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ABSTRACT 

Reger, Nicholas, Predictive niche modeling for the identification of maize pathogens of 

greatest concern in the United States . Master of Science (Biology), May, 2022, Sam 

Houston State University, Huntsville, Texas. 

 

Maize is one of the world’s most valuable food crops with 717 million metric tons 

produced annually. Its economic significance worldwide is second only to rice. Given the 

importance of maize, it is crucial to understand the potential range of pests and pathogens 

that pose a significant risk to the crop. Ecological niche modeling is used to identify the 

environmental requirements of these pests and pathogens. Models can be built using 

existing occurrence data and records of environmental conditions such as vegetative 

coverage, isothermality, altitude, temperature, and precipitation. In this study, I use pest 

occurrence location data from the Global Biodiversity Information Facility and 

bioclimatic variables from WorldClim to create generalized additive models (GAM), 

maximum entropy (MaxENT) models, boosted regression trees (BRT), ensemble, and 

CLIMEX models to predict suitable habitat for maize pests and pathogens in the US. 

Distribution models were made of insect pests of highest concern, including 

Lepidopterans Autographa gamma, Chilo partellus, Helicoverpa armigera, Spodoptera 

litura, and Thaumatotibia leucotreta, Coleopterans Diabrotica speciosa and 

Heteronychus arator, and the Hemipteran Laodelphax striatellus. Each of the forty 

models were then used to make maps of the potential geographical range that highlights 

areas that would be most suitable to the greatest number of pests. Coastal areas are 

susceptible to most maize pests and these maps convey the levels of risk associated with 

land near an ocean. These maps can be used to efficiently direct preventative action to 

high-risk areas. 
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CHAPTER I 

Introduction 

Maize is crucial to both the diets of humans and domesticated animals, which 

places it at the center of global food security (Mahuku et al., 2015). In the United States, 

90 million acres are planted with maize, which is then partially used to produce 95% of 

the feed grain used in the United States (USDA United States Department of Agriculture, 

2020). The U.S. produced 347 million metric tons of maize in 2019 and approximately 

41.8% of the crop yield was used to produce ethanol (FAO Food and Agriculture 

Organization of the United Nations, 2019; Klopfenstein et al., 2013). Soybeans are the 

only agricultural commodity in the United States that contribute more to GDP than corn 

(Agricultural Exchange Rate Data set. USDA ERS - Home, n.d.). Corn is an ingredient 

that has been used in used in items such as toothpaste, cosmetics, shampoo, diapers, 

paper, shoes, spark plugs, tires, fireworks, deodorant, textiles, and plastics (Agricultural 

Exchange Rate Data set. USDA ERS - Home, n.d.). 

Pests and pathogens of maize threaten food security. The economic damage from 

insects alone costs at least 70.0 billion dollars per year globally (Bradshaw et al, 2016). 

Strategies have been developed to control or contain domestic pests and there are also 

native predators that limit domestic pest population size and range expansions. However, 

there are no strategies nor native predators to control non-native corn pests. Alien crop 

pests have been referred to as the “single most formidable natural disaster threat of the 

21st century” (Schnase et al., 2002). Pests destroy between five to forty percent of crop 

yields, or two to sixteen billion dollars of corn domestically per year (Sarkozi, 2021). 

Native and established nonnative pests are the reason the domestic pest control industry 
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generates almost ten billion dollars in revenue a year (Industry Market Research, 2022). 

The economic costs will continue to worsen as invasive nonnative species are being 

introduced domestically through international trade and human travel at an increasing 

rate (Hulme, 2009). 

Pests 

The United States Department of Agriculture has identified maize pests of the 

highest concern (USDA Cooperative Agricultural Pest Survey, 2021). The pests include: 

Autographa gamma (Silver Y moth), Chilo partellus (spotted stem borer), Heteronychus 

arator (African black beetle), Diabrotica speciosa (cucurbit beetle) , Spodoptera litura 

(tobacco cutworm), Thaumatotibia leucotreta (false codling moth) , Helicoverpa 

armigera (cotton bollworm), and Laodelphax striatellus (small brown planthopper). 

Autographa gamma is dangerous because the larvae eat around the leaf plate and transfer 

viruses (Sullivan & Molet, 2007). Chilo partellus is a threat because as young larvae feed 

on leaf whorl and older larvae tunnel into stems (PPQ, 2019). Heteronychus arator chews 

the cortex of stems underground (Sullivan & Molet, 2007). Diabrotica speciose poses a 

risk to maize because larvae feed on roots adults feed on most parts of the plant (CPHST 

Pest Datasheet, 2022). Spodoptera litura is difficult to contain because as a flying adult it 

can migrate up to 1.5 kilometers and it does damage by chewing leaves (Sullivan, 2007). 

Thaumatotibia leucotreta creates a cavity in the stem that is almost a perfect circle; it 

does little initial damage but eventually allows molds entry into the stem (Sullivan, 

2007). Helicoverpa armigera is particularly a nuisance because it attacks plants 

reproductive systems (Sullivan & Molet, 2007). Laodelphax striatellusis is a threat 

because it is a vector for numerous plant viruses (Isiguro & Yanase, 1991). 
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Ecological Niche Drives Pest Distributions  

Organisms can only persist within a geographical range that provides an 

environment that supports population growth. The set of resources and environmental 

conditions that allow the species to maintain a viable population is called a niche. A 

species distribution is determined in part by its ecological niche, which comprises abiotic 

conditions such as climate and biotic interactions such as competition or prey availability, 

but also a species ability to disperse into available niche space (Soberón & Nakamura, 

2009).  

There are several ways to conceptualize niche and the distinctions are important 

because different understandings of niche correspond to diverse ways of modeling 

species distributions. This is because species distribution is constrained by the species 

niche. The Hutchinsonian niche is an n-dimensional hypervolume, where the dimensions 

are the environmental conditions and resources, that define the requirements of a species 

to persist (Levin et al., 2009). The Grinnellian niche is the sum of the habitat 

requirements and behaviors that allow a species to persist (Grinnell, 1917). A 

fundamental niche is the entirety of abiotic conditions under which a species can 

experience positive population growth. The realized niche, or the set of ecological 

conditions occupied by a species, is further limited by interactions with other organisms, 

and dispersal ability. 

