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optimal feature set that is best for prediction and
classification.

To address the “curse of dimensionality” problem,
three strategies have been proposed: filtering, wrapper
and embedded methods. Filtering methods select subset
features independently from the learning classifiers and
do not incorporate learning [8-11]. One of the weak-
nesses of filtering methods is that they only consider the
individual features in isolation and ignore their possible
interactions. Yet, the combination of these features may
have a combined effect that does not necessarily follow
from the individual performance of features in that
group [12]. One of the consequences of filtering meth-
ods is that we may end up with many highly correlated
features/genes; this highly redundant information will
worsen classification and prediction performance.
Furthermore, if there is a limit on the number of fea-
tures to be chosen, we may not be able to include all
informative features.

To avoid weakness in filtering methods, wrapper
methods wrap around a particular learning algorithm
that can assess the selected feature subsets in terms of
estimated classification errors to build the final classifier
[13]. Wrapper methods use a learning machine to mea-
sure the quality of subsets of features. One recent well-
known wrapper method for feature/gene selection is
Support Vector Machine Recursive Feature Elimination
(SVMREE), proposed by Guyon et al. [14], which refines
the optimum feature set by using Support Vector
Machine (SVM). The idea of SVMREFE is that the orien-
tation of the separating hyper-plane found by the SVM
can be used to select informative features: if the plane is
orthogonal to a particular feature dimension, then that
feature is informative, and vice versa. In addition to
gene selection, SVMRFE has been successfully used in
other feature selection and pattern classification situa-
tions [15,16].

Wrapper methods can noticeably reduce the number
of features and significantly improve classification accu-
racy [17,18]. However, wrapper methods have the draw-
back of high computational load. With better
computational efficiency and similar performance to
wrapper methods, embedded methods process feature
selection simultaneously with a learning classifier. Exam-
ples of embedded methods are LASSO [19,20] and logis-
tic regression with the regularized Laplacian prior [21].

Combining the sequential forward selection (SFS) and
sequential floating forward selection (SFES) with LS
(Least Squares) Bound measure, Zhou and Mao proposed
SES-LS bound and SFFS-LS bound algorithms for opti-
mal gene selection [22]. Tang et al. also proposed two
gene selection methods, leave-one-out calculation
sequential forward selection (LOOCSEFS) and the gradient
based leave-one-out gene selection (GLGS) [23]. Diaz-
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Uriarte and De Andres [24] presented a new method for
gene selection that uses random forest [25]. The main
advantage of this method is that it returns very small sets
of genes that retain high predictive accuracy. The algo-
rithms are publicized in the R package of varSelRF. Addi-
tionally, Guyon and Elisseeff elaborated a wide range of
aspects in feature selection including a better definition
of the objective function, feature construction, feature
ranking, multivariate feature selection, efficient search
methods and feature validity assessment methods [26].

In human genetic research, exploiting information
redundancy from highly correlated genes may poten-
tially reduce the cost of classification in terms of time
and money. To deal with redundancy issues and to
improve classification for microarray data, we designed
a gene selection method recursive feature addition
(RFA) in our previous work [27], however, the optimal
feature set associated with the best training was not
solved. In this paper, we compare this method to
SVMRFE, LOOCSEFS, GLGS, SFS-LSbound, SFFS-
LSbound and T-test by using six benchmark microarray
data sets; meanwhile, we propose an algorithm, Lagging
Prediction Peephole Optimization (LPPO), to choose the
final optimal feature/gene set. We evaluate LPPO by
comparing it with random strategy under the best train-
ing condition and valSelRF [24].

