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Abstract

Background: Computational genomics of Alzheimer disease (AD), the most common form of senile dementia, is a 
nascent field in AD research. The field includes AD gene clustering by computing gene order which generates 
higher quality gene clustering patterns than most other clustering methods. However, there are few available gene 
order computing methods such as Genetic Algorithm (GA) and Ant Colony Optimization (ACO). Further, their 
performance in gene order computation using AD microarray data is not known. We thus set forth to evaluate the 
performances of current gene order computing methods with different distance formulas, and to identify 
additional features associated with gene order computation.
Methods: Using different distance formulas- Pearson distance and Euclidean distance, the squared Euclidean 
distance, and other conditions, gene orders were calculated by ACO and GA (including standard GA and improved 
GA) methods, respectively. The qualities of the gene orders were compared, and new features from the calculated 
gene orders were identified.
Results: Compared to the GA methods tested in this study, ACO fits the AD microarray data the best when 
calculating gene order. In addition, the following features were revealed: different distance formulas generated a 
different quality of gene order, and the commonly used Pearson distance was not the best distance formula when 
used with both GA and ACO methods for AD microarray data.
Conclusion: Compared with Pearson distance and Euclidean distance, the squared Euclidean distance generated 
the best quality gene order computed by GA and ACO methods.

Background
A brief introduction of Alzheimer’s disease
Being the most common form of age-related dementia, 
Alzheimer’s disease (AD) affects 5.4 million Americans, 
and at least $183 billion will be spent in 2011 on care of 
AD and other dementia patients. The problem is worsen­
ing as life expectancy continues to increase. By 2050, the 
projected number of AD patients could range from 11 to 
16 million people in the United States alone if no cure or 
preventive measure for AD is found. Hence, AD has 

quickly become a pandemic and exacted a huge socioeco­
nomic toll [1].

AD is named after Dr Alois Alzheimer, who has first 
investigated the disease [2]. Later on, the autopsies of 
brain examinations of most cases of senility under light 
microscope were discovered to be extracellular deposits of 
b-amyloid and intracellular deposits of neurofibrillary tan­
gles (NFTs). Abundant amounts of these lesions in the 
brain were necessary for a confirmed diagnosis of AD [3]. 
In 1984, an possible AD-related gene on chromosome 21 
was implied when Glenner and Wong reported on the 
amino acid sequence of the main component of b-amy- 
loid-, an approximate 4.3 kD peptide that they coined as 
“amyloid-b protein"(Ab) based on their analysis of cere­
brovascular amyloid derived from patients with Down’s 
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syndrome [4]. This study has laid the foundation for AD’s 
“amyloid hypothesis” which claims that the accumulation 
of Ab, as determined by its generation versus clearance in 
the brain, is the primary driver of AD-related pathogen­
esis, including neuronal cell death.

Frangione et al reported on the sequencing of the exons 
16 and 17 of amyloid precursor protein (APP) to reveal 
the first pathogenic mutation in APP [5]. Finally the subse­
quent sequencing of these same two APP exons (encoding 
the Ab portion of the molecule) that were truly linked to 
chromosome 21 led to the discovery of the first AD- 
related mutation [6]. Following this finding, Pericak-Vance 
and colleagues reported a significant genetic linkage of the 
more common late-onset of AD (> 65 years) to chromo­
some 19 [7]. Then in 1993, they found a common poly­
morphism in the gene encoding Apolipoprotein E 
(APOE)- APOE allele 4, is associated with increased risk 
for AD [8]. In 1993, the first study aimed at investigating 
the Presenilins as putative AD genes offered evidence for a 
significant association between a single-nucleotide poly­
morphism (SNP) in intron 8 of the Presenilin 1 (PSEN1) 
gene and AD. Estimates were that the common variants in 
PSEN1 could account for nearly half of the population- 
attributable risk for AD than was found for the APOE4 
allele [9]. Then in 2001, a report investigating a consecu­
tive series of referral-based AD cases found coding 
sequence mutations in 11% of the samples, suggesting that 
PSEN1 mutations may indeed be more frequent in the 
general population than had been previously assumed 
[10,11]. Furthermore, reports indicated that changes in the 
promoter region could lead to an altered expression pat­
tern of the protein in neurons [12].

