 2010). The architecture of the skull is similar among 

members of this group, but rhynchocephalians display a wide range of body proportions, 

and skull and teeth morphology can vary greatly between species (Romer, 1956; Gauthier 

et al., 1988a; Jones, 2008; Evans and Jones, 2010). Basal forms, such as Gephyrosaurus 

bridensis, possess conical teeth (Fig. 6; Evans, 1980; Fraser, 1982; Whiteside 1986; 

Fraser and Shelton 1988; Heckert, 2004; Jones, 2008), but more derived forms have 

stouter, flanged teeth that possess more efficient shearing mechanics to aid in chewing 

(Fig. 7; Fraser, 1988; Carroll, 1985; Dupret, 2004; Jones, 2008). These shearing 

mechanics can lead to tooth wear which maintains a sharp cutting edge and increased 

surface area (Throckmorton et al., 1981; Fraser, 1988; Jones 2006, 2008). Many 

rhynchocephalians have acrodont tooth implantation with no evidence of tooth 

replacement (Simpson, 1926; Rasmussen and Callison; 1981; Throckmorton et al., 1981; 

Evans, 1994; Reynoso, 1996; Ross et al., 1999; Rauhut et al., 2012), although the most 

basal species Gephyrosaurus is pleurodont (Evans, 1980, 1985). Several basal species 

show a combination of acrodonty and pleurodonty (Whiteside, 1986; Fraser and Shelton, 

1988; Renesto; 1995; Heckert et al., 2008). Those species that do not show tooth 

replacement often have additional teeth to the posterior end of the jaw ontogenetically 

(Reynoso, 2003; Apesteguía et al., 2014; Klein et al., 2015). The teeth all possess the 

same morphology (i.e. homodont) and do not exhibit regionalization (i.e. heterodont), 

although some possess an enlarged caniniform tooth (Reynoso, 1996, 2003, 2005; Jones, 

2006). 

Other anatomical features worth noting are the absence of the splenial and 

lacrimals in rhynchocephalians (Romer, 1956; Jones, 2006; Gauthier et al., 2012), apart 
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from Gephyrosaurus which possesses a reduced lacrimal, similar to other early 

lepidosauromorph taxa (Evans, 1980, 1991; Gauthier et al., 1988a; Molero and Jones, 

2012).  Rhynchocephalians range in their diets, and are thought include carnivores, 

herbivores, and insectivores based upon tooth morphology of fossil material (e.g., 

Newman, 1977; Walls, 1978; Evans, 1980; Rassmussen and Callison, 1981; Fraser, 1988; 

Reynoso, 2000; Jones, 2008). 

Trilophosauria. Trilophosaurs are closely related to archosaurs and are known 

from the Late Triassic of the U.S.A., Canada, U.K., and Russia (Fig. 8; Case, 1928a; 

Gregory, 1945; Robinson, 1956; Sues, 2003; Heckert et al., 2006; Mueller and Parker, 

2006; Arkhangelskii and Sennikov, 2008). They possess heterodont dentition with 

subconical teeth mesially and cusped teeth distally (Case, 1928a; Robinson, 1956). The 

premaxillae form a rounded, edentulous beak (Gregory, 1945). Many species possess 

transversely expanded, tricuspid teeth that are connected by a ridge (Heckert et al., 2006; 

Mueller and Parker, 2006). Teeth are smallest at the mesial and distal ends of the tooth-

bearing element and widest at the middle (Gregory, 1945). Teeth have an 

ankylothecodont implantation with substantial roots, although this implantation is not 

always clear (Sues, 2003; Heckert et al., 2006). The teeth are so firmly implanted that it 

was once considered to be pseudo-acrodont, because it is difficult to determine the border 

between tooth and bone (Gregory, 1945; Robinson, 1956). Striations appear at the edges 

of the alveoli, and the teeth merge with the bone in that area, creating what appears to be 

a combination of thecodont and acrodont implantation types (Gregory, 1945; Robinson, 

1956). Teeth are replaced throughout the animal’s lifetime, and wear patterns on the 

occlusal surface vary ontogenetically (Demar and Bolt, 1981).  
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Though trilophosaurs are considered diapsids, there is only one post-orbital 

fenestra (Gregory, 1945). This is called the euryapsid condition, in which the single 

fenestra is a result of the loss of the lower temporal bar which forms the lower temporal 

fenestra, and it is seen in several groups of reptiles (Williston, 1904; Frazzetta, 1968, 

Romer, 1971). By this definition, this temporal state is a derivative of the diapsid 

condition and is not to be confused with the synapsid condition that is also defined by a 

single temporal fenestra (Osborn, 1903; Williston, 1904). In the euryapsid condition the 

postorbitals and squamosals at the site of the lower temporal opening, unlike the modified 

diapsid skull seen in lepidosaurs where the lower temporal bar is lost due to the reduction 

of the quadratojugal and results in a single temporal fenestra (Romer, 1956). The skull 

material of Trilophosaurus is poorly preserved, and many sutures cannot be determined 

(Gregory, 1945). Trilophosaurs were thought to be herbivorous by Gregory (1945), 

although there is evidence that juveniles were carnivorous (Demar and Bolt, 1981). 

Procolophonomorpha. Procolophonids originated in the Permian and survived 

into the Triassic, when they experienced great dispersal and diversification until their 

extinction at the Triassic-Jurassic boundary (Romer, 1956; Daly 1969; Anderson and 

Anderson, 1970; Sues et al., 2000; Modesto et al., 2003; Cisneros, 2008; Tsuji and 

Müller, 2009). Typically, procolophonids are small, have elongated orbits, are 

heterodont, and have bulbous, sometimes cuspid molariform teeth (Romer, 1956; 

Ivakhnenko, 1973; de Braga, 2003; Sues and Baird, 1998; Cisneros, 2008). Bulbous 

molariform teeth are acquired independently in several clades of procolophonids, such as 

the more basal group Bolosauridae, including Bolosaurus (Fig. 9; Case 1907; Watson, 

1954; Romer, 1956; Reisz et al., 2002; Cisneros, 2008). Several procolophonids, such as 
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Procolophon (Fig. 10), have pointed or incisiform teeth anteriorly, and transversely broad 

molariform teeth posteriorly with concave wear patterns on the occlusal surface (Fig. 12; 

Romer, 1956; Ivakhnenko, 1973; Colbert and Kitching, 1975; Gow, 1977; Small, 1997; 

Cisneros, 2007). Tooth implantation in this group varies and is debated (Case, 1928b; 

Small, 1997; Cabreira and Cisneros, 2009; MacDougall and Modesto, 2011). Acrodonty, 

subthecodonty, and ankylothecodonty were proposed previously for this group (Case, 

1928b; Broom, 1905; Broili and Schröeder, 1936; Edmund, 1969; Sues and Olsen, 1993; 

Small, 1997; Cabreira and Cisneros, 2009). Several species show evidence of tooth 

replacement, and acrodonty is not usually associated with replacement (Small, 1997; 

Cabreira and Cisneros, 2009; MacDougall and Modesto, 2011). Because there is rare 

replacement in some species, this may support a protothecodont implantation. However, 

these teeth do not have sockets or roots, which supports an acrodont implantation, 

depending on the definition of acrodont used (MacDougall and Modesto, 2011). 

Procolophonids are also thought to range in their diets, and included carnivores, 

insectivores, and herbivores based on dental morphology of fossil material (Anderson and 

Anderson, 1970; Cisneros, 2007; Modesto et al., 2010). 

Originally, procolophonids were thought to be anapsid, possessing no temporal 

fenestra (Williston, 1917; Frazzetta; 1968; Daly, 1969). However, later findings show 

that some procolophonids have lower temporal fenestration (Hamley and Thulborn, 1993; 

Cisneros et al., 2004; Tsuji et al., 2010; MacDougall and Reisz, 2012, 2014). Fenestration 

in procolophonids may possibly be a juvenile characteristic that is lost or changes 

ontogenetically (MacDougall and Reisz, 2014; Reisz et al., 2014). Lower temporal 

fenestration may have originated once or several times in procolophonids, but many of 
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the procolophonid interrelationships remain obscure making this difficult to determine 

(Hamley and Thulborn, 1993; de Braga, 2003; Cisneros et al., 2004; Tsuji and Müller, 

2009). 

REPTILIAN DENTITION AND DIET 

Diet often is reflected in the morphology of an animal’s teeth (Kingsley, 1899; 

Parker and Haswell, 1899; Hotton, 1955). For example, a carnivore will display dentition 

that is more efficient at tearing flesh than an herbivore, and an herbivore will display 

dentition that is more efficient at orally processing plant material than a carnivore 

(Kingsley, 1899; Parker and Haswell, 1899). Tooth morphology may also change as the 

animal ages, often through replacement, and this may or may not reflect an ontogenetic 

change in diet (Peyer, 1929; Edmund, 1969; Gow, 1978; Dessem, 1985). Ontogenetic 

changes in tooth morphology can also be a result of wear (Gow, 1977, 1978; Demar and 

Bolt, 1981; Cabreira and Cisneros, 2009). 

Carnivory. The earliest reptiles possessed conical or cylindrical teeth which are 

thought to indicate a carnivorous diet, one where an animal feeds on another (Edmund, 

1969; Gow, 1978). Many carnivores may exhibit similar tooth morphology, but there is a 

range of tooth morphology exhibited by carnivorous reptiles (Fig. 12; Owen, 1840; 

Edmund, 1969; Vaeth et al., 1985; Massare, 1987; Britt et al., 2009). Reptiles may 

exhibit one or more different tooth morphology including conical teeth with pointed 

apices; laterally compressed teeth with a sharp, serrated cutting edge; conical teeth with a 

rounded apex; robust and blunt teeth; sharp, recurved teeth; fluted teeth, and even round, 

bulbous teeth (Owen, 1840; Romer, 1956; Edmund, 1969; Vaeth et al., 1985; Massare, 

1987; Britt et al., 2009). The morphology exhibited by those teeth have different 
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functions such as piercing, cutting, grasping, and crushing (Vaeth et al., 1985; Massare, 

1987). 

Molluscivores, carnivores which feed on molluscs, may have a more specialized 

dentition (Russell, 1975; Massare, 1987; Sues, 1987; Neenan et al., 2013). Some, such as 

the mosasaur genus Globidens, may exhibit rounded, bulbous, and even “acorn-shaped” 

teeth (Gilmore, 1912; Russell, 1975; Massare, 1987). Other molluscivores may exhibit 

broad plate-like teeth for crushing, such as placodonts (Edmund, 1969; Sues, 1987; 

Neenan et al., 2013). Molluscivores may not have overly-specialized tooth morphology 

however, as demonstrated by some snakes which have long, recurved teeth and feed on 

snails (Zweifel, 1954; Vaeth et al., 1985; do Amaral, 1999; Britt et al., 2009). 

Insectivores, another subset of carnivores which feed on insects, may sometimes 

exhibit a cuspate appearance (Hottton, 1955; Dessem, 1985; Sumida and Murphy, 1987). 