Niche Modeling 

The habitability of any given location for a particular species can be discerned 

through ecological niche modeling. Niche models are mathematical functions that 

describe the relationship between environmental conditions and species presence, and 
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which can be used to make predictions of the probability of species presence based on 

these environmental variables. While the environmental niche that constrains a species 

distribution is made of many factors other than just abiotic climate data, niche modeling 

is often based solely on the environmental requirements of climate interactions because 

biotic interactions and dispersal are often too variable and poorly quantified for 

modeling. Such niche models are called bioclimatic models. The strong relationship 

between species distributions and environmental requirements allows for ecological niche 

modeling to identify the environmental requirements of pests and pathogens using 

presence-only data (Elith et al., 2006). This assumes that a niche can be represented by an 

n-dimensional hypervolume of environmental conditions (Grinnell, 1917). 

Niche modeling is a proactive approach to invasive pest control; being able to 

predict where a pest is most likely to become established so that preventive measures can 

be employed is more efficient than the eradication of an already-established population 

(Peterson &0 Vieglais 2001). Models of invasive species are most predictive when they 

are constructed based on observations of species occurrence locations from both invaded 

and native ranges (Crimmins et al., 2006). This is likely because when a species is 

introduced to a nonnative range there are different environmental pressures limiting its 

distribution that may not exist in both ranges (Pérez et al., 2006). 

Most bioclimatic models are correlative as they link environmental conditions 

with the probability of species occurrence. On the other hand, mechanistic models link 

ecophysiological responses to environmental covariates (Webber et al., 2011). 

Correlative models recover the Hutchinsonian niche as they are constructed using 

occurrences to infer the n dimensions of the Hutchinsonian niche and mechanistic models 
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predict distributions closer to the realized Grinnellian climate niche (Rodda et al., 2011). 

This is because mechanistic models are built using only physiological constraints rather 

than being built from functions linking presence to environmental conditions like a 

correlative model.  

There is almost always a difference between realized niche and the fundamental 

niche, and as models are built using occurrences from the realized niche no model will 

represent the full fundamental niche (Phillips et al., 2006). This is because current models 

do not have the capacity to incorporate all the information required to represent the 

fundamental niche. To increase the portion of the fundamental niche represented by the 

model, occurrence records from a as large geographic range as possible must be 

incorporated (Peterson & Holt 2003). 

Occurrence Data  

Niche models are most often built using environmental data gathered from 

occurrence records. Occurrence records represent sets of coordinates where a species has 

been observed to occur. These are recorded mostly from museum and herbarium 

specimens (Ponder et al., 2001). Rarely do occurrence data represent a random sample of 

the species distribution. Rather, collections are made largely based on convenience—

from places that are easily accessible to the collector: roadsides, natural areas, and 

locations within a half-day’s drive of a biological collection facility. Convenience 

sampling will result in a non-random sample of a species realized niche, with some 

environments being over-represented by occurrence records, while others are under-

represented. Such a sample can be said to be autocorrelated. In an autocorrelated sample, 

occurrences can be predicted by past occurrences. Autocorrelated points that result from 
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convenience sampling artificially inflate the significance of environmental conditions of 

overrepresented environmental conditions. This is known as model distortion. 

To estimate a probability distribution of habitat suitability on a set of 

environmental conditions associated with occurrence points, models need information on 

all environmental conditions that may be available to a species in a landscape. 

Background data are coordinates that represents where a species has not been observed. 

They are used to teach a model what environmental conditions may not be suitable for a 

species. If a model is built with background data that characterize environments in the 

study region with the same bias as the occurrence data, model distortion is avoided and 

there is improved predictive performance (Phillips et al., 2009). A distinction should be 

made between background and absence data, though both are largely used the same way 

in niche modeling. Absence data are records of where a species was sought out and was 

not found. Absence records are more likely to represent true species absence than 

background data because the absence is supported by survey effort. Absence data is also 

directly correlated with the quality of the survey and the technical expertise of the 

individuals doing species identification. An individual can record false absences for many 

reasons such as making observations at the wrong time or not waiting long enough for the 

species to appear. While presence data is readily available and publicly accessible, 

absence data is not often collected or available (Phillips et al., 2006). When absence data 

is available, it may suffer from inadequate sampling that results in false negatives of 

species presence (Anderson, 2003).  

Presence data is collected and databased by people and is also subject to human 

error (Wieczorek et al., 2004). Misidentification errors are common with species that 
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resemble other species. This type of error can be minimized either by using only 

occurrences from highly trained individuals or modeling particularly distinctive species. 

Transcription errors arise when records were entered into a database or from an 

unspecified geographical datum. Some of these erroneous points can be caught in a data 

cleaning process (Hijmans et al., 1999). Nonetheless, remaining errors degrade the 

predictive capacity of most models.  

Bioclimatic Predictors and Collinearity 

Predictor variables are the ecological conditions associated with occurrence 

points. Predictors are abiotic factors associated with the environment, such as vegetative 

coverage, moisture, and temperature, which constrain a species’ niche. In a simple sense, 

conditions outside of a species physiological tolerance result in the absence of that 

species. Different species have different physiological tolerances based on their 

individual adaptations. For example, a species can be well adapted to cold temperatures 

while another species cannot handle cold temperatures but is instead well adapted to high 

temperatures. It is important to consider how predictors affect species in conjunction with 

other predictors as many predictors have interactions with each other. One of the most 

straightforward interactions is how high temperature can be offset by a high precipitation 

that protects the individuals from the desiccating properties of high heat.  

 Some predictors may predict the values of other predictors, a correlation called 

collinearity. For example, solar radiation can be used to predict temperature which makes 

the two predictors collinear. Collinearity is a frequent problem in species distribution 

modeling, reducing predictive capacity and leading to the misidentification of predictors 

in a model (Dormann et al., 2013). This problem is exacerbated when a model that was 
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built with one collinearity structure is extrapolated to another area where the collinearity 

can be different. When the correlation coefficients between predictor variables are greater 

than 0.7 collinearity begins to severely distort the model (Dormann et al., 2013). Through 

a strong familiarity with the underlying ecology behind the model, variable selection can 

be used to avoid collinearity.  

