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ABSTRACT

Neyaz, Ashar, Nvme-assist: A novel theoretical framework for digital forensics a case
study on nvme storage devices and related artifacts on Windows 10. Doctor of Philosophy 
(Digital and Cyber Forensic Science), August, 2022, Sam Houston State University,
Huntsville, Texas.

With ever-advancing changes in technology come implications for the
digital forensics community. In this document, we use the term digital forensics

to denote the scientific investigatory procedure for digital crimes and attacks.
Digital forensics examiners often find it challenging when new devices are used
for nefarious activities. The examiners gather evidence from these devices based
on supporting literature. Multiple factors contribute to a lack of research on a
particular device or technology. Themost common factors are that the technology
is new to the market, and there has not been much time to conduct sufficient
research. It is also likely that the technology is not popular enough to garner
research attention. If an examiner encounters such adevice, they are often requir-
ed to develop impromptu solutions to investigate such a case. Sometimes, exami-
ners have to review their examination processes on model devices that labs are
necessi-tated to purchase to see if existingmethods suffice. This ad-hoc approach
adds time and additional expense before actual analysis can commence. In this
research, we investigate a new storage technology calledNon-Volatile Memory

Express (NVMe). This technology uses Peripheral Component Interconnect

(PCIe) mechanics for its working. Since this storage technology is relatively
new, it lacks a substantial digital forensics foundation to draw upon to conduct
a forensics investigation.

Additionally, to the best of our knowledge, there is an insufficient body
of work to conduct sound forensics research on such devices. To this end, our
framework,NVMe-Assist puts forth a strong theoretical foundation that empow-
ers digital forensics examiners in conducting analysis onNVMedevices, includi-
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ng wear-leveling, TRIM, Prefetch files, Shellbag, and BootPerfDiagLogger.etl.
Lastly, we have also worked on creating the NVMe-Assist tool using

Python. This tool parses the partition tables in the boot sector and is the upgrade
of themmls tool of The SleuthKit command-line tools. Our tool currently suppo-
rts E01, and RAW files of the physical acquisition of hard-disk drives (HDDs),
solid-state drives (SSDs), NVMe SSDs, and USB flash drives as data source files.
To add to that, the tool works on both the MBR (Master Boot Record) and GPT
(GUID Partition Table) style partitions.
KEYWORDS: NVMe; PCIe; wear-leveling; TRIM; Prefetch files; Shellbag;
BootPerfDiagLogger.etl.
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CHAPTER I

Introduction

In this dissertation, we investigated the new computer storage
technology, Non-Volatile Memory Express (NVMe). This storage technology
uses Peripheral Computer Interconnect Express (PCIe) mechanism for its
working. Due to the technology being relatively new, it lacks a sound digital
forensics foundation to draw upon to conduct digital forensics investigations.
Thus, in order to contribute to the digital forensics community, we designed a
novel theoretical framework,NVMe-Assist. Using our framework, practitioners
can make a sound digital forensics decision on which analytical processes to
apply should they encounter cases regarding NVMe technology.

Furthermore, we also investigated useful forensics artifacts left on
a Windows 10 operating system by user interactions. We mainly focused on
Prefetch, Shellbag, and BootPerfDiagLogger.etl files. Due to numerous updates
in the Windows operating systems, these components have also gone through
numerous changes. As a result, we used proprietary and commercial tools to
unearth valuable information.

History and Motivation

We live in an age where technology is rapidly changing, and new
digital devices are being introduced to the market every day. One such
technology that has made such significant advances is computer storage
technology. To accommodate the ever-increasing demands of consumers and
businesses, innovation in storage technology is a constant undertaking. In this
section, we want to draw a parallel between advances in storage technology
and the complementary advances in digital forensics framework over the years.
Figure 1.1 talks about seminal advances in storage media technology over the
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years in conjunction with the development of different Microsoft Windows
operating systems and corresponding forensics artifacts.

Fig. 1.1. The seminal advances in storage and OS technology/forensic artifact.
*- Topics covered under current research.



3

In this figure, we also highlight the pivotal changes in the operating
systems’ designs to enhance the user experience and efficiency. These changes
also have implications on forensics artifacts as well. In this work, we focus
on the following artifacts: Prefetch files, Shellbag, and BootPerfDiagLogger.etl
of the Windows 10 operating system because they are the source of vital
forensics artifacts. This is because Windows 10 is predominantly the market
leader in operating systems family. Althoughwe showedWindows ReadyBoost,
Pagefile.sys, Hyberfil.sys, and $Recycler.Bin, we did not dedicate much time to
them in this study because we believe that those artifacts were not suitable for
ourNVMe-Assist framework. We concentrate on investigating the effect of wear-
leveling, and TRIM in four different NVMe SSDs namely; of Samsung, Seagate,
Western Digital, and Silicon Power.

Prior Work

Since its inception, numerous research initiatives have focused on
solid-state drives (SSD) forensics. Unlike traditional mechanical hard drives,
solid-state media tend to eliminate the data if not retrieved promptly. The
dependence on the SSD controller, TRIM, and solid-state media garbage
collectionmechanismmakes it challenging to conduct a sound forensics analysis
than on the mechanical drives. Additionally, with the development of Windows
10, conducting forensics analysis on the operating system artifacts have become
a new research area. The following literature review confirms that increasing
SSDs has raised numerous challenges for digital forensic investigators during
investigations. Furthermore, this review also highlights the forensic importance
of the Windows operating system.

Hard disk drives, file recovery and carving have been challenging to
effectuate. This is because the file system metadata information is required.
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Pal and Memon [1] presented the evolution of file carving and described the
techniques to recover files without needing metadata information from the file
system. The authors have also predicted the prevalence of SSDs that will present
difficulties in recovering data due to constant movement of data internally.

Bell and Boddington [2] further substantiated the challenges posed
by SSDs in the evidence collection process. Moreover, the authors demonstrated
that the conventional assumptions about the behavior of storage media devices
are no longer valid in solid-state media. They exemplified their claim by
conducting a series of experiments explaining the autonomous nature of SSD
devices, including how evidence can be contaminated and complicate the
forensic analysis process.