They may also exhibit small, peg-like teeth (Gow, 1978). Teeth in this group are typically 

slender, cylindrical, and possess a sharp point for piercing, but may also reflect the 

typical carnivorous morphologies previously listed (Hotton, 1955, Dessem, 1985).  

Herbivory. There are a variety of tooth morphology possessed by herbivorous 

reptiles, those reptiles which feed on plant material (Fig. 13; Edmund, 1969; Gow, 1978; 

Sues and Reisz, 1998). To efficiently process plant material, teeth often exhibit 

morphology for crushing, grinding, and shearing (Gow, 1978; Sues and Reisz, 1998). 

Some reptiles have grinding, cuspid, and transversely-wide teeth, although this is a 

morphology also associated with molluscivores and omnivores (Colbert, 1946; Edmund, 

1969; Gow, 1978; Weishampel and Norman, 1989; Sues and Reisz, 2008). Others have 

cuspate or serrated leaf-like teeth and/or anteriorly-posteriorly expanded crowns (Hotton, 
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1955; Edmund, 1969; Gow, 1978; Weishampel and Norman, 1989; Sues and Reisz, 1998; 

Lee, 1997). Others, like iguanodontid and cerotopsian dinosaurs, possessed dental 

batteries of numerous, closely packed teeth to grind plant material (Case, 1898; Sander, 

1997). 

Herbivore teeth may also exhibit higher levels of wear over time than carnivore 

teeth due to the fibrous content of plants, particularly if tooth replacement is absent or 

infrequent (Gow, 1977, 1978; Cabreira and Cisneros, 2009). This wear is often more 

pronounced in the posterior portion of the tooth row (Colbert, 1946; Gow, 1977, 1978). 

The amount of wear also can be indicative of what plant material is being eaten, i.e. a 

high-fiber diet vs. a low-fiber diet (Gow, 1978; Cisneros, 2008; Cabreira and Cisneros, 

2009). 

HYPOTHESES 

Based upon the literature, I define the following hypotheses concerning the 

anatomy, morphology, and evolutionary relationships of Palacrodon. 

1. HO: Palacrodon possesses no tooth roots or sockets, and teeth are located on 

the apical surface of the tooth-bearing element. 

HA: The teeth of Palacrodon are thecodont, possessing roots and sockets in 

the tooth-bearing element. 

2. HO: Palacrodon does not share more or fewer synapomorphies with any 

particular group, and taxonomic status cannot be determined. 

HA1: Palacrodon shares more characters with rhynchocephalians. 

HA2: Palacrodon shares more characters with procolophonids. 

HA3: Palacrodon shares more characters with trilophosaurs. 
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HA4: Palacrodon shares more characters with a group which was not 

previously suggested. 

3. HO: Based on tooth morphology and wear patterns, Palacrodon was a 

carnivore. 

HA1: Based on tooth morphology and wear patterns, Palacrodon was an 

herbivore. 

HA3: Based on tooth morphology and wear patterns, Palacrodon was an 

omnivore. 

HA4: Based on tooth morphology and wear patterns, Palacrodon had a diet not 

yet suggested in the literature. 

4. HO: Palacrodon does not display dental regionalization. 

HA: Palacrodon does displays dental regionalization. 
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FIGURE 1. Pangaea. Laurasia is the northern landmass and Gondwana is the southern 
landmass, divided by the equator. The majority of the modern African continent is in 
Gondwana. 
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FIGURE 2. Litho- and biostratigraphic subdivision of the Permo-Triassic of South Africa  
edited from Hancox and Rubidge (2001) with permission from Pergamon Press.  
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FIGURE 3. Map of Driefontein. Simplified geologic map of Driefontein take from Yates 
et al. (2012) and is publicly available to reuse. 
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FIGURE 4. Illustration of the positional terms regarding tooth implantation. A) 
pleurodonty, B) subthecodonty, C) thecodonty, D) acrodonty from Edmund (1969) with 
permission from University of Chicago Press. 
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FIGURE 5. Simplified phylogeny including Parareptilia and Diapsida. Taken from Lee 
(2013) with permission from John Wiley and Sons Inc. 
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FIGURE 6. Skull and jaw of Gephyrosaurus. Redrawn from Evans (1980) with 
permission from Blackwell Publishing LTD. Jaw shown in both labial (A) and lingual (B) 
view. Abbreviations listed in Appendix B. 
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FIGURE 7. Skull and jaw of Sphenodon. Redrawn from Romer (1956) with permission 
from the University of Chicago Press. Jaw shown in both labial (A) and lingual (B) view. 
Abbreviations listed in Appendix B. 
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FIGURE 8. Skull and jaw of Trilophosaurus. Redrawn from Romer (1956) with 
permission from the University of Chicago Press. Jaw shown in both labial (A) and 
lingual (B) view. Abbreviations listed in Appendix B. 
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FIGURE 9. Skull and jaw of Bolosaurus. Redrawn from Watson (1954). Jaw shown in 
both labial (A) and lingual (B) view. Abbreviations listed in Appendix B. Reprinted with 
permission from Museum of Comparative Zoology, Harvard University. 
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FIGURE 10. Skull and jaw of Procolophon. Redrawn from Romer (1956) with 
permission from the University of Chicago Press. Abbreviations listed in Appendix B. 
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FIGURE 11. Stages of dental wear in Procolophon. A) cusps are connected by a sharp 
ridge, B) wear begins to appear, dulling the ridge, C) uniform wear. Redrawn from Gow 
(1977) with permission from John Wiley and Sons Inc. 
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FIGURE 12. Example carnivore tooth morphology. Forms include A) pointed teeth, B) 
serrated teeth, C) robust teeth, D) piercing teeth, and E and F) crushing teeth. Redrawn 
from Massare (1987) with permission from Taylor and Francis LTD and Neenan et al. 
(2013) with permission from Nature Publishing Group. 
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FIGURE 13. Example herbivore tooth morphology. Forms include A) wide, cuspid teeth, 
B) wide, cuspid teeth (occlusal view), C) grasping teeth, D) serrated leaf-like teeth, and 
E) grinding dental batteries. Redrawn from Gow (1977) with permission from John 
Wiley and Sons Inc. and Romer (1956) with permission from the University of Chicago 
Press. 

 

 

 

 

 

 



66 

 

CHAPTER II 

Phylogenetic Placement of Palacrodon, an Early Triassic Reptile from Southern 

Gondwana 
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ABSTRACT 

The taxonomy of Palacrodon is not agreed upon despite decades of research, with 

suggestions that it may be a rhynchocephalian, a trilophosaur, or a procolophonid. This 

uncertainty is due in part to the incompleteness of the holotype. Specimens of 

Palacrodon collected from the Free State Province of South Africa during the last two 

decades provide more information about the morphology of Palacrodon. CT scans of 

Palacrodon reveal aspects of tooth attachment that suggest Palacrodon may be a 

procolophonid. Phylogenetic analysis places Palacrodon within Procolophonidae.   

 

Keywords:  procolophonid, Rhynchocephalia, trilophosaur, Karoo 
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Phylogenetic Placement of Palacrodon, an Early Triassic Reptile from Southern 

Gondwana 

INTRODUCTION 

Palacrodon browni is an early Triassic reptile found in South Africa and 

Antarctica (Broom, 1906; Gow, 1992, 1999; Neveling, 2004). Since the discovery of the 

South African holotype, another 75 specimens of P. browni have been recovered, with 

the majority being fragmented jaws and maxillae found at the Driefontein locality in the 

Free State Province of South Africa. The phylogenetic placement of P. browni has been 

debated for over a century, with suggestions that it could be a rhynchocephalian, a 

trilophosaur, or a procolophonid (Broom, 1906; Malan, 1963; Rubidge, 2005). This 

debate is in part due to the uninformative nature of the dentition, but also due to its 

acrodont tooth implantation and labio-lingually aligned tricuspid tooth morphology 

(Broom, 1906; Gow, 1992, 1999). Acrodonty is a feature that evolved several times 

(Romer, 1956; Edmund, 1969), but is not known in combination with the labio-lingually 

aligned tricuspid tooth morphology like what is seen in P. browni. Here, I will test the 

phylogenetic placement of P. browni by first comparing internal and external features of 

the dentition of P. browni to the taxa that were previously suggested, and then placing 

Palacrodon in a phylogenetic analysis. 

Tooth implantation is a useful character for understanding relationships among 

tetrapods because the mode of dental implantation (i.e., acrodont, pleurodont, thecodont) 

can characteristic of entire lineages (Romer, 1956; Edmund, 1969). As such, comparing 

dental implantation in P. browni to groups that are historically labeled as “acrodont” 

(rhynchocephalians and procolophonids) and to groups that have the labio-lingually 
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aligned tricuspid tooth morphology (trilophosaurs) can provide a better understanding of 

the phylogenetic standing of P. browni. Terms used to describe implantation are often 

conflated with tooth replacement (Edmund, 1969; Osborn, 1984; Estes et al., 1988; 

Gauthier et al., 1988; Augé, 1997; Luan et al., 2009), so my use of these words are 

outlined below. 

For this study, acrodont dentition is defined as tooth ankylosis to the crest of the 

marginal bones (i.e., premaxilla, maxilla, dentary; Edmund, 1969; Osborn, 1984; Jenkins 

et al., 2017). Acrodont implantation is seen in rhynchocephalians, chameleons, 

trogonophid amphisbaenians, agamids, and procolophonids (Gans, 1960; Edmund, 1969; 

Jones, 2008; Cabreira and Cisneros, 2009; MacDougall and Modesto, 2011; Falconnet et 

al., 2012). With pleurodont implantation the tooth is ankylosed to the lingual portion of 

the marginal bone (Edmund, 1969). Pleurodont dentition is seen in most lizards and 

several basal rhynchocephalians (Romer, 1956; Edmund, 1969). Thecodont implantation 

is present in archosaurs and mammals and is characterized by a tooth that sits within a 

socket. In some cases, thecodont teeth are ankylosed within the socket, a condition called 

ankylothecodont (Edmund, 1969; Chatterjee, 1974). Protothecodont implantation is 

present in many early reptiles and refers to a tooth ankylosed within a shallow pit 

(Edmund, 1969). 

GEOLOGIC SETTING 

 Specimens used in this study were collected at the farm Driefontein 11, Paul Roux 

District, Free State Province, South Africa. The strata at Driefontein belong to the Early 

Triassic Burgersdorp Formation, Cynognathus Assemblage Zone, subzone A (also called 

the ‘Kestrosaurus’ assemblage zone), which is Olenekian in age (Hancox and Rubidge, 
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2001; Neveling, 2004). Vertebrate fossils from those strata are dominated by 

mastodonsaurid, brachyopid, and trematosuchid amphibians, erythrosuchids, and 

actinopterygian, chondrichthyan, and lungfish taxa (Bender and Hancox, 2003, 2004). 

Rare synapsid material, including cynodont and bauriid specimens, also are found 

(Bender and Hancox, 2003; Abdala et al., 2006, 2007). 