Results

Under feature dimension j, the training accuracy of the
i™ experiment is r(i, j), and the testing accuracy of the
it experiment is s(;, j), i = 1, 2,.., I; j = 1, 2,..., J; where I
is the number of experiments and J is the number of
chosen features. The average testing accuracy of the
experiments under the feature dimension j, s(j), j = 1,
2,..., J, is calculated as follows:

=520 (i) )

The average testing accuracy, ms_hr(i), of the i"®
experiment under the condition that the associated/cor-
responding training accuracy is the highest, which is
defined as follows:

ms_hr(i) = mean (s (i, m)) [r (i, m) = max(r(i,§)), ¥m,j € {1,2, .J} (2)

The average testing accuracy ms_hr(i) is the expected
value of the random strategy under the best training
classification of the i™ experiment.

The highest testing accuracy, hs_hr(i), of the i"®
experiment under the condition that the associated/cor-
responding training accuracy is the highest, which is
defined as follows:

hs_hr(i) = max(s(i, m))|r(i, m) = max(r(i,/)), ¥Ym,j € {1,2, . J}  (3)
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Average testing accuracy

Figure 1 lists the average testing accuracies of the gene
selection methods with classifiers NMSC, SVM, NBC,
and RF. Again, the performances of NBC-MMC,
NMSC-MMC, NBC-MSC, and NMSC-MSC are close to
one another; therefore, the average testing accuracies of
the gene selection methods NBC-MMC, NMSC-MMC,
and NBC-MSC are not listed in the figures. It indicates
that the average testing accuracy of NMSC-MSC is the
best, followed by GLGS, LOOCSFS, and SVM-RFE. SES-
LS bound, SFFS-LS bound, and T-TEST did not per-
form well. Figure 1 also demonstrates that, spanning
several data sets and learning classifiers, the perfor-
mance and stabilization of the gene selection method of
NMSC-MSC is the best.

Testing results under the best training

Table 1 provides the mean values and standard errors of
the testing accuracies ms_hr(i), (i = 1, 2,..., 20) and the
highest testing accuracies hs_hr(i), (i = 1, 2, ..., 20)
under the highest training classification, respectively.
After applying each classifier to each data set, the high-
est mean value of the ten gene selection methods is
shaded. In each data set, the highest mean value in the
shade is in bold. With the use of the four learning clas-
sifiers, under the best training, RFA, GLGS, LOOCSES,
SVMREFE, SFS-LSBOUND, SFFS-LSBOUND, and T-test
respectively achieve the highest testing accuracies
(HS_HR), 99.9%, 99.6%, 99.3%, 98.0%, 97.4%, 97.3%, and
96.8% for the leukemia data set; 99.5%, 98.6%, 93.0%,
99.2%, 95.1%, 96.1%, and 94.4% for lymphoma; 96.9%,
96.1%, 95.2%, 95.7%, 93.4%, 92.7%, and 94.0% for pros-
tate; 91.1%, 90.5%, 86.8%, 86.8%, 87.1%, 86.0%, and
85.5% for colon; 94.0%, 91.1%, 85.0%, 85.1%, 76.2%,
76.2%, and 77.4% for CNS; and 85.9%, 83.7%, 80.3%,
80.4%, 81.5%, 81.3%, and 77.6% for the breast cancer
data set. In applying the ten gene selection methods to
the six benchmark data sets, all the highest testing
accuracies are obtained from the gene set chosen by
RFA.

Table 2 lists the number of occurrences for each gene
selection method that achieved the best testing accuracy.
Table 2 shows that 61 out of 67 highest mean values
were obtained by MMC- or MSC-based methods;
GLGS, LOOCSEFS, and SVMRFE obtained the best
twice, three times, and once, respectively; LSBOUND
and T-TEST never got the best value. Results indicate
that RFA outperforms other gene selection methods.