The author in [3] examines the file recovery process in SSDs by
applying a forensics methodology. The article attempted to show a general
overview of the file recovery process in SSDs. Ritola did a similar work of file
recovery on solid-state drives [4]. Ritola not only aimed to forensically retrieve
information from the storage area of SSD but also the spare area or free space.

Testing the forensic friendliness of an SSD has proven to be difficult,
which can be seen from the research mentioned above. However, the article
presented in [5] showed a series of steps to assess the forensic benevolence of an
SSD. With the help of their methodology, the authors produced a decision that
assists an analyst in deciding on taking a direct acquisition ofmemory cells of the
SSD. They also issued a detailed description of the steps involved in conducting
their experiment.

In [6], the article talked about favorable voltage measurement
techniques to monitor the read-write operations on an SSD. Drawing a
comparison between the HDD and SSD forensic analysis is challenging. The
comprehensive research conducted by Joshi and Hubbard [7] provided the
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basic techniques needed to conduct forensics investigations in HDDs and SSD.
The authors have also explained the self-corrosion concept and the limited life
span of an SSD hindering forensic investigations. Finally, the article discussed
methods that can mitigate the impact of forensic analysis due to TRIM and the
garbage collection features of the device.

The author in [8] extended the work done in [2]. The thesis presented
by the author identified key evidence in HDDs and SSDs along with the self-
destructive nature of SSD which causes difficulties in forensics investigations.
Along the same line, the authors in [9] compared the probability of file recovery
in different flash media and a solid-state drive due to the self-destructive nature
of the media. The article also presented the factors affecting the file recovery
process by exhibiting a series of experiments to set a standard for digital forensics
investigations. In addition to exploring the self-destructive nature of SSDs,
studying the root cause of the autonomous behavior of SSDs is crucial. The
authors in [10] studied two firmware versions of an SSD controller using current
draw signals.

Damaged or crushed storage media can pose a risk for file recovery.
The research in [11] discussed semantic carving and fragment recovery carving
techniques for recovering files from a storage medium. In addition to this, the
research highlighted in [12] was very similar to [10] in studying the TRIM
operation of an SSD using a side-channel approach. The authors accurately
inferred the TRIM operation with 99% accuracy. Consequently, this directly has
implications for malware detection, digital forensics, and consumer privacy.

Presenting the digital evidence in a court of law is an accountable and
strenuous task. Any tampering with the evidence will lead to the expulsion of
the evidence. The research in [13], [14], and [15] demonstrated and offered
guidelines for conducting forensics analysis in SSDs supporting TRIM, wear-
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leveling, and garbage collection features. The authors of the three research
conducted experiments with different brands of SSDs for conducting forensics
analysis and showed the impact of file recovery due to the different features of
SSDs.

Understanding state-of-the-art technology is necessary in every field.
For this purpose, a survey is needed to know the current standing of the body
of work or contribution. Kumar, Neyaz, and Shashidhar [16] put together a
survey article highlighting the work done in SSD forensics. They discussed
various research that talk about data recovery in SSDs. Additionally, the authors
present the latest forensics techniques and ideas in the literature in the field of
SSD forensics.

Our research is dedicated to conducting research on NVMe SSDs and
for that purpose, we conducted an exhaustive survey of the literature on NVMe
SSDs. The gaps in the forensics framework in SSDs have enhanced after the
invention of NVMe SSDs. These storage devices have different command sets,
and thus, ATA/SCSI commands do not work on them. Nikkel [17] explored
the NVMe technology and discussed its relevance to the digital forensics
community. The author also mentioned the possible challenges when NVMe
SSDs are involved, including the media’s forensics acquisition.

With any type of SSD, SATA SSD, orNVMe SSD, there is the concept of
TRIM and wear-leveling attached to them. Due to these concepts, the forensics
recoverability of data always becomes uncertain. The research in [18] talked
about the ability of data recovery tools to restore digital evidence on a TRIM
enabled NVMe SSD. The authors concluded that the TRIM feature affects data
recovery. A similar study in [19] talked about TRIM in NVMe SSDs in disabled
and enabled cases. The authors affirmed that toggling TRIM on and off impacts
the data recovery and forensics investigation.
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Windows artifacts such as Prefetch files, BootPerDiagLogger.etl,
Shellbag, RunKey, ShellLink, Windows Search History, etc., yield a lot of
information having high forensic importance. The work done by Garcia in [20]
talks about a scan winprefetch tool. The tool scans for Windows Prefetch files
in forensic disk images, analyzes them, and creates an XML report. In [21] the
author shows the working of the prefetching process and highlights the changes
in prefetching technology in various Windows operating systems. The author
also showed the evidentiary value related to Prefetch files. The mechanism
behind the creation and manipulation ofcreating and manipulating the Prefetch
files is worth investigating. The research in [22] examined Prefetch files using
the assembly code generated using IDA Pro software. The authors analyzed the
Windows executable ntkrnlpa.exe to explore the kernel process responsible for
creating prefetch files.

Process-related information is also a part of Windows artifacts. For
example, the research conducted in [23] describes the System Resource Usage
Monitor (SRUM) mechanism responsible for tracking process and network
statistics in Windows 8 and above. The authors also compared the information
presented by SRUM analysis, using their custom-made tool, to correlate
information found in SRUM. The authors took a very similar approach in [24],
where they examined the forensic information presented by Amcache.hve files
with Prefetch, SRUDB.dat, and IconCache.db files to present useful forensics.

Hidden process is a serious threat when conducting a forensic
investigation of a system. The author in [25] created a Hidden Processes
Detector (HPD)program for detecting and revealing the hiddenprocesses based
on Windows Prefetch files.

Similarly, deleted user accounts also present a blockage in conducting
forensics analysis. A user account contains a wealth of information related to a
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user, which is difficult to findwhen a user account is deleted. The authors in [26]
researched this anti-forensic technique of deleting user accounts.

