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syndrome [4]. This study has laid the foundation for AD’s
“amyloid hypothesis” which claims that the accumulation
of AB, as determined by its generation versus clearance in
the brain, is the primary driver of AD-related pathogen-
esis, including neuronal cell death.

Frangione et al reported on the sequencing of the exons
16 and 17 of amyloid precursor protein (APP) to reveal
the first pathogenic mutation in APP [5]. Finally the subse-
quent sequencing of these same two APP exons (encoding
the AP portion of the molecule) that were truly linked to
chromosome 21 led to the discovery of the first AD-
related mutation [6]. Following this finding, Pericak-Vance
and colleagues reported a significant genetic linkage of the
more common late-onset of AD (> 65 years) to chromo-
some 19 [7]. Then in 1993, they found a common poly-
morphism in the gene encoding Apolipoprotein E
(APOE)- APOE allele 4, is associated with increased risk
for AD [8]. In 1993, the first study aimed at investigating
the Presenilins as putative AD genes offered evidence for a
significant association between a single-nucleotide poly-
morphism (SNP) in intron 8 of the Presenilin 1 (PSEN1)
gene and AD. Estimates were that the common variants in
PSEN1 could account for nearly half of the population-
attributable risk for AD than was found for the APOE4
allele [9]. Then in 2001, a report investigating a consecu-
tive series of referral-based AD cases found coding
sequence mutations in 11% of the samples, suggesting that
PSEN1 mutations may indeed be more frequent in the
general population than had been previously assumed
[10,11]. Furthermore, reports indicated that changes in the
promoter region could lead to an altered expression pat-
tern of the protein in neurons [12].

Currently, the mainly proposed therapeutic intervention
for AD is anti-amyloid approach, which ranges from inter-
dicting amyloidogenic processing of the f-amyloid precur-
sor protein (APP) to removing amyloid plaques in the
brain [13]. In addition to therapies based on curbing the
production of AP or enhancing its clearance, another ther-
apeutic strategy would be aimed at attenuating AB toxicity
and neuroinflammation in the AD brain. Perhaps, the
most effective way to approach the blocking of AB toxicity
would be to prevent the formation of neurotoxic AB oligo-
mers [3,14]. As APP, the Presenilins, and APOE represent
the only firmly established AD genes to date for AD, they
represent the most effective means of curbing the produc-
tion of AR or accelerating the clearance and degradation
of this peptide in the brain [3]. The identification of the
remaining genes involved in AD will enable investigators
and clinicians to further delineate the path of biological
events that lead to AD-related neurodegeneration [3].

Introduction of gene clustering and gene order
Having been applied to many biological domains, such
as drug discovery, molecular diagnosis, and toxicological
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research, DNA microarray technology is used most
importantly to generate gene data, which holds a lot of
biological information. One common data structure of a
microarray data set is the presentation of a matrix. In
matrix X, element Xj; represents the expression level of
the i-th gene in the j-th experiment. Then the i-th line
vector of matrix X represents a group of expression
levels of the i-th gene. The i-th line vector contains the
biological information of the i-th gene, and it is often
used as an atom object of data to be processed.

One important aspect of biology is to make similar genes
cluster together. Since line vectors of a matrix contain the
information of genes, clustering similar vectors together is
equivalent to cluster similar genes together. A number of
algorithms were proposed to cluster gene expression pro-
files. Eisen et al. [15] applied hierarchical clustering [16], a
widely used tool [17-20], to solve the problem. It also has
some variants [21,22]. Self-organizing maps (SOMs)
[23,24] and k-means clustering [25] were also used for the
same purpose. Ben-Dor et al. [26] developed an algorithm-
cluster affinity search technique (CAST), that has a good
theoretical basis. Merz and Zell [27] proposed a memetic
algorithm for the problem, formulated as finding the mini-
mum sum-of-squares clustering [28,29].

To achieve a much better quality of clustering, the com-
puting concept of gene order has been proposed. Gene
order is the permutation of all line vectors in such a way
that all the line vectors are ordered one by one in a
sequence, and that similar vectors are ordered together. A
gene is associated with a line vector of a matrix. The opti-
mal gene order refers to the permutation that results in a
sequence that all the vectors line up via the minimal dis-
tance. Alternatively, computing optimal gene order is
equivalent to identifying a route of the traveling salesman
problem (TSP) in which every vector associates with a
gene that has been abstracted as a virtual city [30-35].