Collinearity can be measured either between two predictors or measure how much 

one predictor contributes to overall collinearity. When a researcher has significant 

technical expertise about a species and its physiological tolerances, they know what 

variables are important and can do pairwise collinearity analysis to remove collinear 

predictors. Pairwise collinearity can be measured with Pearson’s coefficient. In research 

with a large scope where there is a variety of diverse species incorporated, collinearity is 

usually measured based on each predictor’s contribution to overall collinearity. Overall 

collinearity can be measured with variance inflation factor (VIF) (Gareth et al., 2017). 

VIF is a ratio of the variance of estimating a predictor in a model that includes multiple 

terms by the variance of a model constructed using only one term. The larger the VIF, the 

more colinear a predictor is with other predictors. 

Assumptions of Niche Models 

There are a few assumptions inherent in niche models, which when violated result 

in poor prediction. The most significant weakness results from the assumption that biotic 

interactions are constant over space and time. Models that use open-ended response 

curves predict species suitability in areas where the species cannot occur if they 

extrapolate globally from a limited dataset (Webber et al., 2011). An open-ended 

response curve is when a model recognizes the species survives as the highest values 
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available in the range of occurrences and so it predicts it will continue to survive in more 

extreme conditions than were used to train the model. Predictive capacity is also 

diminished if a model ignores sub-taxon structure because that violates the assumption 

that populations of a species have similar environmental requirements (Pearman et al., 

2010; Shabani et al., 2017). Another assumption in niche modeling that species are in 

equilibrium with their environment (Guisan et al., 2021). This assumes that the species is 

no longer evolving in response to environmental conditions in its home range. Niche 

models constructed using a small portion of the known range do not account for the 

complete set of environmental conditions in which a species occurs, violating this 

assumption. Another assumption is that environmental factors important for determining 

a species distribution are available, which may be violated if the understanding of a 

species is not rich enough to include all the most important predictors (Guisan et al.,2 

021). Another assumption is that occurrences are samples from populations experiencing 

growth (Guisan et al., 2021). This assumption is violated when occurrences are from 

populations where the occurrence is only temporary, as when propagules disperse into 

environments in which they can survive but cannot reproduce. There is an assumption 

that predictor data is free of error, but it is possible that there are errors with the 

equipment used to record the measurements (Guisan et al., 2021). Another assumption is 

that occurrence data represents a randomly selected subset of the realized distribution 

(Guisan et al., 2021). This assumption is violated by convenience sampling, though 

background data with the same bias can mitigate some of the model degradation from this 

assumption violation. Despite the assumption violations, niche models can predict 
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habitable areas that were not a used to train the model which makes them a useful tool in 

identifying potentially viable habitats.  

This study will make use of three correlative models (General Additive Models, 

Maximum Entropy, and Boosted Regression Trees) and one mechanistic model 

(CLIMEX) to estimate the suitability of habitats in the conterminous US for USDA-

CAPS-identified pests of maize. 

GAM 

Generalized additive models are a type of generalized linear model (GLM) 

(Hastie & Tibshirani, 1990). A GLM allows the magnitude of the variance of each 

measurement to be a function of its predicted value (Nelder & Wedderburn, 1972). It 

does so by relating a linear model to the response variable with a link function (Nelder & 

Wedderburn, 1972). A link function provides the relationship between the linear 

predictor and the mean of the distribution function (Nelder & Wedderburn, 1972). There 

are many well defined link functions that fit distributions such as normal, exponential, 

poisson, or other distributions (Nelder & Wedderburn, 1972). A GAM uses splines to fit 

together simple polynomials that likely fit the data in a limited range as a way of 

generating a link function that can closely fit a population (Hastie & Tibshirani, 1990). 

This is a simple model in comparison to MaxEnt and BRT models and is not as robust 

when confronted with occurrence errors. It creates a less conservative predicted 

distribution that the other models used in this research because splines cannot capture 

interactions between predictors.  
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MaxEnt 

Maximum Entropy modeling (MaxEnt) is a machine learning technique that 

selects functions to build a model based on maximizing informational entropy (Guiasu & 

Shenitzer, 1985). Machine learning is a type of artificial intelligence that allows software 

to increase predictive accuracy without being manually programmed to increase accuracy 

(Mitchell, 1997). Informational entropy can act as a numerical measure describing how a 

particular probability distribution is uninformative (Guiasu & Shenitzer, 1985). The most 

informative probability distribution occurs when one of the propositions is known to be 

true, where information entropy is zero (Guiasu & Shenitzer, 1985). The least 

informative distribution is when there is no support for any propositions, where 

informational entropy is at its maximum value (Guiasu & Shenitzer, 1985). The 

distribution with the maximum entropy is the one that makes the fewest assumptions 

about the true distribution of data (Guiasu & Shenitzer, 1985). Therefore, when 

informational entropy is maximized, a model can be used to derive distributions from 

observational data while making the fewest implicit assumptions, and therefore makes 

predictions with no more precision than that required by the data (Guiasu & Shenitzer, 

1985). The model is constructed using a uniform distribution as a starting point. MaxEnt 

simplifies functions used to describe the dataset to reduce overfitting, a process called 

regularization (Phillips et al., 2006), which is adjusted based on sample size because it 

has the most impact when sample sizes are small (Elith et al., 2006). Overfitting is when 

the model fits the training data so closely that it makes good predictions only about the 

data used to train the model and makes only negative predictions in environmental space 

outside of that used to train the model. MaxEnt models include interaction terms that 
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account for how an environmental variable changes the effect of another environmental 

variable. This modeling technique is unique in that model predictive performance is not 

impaired by the inclusion of a few errors in the occurrence records (Graham et al., 2008). 