On the other side, to see whether the new methods
are superior to others, regression models were built
based on average testing accuracy (ms_hr) and highest
testing accuracy (hs_hr), respectively, with data set (six
benchmark microarray data set), gene selection method
(four new methods and six other methods) and classifier
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(four classification methods) as independent variables.
After adjusting data set effect and classifier effect, the
main effects for the new feature selection methods
(NBC-MMC, NMSC-MMC, NBC-MSC, and NMSC-
MSC) and others (GLGS, LOOCSFS, SVMRFE, SFS-
LSBOUND, SFFS-LSBOUND, and T-test) are 91.86%,
91.67%, 92.47%, 92.27%, 90.65%, 86.96%, 88.89%, 84.70%,
85.38%, and 83.93% for the highest testing accuracy, and
86.38%, 86.15%, 87.30%, 86.97%, 85.48%, 82.76%, 83.96%,
79.45%, 80.58%, and 79.36% for the average testing accu-
racy, respectively. Table 3 gives the p-values of testing
superiority of each new method to other six methods,
which are calculated based on one-tailed t-test from the
output of the regression models. From the p-values, the
performances of our new methods are statistically signif-
icantly better than all other methods (most p-values are
<0.0001) except for GLGS. From Table 3 MSC-based
methods (NBC-MSC, NMSC-MSC) are significantly bet-
ter than GLGS based on both highest testing accuracy
and average testing accuracy at a significance level of
0.05. Although the p-values for NBC-MMC and NMSC-
MMC to GLGS are not small enough due to the small
sample size (only six testing data sets) and therefore
lower power, we would expect that the differences will
be detected at lower significance levels if more data sets
are used. To see whether the four new gene methods
perform differently, we also test each pair of the four
methods and calculate the p-values based on two-tailed
t-test from the output of the regression models. All the
p-values are bigger than 0.2, so the four new methods
perform equally well.

Comparison of LPPO and random strategy

Table 4 lists the mean values of the differences between
the testing values (denoted as S_LPPO) by applying
NMSC, SVM, NBC, and RF to LPPO and ms_hr. This
table shows that, on average, LPPO is superior to the
random strategy under the best training accuracies. In
summary, spanning the six benchmark data sets, in
comparison with ms_hr, LPPO improves the testing
accuracy by 0.8% for NMSC, 0.7% for SVM, 0.4% for
NBC, and 0.9% for RF on average.