Currently, the mainly proposed therapeutic intervention 
for AD is anti-amyloid approach, which ranges from inter­
dicting amyloidogenic processing of the b-amyloid precur­
sor protein (APP) to removing amyloid plaques in the 
brain [13]. In addition to therapies based on curbing the 
production of Aβ or enhancing its clearance, another ther­
apeutic strategy would be aimed at attenuating Aβ toxicity 
and neuroinflammation in the AD brain. Perhaps, the 
most effective way to approach the blocking of Aβ toxicity 
would be to prevent the formation of neurotoxic Aβ oligo­
mers [3,14]. As APP, the Presenilins, and APOE represent 
the only firmly established AD genes to date for AD, they 
represent the most effective means of curbing the produc­
tion of Aβor accelerating the clearance and degradation 
of this peptide in the brain [3]. The identification of the 
remaining genes involved in AD will enable investigators 
and clinicians to further delineate the path of biological 
events that lead to AD-related neurodegeneration [3].

Introduction of gene clustering and gene order
Having been applied to many biological domains, such 
as drug discovery, molecular diagnosis, and toxicological 

research, DNA microarray technology is used most 
importantly to generate gene data, which holds a lot of 
biological information. One common data structure of a 
microarray data set is the presentation of a matrix. In 
matrix X, element Xij represents the expression level of 
the i-th gene in the j-th experiment. Then the i-th line 
vector of matrix X represents a group of expression 
levels of the i-th gene. The i-th line vector contains the 
biological information of the i-th gene, and it is often 
used as an atom object of data to be processed.

One important aspect of biology is to make similar genes 
cluster together. Since line vectors of a matrix contain the 
information of genes, clustering similar vectors together is 
equivalent to cluster similar genes together. A number of 
algorithms were proposed to cluster gene expression pro­
files. Eisen et al. [15] applied hierarchical clustering [16], a 
widely used tool [17-20], to solve the problem. It also has 
some variants [21,22]. Self-organizing maps (SOMs) 
[23,24] and k-means clustering [25] were also used for the 
same purpose. Ben-Dor et al. [26] developed an algorithm­
cluster affinity search technique (CAST), that has a good 
theoretical basis. Merz and Zell [27] proposed a memetic 
algorithm for the problem, formulated as finding the mini­
mum sum-of-squares clustering [28,29].

To achieve a much better quality of clustering, the com­
puting concept of gene order has been proposed. Gene 
order is the permutation of all line vectors in such a way 
that all the line vectors are ordered one by one in a 
sequence, and that similar vectors are ordered together. A 
gene is associated with a line vector of a matrix. The opti­
mal gene order refers to the permutation that results in a 
sequence that all the vectors line up via the minimal dis­
tance. Alternatively, computing optimal gene order is 
equivalent to identifying a route of the traveling salesman 
problem (TSP) in which every vector associates with a 
gene that has been abstracted as a virtual city [30-35].

Since TSP is an NP-hard problem, the computation of 
the optimal gene order is NP-hard and only the approxi­
mation of the optimal gene order can be calculated. To 
obtain the approximation of the optimal gene order, 
Tsai et al. applied a family competition genetic algo­
rithm (FCGA) [33-36] and Seung-Kyu et al. applied a 
hybrid genetic algorithm (NNGA) [37].

Introduction of ant colony optimization (ACO)
First introduced in 1992, ant colony optimization (ACO) is 
a novel nature-inspired method based on the foraging 
behavior of real ants to solve TSP. (Dorigo, 1992; Dorigo 
et al., 1996, 1999; Dorigo and Stutzle, 2004) [38]. When 
searching for food, ants initially explore the area surround­
ing their nest in a random manner. As soon as an ant finds 
a food source, it evaluates it and carries some food back 
to the nest. During the return trip, the ant deposits a pher­
omone trail on the ground. The pheromone deposited, the 
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amount of which may depend on the quantity and quality 
of the food, guides other ants to the food source. As it has 
been shown (Goss et al., 1989), indirect communication 
among ants via pheromone trails enables them to find the 
shortest paths between their nests and food sources. ACO 
generates the TSP route of the highest quality in general 
compared with other methods. However, it is a challenge 
to apply ACO to calculating gene order; its running time 
has been too long even for input data that has less than 
1000 elements when a common personal computer is 
used. To make ACO better suited for the computation of 
gene order, we have improved its running speed by factors 
of at least 200 [39,40].

