\qquad

1. Describe the graph of each function below. Be as specific as possible.
(a) $f(x, y)=x^{2}+y^{2}$
(b) $g(x, y)=5 x^{2}+y^{2}$
(c) $h(x, y)=\sqrt{16-x^{2}+y^{2}}$
(d) $s(x, y)=x^{2}-y^{2}$

We say $\lim _{(x, y) \rightarrow(a, b)}[f(x, y)]=L$ if the function values of f get closer to L, no matter how (x, y) approaches the point (a, b).
2. Let $f(x, y)=\frac{3 x-2 y}{x^{2}+y}$. Let's try to see if the limit of $f(x, y)$ exists as $(x, y) \rightarrow(0,0)$.
(a) If we approach the origin along the line $x=0$, then

$$
\lim _{(0, y) \rightarrow(0,0)}\left[\frac{3 x-2 y}{x^{2}+y}\right]=\lim _{y \rightarrow 0}\left[\frac{-2 y}{y}\right]=
$$

(b) If we approach the origin along the line $y=0$, then

$$
\lim _{(x, 0) \rightarrow(0,0)}\left[\frac{3 x-2 y}{x^{2}+y}\right]=
$$

(c) What can you conclude about $\lim _{(x, y) \rightarrow(0,0)}\left[\frac{3 x-2 y}{x^{2}+y}\right]$??
3. Let $g(x, y)=\frac{x^{2} y^{2}}{x^{4}+3 y^{4}}$. Let's try to see if the limit of $f(x, y)$ exists as $(x, y) \rightarrow(0,0)$.
(a) If we approach the origin along the line $x=0$, then

$$
\lim _{(0, y) \rightarrow(0,0)}[g(0, y)]=
$$

(b) If we approach the origin along the line $y=0$, then

$$
\lim _{(x, 0) \rightarrow(0,0)}[g(x, 0)]=
$$

(c) If we approach the origin along the line $x=y$, then

$$
\lim _{(x, y) \rightarrow(0,0), x=y}[g(x, x)]=
$$

(d) What can you conclude about $\lim _{(x, y) \rightarrow(0,0)}\left[\frac{x^{2} y^{2}}{x^{4}+3 y^{4}}\right]$??
4. What about $h(x, y)=\frac{y}{x+y-1}$ as $(x, y) \rightarrow(1,0)$? [Hint: let (x, y) approach the point along vertical and horizontal lines.]