Comparison of LPPO and varSelRF

Figure 2 gives the boxplots of the testing values with the
use of learning classifier random forest for the feature
sets from LPPO with RFA and varSelRF. The gene selec-
tion methods are NBC-MMC, NMSC-MMC, NBC-
MSC, NMSC-MSC, and varSelRF from left to right in
each subfigure. Figure 2 indicates that the testing
accuracies by applying random forest to the feature sets
of LPPO with RFA are better than those of varSelRF. In
comparison with varSelRF, LPPO with RFA increases
the average testing accuracy by about 5% for the
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Table 1 Mean values and standard errors of hs_hr and ms_hr.
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DATA SET GENE SELECTION METHOD MEAN(HS_HR) = STD(HS_HR), % MEAN(MS_HR) = STD(MS_HR), %
NMSC SVM NBC RF NMSC SVM NBC RF
Leukemia NBC-MMC 99906 994+12 983+23 984+%14 981114 934128 943+£28 956+23
NMSC-MMC 999+06 991+13 98419 986+19 979412 933+28 952128 957+ 34
NBC-MSC ¥4+£11 9113 989+x14 984+17 985+1.6 94927 946+27 960125
NMSC-MSC 997+£09 99610 986+17 987+17 97714 948+25 946+34 95731
GLGS PV6+£10 989+17 98617 98617 978x17 925+38 953 +1.8 950+25
LOOCSFS 971 £33 98015 977+£19 993%12 939+35 948+31 945127 967=*1.6
SVMRFE 980+20 95439 973+21 980+£20 95728 92552 92530 934+19
SFFS-LSBOUND 971 +£25 974+38 9%63+41 971+£28 938+43 929+38 902x58 926+41
SFS-LSBOUND 971 +£28 970%+30 9%4+36 973+£30 946+35 936x38 91250 930+51
T-TEST 948 £35 954145 933169 968+29 922+39 907x48 90165 935+36
Lymphoma NBC-MMC 98126 99013 973+26 964+28 962+43 938+28 91739 916137
NMSC-MMC 992 +12 98816 979126 965+£37 96919 930%£28 93133 923140
NBC-MSC ¥4 +£11 98418 979126 9%68+£33 97.5+19 931x35 92735 926=+41
NMSC-MSC 9295+ 1.1 988+16 98.1%20 970%x36 972+19 939+3.0 93.9+3.1 93439
GLGS 98618 98219 970+£26 969+23 96521 925+£38 923+36 917129
LOOCSFS 870x72 930+£53 873+£51 929+48 858168 878154 851145 882+43
SVMRFE 992 +15 96539 972+34 9%6+£31 96520 918+43 931140 933140
SFFS-LSBOUND 88761 951 £33 840+49 922+47 870+£57 882149 806+39 868+48
SFS-LSBOUND 87761 961 +£35 861+£35 918x42 B864+£56 91.1+37 827134 861 +48
T-TEST 860+ 57 944+£30 865+70 917x£52 843158 877133 839161 872145
Prostate NBC-MMC 963 +24 95825 948126 96520 94228 916+23 90427 921122
NMSC-MMC 956 £23 95925 937128 953+£23 92723 914%£28 90731 913123
NBC-MSC 964 +£20 96619 952x21 965%19 946+23 925+23 0910+23 925=%2.2
NMSC-MSC 969+23 96717 945120 958+18 945+24 928+1.9 918+x25 920+19
GLGS 936 +£30 96122 904139 947+£20 91527 91726 875+34 900125
LOOCSFS 88452 949129 907+£53 952+26 870+47 911+34 880145 923+23
SVMRFE 941 +£34 923+27 928143 957+£26 92433 86735 900140 925+28
SFFS-LSBOUND 904 £32 93428 862+58 902+32 889x31 860x32 84451 861140
SFS-LSBOUND 897 £49 927 +40 873+£54 924+35 883+51 872150 851+£54 8390+39
T-TEST 914 +41 925+21 917128 940+£30 89737 871%£32 89043 91.0+31
Colon NBC-MMC 88755 877=%52 865+40 897+49 845152 809160 782149 825+£55
NMSC-MMC 911+ 50 877+x39 874+£53 900x40 849+71 813+£55 808+59 833+54
NBC-MSC 894+ 43 869+t46 88760 900x+40 860=x52 803+56 821148 844=47
NMSC-MSC 910+£53 876+47 881+33 900+44 86.0+54 809x55 82640 839145
GLGS 87362 873+46 852+48 905+43 837166 812155 776158 830+45
LOOCSFS 85053 863+£39 816+£58 868%x53 822146 793+52 767+£69 803+£53
SVMRFE 860+ 67 868+48 821+t74 863x55 818+72 80747 777+75 803+60
SFFS-LSBOUND 850+ 48 871144 72770 82660 824144 762163 695183 746168
SFS-LSBOUND 853+ 46 858+53 768+71 860x41 833147 777164 725162 T76+45
T-TEST 774+ 104 855+40 763x83 81572 749+108 753+£57 728+82 751%78
CNS NBC-MMC 91861 929+36 7/8+52 857=%40 867160 824x47 673141 763=%40
NMSC-MMC 900+64 922+57 780+53 827+52 828x68 82156 6/5x55 735149
NBC-MSC 940+ 46 920+44 811+41 855+49 884x52 826=*55 702+37 759+£53
NMSC-MSC 928 +£40 916149 813+x6.1 849+41 856x43 814+62 700x45 744142
GLGS 847+33 911 +£54 788+55 842+50 824136 813148 679145 753143
LOOCSFS 713+£98 850x59 791+77 832144 69380 77/6x45 71.8+6.2 753+51
SVMRFE 83.2+89 851+£84 771+£68 835x43 770+£80 75088 657172 733149
SFFS-LSBOUND 68167 719171 676+77 762x45 653+£63 594175 613161 669+48
SFS-LSBOUND 67862 724149 698+82 762x50 657+54 607151 637172 684+45
T-TEST 675+88 774+64 67071 75559 634176 673158 609168 678+ 49
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Table 1 Mean values and standard errors of hs_hr and ms_hr. (Continued)