Since TSP is an NP-hard problem, the computation of
the optimal gene order is NP-hard and only the approxi-
mation of the optimal gene order can be calculated. To
obtain the approximation of the optimal gene order,
Tsai et al. applied a family competition genetic algo-
rithm (FCGA) [33-36] and Seung-Kyu et al. applied a
hybrid genetic algorithm (NNGA) [37].

Introduction of ant colony optimization (ACO)

First introduced in 1992, ant colony optimization (ACO) is
a novel nature-inspired method based on the foraging
behavior of real ants to solve TSP. (Dorigo, 1992; Dorigo
et al., 1996, 1999; Dorigo and Stiitzle, 2004) [38]. When
searching for food, ants initially explore the area surround-
ing their nest in a random manner. As soon as an ant finds
a food source, it evaluates it and carries some food back
to the nest. During the return trip, the ant deposits a pher-
omone trail on the ground. The pheromone deposited, the
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amount of which may depend on the quantity and quality
of the food, guides other ants to the food source. As it has
been shown (Goss et al., 1989), indirect communication
among ants via pheromone trails enables them to find the
shortest paths between their nests and food sources. ACO
generates the TSP route of the highest quality in general
compared with other methods. However, it is a challenge
to apply ACO to calculating gene order; its running time
has been too long even for input data that has less than
1000 elements when a common personal computer is
used. To make ACO better suited for the computation of
gene order, we have improved its running speed by factors
of at least 200 [39,40].

Introduction of genetic algorithm

Genetic algorithm (GA) can be understood as an intelli-
gent probabilistic search algorithm that works on Darwin’s
principle of natural selection and that can be applied to a
variety of combinatorial optimization problems [41]. More
to the point, GAs are based on the evolutionary process of
biological organisms in nature about which theoretical
foundations were originally developed by Holland [32].
During the course of evolution, natural populations evolve
according to the principle of natural selection and “survi-
val of the fittest”. Individuals who are more successful in
adapting to their environments will have a better chance
of surviving and reproducing, whilst individuals who are
less fit will be eliminated.

To understand the outline of GA as in [42], the follow-
ing original statement is given:

A GA simulates these processes by taking an initial
population of individuals and applying a genetic algorithm
to their reproduction. In optimization terms, each indivi-
dual in the population is encoded into a string or chromo-
some that represents a possible solution to a given
problem. The fitness of an individual is evaluated with
respect to a given objective function. Highly fit individuals
or solutions have opportunities to reproduce by exchan-
ging pieces of their genetic information, in a crossover
procedure, with other highly fit individuals. This produces
new “offspring” solutions (i.e., children), who share some
characteristics taken from both parents [43].

To date, there are few types of tools to calculate gene
order. In our knowledge, GA [35] and ACO [39] are
mostly used methods. Our study intends to address this
question- which method is a better for AD gene order
computation using AD microarray data under different
conditions. Herein, we reported that ACO fits the AD
microarray data the best when calculating gene order in
comparison to the GA methods tested in this study.

Methods
This study intends to answer the question of which
algorithm, between ACO and GA, generates the optimal
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AD gene order. The distance formula, which measures
the similarity degree of two genes, is the key parameter
that affects the quality of gene order. With different dis-
tance formulas (see the following Formulae 1-3), the
gene orders will be calculated using the tools of ACO
and GA in this section. Then, the quality of gene order
will be measured both by the fitness function and by a
heat map.

Traveling salesman problem (TSP)
TSP is introduced below:

Assume that there are # cities and a distance matrix D =
[d;], where dj; is the distance between city i and city j, and
TSP is the problem of finding a permutation 7 of all the

-1
cities such that minimizes Z’il A (i) n(i+1) + Ar(n) 2 (1)-

Measurement of gene similarity
As aforementioned, a gene associates with a vector and
the similarity of two genes can be estimated by the dis-
tance between the two vectors.

For two genes, different metric measurements will
measure out different degrees of possible similarity.
That is, the estimation of gene similarity is sensitive to
the distance formula.

Many distance formulas of vectors to measure the
similarity of genes are presented, such as Pearson corre-
lation, absolute correlation, Spearman rank correlation
[44], Kendall rank correlation [45], and Euclidean dis-
tance. In this paper, three popular distance formulas are
introduced below.