 Driefontein incorporates laminated lacustrine muds overlain by channelized 

sandstones, and at the base of these sandstones are occasional lag deposits (Yates et al., 

2012). One particularly fossiliferous lag contains numerous fish remains, coprolites, and 

fragmented tooth-bearing specimens attributed to Palacrodon (Gow, 1999; Bender and 

Hancox, 2003, 2004; Yates et al., 2012). 

MATERIALS AND METHODS 

Thirty-nine specimens of P. browni housed at the Evolutionary Studies Institute 

(ESI) at the University of the Witwatersrand, Johannesburg, South Africa were examined. 

Eight specimens of P. browni were CT scanned at the ESI (sp. no. BP/1/5672 A, 

BP/1/7819, BP/1/7824, BP/1/7830, BP/1/7840, BP/1/7898, BP/1/7899, BP/1/7904). One 

specimen (BP/1/5672) was previously described by Gow (1999). CT scans were set at the 

following parameters (voltage: 90 kV, intensity: 110 µA) using a Nikon Metrology 

micro-CT scanner with a voxel size of 10 µm. Segmentation and 3D reconstruction of the 

material was performed using Amira 5.6 (Mercury Computer Systems, Inc.) at Sam 

Houston State University, Huntsville, Texas. Using Amira, specimens were digitally 

cleaned of debris and cement if necessary. Two of the specimens to be CT scanned 

(BP/1/5672 A and BP/1/7819) are described because they are the most complete, and an 
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isolated tooth (BP/1/7904) is described because it shows apomorphic features unique to 

P. browni. 

Using published literature, the taxa previously suggested to be related to 

Palacrodon (rhynchocephalians, trilophosaurs, procolophonids) were examined for 

synapomorphies. The features discussed in the following sections are deemed relevant for 

the purpose of comparing the anatomy of P. browni to the suggested taxa. The 

similarities in anatomy can then be used to perform a phylogenetic analysis that includes 

P. browni. 

For the phylogenetic analysis, the character matrix from MacDougall et al. (2013) 

was used, and I used their characters and added P. browni to their matrix (Appendix C). 

That matrix includes 26 taxa and 59 characters (MacDougall et al., 2013). Two changes 

were made to the previous character matrix to reflect autapomorphies seen in 

Palacrodon. For character 30 (the number of maxillary cusps), character state (3) was 

added for three maxillary cusps, so that now the character states are: maxillary teeth 

cusps: (0) one, (1) two, (2) two and anterior monocuspid teeth absent, (3) three. For 

character 40 (the number of molariform cusps), character state (3) was added for three 

molariform teeth cusps, so that now the character states are: dentary molariform teeth 

cusps: (0) one, (1) two adjacent cusps, (2) two widely separated cusps, (3) three.   

The revised data matrix was imported in the phylogenetic program TNT which 

runs phylogenetic analyses using parsimony (Goloboff and Catalano, 2016). A parsimony 

analysis is performed because it is considered an appropriate analysis for a morphological 

data set (Baum and Smith, 2013) and because I want to compare the results of my 

analysis to a previous analysis that also utilized parsimony (MacDougall et al., 2013). In 
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the parsimony analysis, the data set was subjected to a Traditional Search, which utilizes 

traditional computer algorithms for tree building using Tree Bisection and Reconnection 

(TBR) (Giribet, 2007). TBR is a standard branch-swapping technique in which all 

possible connections are made to the various branches of a tree to determine which 

connections are the most parsimonious (Felsenstein, 2004). Characters were considered 

unordered and equally weighted, meaning that all character changes are counted equally 

when calculating the most parsimonious trees, and no characters were considered more 

important (or weighted) than others (Baum and Smith, 2013).  

Bootstrap support values were calculated using 100 replicates in order to place 

confidence intervals on the phylogeny, and if a clade had a bootstrap value of 95% then it 

is considered to be statistically significant (Felsenstein, 1985). Each node found by the 

phylogenetic analysis reports bootstrap values. Consistency index (CI) was calculated to 

show the amount of homoplasy on the tree and was calculated as CI = 100 x minimum 

number of changes / tree length (Kluge and Farris, 1969; Baum and Smith, 2013).  CI 

ranges from 0.0 to 1.0, with values closer to 1.0 representing less homoplasy (Kluge and 

Farris, 1969; Baum and Smith, 2013). Retention index (RI) reports the proportion of taxa 

without homoplastic character states and is calculated as RI = 100 x (max changes – tree 

length) / (max changes – min changes) (Farris, 1989; Baum and Smith, 2013). RI is also 

ranges from 0.0 to 1.0, with values closer to 1.0 signifying that a greater proportion of the 

taxa do not have homoplastic character states (Farris, 1989; Baum and Smith, 2013). CI 

and RI are similar in that they report homoplasy, but RI is often preferred because it uses 

the full range from 0.0-1.0, whereas minimum CI values vary but are always above 0.0 
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(Archie, 1989; Baum and Smith, 2013). Bootstrap values, CI, and RI all were calculated 

using TNT. 

An additional parsimony analysis using the TNT macro “aquickie.run” was 

performed. This macro finds the most parsimonious tree for the data set and then 

calculates support values for a strict consensus tree. While aquickie.run can be used for 

several kinds of parsimony analyses, for this study Bremmer support values and 

Jackknife values were caluculated. Bremer support values are considered to be more 

popular and less ambigious of the support value calculations (Bremer, 1988). Bremer 

support values are calculated as the number of additional steps required to deresolve a 

clade in a tree (Bremer, 1988). Jackknifing is used to assess the stability of clades by 

removing each character in succession and then replacing the removed taxa before 

removing the next one in the succession (Lanyon, 1985). 

RESULTS      

Description   

BP/1/5672 A is a partial right dentary previously described by Gow (1999). The 

bone has multiple nutrient foramina visible from the labial side (Fig. 14 A). Large 

nutrient foramina are visible beneath the four largest, distal-most teeth. A pronounced 

Meckelian canal is visible from the lingual and inferior views and possess nutrient 

foramina (Fig. 14 B and D). There are five acrodont teeth, the mesial-most being the 

smallest, and the teeth increase in height, length, and width moving distally. The teeth are 

broadened labio-lingually and expand past the margins of the dentary. Almost the entire 

mesial-distal margin of each tooth comes in contact with the mesial-distal margin of the 

adjacent teeth (Fig. 14 C). All teeth are heavily worn on the occlusal surface. The three 
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mesial-most teeth show a tricuspid appearance where the three cusps are labiolingually 

aligned. The two distalmost teeth are too heavily worn to determine the number of cusps. 

BP/1/7819 is a partial left maxilla bearing five acrodont teeth (Fig. 15). The first 

four teeth increase in labial-lingual length and height moving distally, and the fifth, 

distal-most tooth in the smallest. The maxillary teeth have a tricuspid appearance except 

for the distal-most tooth which is bicuspid. The teeth are labio-lingually expanded and the 

two mesial-most teeth expand past the margins of the maxilla.  

Many teeth for some specimens of P. browni show that the central portions of 

each tooth are more heavily worn than the two cusps on the labio-lingual margins. The 

underside portion of each tooth has two parallel ridges which run labio-lingually and may 

assist in tooth attachment (Fig. 16). 

CT scans reveal numerous channels for blood vessels and nerves which run the 

length of the bone (Fig. 17 and 18). Depending on the portion of the bone, two to four 

large channels, including the alveolar canal, are visible with smaller vessels branching 

from those larger vessels. From the alveolar canal those smaller vessels feed the pulp 

cavity beneath the tooth. The pulp cavity is large, transversely wide, and nearly flat, 

excepting for the ridges located on the under portion of each tooth (Fig. 16). 

The tooth is firmly ankylosed to the surface of the bone. Though the tooth and 

bone are distinct in composition (dentine vs. bone), at the point of ankylosis there is no 

distinction between the two indicated by CT scans, showing that the material is all the 

same density. The two parallel ridges seen on the ventral portion of each tooth are also 

seen in sagittal slices of the dentary teeth (Fig. 17). 
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Anatomical Features in Suggested Taxa   

Previous workers suggested rhynchocephalians, trilophosaurs, and 

procolophonids as potential relatives of Palacrodon (Broom, 1906; Malan, 1963; 

Rubidge, 2005). However, from specimens collected thus far, those groups are restricted 

temporally and in some cases geographically, and those restrictions must be considered in 

determining the phylogenetic position of Palacrodon. Those restrictions, as well as basic 

morphological descriptions of each group are detailed below.   

Rhynchocephalians— The basal-most rhynchocephalians have fully or partially 

pleurodont, conical dentition (Evans, 1980; Whiteside; 1986; Fraser and Shelton, 1988; 

Jenkins et al., 2017). One species, Ankylosphenodon pachyostosus from the Early 

Cretaceous, shows ankylothecodont dental implantation (Reynoso, 2000). All others are 

described as having acrodont dentition with no evidence of replacement, but successional 

teeth may be added to the posterior end of the jaw (Romer, 1956; Edmund, 1969; Jones, 

2008; Jenkins et al., 2017). 

The earliest rhynchocephalians appear in the Middle Triassic with fully or 

partially pleurodont, conical dentition (Evans, 1980; Whiteside; 1986; Fraser and 

Shelton, 1988; Jenkins et al., 2017). Early rhynchocephalians are only known from sites 

in the northern hemisphere (Evans, 1980; Whiteside, 1986; Renesto, 1995; Heckert et al., 

2008; Whiteside and Duffin, 2017). The first known appearance of a rhynchocephalian in 

the southern hemisphere is a species of Clevosaurus from the Early Jurassic of South 

Africa (Sues and Reisz, 1995). Fully acrodont dentition appears by the late Triassic, first 

seen in Clevosaurus, and teeth are not replaced (Fraser, 1988). A few rhynchocephalians 

show transversely broad dentition, and those taxa appear in the Late Jurassic and the 
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Cretaceous (Rasmussen and Callison, 1981; Throckmorton et al., 1981; Apesteguía and 

Novas, 2003; Martínez et al., 2013).  

Trilophosaurs— Dental implantation in trilophosaurs is ankylothecodont 

(Gregory, 1945; Parks, 1969; Murry, 1987; Sues, 2003; Heckert et al., 2006). 

Trilophosaurs possess transversely wide molariform teeth, and some species such as 

Trilophosaurus, possess three labio-lingually aligned cusps (Case, 1928a, 1928b; 

Gregory, 1945; Parks, 1969; Demar and Bolt, 1981). Trilophosaur fossils are only known 

from the American southwest, with questionable trilophosaur material from Canada, and 

they are temporally restricted to the Upper Triassic (Sues, 2003; Heckert et al., 2006; 

Spielmann et al., 2008, 2009).  