Breast NBC-MMC 825+ 60 829+35 841+£30 841x36 813+£57 732138 784134 784+38
NMSC-MMC 839+46 820+33 824+43 837%47 804+40 720+38 784143 770+43

NBC-MSC 834+58 835+38 858x3.1 85947 815%53 749+33 79130 794=4.1

NMSC-MSC 828 £ 44 824+38 841+40 839x40 796+40 737139 792+38 777140

GLGS 80837 793145 814+41 837x46 792139 707+46 778137 7T770+42

LOOCSFS 71765 773+52 780158 803+£38 704x65 692x47 74751 743142

SVMRFE 743+71 783+52 772153 804+41 73266 72158 739x45 739137

SFFS-LSBOUND 762 +52 789+28 769+73 815+£53 750x53 678+33 752168 756149

SFS-LSBOUND 775+56 789+42 798+52 813+£52 758x55 680x47 76963 754152

T-TEST 711 +£53 776+52 726+63 763+£57 693+53 699+36 70558 711158

In each data set, the highest mean value is highlighted in bold

leukemia data set, 9% for lymphoma, 3% for colon and
prostate, 10% for CNS, and 14% for the breast cancer
data set.

Computational efficiency
In microarray data analysis, generally, the number of
features in the final feature set is far smaller than the
total variables. Suppose the number of total variables is
n, the number of features of the final feature set is m
(m <<n). In forward feature selection, with the use of
some learning classifier, the computational time is F(s,
d) for a sxd feature matrix, here s is the number of data
samples (s << n) and d is the feature dimensionality at
each sample. Without losing the generality, if d;<ds, E(s,
d,) <F(s, d»). The computational cost of our feature
selection algorithm is analyzed as follows.

Let T; denote the total computational time for super-
vised learning

Ty=n*xF(s,1) +(n—1)%xF(s,2) + ... + n—m+1)xF(s,m)
<[n+(n—1)+..+(n—m+1)] *F(s,m)
mx(2xn—m+1)

=—— " %F(s,
3 (s,m)

(4)

Let T, denote the computational time for similarity
calculation among the candidates and chosen genes, the
calculation time between two single- variant vectors
with s samples is C(s), then

T <(n—1)*%C(s)+2x (n—2)« C(s) +... + mx (n — m) x C(s)

1 uy (5)
= C(s) * {Enm(m +1) — ;12}

Due to the fact of m << n and s << n with microarray
data, the computational cost of our feature selection is
obtained by

T=T1+T, ~ O(TZ) (6)

Conclusions

Our study shows that our gene selection method Recur-
sive Feature Addition (RFA) obtained the best classifica-
tion performance in the comparison. RFA utilizes
supervised learning to obtain the best classification, and
indentifies the subsequent gene recursively based on the
similarity measures between the chosen gene set and
the candidates to minimize the redundancy of the genes

Table 2 The number of occurrences of the best testing in Table 1

Gene
Selection

# Best testing accumulated with each classifier

# Best testing among the four classifiers

HS_HR

MS_HR

HS_HR MS_HR

NBC-MMC
NMSC-MMC
NBC-MSC
NMSC-MSC
GLGS
LOOCSFS
SVMRFE
SFFS-LSBOUND
SFS-LSBOUND
T-TEST
Total

1

O O O O — — N 00 b~ O

S O O = N —

N

No
~
N
[«

~NO O O O O O N NN
~N O O O O O O — OO O
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Table 3 P-values from testing superiority of new methods to others
Method NBC-MMC NMSC-MMC NBC-MSC NMSC-MSC
HS_HR MS_HR HS_HR MS_HR HS_HR MS_HR HS_HR MS_HR
GLGS 0.092 0.15 0.13 022 0.023 0.0212 0.038 0.048
LOOCSFS <0.0001 <0.0001 <0.0001 0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SVMRFE <0.0001 <0.0001 <0.0001 0.0077 <0.0001 0.0001 <0.0001 0.0004
SFFS-LSBOUND <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
SFS-LSBOUND <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
T-TEST <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001