Introduction of genetic algorithm
Genetic algorithm (GA) can be understood as an intelli­
gent probabilistic search algorithm that works on Darwin’s 
principle of natural selection and that can be applied to a 
variety of combinatorial optimization problems [41]. More 
to the point, GAs are based on the evolutionary process of 
biological organisms in nature about which theoretical 
foundations were originally developed by Holland [32]. 
During the course of evolution, natural populations evolve 
according to the principle of natural selection and “survi­
val of the fittest”. Individuals who are more successful in 
adapting to their environments will have a better chance 
of surviving and reproducing, whilst individuals who are 
less fit will be eliminated.

To understand the outline of GA as in [42], the follow­
ing original statement is given:

A GA simulates these processes by taking an initial 
population of individuals and applying a genetic algorithm 
to their reproduction. In optimization terms, each indivi­
dual in the population is encoded into a string or chromo­
some that represents a possible solution to a given 
problem. The fitness of an individual is evaluated with 
respect to a given objective function. Highly fit individuals 
or solutions have opportunities to reproduce by exchan­
ging pieces of their genetic information, in a crossover 
procedure, with other highly fit individuals. This produces 
new “offspring” solutions (i.e., children), who share some 
characteristics taken from both parents [43].

To date, there are few types of tools to calculate gene 
order. In our knowledge, GA [35] and ACO [39] are 
mostly used methods. Our study intends to address this 
question- which method is a better for AD gene order 
computation using AD microarray data under different 
conditions. Herein, we reported that ACO fits the AD 
microarray data the best when calculating gene order in 
comparison to the GA methods tested in this study.

Methods
This study intends to answer the question of which 
algorithm, between ACO and GA, generates the optimal 

AD gene order. The distance formula, which measures 
the similarity degree of two genes, is the key parameter 
that affects the quality of gene order. With different dis­
tance formulas (see the following Formulae 1-3), the 
gene orders will be calculated using the tools of ACO 
and GA in this section. Then, the quality of gene order 
will be measured both by the fitness function and by a 
heat map.

Traveling salesman problem (TSP)
TSP is introduced below:

Assume that there are n cities and a distance matrix D = 
[dij], where dij is the distance between city i and city j, and 
TSP is the problem of finding a permutation ∏ of all the

Measurement of gene similarity
As aforementioned, a gene associates with a vector and 
the similarity of two genes can be estimated by the dis­
tance between the two vectors.

For two genes, different metric measurements will 
measure out different degrees of possible similarity. 
That is, the estimation of gene similarity is sensitive to 
the distance formula.

Many distance formulas of vectors to measure the 
similarity of genes are presented, such as Pearson corre­
lation, absolute correlation, Spearman rank correlation 
[44], Kendall rank correlation [45], and Euclidean dis­
tance. In this paper, three popular distance formulas are 
introduced below.

The first distance measure is the Pearson correlation:
Let k-dimensional vector X = (x1, x2, ..., xk) and Y = 

(y1, y2, ..., yk) be the expression levels of two genes X 
and Y, which are observed over a series of k conditions. 
The Pearson correlation of two genes X and Y is

cities such that minimize
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where Lk is the length of the route passed by the k - 
th ant; ρ is the persistence of the trail; Q denotes con­
stant quantity of pheromone; and e(i, j) represents the 
edge between gene i and gene j.

Step 3.3: t = t +1

}
Step 4: End procedure and select the TSP route that 

has the minimum length as the output.

Apply GAs to calculate optimal gene order
As mentioned before, the calculation of gene order can be 
converted to TSP. To make GA fit to process TSP and 
gene order, the commonly used GA is modified a little. 
The modifications are listed below:

First, the roulette rule [46] is used to design selection 
probability.

Second, the crossover probability is set to be 1.0 in 
this paper. That is, the crossover will occur definitely.
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Third, the mutation is designed to occur. Between the 
parent and mutated offspring, the one which has the 
better fitness value is selected as the genuine offspring, 
and the others are discarded.

The modified GA is described below:
Step 1: Initialization: Set the maximum iteration num­

ber to tmax. The t-th iteration step is denoted by t.In 
this paper, the length of the chromosome is set to be 
the number of AD genes, which is denoted by L. The 
initial population is denoted by Pold, and its size is set to 
be N.

Step 2: The next generation is denoted by Pnew, and it is 
initialized to be an empty set. In addition, a counter is 
used, which is denoted by c, and it is initialized to be 1.