The research work conducted in [27], [28], [29], and [30] talked about
the prefetching technology in Windows 10 operating system. In addition, they
explored the changes that happened due to the operating system update from
Windows 8.1. Moreover, the research also talked about the effect of malware on
Windows 10 prefetch files andwhat happenswhen a prefetch file ismanipulated
and re-compressed to hide entries from the file system.

Other avenues explored by our framework: the Shellbag
and BootPerfDiagLogger.etl file in Windows 10 operating system. The
BootPerfDiagLogger.etl file contains information about a computer system’s
booting information, whereas the Shellbag entries contain user preference
information for browsing folders. The research done in [31] briefly talked
about the log entry of Western Digital hard disk drive files found in
BootPerfDiagLogger.etl file. In [32], the authors introduced a novel method
to analyze the Shellbag information from Windows XP Registry to reconstruct
user activities by comparing successive registry snapshots.

A lot changed when Windows 7 was launched in 2009. Due to
this change, the whole user-experience was redesigned and updated. This
refinement led to changes in Shellbag as well. The authors of the research
[33] investigated the Shellbag files in Windows 7 and created a timeline of
user information by parsing the information from the files. Similarly, in [34],
the author investigated Shellbag files in Windows 8, 8.1, and the introductory
version of Windows 10 of 2015.

Anti-forensics is another challenge in the area of digital forensics. The
purpose of anti-forensics is to obfuscate the digital forensics investigation. When
this nefarious technique is used to modify the areas of forensics importance
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in the Windows operating system, the amount of evidence found in an
investigation can diminish. The thesis in [35] talked about the anti-forensics
wiping tools. The author tested the wiping tools on Shellbags, Prefetch, Jump
Lists, etc., to check the impact of the wiping tools on these Windows artifacts.
Muir, Leimich, and Buchanan [36] investigated the Tor browser and found user
preference settings with the volatility tool plugin for Shellbag entries, shellbags.

There were more changes introduced when Windows 10 had
subsequent updates since 2015. The authors in [37] and [38] investigated
the changes in Windows artifacts such as Shellbags, Prefetch, Shimcache, and
associated timestamps. They thoroughly analyzed the changes so that the
forensics examiners do not misinterpret any valuable data.

Challenges of SSDs in Digital Forensics Investigations

1. Uncertainty in finding the evidence due to wear-leveling.

2. Data fragmentation and changes in hash values due to the influence of
wear-leveling mechanism.

3. Purging of data immediately after deletion.

4. The effect of TRIM on data from the operating system level.

5. Influence of physical write-blocker and auto-mounting of the device in the
operating system impacting the forensic analysis.

6. Different forensic results due to the use of disparate NAND flash chips
such as Single-Level Cell (SLC), Multi-level Cell (MLC), and Triple-

Level Cell (TLC) on storage media.

7. Every manufacturer implements the storage mechanism differently,
impacting the forensic analysis due to proprietary standards.
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8. No procedure for forensic analysis in Redundant Array of Independent

Disks (RAID) configuration of solid-state media.

9. Unpredictable data storage pattern.

10. The presence of hardware-level encryption and soldered storage that
renders the forensic examination ineffective and unproductive.

Challenges of Windows 10 artifacts (Prefetch, Shellbag, and

BootPerfDiagLogger.etl) in Digital Forensics Investigations

1. Conducting a comprehensive forensic analysis due to changes inWindows
10 prefetching technology due to operating system updates.

2. Analyzing information about users’ preferences and behavior using
Shellbag entries.

3. Decoding and analyzing the BootPerfDiagLogger.etl files of the boot
process and obtaining useful information for forensics analysis.
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CHAPTER II

Preliminaries and Framework Design

In this chapter, we are going to introduce the terminologies associated
with computer storage technology. This will help the readers familiarize
themselves with the terms so that they can easily comprehend the research
subject. Furthermore, we are going to exhibit the design of our NVMe-Assist
framework to help readers understand how our contributing framework tackles
the challenges posed by NVMe-SSDs.

Terminology

1. Hard disk drive- A hard disk drive or HDD is a non-volatile data storage
device. It stores data on one or more platters made of magnetic material
[39].

2. Platter- Aplatter on anHDD is a disk coatedwithmagneticmedia. Platters
are made of aluminum, glass, or ceramic and begin to rotate when a
computer is turned on to read, write and seek data [40].

3. Sector- A sector is the smallest physical unit on a hard disk drive, usually
512 bytes in size, to store data [41].

4. Cluster- A combination of one or more consecutive sectors is called a
cluster [41].

5. Serial Advanced Technology Attachment- SATA or Serial Advanced
Technology Attachment is an industry-standard for connecting and
transferring data from hard disk drives (HDDs) or solid-state drives
(SSDs) to computer systems. Unlike Integrated Drive Electronics (IDE),
SATA uses serial transfer technology to transmit data [42].
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6. Solid-state drive- A solid-state drive (SSD) is a non-volatile storage device
that stores data persistently using integrated circuit assemblies. SSDs do
not have any moving parts such as read-write heads, platters to store data.
Instead, it uses flash memory for data storage [43].

7. Pages- The smallest unit physical unit of data storage in an SSD is called a
page. Typically, it is of 4KB in size. A page is sometimes referred to as a
cell [44].

8. Block- A combination of several pages is called a block. Generally, there
are 128 pages in a block; therefore, one block contains 512 bytes of storage
space [44].

9. Single-Level Cell NANDFlash- A single-level cell or SLC is a type of flash
chip that stores only one bit per cell. It offers the highest performance,
reliability, and endurance. However, the downside of SLC is its price as it
is considerably higher than other NAND flash types [45].

10. Multi-Level Cell NAND Flash- A multi-level cell or MLC is a type of
flash chip that stores only two bits per cell. MLC offers good performance,
reliability, and endurance and is cheaper than SLC [45].

11. Triple-Level Cell NAND Flash- A triple-level cell or TLC stores 3-bits per
cell to store data. This NAND flash is commonly used for consumer-grade
products. Compared to the previous two NAND flash, TLC has lower
performance, reliability, and endurance [45].