within the selected subset; hence it obtains more infor-
mative and differently expressed genes. Based on RFA,
we also propose an algorithm, Lagging Prediction Peep-
hole Optimization (LPPO), to determine the optimal
feature set. Using six popular benchmark data sets, we
compared RFA with other gene selection methods. Our
studies showed that RFA outperformed other methods
with the use of the four popular classifiers: NMSC,
NBC, SVM, and random forest. Results also showed
that, on average, LPPO is superior to a random strategy

Table 4 Comparison of LPPO and Random Strategy

Data Gene MEAN(S_LPPO - MS_HR), %
Set Selection
NMSC SVM NBC RF
Leukemia NBC-MMC 08 -0.1 23 14
NMSC-MMC 10 09 1.8 1.6
NBC-MSC -0.2 03 1.9 1.1
NMSC-MSC 16 0.7 25 13
Lymphoma NBC-MMC 06 0.1 -1.0 04
NMSC-MMC 13 -04 14 1.2
NBC-MSC 04 12 1.5 14
NMSC-MSC 09 0.1 16 06
Prostate NBC-MMC 0.2 0.1 0.0 0.5
NMSC-MMC 09 04 09 1.1
NBC-MSC 03 0.7 06 1.8
NMSC-MSC 04 08 0.2 1.0
Colon NBC-MMC 03 02 1.1 04
NMSC-MMC 06 00 0.1 03
NBC-MSC -0.2 -05 26 -13
NMSC-MSC 09 03 -2.2 -05
CNS NBC-MMC 2.1 18 22 3.1
NMSC-MMC 08 10 04 16
NBC-MSC 12 00 06 06
NMSC-MSC 19 22 24 13
Breast NBC-MMC 02 13 0.5 1.5
Cancer
NMSC-MMC 06 32 -1.2 0.9
NBC-MSC 00 17 -1.6 -06
NMSC-MSC 17 13 -1 1.0
Average 08 0.7 04 09

under the best training and that it outperformed the
random forest based gene selection method varSelRF.

Methods

Supervised recursive learning

Our method of RFA uses supervised learning to achieve
the highest level of training accuracy and statistical simi-
larity measures to choose the next variable with the least
dependence on or correlation to the already identified
variables as follows:

1. Insignificant genes are removed according to their
statistical insignificance. Specifically, a gene with a high
p-value is usually not differently expressed and therefore
has little contribution in distinguishing normal tissues
from tumor tissues or in classifying different types of
tissues. To reduce the computational load, those genes
should be removed. The filtered gene data is then nor-
malized. Here we use the standard normalization
method, MANORM, which is available from MATLAB
bioinformatics toolbox.

2. Each individual gene is selected by supervised learn-
ing. A gene with highest classification accuracy is cho-
sen as the most important feature and the first element
of the feature set. If multiple genes achieve the same
highest classification accuracy, the one with the lowest
p-value measured by test-statistics (e.g., score test), is
the target of the first element. At this point the chosen
feature set, G;, contains just one element, g;, corre-
sponding to the feature dimension one.