BRT 

Boosted regression trees combine regression trees and boosting to create an 

additive regression model where the individual terms are simple trees, fitted forward and 

stagewise (Elith, 2008). The simple trees are graphs defined by branching points called 

nodes stagewise (Elith, 2008). A node is a threshold of an ecological condition where the 

tree forks into two directions called a binary split stagewise (Elith, 2008).  For example, a 

tree may have a node of a temperature above 100°F where one direction is that the 

species cannot inhabit the environment and the other direction is that is the species can 

inhabit the environment. On the branch where the species does survive there can be more 

nodes that convey other partitions that define probability of species survival. Boosting 

approximates the true response surface by combining simple trees that have 

misclassification problems thereby improving overall predictive accuracy (Elith et al., 

2006). BRT models also account for interaction terms to a further extent than MaxEnt 

models (Elith et al., 2006). These models are slightly impaired when there is erroneous 

location data in the occurrence records. However, BRT models perform better than most 

other modeling techniques when occurrence records are flawed (Graham et al., 2008). 

CLIMEX  

CLIMEX is a mechanistic model that uses physiological observational data along 

with occurrence data which makes it ideal for pests that do not have abundant occurrence 

records. If the physiological tolerance data is not available, it can be inferred from 
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occurrence records. These models assume that climate is the main factor of species 

distributions (Kriticos et al., 2007). Mechanistic models such as CLIMEX are the most 

predictive model for novel climatic factors such as climate change predictions (Webber et 

al., 2011). The model incorporates population growth and physiological stress 

attributable to climatic variables. These effects are indexed as an Annual Growth Index 

that represents growth potential in the favorable season, and multiple Stress Indices that 

represent population reduction during an unfavorable season. The product of the Annual 

Growth Index and Stress Indices is an annual average index called the Ecoclimatic Index 

(EI). This index has a value from 0 to 100 that represents the suitability for species to 

occupy an area. Species may be established where EI is greater than 0, are marginally 

suitable where EI is 1 to 10, are moderately suitable where EI is 10 is 20, and are 

optimally suited where EI is above 20. 

Study Goals 

In this study I will be making predictions about most suitable habitat for corn 

pests in the United States. Maps of habitat suitability can be built using the models of 

physiological tolerances and worldwide climate data. Four different models will be used: 

MaxEnt, BRT, GAM, and CLIMEX.  These models were chosen based on their high 

predictive capacity and because each is built on different statistical assumptions.  

The first goal of this study is to create risk maps that convey what land in the 

United States is habitable to invasive pests. First predictive distribution maps will be 

generated of maize pests of the highest concern as identified by the USDA. Ensemble 

risk maps will then be generated using an ensemble approach that incorporates GAM, 

MaxEnt, and BRT models. A map of total risk in the United States was generated by 
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taking a weighted average of the eight ensemble maps that convey habitat suitability. A 

total risk map will overlay land where corn is grown and areas where three or more 

invasive pests have habitable environments. The second goal is to use CLIMEX, as a 

mechanistic model to make species distribution maps.  
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CHAPTER II 

Methods 

The eight pests that were modeled in this study were selected from the greater list 

of pests provided by the USDA based on occurrence records (USDA CAPS 2021). Pests 

that were not included, particularly molds, rusts, smuts, and blights, are rarely found in 

natural history collections, and therefore have few or no known geographical locations. 

Occurrence data from species home ranges were obtained from the Global Biodiversity 

Information Facility (Hijmans, 2021). The records include observations from museums 

over the last two hundred years as well as modern geotagged occurrence records. The 

records are in the World Geodetic System 1984 datum which was designated as a 

coordinates object in the R environment. Occurrence records were sanitized to remove 

errors such as duplications, flipped coordinates, and blank coordinates (Giannini et al., 

2012). The data was also graphically projected for a visual inspection to verify there were 

no anomalous points in the ocean because such points are the result of data entry errors 

from GBIF. If there are more than 3000 occurrences a random subset of 3000 points was 

used as presence data. Most occurrence points were clustered around a home range 

except for Helicoverpa armigera, Chilo partellus, and Spodoptera litura which had 

occurrences from a broad distribution (Figure 1).   
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Figure 1 

Occurrence Records  

 

A random subset of 20% of the occurrence data was withheld from training the 

models so that it could later be used to test the predictive capacity of the model (Fielding 

& Bell, 1997).  This was done by assigning a random integer between one and five and 

segregating the points. Occurrences that received a value of one were separated from the 

rest of the dataset to use as testing data. To generate pseudo-absence points, I generated 

circles around each occurrence with a radius equal to the average distance between 
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occurrence points and removed any overlap between circles, creating a polygon from 

which I took a random sample of points. In some instances, this method created a hole 

where the polygon overlap would prevent processing. In such cases, the distance was 

iteratively lowered until there was no longer a hole. 

Bioclimatic Predictors and Collinearity 

Based on the occurrence records, I extracted the associated climate data from 

WorldClim Version 2 Bioclimatic variables (Hijmans, 2021), with a 10-min spatial 

resolution. The bioclimatic variables from this source all pertain to temperature and 

precipitation. I also included a human impact predictor from the Socioeconomic Data and 

Applications Center run by NASA (Wildlife Conservation Society, 2005) and an 

elevation raster from Worldclim (Fick & Hijmans, 2017). The human impact raster is 

made up of nine global data layers covering human population pressure (population 

density), human land use and infrastructure (built-up areas, nighttime lights, land use/land 

cover), and human access (coastlines, roads, railroads, navigable rivers) (Wildlife 

Conservation Society, 2005). To determine which predictors were not collinear, I used 

the VIF-step algorithm (Naimi et al., 2014). First, the VIF (variance inflation factors) was 

estimated jointly for all predictors sampled from occurrence training records. The 

predictors with the highest VIF value are considered colinear because they had the most 

predictive capacity towards other predictors. The most colinear predictors were 

sequentially removed until the variance inflation factor of all remaining predictors was 

below five (Chatterjee & Hadi, 2006). These remaining predictors were used to train the 

correlative models. 
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Correlative Model Training and Prediction 

All three correlative models, GAM, MaxEnt, and BRT, were constructed in the R 

version 4.0.5 coding language (R Core Team, 2021) in RStudio version 1.3.959 (R Studio 

Team, 2020 including the packages dismo (Hijmans et al., 2021), rgeos (Bivand & 

Rundel, 2021), maptools (Bivand & Lewin-Koh, 2021), shades (Clayden, 2019), and 

raster (Hijmans, 2021). The additional package mgcv was used to create GAM models 

(Wood, 2017). The package rJava was used to generate the MaxEnt models using java 

within R (Hijmans, 2021). The package sp was used to work with the intermediate forms 

of data that went into the models such as data frames and polygons (Bivand et al., 2013).  