12. Solid-state drive Controller- An SSD controller is a chip on a solid-
state drive responsible for controlling the working of the storage device.
The controller chip has the electronics for bridging the flash storage
components to the SSD data transfer interface, i.e., the SATA interface [46].
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13. TRIM- A TRIM command is a feature of an operating system such as
Windows 10, macOS that notifies a solid-state device which block of data is
no longer required to be utilized and can be safely be erased to be writable
again [47].

14. Wear-leveling- Wear leveling is a technique employed by solid-state drive
(SSD) controllers to increase the storage device’s lifespan. The controller
evenly distributes writing on all SSD blocks, so they evenly wear. All the
memory blocks receive the same number of write frequency to avoid data
writing too often on the same blocks [48].

15. Peripheral Component Interconnect Express- A peripheral component
interconnect express (PCIe) is an interface in a computer motherboard
connecting high-speed electronics components such as graphics card, Wi-
Fi cards, RAID cards, SSDs [49].

16. Non-Volatile Memory Express Solid-State Drive- Non-Volatile Memory
Express or NVMe is an interface for data communication and driver
that defines a command and feature sets. The underlining principle
behind NVMe is PCIe. The goals of NVMe are increased data transfer
speed, efficient performance, and interoperability on an extensive range of
enterprise and client systems. NVMe was designed for solid-state drives
[50].

17. Prefetch- The Prefetching technology or Prefetch is a Windows feature
implemented to decrease the load time of frequently used application. The
speed of a application program execution increases due to the use of cache
files for faster access [51].

18. Shellbags-They are valuable sources of information that include user
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preferences while browsing folders for a specific user. Microsoft Windows
records view settings of folders and the desktop of a user account.
Therefore, when the user revisits the folder or desktop, Windows
remembers the location of the folder, view, and positions of items,
respectively. The setting values are stored in the Shellbags keys of the
Windows registry [52].

19. BootPerfDiagLogger.etl- BootPerfDiagLogger.etl is a log file that includes
boot trace information on computer booting. This etl file of circular kernel
context logs type. The circular context of the file overwrites old eventswith
new events when the max file buffer size is reached [53].

20. File Recovery-This techniquemakes use of the file system information that
remains after deletion of a file. For this approach to work, the file system
information needs to be correct. If not, the files can’t be recovered. If a
system is formatted, the file recovery techniques will not work either [54].

21. File Carving- File Carving deals with the raw data on the media and
doesn’t use the file system structure during its process. Although carving
doesn’t care about which file system is used to store the files, it could
be very helpful to understand how a specific file system works. Carving
makes use of the internal structure of a file. A file is a block of stored
information like an image in a JPEG file [54].

NVMe-Assist Framework

In an effort to fill the gaps in solid-state media forensics, we designed
a theoretical framework called NVMe-Assist. The goal of our framework
was to address the changes and issues in forensics methodologies due to the
development of NVMe SSDs. Furthermore, its objective is to assist digital
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forensics investigators in analyzing NVMe SSDs for forensic artifacts. In
addition, it provided a sound framework for conducting a forensic investigation
by adding to the existing literature. Our research experiment included the
following four NVMe SSD storage media:

(a) Samsung 970 EVO Plus NVMe SSD

(b) Western Digital SN550 NVMe SSD

(c) Seagate BarraCuda NVMe SSD

(d) Silicon Power NVMe SSD

Using the above NVMe SSDs, we investigated the three core
components of our NVMe-Assist framework. We have justified the reason
behind choosing the core area for our framework below:

1. Wear-leveling: We investigated the effect of wear-leveling and understood
the reasons for the change in hash values. The validation and verification of
hash values are essential steps in proving data integrity in a court of law.
Any change in hash values for any reason can render forensic evidence
incompetent. For this reason, we put together a framework to investigate
the change on a solid scientific basis.

2. TRIM functionality: We examined the TRIM functionality and its effect on
deleted data and data recovery. Whenever data is deleted from a storage
device using an operating system, it can be recovered if the operating
system and hardware storage device provide a provision. Our framework
offers assistance in recovering the deleted data from the NVMe SSDs. We
also explained the factors involved when the data cannot be recovered or
is beyond the scope of recovery and carving if we encounter any such case
in our experiment.
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3. Prefetch files, Windows Shellbag, BootPerfDiagLogger.etl: We deep-
dived into the Windows 10 artifact files, Prefetch files, Windows Shellbag,
and BootPerfDiagLogger.etl in our framework. We chose these files to
investigate how these files behavewhenusedunderNVMeSSDs. Wemade
use of proprietary, open-source, and freeware tools to parse the artifacts as
shown in Table 2.1:

Table 2.1. The software tools used for analyzing Windows 10 artifacts.

Software Tools Used
B OSForensics B ShellBagsView
B CQPrefetch Parser B ETLParser
B PECmd B PerfView
B Windows PrefetchParserMaster B FullEventLogView
B WinPrefetchView B SvclogViewer
B Win10 pf Decompression Tool B TraceFMT
B ShellBagsExplorer B Windows Performance Analyzer

Outlined below are the reasons behind investigating particular
artifacts of Windows 10:

(i) The Prefetch files contain valuable evidence of program execution.
We analyzed these files in-depth since these files have gone through
multiple changes with the development and subsequent updates
of the Windows 10 operating system. Additionally, they contain
valuable information if any nefarious activities have been performed
to cover up any potential wrongdoings. In addition, we analyzed
useful timeline information based on reverse-engineering the prefetch
files.

(ii) We forensically analyzed the Windows Shellbag to find the user
preference settings. The files are designed to hold information about a
user’s preferences while browsing folders, which can contain helpful
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incriminating evidence.

(iii) The BootPerfDiagLogger.etl file contains information related to
system shutdown and restart. This information is beneficial in
studying a user’s computer interaction.

The high-level design of our NVMe-Assist framework is shown in the figure
below.