3. The (N+1)*" dimension feature set, Ga,1 = {g1, g2, s
x> Ena1) is obtained by adding gy, to the N dimen-
sion feature set, Gx = {g1, g2, ..., ga}. The choice of g1
is described as follows:

Add each gene g; (g; ¢ Gy) into Gp and obtain the
classification accuracy of the feature set Gy U{g;}. The g;
(g; ¢ Gn) associated with the group, Gy U{g; that
obtains the highest classification accuracy, is the candi-
date for gy, 1 (not yet gn,1). Considering the large num-
ber of variables, it is highly possible that multiple
features correspond to the same highest classification
accuracy. These multiple candidates are placed into the
set C, but only one candidate from C will be identified
as gy, 7 How to make the selection is described next.


http://www.biomedcentral.com/1471-2164/12/S5/S1



http://www.biomedcentral.com/1471-2164/12/S5/S1

Liu et al. BMC Genomics 2011, 12(Suppl 5):S1
http://www biomedcentral.com/1471-2164/12/S5/S1

Candidate feature addition
To find the most informative (or least redundant) next
feature g1, two formulas may be designed by measur-
ing the statistical similarity between the chosen feature
set and each candidate. Here we use, say, Pearson’s cor-
relation coefficient [28] between chosen features g, (g,
€ Gy, n=1,2,.., N) and candidate g, (g. € C) to mea-
sure the similarity.

In the first formula, the sum of the square of the cor-
relation, SC, is calculated to measure the similarity and
is defined as follows:

N
SC(g) =Y cor’ (g, &) n=1,2..N 7)

n=1

Where, g. € C, g, € Ga.
Then selection of gy,; can be based on the Minimum
Sum of the square of the Correlation (MSC), that is,

8n+1 < {8:I1SC(g:) = min(SC).g. € C} (8)

In the second formula, the maximum value of the
square of the correlation, MC, is calculated:

MC(g.) = max(cor*(g., g:)), n=1,2,..,N 9)

Where, g. € C, g, € Gn

The selection of gx,; follows the criterion that the
MC value is the minimum, which we call Minimum of
Maximum value of the square of the Correlation
(MMCQ).

gN+1 < {8 IMC(g:) = min(MC).g; € C} (10)

In the methods mentioned above, a feature is recur-
sively added to the chosen feature set based on super-
vised learning and the similarity measures. With the use
of a classifier XXX, we call the first gene selection
method XXX-MSC and the second one XXX-MMC. For
example, if the classifier is Naive Bayes Classifier (NBC),
we call the two strategies NBC-MSC and NBC-MMC,
respectively.

Lagging Prediction Peephole Optimization {LPPO)

We want to find a combination of features (genes) that
yields the best performance on breaking down solvents.
Normally, with the recursive addition for the next fea-
ture, the training accuracy will increase and reach a
peak classification performance at some point, and then
may maintain it with subsequent feature additions; but
after that the training accuracy may decrease. Generally
speaking, all strategies for determining the final feature
set should be based on the best training classification. In
high-volume data analysis, it is common that the best
training accuracy corresponds to different feature sets;
that is, multiple feature sets achieve the same highest
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training accuracy. However, although all these feature
sets are associated with the same highest training accu-
racy, the testing accuracy of these feature sets may be
different. Among these highest training feature sets, the
one having the best testing accuracy is called the opti-
mal feature set, which is highly complicated to charac-
terize when a sample size is small. Either applying
different gene methods to the same training samples, or
applying the same gene selection method to different
training samples, or applying different learning classifiers
to the same training samples, will produce a different
optimization of the feature set. Pochet et al. [29] pre-
sented a method of determining the optimal number of
genes by means of a cross-validation procedure; the
drawback of this method is that it actually utilizes whole
data information, including training samples and testing
samples.

How do we choose the optimal feature set? If there
are multiple best training classifications, a random
choice, called random strategy, works for best training
classification. In the recursive addition of the features,
for training samples, a classification model is one of the
best methods. But for testing samples, at this point, the
classification model may not be optimal because of the
difference between the training samples and the testing
samples; the optimal classification model will lag in
appearance (see Figure 1). Based on this observation, we
propose the following algorithm for optimization.

Under feature dimension j, the training accuracy of
the i™ experiment is r(i, j). If the feature set Gy, corre-
sponding to feature dimension &, has the best training
accuracy in the trainings from the feature set G; to Gp,
corresponding to the feature dimensions from 1 to D,
let HR denote the set that contains all the combinations
of Gg, corresponding to all the feature set having the
highest classification accuracy under feature dimension
1toD.