The first distance measure is the Pearson correlation:

Let k-dimensional vector X = (x1, %o, ..., ) and Y =
(1, Y25 --» ¥x) be the expression levels of two genes X
and Y, which are observed over a series of k conditions.
The Pearson correlation of two genes X and Y is

1 k xi—)_( i_?
Sxy = %ZM ( )(y—)

ox gy

where X and oy is the mean and the standard devia-
tion of the expression levels, respectively. The value of
Ox is

1 k —.2
ox = \/E Zi:l (xi —X)

Pearson distance is defined as

Dp(X,Y) =1 —sxy 1

The second distance is the Euclidean distance:

De(X,Y) = Z’l (% —1)? vy
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The third distance measure is the squared Euclidean
distance:

Dse(X,Y) = Zil (% —)° (3)

Gene order
As it is introduced before, a gene is associated with a vec-
tor that is derived from microarray data. In this way, a
gene can be regarded as a virtual city whereby each coor-
dinate is a vector. Two associated genes are more similar
as the distance shortens between two virtual cities. As it is
introduced at Section 1, an optimal (shortest) TSP route
for a given set of virtual cities is the optimal gene order
that is a permutation of all genes. In an optimal TSP
route, closed cities are ordered together and the length of
the route is that which is the shortest. In an optimal gene
order, similar genes cluster together, and the quality of
clustering is optimal globally. This is in contrast to many
clustering methods that are only optimal locally.
Currently optimal gene order cannot be calculated
perfectly because it is an NP-hard problem; only an
approximation can be achieved. Therefore, we need a
function to measure the quality of the approximation.
The following function Q(m) is called a fitness function:

Q)= Dlgn ) @

where g; denotes a vector associated with a gene, 7
denotes a gene order, # is the number of genes, D(g;, g:,1)
is the distance between gene g; and gene g;,;, and
&n,.1. = &r,- The distance formula D(g;, g;,1) can be chosen
from Pearson distance, Euclidean distance, squared Eucli-
dean distance, Spearman distance, and other
measurements.

Function Q(r) is a measurement of the quality of the
gene order. The smaller the function value Q(n) is, the
better the quality of the gene order 7 is.

However, the measurement of function Q(m) is not
consistent with the fact of biology, and a true review of
the quality of gene order depends on the review of a
biologist. A biologist often reviews the quality of gene
clustering by visually observing its heat map, and he or
she often gets heuristic information from that heat map.

Apply ACO to calculate optimal gene order
To generate the optimal gene order, ACO is applied as
it is below:

Step 1: Use the distance formula to compute the dis-
tance between genes.

Step 2: Initialize the pheromone trails for all edges
between genes (or virtual cities) and put » ants at differ-
ent genes to travel. Pre-assign an iteration number £,
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and let ¢t = 0, where ¢ denotes the ¢ - th iteration
computation.

Step 3: while(t <ty

{

Step 3.1: Each ant selects its next city according to
the transition probability pZ.(t).

The transition probability of the k - th ant from the i -
th gene to j - th gene is defined as

B
2 ()i (t
} U( )al]( )ﬂ , j € allowed,,
pi(0) = > T(On(r)
seallowed,
0 otherwise

where allowed, denotes the set of genes that can be
accessed by the k - th ant; 7;(¢) is the pheromone value
of the edge (i, j); 1;;(2) is the local heuristic function and
n#{(t) = 1/dy, and where d;; are the distance between the
i - th gene and j - th gene; the parameters o and 8
determine the relative influence of the trail strength and
the heuristic information, respectively.

Step 3.2: After all ants finish their travels, all phero-
mone values 7;(f) are updated according to the fol-
lowing formula.

ty(t+ 1) = (1 = p) - 75(1) + Azy(2)

Ati(t) =), AT(0)
2 ofij) e 1

k ’
Afijz(t) =1 Le 0. e
, eise

where L is the length of the route passed by the & -
th ant; p is the persistence of the trail; Q denotes con-
stant quantity of pheromone; and e(i, j) represents the
edge between gene i and gene ;.

Step3.3:t=¢t+1

}
Step 4: End procedure and select the TSP route that
has the minimum length as the output.

Apply GAs to calculate optimal gene order
As mentioned before, the calculation of gene order can be
converted to TSP. To make GA fit to process TSP and
gene order, the commonly used GA is modified a little.
The modifications are listed below:

First, the roulette rule [46] is used to design selection
probability.