Fig. 2.1. The NVMe-Assist Digital Forensics Framework.
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CHAPTER III

Forensics Acquisition and Analysis Briefing

In this chapter, we demonstrated the process of acquiring forensics
images of SSDs used in our experiments using the imaging tool AccessData

FTK Imager. These images were then analyzed using various tools such as
AccessData FTK and Autopsy. This chapter also demonstrates the process for
conducting image analysis employed throughout the dissertation. Lastly, this
chapter also exhibits image header analysis that we performed using the tool
WinHex of the acquired e01 format forensic images.

Figures 3.1 to 3.10 demonstrate the forensic image acquisition process
using AccessData FTK Imager. Figure 3.1 shows the application screen when
the tool is first initiated. In this step, we ran the FTK imager to acquire an
image of an NVMe SSD. As shown in figure 3.2, on the top left of the FTK
Imager window, we click on the ”File” option and select the option ”Create

Disk Image”. We then choose the option of a physical drive as the source
evidence type, as demonstrated in figure 3.2. We chose the option of physical
acquisition because we wanted to acquire the Master Boot Record (MBR) and
GUID Partition Table (GPT).

We then selected the drive wewanted to image, as shown in figure 3.4.
A destination path for the created forensic image was then entered in the dialog
box, after which we selected the format of the image we would like to acquire,
as shown in Figures 3.5 and 3.6, respectively. Finally, we selected the e01 format,
which stands for EnCase evidence file. It is a commonly used format for imaging,
and it offers file compression. We then proceeded by adding the details of the
image, such as unique description, examiner, etc., as displayed in figure 3.7. In
the final steps, we added the image destination folder, the name of the image file,
and specified the value for the image fragment size and compression, as seen in
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figure 3.8. We did not fragment the image in our case and used a compression
value of 6 (optimum value). Once a destination path was added, we proceeded
with imaging the drive, as shown in Figures 3.9 and 3.10.

Figures 3.11 to 3.13 demonstrate the steps used in the image analysis
procedure in AccessData FTK. Figure 3.11 shows the application windowwhere
the different case files (NVMe SSD image files in our case) are listed and the
date it was modified. Each case file can be differentiated using the metadata
such as modified, accessed and created date, etc., provided by the FTK toolkit.
Then, each case file can be further opened, and its contents can be viewed. As
displayed in Figures 3.12 and 3.13, a specific image was opened to view the data
it contains.

Figures 3.14 to 3.16 demonstrate the steps used in the image analysis
procedure in Autopsy. Figure 3.14 shows the application window of Autopsy
with an image file opened as shown in the hierarchy under ”Data Sources”.
Figures 3.15 and 3.16 show the image file’s contents in great detail. The image
header analysis using WinHex is shown in figure 3.17.

Image Acquisition Procedure from FTK Imager

Fig. 3.1. AccessData FTK Imager step 1.
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Fig. 3.2. AccessData FTK Imager step 2.

Fig. 3.3. AccessData FTK Imager step 3.
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Fig. 3.4. AccessData FTK Imager step 4.

Fig. 3.5. AccessData FTK Imager step 5.
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Fig. 3.6. AccessData FTK Imager step 6.

Fig. 3.7. AccessData FTK Imager step 7.
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Fig. 3.8. AccessData FTK Imager step 8.

Fig. 3.9. AccessData FTK Imager step 9.
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Fig. 3.10. AccessData FTK Imager step 10.

Image analysis procedure from AccessData FTK

Fig. 3.11. Forensics image analysis in AccessData FTK step 1.
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Fig. 3.12. Forensics image analysis in AccessData FTK step 2.

Fig. 3.13. Forensics image analysis in AccessData FTK step 3.
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Image Analysis Procedure in Autopsy

Fig. 3.14. Forensics image analysis in Autopsy step 1.

Fig. 3.15. Forensics image analysis in Autopsy step 2.
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Fig. 3.16. Forensics image analysis in Autopsy step 3.

Image Header Analysis in WinHex

Fig. 3.17. Image header analysis in WinHex.
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CHAPTER IV

Windows Prefetch Forensics

Windows Prefetch

Windows operating systems produce a substantial amount of artifacts.
These artifacts have high forensics value. These artifacts contain information
that can be used as incriminating evidence when conducting digital forensics
examinations, thus, they have a high forensics value. One such artifact is the
Windows Prefetch file. Windows prefetch or simply Prefetcher is one of the
components of the Windows operating systems. It was introduced with the
inception of Windows XP in the year 2001 [30].

Prefetcher is a part of the Windows Memory Manager. This
component aims to speed up the operating system booting process and lessen
the startup time of program applications including stand-alone executables like
cmd.exe, conhost.exe, etc. and .COM binaries such as format.com. In order to
attain this, Prefetcher caches files to the Random Access Memory (RAM) when
an application is launched. Hence, unifying disk reads and thereby lowering
disk seeks1. Microsoft’s Prefetching technology is covered by the US patent:
6,633,968 [55].

With the aim of improving Windows user experience, Microsoft
enhanced the algorithm functionality of Prefetch technology from Windows
Vista onwards; Superfetch and ReadyBoost have extended it [56]. Superfetch
aims to expedite application launch times by observing and adapting to the
application pattern of use over time. Hence, it caches most of the dependent
files and data needed by the program in advance for speedy access.

1 Disk seeks only happen in hard-disk drives (HDDs). The hardware implementation of
disk seek is not present in the regular solid-state drives (SSDs) or the newer Non-Volatile
Memory Express (NVMe) SSDs.
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On the other hand, ReadyBoost uses USB flash memory to extend the
system cachememory beyond thememory (RAM) installed on the computer. In
addition, the ReadyBoot component of ReadyBoost decreases operating system
boot time by preloading dependent booting files and startup programs into
cache [55].

In this chapter, we thoroughly analyzed Windows prefetch files from
Windows XP till Windows 10. A comparitive illustration has been drawn of
the prefetch files in different Windows operating systems. For this purpose,
we installed different Windows operating systems in HDDs, SSDs, and NVMe
SSDs to draw a comparison and explain our findings in detail. In addition,
we demonstrated a few prefetch forensics analysis tools, both open-source and
proprietary, for presenting forensics analysis information.