HR = {Gg|r(i, k) = max(r(i,e)), 1<k <D} (11)

In general, the best classification model for testing
samples will lag in appearance behind the initial best
training model. We will exclude the elements of HR
that correspond to the initial best training. The remain-
ing elements in HR constitute the candidate set HRC
for optimization.

Each element in HRC is associated with the best
training accuracy. We set a peephole for each element
and choose the element associated with the optimal
peephole. The details are described as follows:

a. For each element Gy € HRC, the peephole over Gg
with length of 2/+1 covers the feature sets Gry Grri1s
wor Gr 5 ooy Grig1, Gryp corresponding to the training
accuracy r(i, k-0), r(i, k-I+1), .., v(§, k), ..., (i, k+I-1), r(i, k
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+[). The mean training value of the peephole is denoted
by mp_r(i, k).

mp-r(ik) = (1@1+ 1)) Y 1t m) (12)

The peephole with the best classification of mp_r is
then chosen as the optimal one.

b. If there are multiple optimal peepholes, then we
apply random forest to these peepholes and check the
mean values of the Out-of-Bag (OOB) error rates
[24,25,30]. The feature sets Gr.;, Gryi1s oo Gy voor Gror,
Gy, correspond to the OOB errors, oob_e(i, k-I), oob_e
@i, k-1+1), ..., oob_e(i, k), ..., oob_e(i, k+I-1), oob_e(i, k+I).
The mean value of the OOB errors is denoted by
mp_oob_e(i, k)

mp-oob_e(i k) = (121 + 1)) Y ocb_eli,m) (13)

The peephole with minimum mp_oob_e is the optimal
one.

c. If there are multiple peepholes corresponding to the
best mp_r and minimum mp_oob_e, then set [ +1 — |,
and repeat ‘a’ to ‘c’, until a unique optimal peephole is
determined.

d. The feature set located at the center of the final
optimal peephole is chosen as the final optimal feature
set.
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patients. Among them, 40 tumor biopsies are from
tumors, and 22 normal biopsies are from healthy parts
of the colons of the same patients. Based on the confi-
dence in the measured expression levels, 2000 genes
were selected. The data source is available at: http://
microarray.princeton.edu/oncology/affydata/index.html.

5) The Central Nervous System (CNS) embryonal
tumor data set that was originally studied by Pomeroy
et al. [35] contains 60 patient samples. Among them, 21
are survivors who are alive after treatment, and 39 are
failures who succumbed to their diseases. There are
7129 genes.

6) The Breast cancer data set studied by Van et al.
[36] contains 97 patient samples, 46 of which are relapse
patients who had developed distance metastases within 5
years, and 51 patients who are non-relapsed who
remained healthy for at least 5 years from the distance
after their initial diagnosis. This data source is available
at: http://www.rii.com/publications/2002/vantveer.htm.

Experiments
Our experiments are designed as follows:

1. The data sets are first divided randomly into train-
ing samples and testing samples. The ratio of training
samples to testing samples is approximately 1:1 in each
class.

2. Recursive feature additions with Naive Bayes Classi-
fier (NBC) and Nearest Mean Scaled Classifier (NMSC)
for gene selection (NBC-MSC, NBC-MMC, NMSC-
MSC, and NMSC-MMC) were applied to the training
samples for gene selection. Different feature sets of the
gene expression data are produced under feature dimen-
sions 1 to 100. We compared the above proposed meth-
ods to several recently developed and published gene
selection methods: LOOCSFS, GLGS, SVMREFE, SFES-
LS bound, SFS-LS bound, and also T-TEST.

3. To compare different gene selection methods, the
learning classifiers including NBC, NMSC, SVM [37,38],
and Random Forest are applied to the testing samples.

4. The experiments were performed in 20 runs, and
the average testing accuracies were compared to evalu-
ate performance.
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