The package rgdal was used to work with coordinate reference systems which 

needed to be associated with sets of occurrence records (Bivand et al., 2021). The 

package also allowed us to interpret the reference system and correct some errors. All 

three correlative models were initially run with all the noncolinear variables. The GAM 

and MaxEnt models were simply processed using their respective R packages. After the 

BRT model was first generated, tree complexity and learning rate were manually 

manipulated based so that adding more trees did not decrease the holdout deviance 

explained by the model. The ideal BRT model was then simplified by removing the 5 

least predictive bioclimatic variables. Once the correlative models were generated and 

had had their efficacy tested, they were used to project distribution maps. This was done 

by comparing the environmental conditions of land in the United States at a 10-min 

spatial resolution to the environmental suitability proposed by the model. The default 

color palette for distribution maps in R is red and green which I modified to be a blue 

scale to make our results accessible to researchers with deuteranopia color blindness. 
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Correlative Model Evaluation 

Predictive capacities were measured by the area under the receiver operating 

characteristic curve (AUC). This metric is based on the ratio of true positives to false 

positive predictions in the range of withheld occurrence records. A true positive is when 

the model predicted the species would occur in an area that is does have an occurrence 

record for. A false positive is when the model makes a prediction that the species will 

occur in an area where it does not occur based on either absence or background data. 

Values of this metric range between 0 and 1 with a value of 1 meaning the model only 

produces true positives and never any false positives. A value of 1 is not often attained in 

niche modeling but instead values will usually fall between 0.5 and 1 with a value of 0.5 

corresponding to a completely useless model that makes as many true positive predictions 

as false positive predictions.  

One of the two biggest weaknesses of AUC is that a larger extent of absence data 

will correspond to a larger AUC value (Lobos et al., 2008). Similarly, AUC is based on 

false positive rates which are reliant of absence or background data which never is 

completely representative of true species absence and is rather an approximation. These 

weaknesses have created some contention over the use of AUC as a metric, but models 

with a high AUC value have made predictions that have been independently verified. 

Alternatives such as an ecological space index have been recently proposed but have yet 

to experience widespread use and peer review (Escobar et al., 2018). Until a better metric 

is introduced, AUC has become established as the standard tool for model evaluation 

when niche modeling.  
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Ensemble Modeling and Evaluation 

Ensemble modeling is an approach that maximizes predictive capacity when niche 

modeling by mapping a distribution based on the aggregation of predictions from 

multiple models. Our ensemble model was developed using the AUC-weighted means of 

BRT, GAM, and MaxEnt predictions. This generated a model that leverages the 

advantages of each individual model while reducing the uncertainty present in an 

individual model (Beerman et al., 2021). Ensemble models usually have a higher 

predictive capacity, as measured by AUC, than any of the individual models because it 

does not suffer from the assumption violations of any one model while retaining the 

unique predictive capacities of each incorporated model (Marmion et al., 2009). 

Summary Analysis 

A map of total risk in the United States was generated by taking a weighted 

average based on the AUC value of the eight ensemble maps. Each individual raster was 

multiplied by its AUC score and added to the total risk map which was divided by the 

total of the AUC score values. The next risk map was generated by taking the first risk 

map and using an AUC threshold of 0.5 to represent areas of high habitability. The 

harvested area of corn in hectares from CHEMGRIDS was overlayed on this map to 

show corn crop land that is highly suitable to invasive pest establishment (Maggi et al., 

2019). 

CLIMEX Training and Prediction 

The software CLIMEX Version 4 (Kriticos et al., 2015) was used to create 

CLIMEX models. The climatic requirements for each were inferred based on a genetic 

algorithm that is part of the CLIMEX software. The genetic algorithm uses occurrences 
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to create infer physiological tolerances of a species. Occurrences were input as ESRI 

point shapefiles was created in QGIS (QGIS, 2022). The point shapefile occurrence 

records were intersected with the CLIMEX CM10 map. Points outside the region used in 

CLIMEX to model distribution were manually deleted. If there are too many points for 

the model to run, a random subset of half of the occurrences were used in lieu of the full 

dataset. 

Based on occurrences, the genetic algorithm quantifies how well the tolerance 

levels fit the occurrence record distribution. The genetic algorithm procedure was 

repeated for 100 generations. Each generation consists of eight sets of tolerances and the 

set that best fits the occurrence records is used to create the set of the next generation, 

resulting in stepwise improvement of model fit. A set that performs well is used as a 

parent set to create a new child set that is a slight modification of the parent. If the child 

fits the occurrences better than their parent then the parent is discarded, and the child is 

allowed to generate children of its own. If the child does worse than the parent, it is 

discarded, and the parent has more children until a child is able to surpass the parent. This 

procreation of parameter sets is why this is referred to as a genetic algorithm. Once 

physiological tolerances were estimated, the software was run in the “Compare 

Locations” mode where the tolerances were used to predict the species’ response to the 

average temperature and moisture across the United States.  

CLIMEX is rarely used for niche modeling in comparison with correlative 

models. The main reason for it having limited use is that the way CLIMEX constructs 

models is private information. Therefore, more weight is given to the correlative models 
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that have become the current standard for niche modeling which are constructed based on 

established public methods.
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CHAPTER III 

Results 

Results of each Species 

Autographa Gamma 

Autographa gamma occurs everywhere in Europe as well as many occurrences in 

Asia, and northern Africa which was used as its home range (Venette et al., 2003). There 

are almost half a million occurrences on GBIF so a random subset of three thousand 

points had to be used so that the models could be run. The predictors that were most 

important in multiple models were human impact and temperature seasonality (Table 2).  

The east coast provides the most suitable habitat in the contiguous US under all three 

models (Figure 2).  The MaxEnt distribution goes the farthest west Both MaxEnt and 

BRT project a small area of habitat suitability in the Rocky Mountains while GAM does 

not. All models projected habitat suitability across both coasts with much more 

continental penetration on the east coast. The high AUC values of these models indicate 

this model was able to correctly predict areas of habitat suitability and this map can be 

used with some confidence to predict potential Autographa gamma distribution. 
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Figure 2 

Habitat Suitability of Autographa Gamma  

 

Chilo Partellus  

This species is native to the Indo-Australian region (Mohyuddin, 1971). The home range 

used to train the models was limited to Africa as there were occurrence records available. 