Second, the crossover probability is set to be 1.0 in
this paper. That is, the crossover will occur definitely.
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Third, the mutation is designed to occur. Between the
parent and mutated offspring, the one which has the
better fitness value is selected as the genuine offspring,
and the others are discarded.

The modified GA is described below:

Step 1: Initialization: Set the maximum iteration num-
ber to £y, The t-th iteration step is denoted by ¢. In
this paper, the length of the chromosome is set to be
the number of AD genes, which is denoted by L. The
initial population is denoted by P,y and its size is set to
be N.

Step 2: The next generation is denoted by P,,, and it is
initialized to be an empty set. In addition, a counter is
used, which is denoted by ¢, and it is initialized to be 1.

Step 3: Selection

1. Calculate each chromosome’s fitness value accord-
ing to formula (4).

2. Calculate the proportion (ratio) of the fitness
value of each chromosome.

3. A ratio is chosen by the roulette rule, and its asso-
ciated chromosome is chosen too. According to this
method, two chromosomes are chosen, which are
denoted by C; and C,.

Step 4: Crossover

1. Generate two random integer numbers between 1
and L, which are denoted by C,,ing and C,eine2
(Cpoint1 <Cpoint2), and where C,gine and Cpines are
used to indicate the positions of two crossovers on
chromosomes C; and Cs,.

2. Denote the part of C; from C,gine 10 Cppinen as
Cyy, and copy it to the head of C;. The increased
chromosome C; is denoted by C].

Denote the part of C; from C,sint; t0 Cppine as Cy,
and copy it to the head of C,. The increased chro-
mosome C, is denoted by C,.

3. Find every gene that lies in chromosome C;; and Cy,
which is denoted by x (i.e., x € Co N Cy). Delete every
x from C;, and add C;, to the head of updated C; (i.e.,
C} < C U(Cy — {x})). The updated C] is regarded
as temporary offspring of C; and denoted as Togpring:-
Using the same method, the temporary offspring of C,
is generated, which is denoted as T,g,ine.

Step 5: Mutation

Select a point on Typring randomly as a mutation
point, which is denoted by M,,iny. Suppose the value
of mutation point M,yiny is V. Generate a random
integer between 1 and L , which is denoted by V.
Set V..., as the updated value of point M,ging.
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Find the point at which value is equal to V., except
point M,,int, and update its value as V4

The chromosome T,g,ring is updated, and it is a
true offspring.

Using the above method, chromosome T,ppine can
also be updated, and it is a true offspring.

Step 6: Add the two true offspring into the set P,
which represents the new population. Update the counter:
¢ =c+ 2, if ¢ <N, go to Step 3, or else go to Step 7.

Step 7: Joint population P, and P, (ie., P = Py, U
P,..). Select N chromosomes from set P to cover the
old population P,;; for which the fitness values are
smaller than the other chromosomes.

Step 8: Increase the iteration step: £ = ¢ + 1. If £ <t
and go to step 2, or else go to Step 9.

Step 9: End the algorithm and choose the chromo-
some that has the smallest fitness value from the last
population P, as the output.

Kirk presented an improved GA (IGA) program [47],
and it consists of three parts: mutation, group, and
iteration.

Part | (operation of mutation)

Suppose there is a chromosome{a;, a,, a3, a4, as, dae},
and it is a permutation of genes a;, d, a3, a4, as and as.
Firstly, cut a sub-sequence from the chromosome ran-
domly, and suppose it is {g2, a3, a4, as}. Three types of
mutations are listed below:

Flip operation My

Flip the gene positions of the sub-sequence. For

My
example, (4, a5, a4, a5} —{as, as, a3, a2}
Swap operation M,:

Swap the positions of the two terminal genes-

MS
{a2, a3, a4, a5} —{as, as, as, a»} -
Slide operation M

Shift the gene to the next position by a rotation-

{a2,as,as,as) “>{as, as, as, az) -

Part Il (group)
Suppose N chromosomes, denoted by sy, s3, §3, ..., and
sy are generated randomly where N is divisible by 4.
And all chromosomes are saved in a table T sequen-
tially. In table T, every 4 chromosomes is grouped as a
team sequentially. For every team, perform the following
operations:

Firstly, select the chromosome with the minimal fit-
ness value as seed, and discard the other three
chromosomes.
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Secondly, let the mutation operation Mg M, and M,
act on the seed, respectively, and generate three mutated
chromosomes.