Procolophonids— Tooth implantation in procolophonids is disputed, with some 

arguing that implantation is protothecodont (Gow, 1977; Li, 1983; Small, 1997; 

MacDougall and Modesto, 2011), ankylothecodont (Sues and Olsen, 1993), or acrodont 

(Li, 1983; Cabreira and Cisneros, 2009) because some procolophonids show tooth 

replacement. Some uses of the term “acrodont” include a lack of replacement in addition 

to the apical position of the tooth to the marginal bones (Augé, 1997), and because some 

procolophonids show evidence of replacement, some conclude that procolophonids are 

not acrodont (MacDougall and Modesto, 2011). However, not all definitions of acrodont 

include replacement, and acrodont can be used to describe the position of the tooth in 

relation to the marginal bone (Edmund, 1969; Osborn, 1984; Luan et al., 2009; Jenkins et 

al., 2017). In this thesis, acrodont will only be used as a positional term in which the 

tooth sits atop the marginal bones, not it does not refer to tooth replacement. As such, if a 
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procolophonid shows replacement, it may still possess acrodont tooth implantation if the 

tooth sits at the crest of the marginal bones. 

Some procolophonids and other parareptiles show extreme ankylosis between 

tooth and bone (Cabreira and Cisneros, 2009; MacDougall et al., 2014). Many 

procolophonids also have differentiated incisiform and molariform teeth (Small, 1997; 

Sues et al., 2000; Säilä, 2010a). Procolophon and other Triassic procolophonids 

possesses transversely wide molariform teeth, often with two cusps on the occlusal 

surface which are connected by a loph, and that loph wears down ontogenetically to 

create a flat and smooth grinding surface (Gow, 1978; Fraser et al., 2005; Cisneros, 

2008a; Säilä, 2010a). Additionally, a few procolophonids (Xenodiphyodon, 

Tricuspisaurus, and Scoloparia) are noted to have labio-lingually aligned tricuspid teeth 

(Fraser, 1986; Sues and Olsen, 1993; Sues and Baird, 1998).  

Procolophonids span the Late Permian to the Late Triassic, and they are the only 

known lineage within Parareptilia to survive the Permian mass extinction and then go 

extinct at the end of the Triassic (Piñero et al., 2004; Tsuji and Müller, 2009; Säilä, 

2010a; Botha-Brink and Smith, 2012). In the Early Triassic, the dentition of 

procolophonids exhibited dental regionalization which included both incisiform and 

molariform morphologies, and replacement is not frequently seen in procolophonids 

(Ivaknenko, 1974; Gow, 1978; Small, 1997; MacDougall and Modesto, 2011). 

Procolophonids were a cosmopolitan group, and several members were found in South 

Africa (e.g., Colbert and Kitching, 1975; Gow, 2000; Modesto et al., 2001; Cisneros, 

2008a; MacDougall et al., 2013).   
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Phylogenetic Analysis  

SYSTEMATIC PALEONTOLOGY 

PARAREPTILIA Olson, 1947 sensu Laurin and Reisz, 1995 

PROCOLOPHONOMORPHA Romer, 1964 

PROCOLOPHONIDAE Seeley 1888 

PALACRODON BROWNI Broom 1906 

Institutional Abbreviations—BP, Evolutionary Studies Institute, Johannesburg, South 

Africa (formerly the Bernard Price Institute); SAM, South African Museum, Cape Town, 

South Africa. 

Holotype—SAM-PK-5871, partial dentary, unknown locality in South Africa. 

Referred Specimens—BP/1/5672 A, BP/1/5672 B, BP/1/6724, BP/1/7819, BP/1/7824, 

BP/1/7825, BP/1/7826, BP/1/7827, BP/1/7828, BP/1/7829, BP/1/7830, BP/1/7831, 

BP/1/7832, BP/1/7833, BP/1/7834, BP/1/7835, BP/1/7836, BP/1/7837, BP/1/7838, 

BP/1/7839, BP/1/7840, BP/1/7841, BP/1/7892, BP/1/7893, BP/1/7894, BP/1/7895, 

BP/1/7896, BP/1/7897, BP/1/7898, BP/1/7899, BP/1/7900, BP/1/7901, BP/1/7902, 

BP/1/7903. BP/1/7904, BP/1/7905, BP/1/7906, BP/1/7930; all are fragmented tooth-

bearing elements; Olenekian (Early Triassic), Burgersdorp Formation, Cynognathus 

Assemblage Zone, subzone A, Farm Driefontein 11, Paul Roux district, Free State 

Province, South Africa (Gow, 1999). BP/1/5296; partial skull belonging to 

Fremouwsaurus; Lower Fremouw Formation, equivalent to the Lystrosaurus Assemblage 

zone, unknown locality at Kitching Ridge, Antarctica (Gow, 1992; Sidor et al., 2008). 

The similarities between Palacrodon and procolophonids justifies placing 

Palacrodon in a phylogenetic analysis with other procolophonids (MacDougall et al., 
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2013). The first parsimony analysis produced six equally parsimonious trees, with a tree 

length of 160 steps, which is the number of character changes on the tree (Baum and 

Smith, 2013). Those six trees were combined in a strict consensus tree (Fig. 19).  

Bootstrap support is below 50% for most clades. However, low bootstrap support is 

common in analyses of procolophonids and other parareptiles owing to missing data 

(Cisneros, 2008b; Säilä, 2008; MacDougall and Modesto, 2011; MacDougall et al., 

2013). CI is calculated as 0.602 and RI is calculated as 0.689, showing that most 

character states are not homoplastic, although there is some homoplasy on the tree. The 

results of the phylogenetic analysis suggest that P. browni belongs in the family 

Procolophonidae and is sister to Hypsognathus, although with a low bootstrap support of 

seven.  

The overall topology of the consensus tree resulting from my analysis is similar to 

that recovered by MacDougall et al. (2013). My analysis shows a sister relationship 

between ‘Eumetabolodon’ dongshengensis and Theledectes that was not previously 

recovered. The polytomy in my analysis consisting of Pentaedrusaurus, 

Neoprocolophon, and Phonodus also included Phaanthosaurus, ‘Eumetabolodon,’ 

Theledectes, Tichvinskia, Timanophon, and Kitchingnathus in MacDougall et al.’s 

analysis (2013). The additional analysis performed (Fig. 20) also resolved the large 

polytomy seen in MacDougall et al.’s. However, this analysis shows Palacrodon within a 

polytomy that also includes Sclerosaurus, Scoloparia, Leptopleuron, Soturnia, and 

Hypsognathus. 

For my analysis, the presence of labio-lingually aligned tricuspid teeth in P. 

browni is autapomorphic. However, a phylogenetic analysis that includes other tricuspid 



80 

 

taxa (Xenodiphyodon, Tricuspisaurus, and Scoloparia) has not been performed by the 

authors who described those taxa. Those three taxa and P. browni may potentially 

represent a tricuspid clade within Procolophonidae; the alternative is that the trait is 

homoplastic.  

DISCUSSION 

As seen in the literature, there are several important features in 

rhynchocephalians, trilophosaurs, and procolophonids that are similar to P. browni. 

Comparisons between P. browni and those taxa, are outlined below. 

Rhynchocephalians— Fusion between the tooth and bone in acrodont 

rhynchocephalians, such as Clevosaurus, is extensive, obscuring the boundary between 

the two, similar to P. browni (Jenkins et al., 2017:230). However, Gephyrosaurus (which 

is pleurodont), Clevosaurus, and Sphenodon have a more conical pulp cavity (Harrison, 

1901:214–216; Kieser et al., 2011:46; Jenkins et al., 2017:303), whereas the pulp cavity 

of Palacrodon is transversely wide.  Because basal rhynchocephalians do not possess 

fully acrodont dentition and their dentition is conical, Palacrodon is not a basal 

rhynchocephalian. Additionally, those rhynchocephalians with transversely broad 

dentition do not possess cusps similar to those seen in Palacrodon and do not appear until 

the Early Jurassic. The most parsimonious explanation is that the acrodont implantation 

seen in rhynchocephalians and Palacrodon evolved independently. 

Trilophosaurs— Physical slices through the maxillary of Trilophosaurus shows 

that it possesses a large, tear-shaped pulp cavity in sagittal sections (Gregory, 1945:337), 

unlike what is seen in Palacrodon. Both Palacrodon and trilophosaurs show ankylosing 

between tooth and bone, but unlike Palacrodon, trilophosaurs possess extensive roots 
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that extend into the jaw and replaces its teeth (Case, 1928b; Demar and Bolt, 1981; 

Heckert et al., 2006). The temporal fenestration in Palacrodon (seen in a specimen in 

Antarctica) also does not correspond with the temporal fenestration in trilophosaurs 

(Gregory, 1945; Parks, 1969; Heckert et al., 2006). Considering those morphological 

differences between Palacrodon and trilophosaurs and the restricted geography and 

temporal distribution of trilophosaurs, Palacrodon is not a South African, Early Triassic 

trilophosaur. The tricuspid appearance seen in Palacrodon and trilophosaurs is better 

explained by convergence. 

Procolophonids— Palacrodon shares three apomorphies with procolophonids 

described below. The extensive dental ankylosis and acrodont dental implantation of 

Palacrodon resembles several procolophonids. Anatomical research shows that 

procolophonids and other parareptiles have a relatively large pulp cavity that is conical or 

rounded (Cabreira and Cisneros, 2009; MacDougall and Reisz, 2012:1022; MacDougall 

et al., 2014). Palacrodon also possesses a large pulp cavity, although not it is not 

morphologically similar to the cavities of parareptiles studied thus far. The tricuspid, 

transversely wide, molariform-like teeth associated with Palacrodon are similar to the 

procolophonids Xenodiphyodon, Tricuspisaurus, and Scoloparia.  

The most complete specimen of Palacrodon was found in Antarctica (Gow, 

1992). The presence of partial lower temporal fenestration indicates that it is likely a 

diapsid, and this specimen is currently classified as Diapsida incerte sedis (Gow, 1992, 

1999). Procolophonids and other parareptiles possessing lower temporal fenestration 

were discovered since those descriptions of Palacrodon (e.g., Hamley and Thulborn, 

1993; Cisneros et al., 2004; MacDougall and Reisz, 2014). With this evidence, it is 
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reasonable to infer that Palacrodon could be a procolophonid, and this is congruent with 

its placement in the phylogenetic analysis as part of procolophonids. 

CONCLUSIONS 

Based on the temporal and geographic ranges of rhynchocephalians, 

trilophosaurs, and procolophonids as well as the similarities of the dentition, Palacrodon 

is likely a procolophonid. The results of the phylogenetic analysis show that Palacrodon 

most likely lies within Procolophonidae. The labiolingually aligned tricuspid tooth 

morphology may be a synapomorphy for a clade of tricuspid procolophonids including 

Palacrodon, but more phylogenetic and descriptive work is needed to corroborate this 

hypothesis.  