After data cleaning there were 45 occurrences records from GBIF remaining. The AUC 

value of 1 that is in figure 3 may be artificially high as only 35 occurrences were used to 
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train the MaxEnt model and 10 to test the model. The GAM model was the only 

projection with significant habitat suitability west of -100 longitude (Figure 3). Points in 

this region  are not likely accurate as they have no consensus support. The exception to 

points in the west being inaccurate are the points along the west coast projected by the 

BRT model. The BRT model projected very little habitable area and all the areas it 

projected to be suitable are corroborated by all the other models. That corroboration 

makes the BRT projections the most likely to be accurate. If the BRT model was too 

conservative MaxEnt has a distribution that covers every latitude and goes as far west as -

100 longitude with the unusually high AUC score of 1. Despite the high AUC values of 

these models, these predictions should be used cautiously as there was little data available 

to train and test this model. The stark differences between the BRT and MaxEnt model 

highlight the high level of model uncertainty. The model uncertainty is especially 

highlighted in how all predictors were equally important in the GAM model.  
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Figure 3 

Habitat Suitability of Chilo Partellus  

 

Diabrotica Speciosa  

This species home range is in South America where it almost completely inhabits 

the southeastern coast (EPPO, 2005). There are over 2000 occurrences on GBIF but only 

255 were left after the data cleaning process. Important predictors were human impact 

and radiation in the driest quarter. The projections of the BRT and MaxEnt models have a 
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high degree of agreement which is a strong indicator these models are representative of 

the true potential distribution (Figure 4). They project habitable areas mostly along the 

east coast with some suitability across the west coast as well. There was significant 

continental penetration projected by all models. The deep continental penetration is 

consistent with the existing distribution of Diabrotica speciosa which has become 

established deep into continental South America with a more condensed distribution 

around the coast.  The models all projected some northeastern distribution in areas where 

significant areas of corn are grown which is especially noteworthy. The MaxEnt model 

was less conservative overall, except for the Great Lakes region. The GAM model 

projected many areas the other models did not corroborate such as in the Rocky 

Mountains and in the northwest United States. The areas projected solely by the GAM 

model are significantly less likely to represent the true distribution. This is because the 

GAM model is simple and does not account for interactions between predictors. The 

GAM model can make correct predictions about distribution that neither of the other two 

models project, but such predictions are usually on the borders of the MaxEnt and BRT 

projections rather than thousands of miles away. The highest habitat suitability based on 

model consensus is the east coast. More specifically Florida, the Carolinas, Delaware, 

and New Jersey all are states with high habitat suitability. Apart from the coast, the Great 

Lakes region is an area of high suitability according to the BRT and GAM models. 

 

 

 

 



28 

 

 

Figure 4 

Habitat Suitability of Diabrotica Speciosa  

 

Helicoverpa Armigera  

This species originated in South America but has spread across the world and this 

species has especially become established in Europe (Kriticos et al., 2015). Occurrences 

from all over the world were used to train this model and there were 2867 occurrences 

remaining to train the model after the data cleaning. The important predictors were mean 
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diurnal temperature range and human impact (Table 2). The models all had slightly lower 

AUC values than many of the other models (Figure 5, Table 1). Despite the slightly lower 

AUC values there are high levels of model agreement which indicates many of the areas 

it projects are likely to be accurate predictions. If additional predictors are be identified in 

the future, it is possible a map with improved accuracy would be like these maps with 

only slight modifications. 
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Figure 5 

Habitat Suitability of Helicoverpa Armigera 

 

Heteronychus Arator  

The home range used to train the model was southeastern Africa but there are 

occurrences in Australia as well (Learmonth, 2022). There were 195 occurrences left to 

train the model after the cleaning process. The most important predictors were human 

impact and isothermality (Table 2). These models are like Helicoverpa armigera in that 
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the AUC values are slightly low and there are high levels of model agreement (Figure 5 

and Figure 6). The habitable area proposed by these models is broad and slightly patchy 

with the highest concentration of habitable area east of -100 longitude, surrounding the 

Great Lakes, and near both coasts. The broad distribution indicates Heteronychus arator 

would find the United States to be a particularly hospitable climate. States in the western 

United States such as Utah, Nevada, and Idaho have less projected habitability than the 

rest of the country but still have patches of significant suitability. 
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Figure 6 

Habitat Suitability of Heteronychus Arator  

 

 

Laodelphax Striatellus  

The home range used to train the models was Asia, which is its native range, but 

there were occurrences from Europe used as well where it has become widely distributed 

(Jeong et al., 2016). There were 167 occurrences remaining to train the model after the 

data cleaning process. The important predictors were human impact, radiation in driest 
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quarter, and precipitation seasonality (Table 2). Most of the models projected a high level 

of habitat suitability across the United States. The BRT model projected habitat 

suitability on the northeast coast, around Lake Ontario and Lake Eerie, and around the 

Rocky Mountains. These areas are supported by the MaxEnt model, which makes them 

the most likely to be accurate predictions. The area is also supported by the GAM model 

which projects all land east of -105 longitude as extremely habitable. The land west of -

105 not being projected to be particularly suitable, even by the most liberal model is 

indicative of low habitat suitability. In that region there are a few islands of suitability 

especially on the coast but the highest suitability in that region is in Canada on the coast.  
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Figure 7 

Habitat Suitability of Laodelphax Striatellus  

 

Spodoptera Litura  

This pest was native to South America but has spread worldwide (Cui et al., 

2020). Most occurrences used to train these models were from Asia, but there were 

occurrences in Australia as well where it has also become established (Thomson, 1965). 

There were 1139 occurrences remaining to train the model after data cleaning. The most 
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important predictors were human impact, temperature seasonality, and radiation in the 

driest quarter. All three models and their ensemble exhibited AUC values >0.9 which 

indicated this model does well at making accurate distribution projections (Figure 8). 