Types of Prefetching

There are two types of prefetching: Application prefetching and boot

prefetching [55]. Application prefetching works by monitoring approximately
the first ten seconds of application program startup (4 to 8 seconds in SSDs or
NVMe SSDs) to record the useful dependent files and information for future
execution of programs. Also, prefetching depends on the size and complexity
of the program and storage devices such as HDDs, SSDs, NVMe SSDs. For
example, prefetching MATLAB will take longer compared to MS Paint.

In contrast, the boot prefetching observes the necessary files, registry
hives, crucial data from the Master File Table (MFT) from the NTFS filesystem.
Hence, the future booting process then uses information from the boot prefetch
file for swift booting [57].

As far as the boot prefetching is concerned, we observed that the
boot trace file which is NTOSBOOT B00DFAAD.pf [55], exists only between
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Windows XP and Windows 7. This prefetch file is used to cache the necessary
dependencies for faster booting of a computer system working on HDDs. This
file also exists on computer systems having SSDs and NVMe SSDs. The name
of the file did not change with the different versions of Windows operating
systems (XP to 7), i.e., the boot prefetch trace file has the same namewithout any
executable path hash change (prefetch hash is mentioned in detail later in the
chapter). However, Microsoft has removed this file from Windows 8 onwards,
i.e., it is not found in the Prefetch file directory located in C:\Windows [55].

We have shown the availability of NTOSBOOT B00DFAAD.pf2 in
different Windows operating systems in table 4.1 . Figures 4.1 and 4.2 show the
NTOSBOOT B00DFAAD.pf from Windows XP to Windows 8.

Table 4.1. The availability of NTOSBOOT B00DFAAD.pf file in different
Windows versions.

NTOSBOOT B00DFAAD.pf XP Vista 7 8 8.1 10
in Hard-disk drives (HDDs) ✓ ✓ ✓ ✕ ✕ ✕

in Solid-state drives (SSDs) ✕ ✓ ✓ ✕ ✕ ✕

in NVMe SSDs ✘ ✘ ✘ ✕ ✕ ✕

Task Scheduler needs to run for prefetch to work. It is responsible for
parsing the trace data collected by the Prefetcher andwriting files to the prefetch
directory [55] [56].

In addition, the Prefetcher is enabled by default from Windows Vista
toWindows 10. Moreover, in our experiment we have seen that the service name
of Prefetcher is Superfetch from Windows Vista to 8.1. However, Microsoft
changed the service’s name to SysMain from Windows 10 onwards. The

2 Note: Windows XP cannot be installed on an SSD or NVMe SSD, so the presence of the file
could not be confirmed. Also, Windows Vista, 7, and 8 cannot be installed on an NVMe
SSD, so the existence of NTOSBOOT B00DFAAD.pf cannot be established.
✘ - NVMe (Non-Volatile Memory Express) SSD is not natively supported while installing
the operating system.
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Fig. 4.1. The presence of NTOSBOOT B00DFAAD.pf in Windows XP and Vista.

Fig. 4.2. The presence of NTOSBOOT B00DFAAD.pf inWindows 7 compared to
lack of it in Windows 8.
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prefetcher service can be found in the Service snap-in of Windows, which can
be invoked by typing services.msc in the Run box or from the Control Panel’s
Administrative Tools.

Also, contrary to the popular belief, prefetch is not disabled by default
in SSDs or NVMe SSDs since we have confirmed this fact by installingWindows
in both types of SSDs. Moreover, application prefetch in SSDs is enabled by
default, but boot prefetch is not. The reason is that SSDs are faster than HDDs,
so there is no need for boot prefetching. In addition, SSDs do not perform
mechanical disk seeks, unlike HDDs.

Prefetch Storage Location

As briefly mentioned earlier, prefetch files are stored in
C:\Windows\Prefetch. The prefetch file name is always in uppercase and
there can be only 128 files in the Prefetch folder from Windows XP, Vista and 7.
From Windows 8 onwards, however, the maximum number of prefetch files in
the Prefetch folder is up to 1024 [56]. If the limit of prefetch files in the prefetch
directory is reached, the oldest prefetch files are removed first. Additionally, it
is beneficial to note that whenever a program is uninstalled from a system, its
associated pf file is not deleted from the Prefetch folder.

Prefetch Naming Scheme

The naming scheme for the prefetch file is as follows, which is in order:
Application name, a dot, EXE followed by a dash or hyphen, 8-letter hexadecimal prefetch

algorithm hash of the program’s full path of execution, and a .pf extension [56], [22].
For example: CHROME.EXE-039F1FCB.pf, CALCULATOR.EXE-DD323BEE.pf

In addition, we subtantiated a claim made in [57] and observed
that when we open a program from command prompt (cmd) or execute it
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directly, the computation of the prefetch file is not affected, i.e., there will
not be two different prefetch files for the same program executed differently.
However, there are certain exceptions to this assertion. For instance, chrome.exe,
svchost.exe, dllhost.exe, mmc.exe, and rundll32.exe, in particular, will have
different prefetch files generated based on different command line parameters
and functions requirements by these executables. For different functions, a
different set of dependency files are needed. In addition, variations in both
cases and spaces within the parameters and path will also affect the prefetch
hash3 [57].

Prefetch Hash Algorithm Generation Steps

– Full path for file is determined (e.g. C:\Windows\Notepad.exe).
– Path is converted to a unicode string.
– Path is converted to a device path.

(e.g., \DEVICE\HARDDISKVOLUMEx\WINDOWS\NOTEPAD.EXE. x is
some volume number given by the operating system.)

– Prefetch hashing is applied.
– Prefetch filename is generated (e.g. NOTEPAD.EXE-XXXXXXXX.pf).

Prefetch Configuration

Prefetch configuration is stored in the Windows Registry at:

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Control\Session

Manager\Memory Management\PrefetchParameters

From our experimental analysis, we noted that the Registry path is
the same across all the Windows versions, i.e., from Windows XP to Windows
10. Figure 4.3 shows the registy path of Prefetch in Windows 10.
3 Note: Prefetcher is only enabled on Windows workstations by default, and not on server

computers.
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Fig. 4.3. The Prefetch configuration in Windows 10 Registry Editor.