Furthermore, additional anatomical work on procolophonids with transversely 

wide dentition, rather than on those with more conical teeth (the focus of prior research), 

may reveal similarities in the pulp cavities between Palacrodon and other 

procolophonids. Anatomical research on other procolophonids with expanded molariform 

dentition may reveal transverse parallel ridges beneath the crowns like those of 

Palacrodon, further supporting the hypothesis that it is a procolophonid. It could also 

reveal the opposite, revealing a unique morphological feature in Palacrodon related to 

tooth attachment. This feature has not yet been reported in any tetrapod. 
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FIGURE 14. Palacrodon specimen BP/1/5672 A external views. Partial right dentary in 
A) labial view, B) lingual view, C) occlusal view, and D) inferior view. 
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FIGURE 15. Palacrodon specimen BP/1/7819 A external views. Partial left maxilla in A) 
lingual view, B) labial view, C) occlusal view, and D) superior view 
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FIGURE 16. Palacrodon specimen BP/1/7904 external views.  Longitudinal ridges are 
visible on the underside of the tooth. Tooth exhibits concave wear in the central portion 
towards the base of the tooth. Two cusps are visible. 
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FIGURE 17. Palacrodon specimen BP/1/5672 A sagittal view of right dentary. Location 
of the slice is indicated by the orange line. The two longitudinal ridges beneath the 
mesialmost tooth are indicated. 
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FIGURE 18. Palacrodon specimen BP/1/5672 A coronal views of right dentary. Location 
of the slices are indicated by the orange lines. 
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FIGURE 19. Strict consensus of six trees discovered in TNT including character data for 
Palacrodon.  Bootstrap values are indicated at the branch nodes.   
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FIGURE 20. Consensus tree recovered with Bremer and Jackknife support values. 
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CHAPTER III 

Inferring the Diet of Palacrodon from its Dentition 
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This thesis follows the style and format of Palaeontologia africana. 
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ABSTRACT 

The diet of the Early Triassic reptile Palacrodon is uncertain. New specimens of 

Palacrodon discovered in the Free State Province, South Africa reveal aspects of the 

dental morphology and wear patterns from which diet can be inferred. Labiolingually 

elongated, cuspate, molariform dentition paired with severe wear on the occlusal surfaces 

of the teeth is indicative of an herbivorous or omnivorous diet. Three distinct wear 

patterns are identified that indicate shearing and grinding movements. Similar dental 

morphologies are also present in the teiid Teius teyou and multiple extinct lineages. 

 

Keywords: dentition, herbivory, wear patterns, Karoo, Triassic 
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Inferring the Diet of Palacrodon from its Dentition 

INTRODUCTION 

There is no consensus on the diet of Palacrodon. One author classified it as an 

herbivore (Gow 1992), but it has since been classified as a carnivore and an omnivore 

(Nicolas & Rubidge 2010; Smith et al. 2012). In 1996 a partial dentary and maxilla 

associated to Palacrodon were discovered at the Driefontein locality in the Free State 

Province of South Africa (Gow 1999). Now a total of 76 specimens have been 

discovered, allowing the dental morphology of Palacrodon to be examined with a large 

sample size. Morphology, dental regionalization, and wear are features from which diet 

can be inferred (e.g., Edmund 1969; Gow 1978; Weishampel & Norman 1989; Ungar 

1998). Here I will test the initial hypothesis set forth by Gow (1992) that Palacrodon is 

an herbivore using those aspects of tooth morphology.  

Diet can be estimated by dental morphology (Kingsley 1899; Parker & Haswell 

1899; Hotton 1955; Edmund 1969; Hillson 2005). In reptiles, a carnivore’s tooth 

typically is adapted for piercing and/or mastication, compared to an herbivorous reptile’s 

tooth which is often adapted for more sophisticated oral processing such as shearing and 

grinding (Chapter 1, Figure 12; Kingsley 1899; Parker and Haswell 1899). Highly 

specialized clades within Reptilia (e.g., turtles and birds) lack teeth entirely but are 

adapted for many forms of herbivory, carnivory, and omnivory (Lack 1947; Edmund 

1969). Additionally, some features like dentition are constant phylogenetically, as in the 

case of anoles and iguanians which retain multicuspid teeth even though some species are 

insectivorous while others are herbivorous (Melstrom 2017). 
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Cylindrical teeth in reptiles often correlate with a carnivorous or insectivorous 

diet (Edmund 1969). Those teeth are sometimes modified by serrations, lateral 

compression, pointed apices, and/or blunt surfaces which aid in grasping, piercing, or 

crushing (Romer 1956; Edmund 1969). Some insectivorous reptiles, like many iguanians, 

geckos, and teiids, may also have cusps (Hotton 1955; Sumida & Murphy 1987; 

Berkovitz & Shellis 2016; Zahradnicek et al. 2014). Some reptiles, like snakes, possess 

recurved teeth that are either smooth or that have lateral ridges to accommodate different 

prey items (Vaeth et al. 1985). Specialized carnivores with a durophagous diet, a diet 

consisting of conchiferan mollusks, corals, and other hard-shelled organisms, have teeth 

adapted for crushing those hard materials; and the teeth may be more rounded, as in the 

mosasaur genus Globidens, or may possess flat tooth plates that cover large portions of 

the palate, as seen in most placodonts (Romer 1956; Massare 1987; Neenan et al. 2013; 

Berkovitz & Shellis 2016). In carnivorous mammals, teeth are often modified from the 

conical or triangular shape seen in reptiles and exhibit features like cusps and ridges 

(Osborn 1907; Crompton 1971; Hillson 2005; Jernvall & Thesleff 2012). 

An herbivorous reptile’s tooth also often strays from the typical conical shape 

seen in carnivorous forms, and they may also possess larger grinding surfaces in some 

cases to chew food more thoroughly (Chapter 1 Figure 13; Gow 1978; Weishampel & 

Norman 1989; Hillson 2005). For herbivorous reptiles, dental morphology varies, but 

may include features like cusps and leaf-like serrations, as seen in iguanids and some 

dinosaurs (Hotton 1955; Edmund 1969; Sander 1997; Melstrom 2017). Other herbivorous 

dental characters are more suited for grinding, such as reptilian molariform teeth seen in 

extinct groups such as procolophonids and trilophosaurs that possess labiolingually-wide 
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dentition, and the molariform teeth seen in some extant skinks, chameleons, and teiids 

(Romer 1956; Gow 1977; Demar & Bolt 1981; Estes & Williams 1984; Säilä 2010). 

Dental batteries (i.e., numerous interlocked teeth) seen in ornithopod dinosaurs are also 

suitable for grinding plant material (Edmund 1969; Sander 1997; Sereno & Wilson 2005; 

Barrett 2014).  

Tooth morphology in many herbivorous reptiles is also characterized by 

isognathy, defined as the upper and lower dental arch being equally wide, and occurs 

with dental occlusion, particularly in early herbivores that diversified in the Middle 

Permian through the Triassic (Weishampel & Norman 1989; King 1996). Herbivory in 

reptiles can also be inferred by dental organization (i.e., heterodonty), with teeth being 

separated into mesial incisiform teeth suited for chopping or slicing and distal molariform 

teeth suited for grinding (Romer 1956; Edmund 1969). Although heterodonty is a feature 

often associated with herbivory in the fossil record, extant carnivorous taxa may also 

possess heterodont dentition, like Crocodylus niloticus which is a carnivore with incisor, 

canine, and molar regions and Anolis allisoni which is an insectivore with unicuspid and 

tricuspid teeth (Kieser et al. 1993; Zahradnicek et al. 2014).  Omnivorous lizards also 

may have heterodont dentition with enlarged molariform teeth, like some members of the 

genus Tiliqua (Estes & Williams 1984). 

Tooth wear can be indicative of herbivory as the teeth are worn down by fibrous 

plant materials, nuts, and/or seeds, and those wear patterns also can indicate masticatory 

movement (e.g., orthal, propalinal, transverse; Crompton & Attridge 1986; Weishampel 

& Norman 1989; Reisz 2006). Yet, carnivorous and insectivorous animals may also 

experience tooth wear, particularly if the teeth are not replaced or if they are replaced 
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slowly as the animal ages, as in Sphenodon or agamid lizards (Harrison 1901; 

Throckmorton 1979; Smirina & Ananjeva 2007; Kieser et al. 2011), if the animal eats 

material that is harder than flesh like shells and bone (Estes & Williams 1984; Neenan et 

al. 2014), or if interlocking teeth abrade against each other (Massare 1987).   

It was previously hypothesized that smaller animals lack the elongated gut 

necessary for digesting plant material (Pough 1973; Wilson & Lee 1974), in addition it 

was estimated that herbivorous reptiles needed to weigh at least 300 g in order to 

effectively ferment plant material in the gut (Pough 1973). Carnivores typically range 

between 50-100 g, and juveniles of herbivorous species generally are carnivorous or 

insectivorous until reaching an adult body size (Pough 1973). However, there are extant 

small-bodied herbivorous and omnivorous reptiles like the lizards Sceloporus torquatus 

torquatus, Angolosaurus skoogi, and many liolaemids (Búrquez et al. 1986; Pietruszka et 

al. 1986; Espinoza et al. 2004). Additionally, tooth morphology can also differ 

ontogenetically to accommodate changes in diet, as seen in the teiids Ameiva exsul 

alboguttata, Tupinambis rufescens, and T. teguixin, and the anguid Diploglossus 

crusculus (Presche 1974; Estes & Williams 1984). Some extinct small-bodied reptiles, 

including many procolophonids and bolosaurs, are thought to have been herbivorous 

based on tooth morphology (Romer 1956; Berman et al. 2000; Reisz 2006). As such, 

body size is not always the most useful indicator of diet, but it can support other 

morphological features that suggest diet (e.g., teeth). 

GEOLOGIC SETTING 

 Because environmental setting may also help predict the diet of an animal, here I 

provide a brief description of the environment associated with the specimens I examined. 
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Specimens for this study (with the exception of one from Antarctica) were collected at 

the farm Driefontein 11, Paul Roux District, Free State Province, South Africa. The strata 

at Driefontein belong to the Early Triassic (Olenekian) Burgersdorp Formation, 

Cynognathus Assemblage Zone, subzone A (also called the ‘Kestrosaurus’ assemblage 

zone) (Hancox & Rubidge 2001; Neveling 2004). The Burgersdorp Formation is 

dominated by fluvio-lacustrine siliciclastic rocks (Johnson 1976; Hancox & Rubidge 

2001). Driefontein incorporates laminated lacustrine muds overlain by channelized 

sandstones, and at the base of these sandstones are occasional lag deposits containing 

fossils (Yates et al. 2012).  

 The strata at Driefontein are dominated by mastodonsaurid, brachyopid, and 

trematosuchid amphibians, erythrosuchids, and rare cynodont and bauriid specimens 

(Bender and Hancox 2003, 2004; Abdala et al. 2006, 2007). One particularly fossiliferous 

lag deposit contains numerous actinopterygian, chondrichthyan, and dipnoian elements, 

fish coprolites, and fragmented tooth-bearing specimens attributed to Palacrodon (Ortiz 

et al. 2010; Gow 1999; Bender and Hancox 2003, 2004; Yates et al. 2012). Coprolites 

from this lag contain shellfish (Yates et al. 2012). The high percentage of fish remains 

found in this lag indicates that the assemblage is predominantly aquatic (Yates et al. 