Florida is at very suitable and could act as a foothold for Spodoptera litura to become 

distributed through much of the land corn is grown domestically. This is especially 

dangerous as all of the models project habitat suitability in the Midwest which is the 

region where the most corn is grown. 
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Figure 8 

Habitat Suitability of Spodoptera Litura  

 

Thaumatotibia Leucotreta  

The home range is the Ethiopian zoogeographic province and most of the occurrences 

used to train these models were from Africa, but there are a few occurrences from Europe 

as well (Venette et al., 2003). There were 102 occurrences remaining after cleaning to 

train the models. Table 2 shows the important predictors were human impact, annual 
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precipitation, and radiation in wettest quarter. The GAM model could not discriminate 

any important predictors and predicts that everywhere in the United States is highly 

habitable (Figure 9). The GAM prediction results in a unusual AUC value of 0.45 

because absence data was generated around occurrences and there is always a prediction 

of habitat suitability on every absence point. Because GAM predictions were no better 

than random, GAM was excluded from the ensemble. The ensemble demonstrates 

Indiana, Ohio, and Kentucky are all midwestern states with significant areas of habitat 

suitability. All models agree there is suitable habitat in the Midwest which makes this 

pest particularly dangerous to maize.  
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Figure 9 

Habitat Suitability of Thaumatotibia Leucotreta  

 

CLIMEX 

Five of the eight species did not have habitable areas within the contiguous 

United States excluding Hawaii (Figure 9).  Heteronychus arator had a small region of 

habitat suitability near Iowa and Nebraska which are two of the states with the highest 

corn yield. Chilo partellus and Autographa gamma had large areas of habitat suitability 



39 

 

 

in the southern United States.  Chilo partellus and Autographa gamma differ significantly 

from the correlative models in that the distribution projected by CLIMEX clearly is 

defined solely by a latitudinal gradient while the correlative models had high levels of 

suitability across the eastern US. The other six species differed from the correlative 

models in that there was little to no suitable habitat in the United States.  

Figure 10 

CLIMEX Maps 
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Note. The legend shows EI values which stands for Ecoclimatic Index. EI is a 

combination of a growth index and a stress index that base growth and stress on 
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physiological tolerances. An EI value between 0-10 is slightly habitable, 10-20 is 

habitable, and above 20 is highly habitable (Jung et al., 2016).  

Differences in Model Projections 

One of the trends apparent in the distribution maps is that the GAM model 

predictions were the most liberal by a significant margin. This could be the result of the 

model’s simplicity not capturing as many of the predictor effects or interactions as that 

the more sophisticated models. If that is the case, the more liberal estimate is less 

accurate which is supported by lower AUC values (Table 1). Spodoptera litura and 

Autographa gamma had GAM maps that were more conservative than most of the other 

GAM maps and had a higher AUC value. These are the instances where GAM models are 

particularly useful. This is because MaxEnt and BRT models can be overly conservative, 

and the simple GAM model can improve total accuracy by supplementing complex 

models in an ensemble. The BRT models were almost always the most conservative and 

areas of highest habitat suitability projected by the BRT models are almost always also 

projected by the MaxEnt models. This is one of the best indicators these maps are 

accurate as the models are built using entirely different methods yet arrive similar 

predictions. 

Overall Trends 

The highest AUC values for any species alternated between MaxEnt and BRT, 

which was expected as no one model is the most predictive in all cases (Table 1). That is 

a primary reason an ensemble model is one of the most effective tools for creating 

accurate predictive maps. The ensemble AUC values were always close to the highest 

value and despite not having the highest AUC values, may be the most accurate of the 

predictions. This is because it is less eroded by the weaknesses of any one model and can 
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provide additional information about distribution that the model with the highest AUC 

value is missing. The most important predictor in the greatest number of models was 

human impact (Table 2) which is not surprising as that predictor entails many powerful 

drivers such as land use, crop locations, and pesticide use.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 1 

AUC Values of GAM, MaxEnt, BRT, and Ensemble Models 

Species GAM MaxEnt BRT ENSEMBLE 

Autographa gamma 0.94 0.95 0.96 0.95 

Chilo partellus 0.78 1 0.92 0.94 

Diabrotica speciosa 0.91 0.94 0.93 0.93 

Helicoverpa armigera 0.79 0.80 0.83 0.81 

Heteronychus arator 0.83 0.86 0.87 0.85 

Laodelphax striatellus 0.76 0.74 0.77 0.76 

Spodoptera litura 0.90 0.91 0.92 0.92 

Thaumatotibia leucotreta 0.45 0.95 0.91 0.94 

4
3
 



 

 

 

Table 2  

Predictors in Descending Order of Importance 

Species Most important Predictor 

GAM 

Most important Predictor 

MaxEnt 

Most important Predictor 

BRT 

Autographa gamma Temperature Seasonality 

Annual Precipitation 

Precipitation in Warmest Quarter 

Human Impact 

Human Impact 

Temperature Seasonality 

Human Impact 

Maximum Temperature in Warmest Week 

 

Chilo partellus All Predictors Equal 

 

Human Impact Precipitation in Coldest Quarter 

Diabrotica speciosa Human Impact 

Radiation in Driest Quarter 

Human Impact Radiation in Driest Quarter 

Helicoverpa 

armigera 

Mean Durnal Temperature Range 

Temperature Seasonality 

Moisture Seasonality 

Human Impact 

Human Impact 

Mean Durnal Temperature Range 

Mean Durnal Temperature Range 

Human Impact 

Temperature Seasonality 

Radiation Seasonality 

Heteronychus 

arator 

Human Impact Human Impact Isothermality 

Spodoptera litura 

 

Radiation in Wettest Quarter 

Isothermality 

Human Impact 

Temperature Seasonality 

Radiation in Driest Quarter 

Temperature Seasonality 4
4
 

(continued) 



 

 

 

Species Most important Predictor 

GAM 

Most important Predictor 

MaxEnt 

Most important Predictor 

BRT 

 

. 