Step 3: Selection

1. Calculate each chromosome’s fitness value accord­
ing to formula (4).
2. Calculate the proportion (ratio) of the fitness 
value of each chromosome.
3. A ratio is chosen by the roulette rule, and its asso­
ciated chromosome is chosen too. According to this 
method, two chromosomes are chosen, which are 
denoted by C1 and C2.

Step 4: Crossover

1. Generate two random integer numbers between 1 
and L, which are denoted by Cpoint1 and Cpoint2 
(Cpoint1 <Cpoint2), and where Cpoint1 and Cpoint2 are 
used to indicate the positions of two crossovers on 
chromosomes C1 and C2.
2. Denote the part of C2 from Cpoint1 to Cpoint2 as 
Ct2, and copy it to the head of C1. The increased 
chromosome C1 is denoted by C1.
Denote the part of C1 from Cpoint1 to Cpoint2 as Ct1, 
and copy it to the head of C2. The increased chro­
mosome C2 is denoted by C2.
3. Find every gene that lies in chromosome Ct2 and C1, 
which is denoted by x (i.e., x e Ct2 n C1). Delete every 
x from C1, and add Ct2 to the head of updated C1 (i.e., 
C1 —— Ct2 U (C1 — {x})). The updated C1 is regarded 
as temporary offspring of C1 and denoted as Toffspring1. 
Using the same method, the temporary offspring of C2 
is generated, which is denoted as Toffspring2.

Step 5: Mutation

Select a point on Toffspring1 randomly as a mutation 
point, which is denoted by Mpoint1. Suppose the value 
of mutation point Mpoint1 is Vold. Generate a random 
integer between 1 and L , which is denoted by Vnew. 
Set Vnew as the updated value of point Mpoint1.

Find the point at which value is equal to Vnew except 
point Mpoint1, and update its value as Vold.
The chromosome Toffspring1 is updated, and it is a 
true offspring.
Using the above method, chromosome Toffspring2 can 
also be updated, and it is a true offspring.

Step 6: Add the two true offspring into the set Pnew, 
which represents the new population. Update the counter:

c = c +2,ifc <N, go to Step 3, or else go to Step 7.
Step 7: Joint population Poid and Pnew (i.e., P = Poid U 

Pnew). Select N chromosomes from set P to cover the 
old population Poid for which the fitness values are 
smaller than the other chromosomes.

Step 8: Increase the iteration step: t = t +1.Ift <tmax, 
and go to step 2, or else go to Step 9.

Step 9: End the algorithm and choose the chromo­
some that has the smallest fitness value from the last 
population Poid as the output.

Kirk presented an improved GA (IGA) program [47], 
and it consists of three parts: mutation, group, and 
iteration.
Part I (operation of mutation)
Suppose there is a chromosome{a1, a2, a3, a4, a5, a6}, 
and it is a permutation of genes a1, a2, a3, a4, a5 and a6. 
Firstly, cut a sub-sequence from the chromosome ran­
domly, and suppose it is {a2, a3, a4, a5}. Three types of 
mutations are listed below:

Flip operation Mf:

Flip the gene positions of the sub-sequence. For 

example, {a2, a3, a4, a5} ^f{a5, a4, a3, a2} •

Swap operation Ms:

Swap the positions of the two terminal genes­
Ms

{a 2, a 3, a 4, a 5} ^{ a 5, a 3, a 4, a 2}.

Slide operation Mi:

Shift the gene to the next position by a rotation- 
Ml

{a 2, a 3, a 4, a 5} ^{ a 3, a 4, a 5, a 2}.
Part II (group)
Suppose N chromosomes, denoted by s1, s2, s3,..., and 
sN, are generated randomly where N is divisible by 4. 
And all chromosomes are saved in a table T sequen­
tially. In table T, every 4 chromosomes is grouped as a 
team sequentially. For every team, perform the following 
operations:

Firstly, select the chromosome with the minimal fit­
ness value as seed, and discard the other three 
chromosomes.

http://www.biomedcentral.com/1755-8794/6/S1/S8
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Secondly, let the mutation operation Mf, Ms and Ml 
act on the seed, respectively, and generate three mutated 
chromosomes.