2012). 

MATERIALS AND METHODS 

Thirty-nine specimens of Palacrodon were available to study at the Evolutionary 

Studies Institute at the University of the Witwatersrand, Johannesburg, South Africa. 

Referred specimens are BP/1/5672 A, BP/1/5672 B, BP/1/6724, BP/1/7819, BP/1/7824, 

BP/1/7825, BP/1/7826, BP/1/7827, BP/1/7828, BP/1/7829, BP/1/7830, BP/1/7831, 
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BP/1/7832, BP/1/7833, BP/1/7834, BP/1/7835, BP/1/7836, BP/1/7837, BP/1/7838, 

BP/1/7839, BP/1/7840, BP/1/7841, BP/1/7892, BP/1/7893, BP/1/7894, BP/1/7895, 

BP/1/7896, BP/1/7897, BP/1/7898, BP/1/7899, BP/1/7900, BP/1/7901, BP/1/7902, 

BP/1/7903. BP/1/7904, BP/1/7905, BP/1/7906, BP/1/7930.  

Height, width, and length were measured for teeth not broken or obscured by 

matrix using Mitutoyo Absolute Digimatic calipers. Height, width, and length are 

normally distributed (Shapiro-Wilk test; p=0.29, p=0.83, p=0.65, respectively). 

Measurements for the specimen from Antarctica (Fremouwsaurus, BP/1/5296) were not 

taken because the specimen is encased in resin. In many cases an analysis of covariance 

(ANCOVA) can be used to compare morphology between populations and/or species 

while using body size as a covariate (McCoy et al. 2006). Since no complete elements of 

Palacrodon have been found, precise body size cannot be calculated in order to make 

direct statistical comparisons to other taxa. A qualitative assessment plotting the averages 

and standard deviations of height, width, and length (Figure 21) and bivariate plots 

(Figure 22 & 26) are used to view the general shape and assess size differences of the 

teeth of Palacrodon. 

RESULTS 

Tooth Size  

The average tooth measurements for height, width, and length are 1.27 mm (SD = 

0.45), 2.82 mm (SD = 0.80), and 1.71 (SD = 0.45), respectively, and raw tooth 

measurements are reported in Appendix D. These values are reported on Figure 21. These 

data show that the teeth are wider than they are long or tall. The dimensions of the teeth 
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reported on Figure 22 plot near the grinding/shredding morphotypes reported by Jones 

(2009) in Figure 23. 

Tooth Morphology  

The morphology of the teeth is best described as molariform, because they are 

cuspate, rectangular, and have increasing surface area distally. The molariform teeth of 

Palacrodon are wider along the labiolingual plane than the mesiodistal plane, and the 

teeth are either bicuspate or tricuspate. All specimens from Driefontein only possess 

molariform teeth. However, the specimen from Antarctica shows regionalization 

possessing both incisiform and molariform teeth (Fig. 24). Because Fremouwsaurus and 

Palacrodon are regarded as being the same genera (Gow 1992, 1999), we may infer that 

Palacrodon specimens from Driefontein also possesses regionalization. 

Isognathy cannot be inferred from the specimens collected at Driefontein because 

all specimens recovered are isolated dentary and maxillary fragments. The Antarctic 

specimen preserves a larger portion of the skull, but is imbedded in resin, so it is not 

possible to determine isognathy.  

Tooth Wear  

In all cases where wear is present, it appears along the labiolingual plane of the 

teeth. The degree of wear differs between specimens and sometimes between teeth 

located on the same specimen. Here I define three distinct wear patterns on the teeth of 

Palacrodon.  

Type I wear is exhibited evenly across labiolingual plane of the tooth and is 

located on the anterior or posterior slope of the tooth. This wear only appears on either 

the mesial or distal portion of the tooth, but never appears on both slopes on the same 
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specimen (Fig. 25 A & B). For some teeth this creates a sharp ridge at the apex of the 

tooth (Fig. 25 B).  

Type II is a flat wear pattern that is centered on the apex of the tooth (Fig. 25 C & 

D). This wear pattern is not always centered on the labiolingual plane of the tooth, and 

some teeth show more wear near one cusp than the other.  

Type III wear is also centered on the apex of the tooth, but the wear is heavier 

along the mesial portion of the tooth, and the distal portions of the tooth slope upwards to 

create a concave wear pattern towards the base of the tooth (Fig. 25 E). This type of wear 

usually preserves cusps. Types I and II rarely preserve cusps. 

As teeth increase in height they also increase in width (Fig. 26). However, the 

widest teeth are not the tallest teeth. Those teeth that are wider are also more heavily 

worn than those teeth that are narrower. 

DISCUSSION 

The specific dimensions of the teeth show that they align with the teeth of 

rhynchocephalians that are presumed to be herbivorous (Jones 2009). The similarity of 

the dimensions of Palacrodon to those herbivorous rhynchocephalians supports the 

hypothesis that Palacrodon incorporated plants into its diet. The teeth of Palacrodon are 

wider than they are long and cuspate as seen in procolophonids, trilophosaurs, diadectids, 

and pereiasaurs which are also thought to be herbivorous (J. Gregory 1945; W. Gregory 

1946; Edmund 1969; Gow 1977, 1978; Demar & Bolt 1981; Li 1983). Because of its 

resemblance to extinct rhynchocephalians that are presumed to be herbivorous, herbivory 

is supported for Palacrodon. However, given that all but one species of rhynchocephalian 

is extinct, this support is weak. 
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Similar to Palacrodon, the insectivorous Teiid Teius tegu has bicuspid and 

occasional tricuspid teeth with labiolingually aligned cusps (Brizuela & Albino 2009; 

Zahradnicek et al. 2014). In other lizards, like iguanians, tricuspid teeth are utilized in 

insectivorous, herbivorous, and even durophageous diets, although their teeth are 

labiolingually compressed (Zahradnicek et al. 2014).  Comparing the teeth of Palacrodon 

to the teeth of extant reptiles does support an herbivorous diet, but no more than it does 

an insectivorous or durophageous diet.  

Palacrodon possessed both incisiform and molariform teeth, a condition that is 

frequently associated with herbivory and omnivory in reptiles. Because heterodonty is a 

feature associated with various diets, that feature cannot be used to solely support an 

herbivorous diet for Palacrodon, and an omnivorous diet may also be supported. 

The shearing ridge seen in the Type I wear pattern would be useful in chopping 

plant material as well as puncturing hard exoskeletons of arthropods. The Type II wear 

that appears on the apex of the tooth indicates a grinding surface for grinding plants or 

even crushing hard material like arthropods or shells. It is difficult to determine what 

caused the Type III wear pattern, but the heavy amount of the wear is indicative of hard 

objects, although all cases of wear could be a symptom of aging as well. Durophagy is 

also a possibility, because the broad teeth flattened by wear would be useful in crushing 

hard-shelled organisms, and previous research at Driefontein shows there were mollusks 

present (Yates et al. 2012). Wear patterns along support an herbivorous, omnivorous, 

insectivorous, or even durophageous diet. 

As seen in Figure 26, teeth are taller as they become wider to an extent. However, 

teeth that are wider than three millimeters appear to drop off in height. Teeth wider that 



113 

 

three millimeters are also more heavily worn than teeth less than three millimeters wide. 

Those data show that teeth grow taller and wider ontogenetically, but at approximately 

three millimeters teeth continue to grow wider but shorten in height due to wear. 

Although the heavy wear supports an herbivorous diet, it may also support an 

omnivorous or durophageous diet or ontogenetic stages of wear. Additionally, these data 

can be interpreted as a possible ontogenetic shift in diet, sexual dimorphism, 

ecophenotypic plasticity over time, or may represent different portions of the dentary and 

maxilla. 

Even though body size of Palacrodon cannot be determined, the mesiodistal 

length of the teeth indicate it is a smaller animal, similar in size to median sized lizards 

(e.g., Chamaeleolis porcus, C. chamaeoleonides, Diplolaemus bibroni, Tiliqua 

scincoides; Estes & Williams 1984). Although there are instances of small herbivorous 

reptiles, those instances are less common. The cuspation and sharp ridges of some 

specimens suggest that Palacrodon may have incorporated arthropods into its diet 

because its small size may not have been conducive to digesting plants, and arthropods 

are a more calorically dense food. Another possibility is that Palacrodon switched from 

insectivory to herbivory ontogenetically, as seen in several extant reptiles like the 

iguanids Sceloporus poinsetti and the Liolaemus lutzae (Pough 1973; Ballinger et al. 

1977; Werner & Gilliam 1984; Rocha 1998) and as suggested for several other small-

bodied extinct reptiles, like procolophonids and trilophosaurs (Gow 1977; Demar & Bolt 

1981; Li 1983). Although body size is not always a reliable indicator of diet, body size 

suggests that Palacrodon was most likely herbivorous or omnivorous. 
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The teeth of Palacrodon suggest that it was an herbivore or omnivore with a diet 

consisting of plant material and possibly arthropods and/or hard-shelled organisms as 

indicated by the aquatic assemblage from which Palacrodon is found. Strict carnivory is 

not supported by the morphology of the teeth.  
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Figure 21.  Average height, width, and length of the teeth of Palacrodon. Height, width, 
and length were measured for teeth not broken or obscured by matrix. Height, width, and 
length are normally distributed (Shapiro-Wilk test; p=0.29, p=0.83, p=0.65, respectively). 
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Figure 22. Width vs. length of the tooth base of Palacrodon. All measurements are in 
millimeters. 
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Figure 23. Dimensions of the dentary tooth base in Rhynchocephalia (modified from 
Jones [2009] with permission from Karger Publishers).  The dimensions for Palacrodon 
are indicated by error bars, and they show that the teeth of Palacrodon fall near the 
grinding/shredding morphotypes. 
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Figure 24. Palacrodon (specimen from Antarctica). Labels indicate regionalization by the 
presence of molariform and incisiform teeth. 
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Figure 25. Wear patterns seen in Palacrodon. A) BP/1/7901 – tooth-bearing fragment 
with Type I wear; B) BP/1/7826 – tooth-bearing fragment with Type I; C) BP/1/7827 – 
tooth-bearing fragment with Type II wear; D) BP/1/7841 – partial maxilla with Type II 
wear; E) BP/1/6724 – partial maxilla with Type III wear. Scale bar equals five 
millimeters. 
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Figure 26. Height vs. width of the teeth of Palacrodon.  All measurements are in 
millimeters. 
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CHAPTER IV 

Conclusions 

The analyses performed for this research supported several hypotheses about 

Palacrodon initially set forth. Of the four hypotheses originally tested, two address the 

phylogenetic relationships of Palacrodon and two address its diet. 

My first hypothesis concerning dental implantation was evaluated using computed 

tomography, which revealed Palacrodon possesses acrodont dentition where the tooth is 

set on the apical crest of the tooth-bearing bone. This finding, along with other 

anatomical features, supports the hypothesis that Palacrodon is a procolophonid. 