Temperature Seasonality 

Human Impact 

 Precipitation in Warmest Quarter 

Mean Temperature in Driest Quarter 

Thaumatotibia 

leucotreta 

All Predictors Equal 

 

Annual Precipitation Radiation Wettest Quarter 

Human Impact 

4
5
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Everywhere in the United States is habitable to at least one pest species with an 

AUC threshold of .5, and there are some areas of extremely habitat suitability which can 

been seen on the map of habitability constructed from a weighted average of all eight 

ensemble models (Figure 11). The high suitability areas, especially in Florida have 

abiotic conditions suitable for up to six of the pest species. The east coast is more 

susceptible to corn pests than the west coast. Florida is particularly suitable as it has 

multiple regions with climate suitable to five or six pest species. There are areas that 

Corn is grown in areas that can host multiple of the pest species (Figure 12).  
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Figure 11 

Weighted Average Pest Risk Map 

 

Note. This figure was created using a weighted average of all eight ensemble models. 

Each raster was multiplied by its AUC score and added to the risk map which was 

divided by the total values of AUC scores. 
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Figure 12  

Corn in High-Risk Areas Map 

 
 

Note. This figure shows the harvested area of corn in the United States. The map on the 

left shows where corn is grown domestically and is provided by the National Agriculture 

Statistics Service. The blue legend on the right represents land where corn was harvested 

in hectares based on the CHEMGRIDS crop harvest data. The black points on the right 

plot indicate habitability > 0.5 in one location for 3 or more pest species. This figure 

highlights areas that corn is growing in areas of high risk, where there are multiple 

invasive corn species that could infest the crop. 
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CHAPTER IV 

Discussion 

These models have identified suitable habitats in the United States for every 

maize pest. The pests that pose the most risk to land where maize is cultivated are 

Autographa gamma, Diabrotica speciosa, Helicoverpa armigera, Heteronychus arator, 

and Spodoptera litura. The remaining pests Chilo partellus, Laodelphax striatellus and 

Thaumatotibia leucotreta pose less risk because their suitable habitat does not coincide as 

much with land that is cultivated for maize. Of the pests that pose less risk some caution 

needs to be taken with Chilo partellus because there were not many occurrences available 

to train the model and it would be catastrophic to underestimate the threat posed by any 

of these invasive pests. The highest risk area is on the east coast. The west coast, Great 

Lakes, and Rocky Mountains are all also at risk of multiple corn pests. Some of the areas 

where corn pests find highly habitable do not have a lot of corn growing in the area, but 

these pests can eat many kinds of crop which would allow them to get a foothold while 

they make their way to where corn is grown. The lowest levels of habitat suitability were 

in the western continental United States but there are some patches of risk in that region 

as well. The most significant finding of this study is the identification of high-risk areas 

where corn is grown, such as the habitable areas in Iowa, Illinois, and Nebraska. These 

three states produce the most maize and all of them have ideal habitats to host an invasive 

maize pest (USDA, 2021).  
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Modeling Invasive Species 

Modeling invasive pests may be difficult when species do not occupy an easily 

identifiable home range (Gallien et al., 2012). Using occurrences from the invaded 

habitat decreases the probability of capturing the true fundamental niche. For example, in 

invaded habitat, species may exist in sink populations which occur where the invasive 

pest has spread but in which it cannot maintain positive population growth. These species 

may also be evolving in response to changes in environmental conditions either in 

response to being targeted for pest management or being introduced to a new area 

(Gallien et al., 2012). Those assumption violations weaken the predictive capacity of 

these niche models which is why multiple models need to be used to find model 

agreement.  

Human Impact as a Predictor  

This study demonstrates that ecological niche models can benefit from the 

inclusion of a human impact layer, which was overall the most important predictor. Note, 

however, that human impact layers may coincide with occurrence points because 

convenience sampling most likely occurs in areas of high human impact. This problem 

may be partially mitigated by our method of generating absences that are also 

concentrated near human impact but the association between human impact and 

convenience sampling is still a potential explanation for the importance of the predictor.  

 

Differences in Model Projections 

MaxEnt models usually had a similar and slightly more liberal prediction 

compared to their corresponding BRT model. The most significant exception was the 
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BRT projection of Diabrotica speciosa having more habitat suitability near the Great 

Lakes. The liberal MaxEnt projections may be stem from the models having unbound 

response curves. As a result of such response curves, habitats with predictor values above 

or below what the model has seen before can be artificially suitable and hence the overall 

predictions slightly more liberal. Another explanation is that the regularization of the 

MaxEnt models resulting in simpler functions which make the predictions less precise 

and hence more liberal. This trend of simple models generating liberal predictions is why 

the simple GAM models had the most liberal predictions by a significant margin. 

Extremely liberal projections such as Autographa gamma habitability in the Rocky 

Mountains are likely more liberal than the other models because GAM models do not 

account for the interactions between predictors, unlike the more sophisticated models. 

The GAM models are based on statistical methods while BRT and MaxEnt models use a 

combination of statistics and machine learning. This discrepancy results in BRT and 

MaxEnt models having higher predictive accuracy because machine learning allows 

iterative improvement of the model, something not included in GAM fitting (Kutywayo 

et al., 2013). 

Potential Model Performance Erosion 

A few models had relatively low AUC values in comparison to the models 

generated for other species. Helicoverpa armigera, Heteronychus arator and Laodelphax 

striatellus all had ensemble AUC values below 0.85. Such values indicate the models are 

still predictive as they are much greater than 0.5 but these models had some factor that 

impeded model performance compared to the other models in this study. The most likely 

explanations are that an important predictor that drives this distribution was not used to 
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train the models. Such a predictor may be an abiotic factor not included here, or 

alternatively may not be currently modellable such as dispersal or a biotic interaction 

with another species. 

Model Usage and Improvement 

This study has generated maps that can be used to direct surveys (Guisan et al., 

2006). Survey effort is limited and should not be wasted in areas where a species cannot 

sustain a population. Knowledge about which locations have the potential to sustain a 

population should help triage limited funds and scientific resources (Guisan et al., 2006). 

Ideally these maps will result in sampling strategies that identify these pests soon after 

they are introduced, before there is much dispersal. This type of study also conveys novel 

information about how climactic conditions affect the distributions of these pest species 

(Kulhanek et al., 2011). The models should be updated regularly as more occurrences 

become available as each occurrence point could convey potentially new information that 

would improve model performance (Elith, 2006). Model performance would be 

significantly improved with the inclusion of any absences generated by sample effort 

especially in areas where pests have been introduced that are projected to be habitable.  
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