Thirdly, all chromosomes in this team are updated as 
the seed and the three mutated chromosomes, which 
updates table T.
Part III (iteration computation)
An operation of a group is called an iteration computa­
tion. Within every iteration, an optimal chromosome 
will be generated for which the fitness value is minimal 
compared to the other N - 1 chromosomes. Suppose Rt 

is the optimal chromosome of the t-th iteration. After 
all, iterations are performed on the set {R1, R2, ..., Rtmax} 
for a given number of iteration tmax. The solution is 
selected from {R1, R2, ..., Rtmax} , which has a minimal fit­
ness value.

Source data
In this paper, the AD microarray data was downloaded 
from GEO Datasets, NCBI [48], which includes 22283 
genes. Four cases of control, incipient, moderate, and 
severe data are provided in the original data. Nine sam­
ples of control are organized to form a matrix with a 
size of 22283 lines by 9 columns. The format of this 
matrix is shown in Table 1. In this matrix, each line 
vector is a 9-dimensional vector that represents microar­
ray data of a gene collected from nine different condi­
tions. All line vectors form a data set.

Seven samples of incipient for each gene are selected to 
form a 7-dimensional vector, and the resulting 22283 
vectors are used to form a data set; eight samples of mod­
erate for each gene are selected to form an 8-dimensional 
vector and to form a data set; and seven samples of 
severe for each gene are selected to form a data set.

In addition, according to the usual practice, all data of 
the AD gene is log-transformed for smoothing.

Computing parameters and environment
All data tested by GAs and ACO run on a personal com­
puter, CPU (2): 2.99 GHZ, 3.0 GHZ; Memory: 1.0 GB.

The parameters of ACO are set below:

α =1, β = 2, ρ = 0.7, Q = 100, Tij(0) = 1, m = 50, 
tmax = 100.

The parameters of GA are set below:

tmax = 500, M = 400,

where tmax and M represents the maximal number of 
iterations and the size of populations, respectively.

The parameters for the improved genetic algorithm 
are set as below:

tmax = 2000, M = 900.

In addition, in GA, parameter values of tmax and M 
are smaller than parameters in IGA, respectively. The 
reason that the parameter value is different is that GA is 
much slower than IGA, and a high value of parameter 
will require excessive GA program running time.

Results and discussion
The results are showed in Figure 1 to Figure 3, and 
Table 2 to Table 3. From these figures and tables, we 
discovered that:

(1) ACO was better suited than GA to calculate the 
gene order of the AD genes tested in this paper.

(2) Both for ACO and GAs, the use of different dis­
tance formulas generated a different quality of gene 
order. The squared Euclidean distance generated the 
best quality overall compared with the Pearson distance 
and Euclidean distance.

Pearson distance is a popular distance formula that is 
commonly used to calculate gene order. However, we 
found that Pearson distance is not the optimal distance 
formula for the calculation of gene order associated with 
AD genes. In this paper, the original data is not normal­
ized, the reason for which is explained below:

Suppose two genes and their associated vectors are X = 
(x1, x2, ..., xk) and Y = (y1, y2,..., yk). If all components of 
the vector are normalized, they become small real value 

k
that is less than 1.0. Value S = i=1 (xi - yi)2 is small, 

and it is close to zero if the two genes are very similar. 
Then the value of the square-root S$ has a big error 
because it must be expressed as base operations (+, -, x, 
and +) to approximate. That is why Pearson distance, 
Euclidean distance and other distance formulas generate

Table 1 The illustration of organization of AD microarray data
AFFX -NAME GSM 

21215
GSM
2127

GSM 
2128

GSM 
21219

GSM 
21220

GSM 
21221

GSM 
21226

GSM 
21231

GSM 
21232

BioB-5_at 8.937 9.941 8.986 9.305 9.366 8.781 9.236 9.35 9.386
BioB-M_at 9.278 10.56 9.55 10.08 10.23 9.355 9.915 10.27 10.37

BioB-3_at 7.92 9.033 8.71 8.993 9.353 8.381 8.716 9.481 9.299

BioC-5_at 10.18 11.46 10.49 10.76 10.88 10.25 10.52 10.87 10.91

*Each column of the data represents the result of one microarray test. Each line of the data represents the expression levels of the same gene under different 
conditions. All data was log-transformed.
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Figure 1 The comparison of the quality of gene order generated by ACO and GA using Euclidean distance. *Ancillary information for 
figures:1. All microarray data are downloaded from [48], and the data from the 1st line to 300th line are used to do experiment and for other 
figures and tables. 2. Every heat map is the optimal gene order, which has the smallest value of fitness function and was selected from tests 
performed over 40 times. In addition, the distance formula used in the fitness function (see formula 4) is the Euclidean Distance. 3. All of the 
figures listed in this paper are generated by TreeView, which was developed by Dr Eison, and is downloaded from the website: http://rana.lbl. 
gov/downloads/TreeView/TreeView_vers_1_60.exe. 4. Because most of the expression levels of the AD gene data are larger than zero, the 
average value of every column is subtracted when the heat map is shown. Otherwise, all heat maps are red, and the display is incorrect.