The EnablePrefetcher entry (REG DWORD i.e. Registry DWORD
value), a 32-bit value that can be set to one of the following as shown in table 4.2
4 for modifying Prefetcher setting:

Table 4.2. The EnablePrefetch REG DWORD values for selection.

Value Value Action
(in decimal) (in hexadecimal)

0 0x 00 00 00 00 Disabled
1 0x 00 00 00 01 Application prefetching enabled
2 0x 00 00 00 02 Boot prefetching enabled
3 0x 00 00 00 03 Application and Boot prefetching enabled

The EnablePrefetcher registry value is shown as big-endian in the
registry as seen in the figure 4.3 (upper right side of the figure). However, when
we right-click EnablePrefetcher value and then click on Modify Binary Data,
we see the value shown as little-endian. This can be seen from the figure 4.4.

4 Note: The little-endian hexadecimal is displayed as 0x 03 00 00 00, while big-endian
hexadecimal is displayed as 0x 00 00 00 03
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Fig. 4.4. The little-endian representation of EnablePrefetch entry.

Contents of Prefetch Files

Prefetch files keep track of programs that have been executed on the
system even if the original application program is no longer present. These files
can specifically tell us when the programwas executed and the number of times
it was executed [22]. It also gives us the path of the execution of the program
and files loaded by the application in the first ten seconds of program execution,
in HDDs (or nearly first four to eight seconds in SSDs and NVMe SSDs). Below
are some of the basic contents of a Prefetch file that are useful while conducting
forensic analysis [57].

1. Name of the executable (.exe) or program executable.
2. A unicode list of DLL (dynamic link library) used by the program.
3. A count of how many times the executable ran (program run counter).
4. Last run timestamp of the executable (last run time).
5. Prefetch file size.
6. Program executable path in the operating system.
7. Created time of the prefetch file.
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8. Modified time of the prefetch file.
9. Path of DLL described as device path.

Signature of Prefetch Files

A prefetch file has a 4-byte signature, ”SCCA” or in hexadecimal 0x53
0x43 0x43 0x41 starting at offset 4, when viewed in any hex-editor tool such
as WinHEX, HexWorkshop, HxD, etc [22]. This signature can only be seen as
“SCCA” up to Windows 8.1. From Windows 10 onwards, the prefetch files are
compressed with the XPRESS HUFFMAN algorithm. Therefore, the signature
of the compressed prefetch file is “MAM” [30]. The compressed prefetch file
needs to be decompressed5 before it can be read for forensic analysis.

Prefetch File Header

For deep-diving into prefetch file header analysis, we used WinHex
hex editor tool and noted some interesting forensics information. The prefetch
file header is 84 bytes long [59] and consists of the following information shown
in table 4.3. The length of file header is the same across all theWindows versions,
i.e., from Windows XP to Windows 10.

Operating System Version Based on Prefetch Files

The prefetch file indicates which version of the Windows operating
system the prefetch file belongs to. Windows version can be determined from the
offset 0 to 3 when viewed in any hex editor tool. Table 4.4 lists out the Windows
version from the prefetch file6.
5 TheWindowsAPI responsible for decompressingMAMfile is RtlDecompressBuffer. Also, a

python code by Francesco Picasso [58] can help in decompressing theWindows 10 prefetch
file. It is hosted on GitHub under the code page named Windows 10 Prefetch (native)
Decompress. The python file is named ”w10pfdecomp.py”. Link to the GitHub page:
https://gist.github.com/dfirfpi/113ff71274a97b489dfd

6 Note: TheSignature value (in hexadecimal) column in table 4.4 is in big-endian. The value
in hex-editor shown in subsequent figures, 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10, is in litte-endian.
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Table 4.3. Prefetch file header.

Offset Length Type of
(in hexadecimal) (in bytes) Information
0x 00 00 4 Format version
0x 00 04 4 Signature ”SCCA”
0x 00 08 4 Can be considered BOOTLDR (bootloader)

version
0F = BOOTLDR Version 5.0 for Windows XP &
11 = BOOTLDR Version 6.0 for Windows Vista
& above

0x 00 0C 4 Prefetch file size
0x 00 10 60 Name of the executable
0x 00 4C 4 Prefetch file hash
0x 00 50 4 NTOSBOOT B00DFAAD identifier.

0 for all prefetch files and
1 for NTOSBOOT B00DFAAD.pf file
Note:(NTOSBOOT B00DFAAD.pf present in XP/
/Vista/7 only)

Table 4.4. Windows version from prefetch file.

Signature Value Signature Value Windows
(in decimal) (in hexadecimal) version

17 0x 00 00 00 11 Windows XP
23 0x 00 00 00 17 Windows Vista/7
26 0x 00 00 00 1a Windows 8
26 0x 00 00 00 1a Windows 8.1
30 0x 00 00 00 1e Windows 10

Fig. 4.5. The Windows XP prefetch file header.
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Fig. 4.6. The Windows Vista prefetch file header.

Fig. 4.7. The Windows 7 prefetch file header.

Fig. 4.8. The Windows 8 prefetch file header.

Fig. 4.9. The Windows 8.1 prefetch file header.
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Fig. 4.10. The Windows 10 prefetch file header after decompression.