Thirdly, all chromosomes in this team are updated as
the seed and the three mutated chromosomes, which
updates table T.

Part Il (iteration computation)

An operation of a group is called an iteration computa-
tion. Within every iteration, an optimal chromosome
will be generated for which the fitness value is minimal
compared to the other N - 1 chromosomes. Suppose R;
is the optimal chromosome of the ¢-th iteration. After
all, iterations are performed on the set {Ry, Ry, ..., Ry .}
for a given number of iteration t,,.. The solution is
selected from {Ri, Ry, ..., R, }, which has a minimal fit-
ness value.

Source data

In this paper, the AD microarray data was downloaded
from GEQO Datasets, NCBI [48], which includes 22283
genes. Four cases of control, incipient, moderate, and
severe data are provided in the original data. Nine sam-
ples of control are organized to form a matrix with a
size of 22283 lines by 9 columns. The format of this
matrix is shown in Table 1. In this matrix, each line
vector is a 9-dimensional vector that represents microar-
ray data of a gene collected from nine different condi-
tions. All line vectors form a data set.

Seven samples of incipient for each gene are selected to
form a 7-dimensional vector, and the resulting 22283
vectors are used to form a data set; eight samples of mod-
erate for each gene are selected to form an 8-dimensional
vector and to form a data set; and seven samples of
severe for each gene are selected to form a data set.

In addition, according to the usual practice, all data of
the AD gene is log-transformed for smoothing.

Computing parameters and environment

All data tested by GAs and ACO run on a personal com-

puter, CPU (2): 2.99 GHZ, 3.0 GHZ; Memory: 1.0 GB.
The parameters of ACO are set below:

a=1,8=2p=07 Q=100 7;0) = 1, m = 50,
fnax = 100.
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The parameters of GA are set below:
tmax = 500, M = 400,

where .« and M represents the maximal number of
iterations and the size of populations, respectively.

The parameters for the improved genetic algorithm
are set as below:

Lmax = 2000, M = 900.

In addition, in GA, parameter values of t,,, and M
are smaller than parameters in IGA, respectively. The
reason that the parameter value is different is that GA is
much slower than IGA, and a high value of parameter
will require excessive GA program running time.

Results and discussion

The results are showed in Figure 1 to Figure 3, and
Table 2 to Table 3. From these figures and tables, we
discovered that:

(1) ACO was better suited than GA to calculate the
gene order of the AD genes tested in this paper.

(2) Both for ACO and GAs, the use of different dis-
tance formulas generated a different quality of gene
order. The squared Euclidean distance generated the
best quality overall compared with the Pearson distance
and Euclidean distance.

Pearson distance is a popular distance formula that is
commonly used to calculate gene order. However, we
found that Pearson distance is not the optimal distance
formula for the calculation of gene order associated with
AD genes. In this paper, the original data is not normal-
ized, the reason for which is explained below:

Suppose two genes and their associated vectors are X =
(%1, %0, ..., 2p) and Y = (y1, ¥, ..., ¥). If all components of
the vector are normalized, they become small real value

that is less than 1.0. Value § = Zk (%= yi)? is small,
i=

and it is close to zero if the two genes are very similar.
Then the value of the square-root /g has a big error
because it must be expressed as base operations (+, -, x,
and +) to approximate. That is why Pearson distance,
Euclidean distance and other distance formulas generate

Table 1 The illustration of organization of AD microarray data

AFFX -NAME GSM GSM GSM GSM GSM GSM GSM GSM GSM
21215 2127 2128 21219 21220 21221 21226 21231 21232
BioB-5_at 8.937 9.941 8.986 9305 9.366 8.781 9.236 9.35 9386
BioB-M_at 9.278 10.56 9.55 10.08 10.23 9355 9915 10.27 10.37
BioB-3_at 7.92 9.033 8.71 8993 9.353 8.381 8716 9481 9.299
BioC-5_at 10.18 11.46 1049 10.76 10.88 10.25 1052 10.87 10.91

*Each column of the data represents the result of one microarray test. Each line of the data represents the expression levels of the same gene under different

conditions. All data was log-transformed.
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formulas generated a different quality of gene order.
Compared to Pearson distance and Euclidean distance,
the squared Euclidean distance generated the best quality
of AD gene order. Although Pearson distance commonly
used tool, it is less optimal in AD gene order computa-
tion when employed in both ACO and GA methods.
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