My second hypothesis concerning synapomorphies was evaluated using computed 

tomography, museum specimens, and literature. Although Palacrodon shares some 

features with all suggested taxa (rhynchocephlians, trilophosaurs, procolophonids), it 

shares the most features with procolophonids, with those features being labiolingually 

wide teeth, cuspate molariform teeth, acrodont tooth implantation, and temporal 

fenestration. Phylogenetic analyses performed suggest that Palacrodon is closely related 

to procolophonids with similar tooth morphologies, such as Hypsognathus, Soturnia, 

Leptopleuron, Scoloparia, and Sclerosaurus. 

My third hypothesis concerning wear patterns support Palacrodon having an 

herbivorous, insectivorous, durophageous, or insectivorous diet. Three distinct wear 

patterns were identified on the teeth of Palacrodon. Although several hypotheses 

pertaining to diet were supported by wear patterns, other characters regarding dental 

morphology were identified to possibly support an herbivorous or omnivorous diet. 
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My fourth hypothesis concerning regionalization was evaluated by studying the 

external features of museum specimens. While specimens of Palacrodon uncovered at 

the site Driefontein were not informative on this matter, the Antarctica specimen does 

show both incisiform and molariform teeth that characterize dental regionalization. This 

character supports Palacrodon having either an herbivorous or omnivorous diet. 

In addition to these conclusions, I identified a feature, two parallel ridges beneath 

the tooth crowns of Palacrodon, which has not been identified in any known tetrapod. 

This feature may be unique to Palacrodon, and I hypothesize it is aids in tooth 

attachment. Palacrodon warrants further study because its phylogenetic relationship to 

procolophonid parareptiles is only lowly supported by the analyses performed for this 

study. However, the discovery of the parallel ridges may be a feature that aligns 

Palacrodon with the proper clade. Future anatomical work on procolophonids needs to be 

performed to confirm if any taxa also have those two parallel ridges beneath the tooth 

crowns. 

Aside from the identification of the parallel ridges in other taxa, continued work 

and excavation at Driefontein would also help in determining the phylogenetic 

relationship of Palacrodon. Since collection began at Driefontein, there have been few 

systematic excavations and most finds are a result of surface collection. As a result, 

findings are predominantly limited to isolated elements. However, systematic excavations 

may reveal more articulated elements of Palacrodon which would provide more 

characters to support a phylogenetic hypothesis. 
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APPENDIX A 

Species found in the Lystrosaurus Assemblage Zone, compiled from Rubidge (1995) 

Vertebrates 

Amphibia 

Broomulus dutoiti, Kestrosaurus dreyeri, Limnoiketes paludinatas, Lydekkerina 

huxleyi, Micropholis stowi, Putterillia platyceps, Rhytidosteus capensis, 

Uranocentrodon senekalensis 

Reptilia 

Captorhinida Owenetta sp., Procolophon trigoniceps 

Younginiformes Heleosuchus griesbachi 

Squamata Paliguana whitei 

Rhynchosauria Noteosuchus colletti 

Protosauria Aenigmasaurus grallator, Prolacerta broomi 

Archosauriformes Proterosuchus fergusi, Proterosaurus vanhoepeni 

Synapsida 

Dicynodontia Lystrosaurus oviceps, L. curvatus, L. declivis, L. murrayi, L. 

maccaigi, Myosaurus gracilis 

Therocephalia Ericiolacerta parva, Moschorhinus kitchingi, Oliviera 

parringtoni, Regisaurus jacobi, Scaloposaurus contrictus, Tetracynodon darti, 

Zorillodontops gracilis 

Cynodontia Galesaurus planiceps, Platycranlellus elegans, Thrinaxodon 

liorhinus 
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Invertebrates 

Arthropoda 

 Fossil millipedes – cf. Gymnostreptus 

Plant Fossils 

 Dadoxylon, Glossopteris, Schizoneura 

Trace Fossils 

 Gyrolithes, Histioderma, Planolites, Scolithos, Scoyenia, Thalassinoides, 

Vertebrate burrows 

 

Species found in the Cynognathus Assemblage Zone, compiled from Rubidge (1995). 

Vertebrates 

Pices 

Atopocephala watsoni, Certatodus capensis, C. omatus, Cleithrolepedina extoni, 

Coelocanthus africanus, Elonichthys browni, Helichthys browni, H. elegans, 

Meidichthys browni 

Amphibia 

 Batrachosuchus watsoni, B. browni, Laideria gracilis, Paratosuchus dirus, P. 

albertyni, P. africanus, P. haughtoni, Trematosuchus kannemeyeria, T. sobeyi 

Reptilia 

Captohinida Microthelodon parvus, Myocephalus crassiden, Thelegnathus 

browni, T. oppressus, T. spinigenus 

Rhynchosauria Howesia browni, Mesosuchus browni 

Archosauriformes Erythrosuchus africanus, Euparkeria capensis 
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Diapsida incerte sedis Palacrodon browni 

Synapsida 

Dicynodontia Kannemeyeria simocephalus, Kombuisua frerensia 

Therocephalia Bauria cynops, Melinodon simus, Sesamodon browni, Watsonielia 

breviceps 

Cynodontia Bolotridon frerensis, Cynognathus crateronotus, Diademodon 

tetragonus, Trirachodon berryi, T. kannemeyeria 

Invertebrates 

Mollusca 

 Unio karooensis 

Plant Fossils 

 Dadoxylon, Dicrodium, Schizoneura 

Trace Fossils 

 Arthropod trails, vertebrate burrows, worm burrows 
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APPENDIX B 

List of anatomical abbreviations 

a – angular 

ar – articular 

bo - basioccipital 

c – coronoid 

d – dentary 

e – epipterygoid 

eo – exoccipital 

ept – ectopterygoid 

f – frontal 

l – lacrimal 

j – jugal 

m – maxilla  

mc – Meckel’s canal 

n – nasal  

p – parietal  

pf – post frontal 

pm – premaxilla 

po – post orbital 

pra – preaticular 

pr – prootic 

prf – prefrontal 
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ps – parasphenoid 

pt – pterygoid 

q – quadrate 

qj – quadratojugal 

sa – surangular 

sm – septomaxilla 

so – supraoccipital 

sp – splenial 

sq – squamosal 

st – supratemporal 

t – tabular 
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APPENDIX C 

The original data matrix used by MacDougall et al., 2013 with Palacrodon added to the 

matrix. Uncertainty for characters states is coded as follows: A = 0/1; B = 1/2; C = 0/2; D 

= 3/4; E = 2/3.  

Nyctiphruretus acudens  00000 00000 00000 0000? 00000 00000 000?0 

00000 00000 00000 00000 0000 

Owenettidae     00000 00000 10100 AA00? 00000 00000 010?0 

00000 00100 00010 01001 0000 

Coletta seca    00100 10000 00100 ???0? ???0? 10100 020?1 

1??0? 0???? ????? ????? ???? 

Pintosaurus magnidentis  20??? ????? ????? ???0? ???0? 20100 020?1 

11??1 0???? ????? ????? ???? 

Sauropareion anoplus   ????0 10100 20201 00000 ?1100 10000 020?1 

11010 01??? 00?01 10111 11?1 

Phaanthosaurus spp.    10101 100?? B0??? ???1? ????0 20110 020?1 

01?01 0???? ????? ????? ???? 

Eumetabolodon dongshengensis ????? 11??? ?0??? ???1? ????? ??000 030?1 

?1??0 0???? ????? ????? ???? 

Theledectes perforatus  ????? ?1210 3020? 11??? ???0? 21010 030?? 

??000 0???? ????? 00??? ???? 

Tichvinskia vjatkensis   10100 10210 30201 11010 00000 21110 13101 

01?01 21?0? 0???1 101?0 1101 

Timanophon raridentatus  ????? 10201 20211 0101? 010?0 2?110 13?01 
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01001 2???? ????? ????? ???? 

Kapes spp.    1111? 11201 30201 1111? ???00 211B0 13101 

0100C 1???? ????? ????? ???1 

Thelephon contritus   ????? ?1201 2020? 111?? ???0? ??B10 1D101 

?10?? ????? ????? ????? ???? 

Eumetabolodon bathycephalus 21111 10210 20211 ??21? ?1000 21110 13101 

01001 2?1?? ????? ????? ???? 

Procolophon trigoniceps  21111 10110 20211 11210 01000 21B00 B3101 

A1001 21010 10111 10110 1101 

Thelerpeton oppressus  2?111 ?0110 20211 1121? ?1?00 21110 1D101 

01001 ????? ?011? ??11? ???? 

Teratophon spinigenis   21111 1A110 E0211 1121? 01000 21110 13101 

0100? ?1??? 10111 10??? ??01 

Pentaedrusaurus ordosianus  B1111 10212 30211 1111? ???11 21110 131?1 

11001 B11?0 ?1111 1010? 110? 

Neoprocolophon asiaticus  ??111 1?21C ?021? 21B1? ????1 ??B?? 1D1?1 

1?0?? ????? ????? ????? ???? 

Sclerosaurus armatus   ????? ??310 ??32? 2???? ????? 3?B1? B31?? 

????? ??110 10??1 1?101 111? 

Scoloparia glyphanodon  ????? 0031? 3232? ??1?? ???1? 31100 2D10? 

???01 2???? ????? ????? ??1? 

Leptopleuron lacertinum  ?1100 02210 3132? 21211 1?111 3?111 B41?1 

1201? 1??0? 1???? ????? ??0? 
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Soturnia caliodon   10??? 0???? ????? ???1? ???11 31111 24112 

???12 001?1 ????? ?0??? ???? 

Hypsognathus  fenneri   ?01A0 02310 32320 B1211 11111 31111 14112 

1211? ??1?1 1???? ?0??? ??0? 

Phonodus dutoitorum   1?111 11??? ?0000 ???1? ????? ???10 ?D0?1 

121?? ????? ????? ????? ???1 

Kitchingnathus untabeni  B0??0 10?00 C020? 110?? ???00 B0100 1200? 

????1 2???? ????? ????? ???? 

Palacrodon browni   ????? ????? ????? ????? ????? ??113 1?11? 

     ????3 2???? ????? ????? ???? 
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Character state descriptions originally from Cisneros (2008b). Character 59 added by 

MacDougall and Modesto (2011). 

0. Maxilla premaxillary subnarial process: (0) present, (1) absent, (2) premaxilla 

posterodorsally expanded. 

1. External naris: (0) posterior or at level of first premaxillary tooth, (1) anterior to first 

premaxillary tooth. 

2. External naris: (0) anteroposteriorly elongated, (1) subcircular or dorsoventrally 

expanded. 

3. Wide internarial bar: (0) absent, (1) present. 

4. Snout: (0) long and flat, (1) deep and short. 

5. Maxillary depression: (0) absent, (1) present. 

6. Prefrontal: (0) medial border straight, (1) medial border with a medial process, (2) 

confined to the orbital rim. 