lower qualities of gene order calculation compared with 
squared Euclidean distance.

Conclusion
With AD being the most common form of senile demen­
tia, the study of AD-associated genes is an imperative 
research subject. One important branch of an AD gene 

study is to cluster AD genes with the highest quality; 
gene order generates a better quality of clustering than 
other methods in general. In addition, our results of the 
experiment support the following conclusion: ACO is 
better than GA in AD gene order computation. Further, 
the following computational features were revealed in 
our study: For both ACO and GA, different distance
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Figure 3 The comparison of the quality of gene order generated by ACO and GA using Pearson distance formula.

Table 2 The statistical comparison of the quality of gene order
Algorithm Distance Control man Incipient patient Moderate patient Severe patient

ACO ED 507.9163 442.7255 459.7381 504.0716

GA ED 1800.9287 1582.5394 1689.2580 1604.3304

IGA ED 566.0912 508.6311 516.0917 579.3226

ACO SED 484.8221 419.8804 437.9346 479.5701

GA SED 1916.9891 1679.9281 1789.6030 1682.0008

IGA SED 576.9810 521.2992 529.8852 593.4252

ACO PD 2737.5938 2233.1848 2518.7568 2167.4011

GA PD 2882.9409 2532.2205 2708.5082 2515.8520
IGA PD 2712.5501 2319.1112 2513.9173 2218.1910

Notation: ED: Euclidean Distance; PD: Pearson Distance; SED: Squared Euclidean Distance
Ancillary information: all data in this table is the value of the fitness function, and it is the average of 40 times of tests. In addition, the distance formula used to 
calculate fitness value is ED. Every data in Table 5 corresponds to an average runtime.
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Table 3 The statistical comparison of the runtime of ACO, GA and IGA
Algorithm Distance Control man Incipient patient Moderate patient Severe patient

ACO ED 122.0545 121.8582 121.8611 121.8653

GA ED 580.8345 586.7355 588.9012 586.7427

IGA ED 133.0079 131.2152 140.4218 139.1710

ACO SED 109.8382 110.0110 109.7321 110.2532

GA SED 186.4143 184.5551 185.1629 185.7899

IGA SED 126.8957 126.9276 126.9757 127.0232

ACO PD 123.0438 122.8454 122.6719 122.6450

GA PD 186.9550 187.5644 187.0732 188.4089
IGA PD 129.8745 127.7448 127.0051 126.4476

Notation: ED: Euclidean Distance; PD: Pearson Distance; SED: Squared Euclidean Distance
Ancillary Information: Every runtime in this table is the average of 40 times of tests. In addition, every runtime corresponds to a fitness value i listed at Figure 3.

Algorithm Control 
Subj ect Incipient AD Moderate AD

ACO

Best Heat Map

T________“
__________ '1

Fitness Value 
Measured by SED 1127.5184 845.3903 1025.2689

Fitness Value
Measured by 

Euclidean Distance
475.1785 413.9568 431.3742

GA

Best Heat Map

Fitness Value by SED
1=1 

16246.1698 11892.5418 ma■IHMHM
Fitness Value by 

Euclidean Distance 1901.7168 1582.7204 1726.9854 1616.5237

IGA

Best Heat Map

Fitness Value by SED 1345.8920 1082.9607 ■rnai—■anm
Fitness Value by 

Euclidean Distance 574.2302 515.2758 518.0561 580.8858

Figure 2 The comparison of the quality of gene order generated by ACO and GA using squared Euclidean distance formula.
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formulas generated a different quality of gene order. 
Compared to Pearson distance and Euclidean distance, 
the squared Euclidean distance generated the best quality 
of AD gene order. Although Pearson distance commonly 
used tool, it is less optimal in AD gene order computa­
tion when employed in both ACO and GA methods.
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