\qquad

1. Let's find the equation of the plane that is tangent to the sphere $x^{2}+y^{2}+z^{2}=14$ at the point $P=(1,3,-2)$.
(a.) Find a function $F(x, y, z)$ and a constant c so that the equation above is a level surface for F.
(b.) Compute the gradient ∇F of F.
(c.) Evaluate the gradient of F at the point P, denoted $\left.\nabla F\right|_{P}$.
(d.) What do you know about this vector?
(e.) Use this to find the equation of the plane tangent to the sphere $x^{2}+y^{2}+z^{2}=14$ at the point $P=(1,3,-2)$.
2. Find the equation of the tangent plane to the surface $4 x^{2}+9 y^{2}-z^{2}=16$ at the point $(2,1,3)$.
3. The graph of the function $f(x, y)=4 x^{2}-3 y^{2}$ is a hyperbolic paraboloid, or a "saddle". Find the equation of the plane tangent to this saddle at the point $(3,4,-12)$.
[Hint: the graph is the set of points that satisfy $z=f(x, y)$.]
4. The spheres below intersect at a circle \mathcal{C}. The point $P=(1,1,1)$ is on this circle of intersection.

$$
x^{2}+y^{2}+z^{2}=3 \quad(x-2)^{2}+(y-2)^{2}+z^{2}=3
$$

If these equations are thought of as level surfaces of functions $F(x, y, z)$ and $G(x, y, z)$, what can be said about the vector $\nabla F \times \nabla G$ at P ? Find the equation of the tangent line to \mathcal{C} at P.