7. Posterior margin of orbitotemporal fenestra: (0) anterior to posterior margin of pineal 

foramen, (1) at level of posterior-most point of the pineal foramen, (2) beyond the 

posterior border of the pineal foramen, (3) considerably beyond the posterior border of 

the pineal foramen. 

8. Pineal opening insertion: (0) in a shallow fossa, (1) flush with dorsal surface. 

9. Contour of the pineal opening: (0) rounded, (1) ‘teardrop shaped’, (2) straight posterior 

border. 

10. Postfrontal: (0) contacts frontal, parietal and postorbital, (1) contacts frontal, parietal, 

postorbital and supratemporal, (2) contacts frontal and parietal only, (3) absent and area 

occupied by parietal or fused to parietal. 
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11. Jugal lateral processes: (0) absent, (1) one, (2) two. 

12. Temporal ventral margin: (0) roughly straight, (1) acutely emarginated, (2) broadly 

excavated, (3) convex. 

13. Quadratojugal lateral surface: (0) spineless, (1) one spine, (2) two or more spines. 

14. Squamosal ventral margin terminates: (0) at least as far ventrally as quadratojugal, (1) 

dorsal to quadratojugal in the tympanic notch. 

15. Posterior margin of the skull roof: (0) concave, (1) acute posterior process, (2) broad 

posterior emargination. 

16. Postparietals: (0) present, (1) absent/fused. 

17. Supratemporal posterolateral margin: (0) rounded, (1) acute, (2) prominent spine. 

18. Vomer width: (0) broader than choana, (1) roughly equal or narrower. 

19. Epipterygoid columella: (0) ends freely, (1) contacts dorsally prootic and 

supraoccipital. 

20. Parasphenoid cultriform process: (0) directed anteriorly and tapers to sharp tip, (1) 

projects vertically as robust pillar. 

21. Relation of basioccipital tuber and quadrate condyle: (0) approximately at the level, 

(1) basioccipital projected far posteriorly. 

22. Occipital condyle: (0) uniform, (1) tripartite. 

23. Dentary ventral and dorsal surfaces: (0) nearly parallel, (1) oblique. 

24. Relation of articular bone to marginal dentary teeth: (0) roughly in line, (1) well 

below. 

25. Premaxillary teeth number: (0) five or more, (1) four, (2) three, (3) two. 

26. Premaxillary teeth: (0) sub-equal in size, (1) enlarged mesial-most teeth. 
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27. Maxillary teeth with labiolingually expanded bases: (0) absent, (1) present. 

28. Presence of prominently bulbous teeth in the maxilla: (0) absent, (1) present. 

29. Maxillary teeth cervices: (0) not constricted, (1) constricted. 

30. Maxillary teeth cusps: (0) one, (1) two, (2) two and anterior monocuspid teeth absent, 

(3) three. 

31. Maxillary tooth number: (0) 40 or more, (1) 35 to 15, (2) 12 to 10, (3) eight to six, (4) 

five or less. 

32. Maxillary cheek teeth: (0) not inset, (1) inset. 

33. Deep occlusal depression in maxillary teeth: (0) absent, (1) present. 

34. Anterior vomerine dentition: (0) several denticles, (1) true teeth, (2) entirely absent. 

35. Vomerine denticles or teeth along posterior medial suture: (0) present, (1) absent. 

36. Palatine dentition: (0) denticles, (1) true teeth, (2) absent. 

37. Pterygoid dentition: (0) present; (1) absent. 

38. Dentary incisors: (0) two or more, (1) one. 

39. Dentary teeth in basal cross-section: (0) circular, (1) labiolingually expanded, (2) 

mesodistally elongated. 

40. Dentary molariform teeth cusps: (0) one, (1) two adjacent cusps, (2) two widely 

separated cusps, (3) three. 

41. Posterior dorsal zygapophyses: (0) gracile, (1) robust. 

42. Presacral pleurocentral ridge: (0) bearing a longitudinal sulcus, (1) longitudinal sulcus 

absent. 

43. Number of caudal vertebrae: (0) 20 or more, (1) 17 or less. 

44. Ossified presacral intercentra: (0) present, (1) absent. 
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45. Rib cage: (0) narrow, (1) broad. 

46. Posteromedial margin of lateral processes of the interclavicle: (0) concave, (1) 

straight. 

47. Interclavicle medial ridge: (0) smooth, (1) prominent. 

48. Distal ends of interclavicular lateral processes: (0) straight, (1) posteriorly recurved. 

49. Ectepicondylar foramen or groove on humerus: (0) present, (1) absent. 

50. Entepicondylar process: (0) reduced, (1) prominent. 

51. Entepicondylar foramen on humerus: (0) present, (1) absent. 

52. Non-terminal manual phalanges on digits ii, iii and iv: (0) long–slender, (1) short–

robust. 

53. Length ratio of unguals/penultimate phalanges on manus: (0) unguals short, (1) 

unguals long. 

54. Iliac anterior margin: (0) convex, (1) straight. 

55. Femur–humerus length ratio: (0) femur longer than humerus, (1) femur length equal 

to humerus. 

56. Femur: (0) slender, (1) robust. 

57. Osteoderms: (0) absent, (1) present. 

58. Lacrimal-ectopterygoid contact absent (0) or present (1). 
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APPENDIX D 

Specimen teeth measurements in millimeters. 

Specimen 
No. 

Tooth 1 Tooth 2 Tooth 3 Tooth 4 Tooth 5 

Example 
Height 

Labiolingual width 
Mesial-distal length 

Height 
Labiolingual width 
Mesial-distal length 

Height 
Labiolingual width 
Mesial-distal length 

Height 
Labiolingual width 
Mesial-distal length 

Height 
Labiolingual width 
Mesial-distal length 

BP/1/5672 A 
0.93 
2.27 
1.52 

1.07 
2.81 
1.74 

1.30 
3.32 
2.21 

1.46 
3.72 
2.18 

1.48 
3.73 
2.46 

BP/1/5672 B 
1.02 
2.84 
1.50 

1.17 
3.46 
1.75 

1.36 
3.83 
1.88 

1.57 
3.73 
2.24 

- 
- 
- 

BP/1/6724 
1.34 
2.39 
1.71 

1.54 
3.73 
2.04 

1.64 
3.82 
1.61 

1.26 
3.60 
1.47 

1.09 
3.07 
1.29 

BP/1/7819 
1.59 
2.13 

? 

1.81 
4.54 
1.36 

2.04 
4.80 
2.20 

2.04 
4.20 
2.02 

1.28 
3.62 
2.32 

BP/1/7824 
2.09 

? 
1.34 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7826 
1.11 
1.63 
1.23 

1.30 
2.67 
1.24 

1.22 
2.69 
1.25 

0.96 
2.19 
1.34 

- 
- 
- 

BP/1/7827 
1.00 
3.20 
1.38 

1.31 
3.92 
2.01 

1.68 
4.17 
2.13 

- 
- 
- 

- 
- 
- 

BP/1/7828 
0.67 
2.23 
1.06 

1.31 
3.50 
1.68 

1.83 
3.91 
2.28 

1.26 
3.53 
1.84 

- 
- 
- 

BP/1/7829 
0.99 
1.93 
1.23 

1.48 
3.35 
2.68 

1.22 
3.20 
1.79 

1.34 
2.62 
1.04 

- 
- 
- 
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Specimen 
No. 

Tooth 1 Tooth 2 Tooth 3 Tooth 4 Tooth 5 

BP/1/7830 
1.88 
2.19 

? 

2.41 
2.82 

? 

2.01 
2.90 

? 

1.85 
2.76 

? 

- 
- 
- 

BP/1/7831 
1.20 
2.73 
1.74 

1.34 
2.75 
1.62 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7832 
1.04 
2.01 
1.40 

1.00 
2.37 
1.38 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7833 
0.86 
2.26 
1.53 

1.30 
2.53 
1.83 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7834 
0.41 
0.81 
0.65 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7835 
1.30 
1.83 
1.55 

1.66 
1.74 
1.56 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7836 
1.88 
2.73 
2.64 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7837 
2.54/1.68* 

2.98 
2.75 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7839 
0.75 
1.86 
1.79 

0.69 
1.63 
1.34 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7840 
1.22 
2.93 
1.86 

1.03 
3.93 
2.12 

1.49 
4.03 
2.15 

- 
- 
- 

- 
- 
- 

BP/1/7841 
0.56 
2.79 
1.26 

0.68 
3.35 
1.68 

0.83 
2.85 
1.50 

- 
- 
- 

- 
- 
- 
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Specimen 
No. 

Tooth 1 Tooth 2 Tooth 3 Tooth 4 Tooth 5 

BP/1/7892 
0.52 

? 
1.07 

1.58 
2.50 
1.27 

2.00 
2.84 
1.26 

- 
- 
- 

- 
- 
- 

BP/1/7893 
0.70 
2.79 
1.48 

0.97 
3.20 
1.88 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7894 
0.75 
2.00 
2.09 

A 
A 
A 

0.75 
3.15 
1.65 

0.76 
3.13 
1.61 

- 
- 
- 

BP/1/7895 
? 

0.94 
0.85 

0.38 
1.94 
1.05 

1.10 
3.26 
1.57 

- 
- 
- 

- 
- 
- 

BP/1/7896 
1.57 
2.21 
2.04 

1.10 
2.43 
1.39 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7897 
1.63 
2.37 
1.78 

1.79 
2.32 
1.54 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7898 
? 
? 
? 

0.83 
1.81 
1.86 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7899 
1.19 
2.13 
2.35 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7900 
0.76 
2.00 
1.11 

0.88 
2.16 
2.35 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7901 
1.46 
3.51 
2.14 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7903 
1.15 
3.30 
2.24 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 



183 

 

Specimen 
No. 

Tooth 1 Tooth 2 Tooth 3 Tooth 4 Tooth 5 

BP/1/7904 
1.02/0.88* 

2.63 
1.73 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7905 
1.03 
2.45 

? 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7906 
1.27 

? 
2.40 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

BP/1/7930 
0.87 
1.78 
1.75 

- 
- 
- 

- 
- 
- 

- 
- 
- 

- 
- 
- 

Note. Each specimen includes three measurements per tooth when possible: tooth 
height, labiolingual width, and mesial-distal length. For specimens with multiple teeth 
preserved, Tooth 1 refers to the mesial-most tooth present on the specimen, not a 
dedicated tooth number. Dashes (-) indicate no teeth present, question marks (?) 
indicate that tooth is present, but measurement is not possible, the letter “A” 
represents a tooth gap. *BP/1/7837 and BP/1/7904 exhibits such extreme wear in the 
center of the tooth that a maximum height of the cusps and a minimum height of the 
center is reported. Tooth measurements could not be taken for BP/1/7825, BP/1/7838, 
and BP/1/7902 due to poor preservation. BP/1/5296 could not be measured as it is 
preserved within resin. 
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APPENDIX E 

Permissions to copyrighted material 
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