File Information from Prefetch File

After calculating offsets for sections A, B, C, and D, from the tables
talked in subsequent pages, navigate to the calculated offset from the beginning.
For example: When we go to offset 0x 00 54 to calculate section A’s offset, after
finding the actual offset number for section A, navigate to section A’s offset from
the offset 0x 00 00. The above sections, A, B, C, and D, are used to find useful
forensics information from prefetch files.

q For Windows XP: The file information in the Windows XP prefetch

file is 68 bytes in size. However, there is certain information in the prefetch file
that is unknown or unresolved [59]. Therefore, for forensics relevancy, we have
described only the important information in table 4.5.

q For Windows Vista and 7: The file information in Windows Vista

and 7 prefetch file is 156 bytes in size. However, there is certain information
in the prefetch file that is unknown or unresolved [59]. Therefore, for forensics
relevancy, we have described only the important information in table 4.6.

q For Windows 8 and 8.1: The file information in Windows 8 and

8.1 prefetch file is 224 bytes in size. However, there are certain information in
the prefetch file that is unknown or unresolved [59]. Therefore, for forensics
relevancy, we have described only the important information in table 4.7.

q For Windows 10: The file information in Windows 10 prefetch file
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is of 224 bytes in size. However, there are certain information in the prefetch
file that is unknown or unresolved. Moreover, we have analyzed the prefetch
file in Windows 10 version 21H1 at the time of conducting our experiment [59].
Therefore, only relevant forensics information pertaining to Windows 10 v21H1
prefetch file has been described in table 4.8.

Table 4.5. Windows XP file information in prefetch file.

Offset Length Type of

(in hexadecimal) (in bytes) Information

0x 00 54 4 Offset to section A.
Note: The offset is relative from the start of the file.

0x 00 58 4 The number of entries in section A.
0x 00 5C 4 Offset to section B.

Note: The offset is relative from the start of the file.

0x 00 60 4 The number of entries in section B.
0x 00 64 4 Offset to section C.

Note: The offset is relative from the start of the file.

0x 00 68 4 Length of section C.
0x 00 6C 4 Offset to section D.

Note: The offset is relative from the start of the file.

0x 00 70 4 The number of entries in section D
0x 00 74 4 Length of section D
0x 00 78 8 Latest execution time/ run time of executable.

Note: Only one run-time observed in Windows XP.

0x 00 90 4 Execution counter of the program.
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Table 4.6. Windows Vista/7 file information in prefetch file.

Offset Length Type of

(in hexadecimal) (in bytes) Information

0x 00 54 4 Offset to section A.
Note: The offset is relative from the start of the file.

0x 00 58 4 The number of entries in section A.
0x 00 5C 4 Offset to section B.

Note: The offset is relative from the start of the file.

0x 00 60 4 The number of entries in section B.
0x 00 64 4 Offset to section C.

Note: The offset is relative from the start of the file.

0x 00 68 4 Length of section C.
0x 00 6C 4 Offset to section D.

Note: The offset is relative from the start of the file.

0x 00 70 4 The number of entries in section D
0x 00 74 4 Length of section D
0x 00 80 8 Latest execution time/ run time of executable.

Note: Only one run-time observed in Windows Vista/7.

0x 00 98 4 Execution counter of the program.
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Table 4.7. Windows 8/8.1 file information in prefetch file.

Offset Length Type of

(in hexadecimal) (in bytes) Information

0x 00 54 4 Offset to section A.
Note: The offset is relative from the start of the file.

0x 00 58 4 The number of entries in section A.
0x 00 5C 4 Offset to section B.

Note: The offset is relative from the start of the file.

0x 00 60 4 The number of entries in section B.
0x 00 64 4 Offset to section C.

Note: The offset is relative from the start of the file.

0x 00 68 4 Length of section C.
0x 00 6C 4 Offset to section D.

Note: The offset is relative from the start of the file.

0x 00 70 4 The number of entries in section D
0x 00 74 4 Length of section D
0x 00 80 8 Latest execution time/ run time of executable.
0x 00 88 56 Older/most recent 7 execution/ run times of

(8 bytes x 7) executable.
Note: 7 run-times observed in Windows 8/8.1.

0x 00 D0 4 Execution counter of the program.
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Table 4.8. Windows 10 file information in prefetch file.

Offset Length Type of

(in hexadecimal) (in bytes) Information

0x 00 54 4 Offset to section A.
Note: The offset is relative from the start of the file.

0x 00 58 4 The number of entries in section A.
0x 00 5C 4 Offset to section B.

Note: The offset is relative from the start of the file.

0x 00 60 4 The number of entries in section B.
0x 00 64 4 Offset to section C.

Note: The offset is relative from the start of the file.

0x 00 68 4 Length of section C.
0x 00 6C 4 Offset to section D.

Note: The offset is relative from the start of the file.

0x 00 70 4 The number of entries in section D
0x 00 74 4 Length of section D
0x 00 80 8 Latest execution time/ run time of executable.
0x 00 88 56 Older/most recent 7 execution/ run times of

(8 bytes x 7) executable.
Note: 7 run-times observed in Windows 10.

0x 00 C8 4 Execution counter of the program.

Forensics Information in Sections A, B, C, D, and F from a Prefetch File

The data structure lengths of sectionsA andBdepend on theWindows
operating system version. While, the length of sections C, D, and F depend on
the application size of the operating systems. We can find information like files
referenced, directories referenced, volume serial number, volume creation date,
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device path, etc. Calculating the offsets for sections A, B, C, D, E, and F will be
the same across all the versions of Windows’ prefetch files.

Section A and Section B: Information in Section A will give us details
about start time and duration of run of the application in millisecond (ms).
Also, filename string and filename string number of characters without end-of-
character string and lastly, NTFS file reference (only in prefetch files ofWindows
Vista and higher) can be obtained [59]. Information in section B talks about
trace chain array which is responsible for calculating next array entry index and
number of blocks loaded [59].

Section C: Information in Section C will give us details about files
referenced by the application. We jump to the starting offset of section C after
calculating it from the offset number 0x 00 64 from all the versions of the
Windows prefetch file. Reaching the offset of section C will show the relevant
information regarding the files referenced. Figures 4.11 and 4.12 show the
snippet of Section C information from Windows XP and Windows 10 prefetch
files [59].
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Fig. 4.11. The files referenced information from Windows XP prefetch file.

Fig. 4.12. The files referenced information after decompressing Windows 10
prefetch file.

Section D and Section F: Information in Section D will give us details
about offset to device path, length of volume device path, volume creation time,
and volume serial number. Additionally, Section D gives information regarding
offset to Section E and Section F. Whereas Section F will give information such
as the number of characters of the directory name and the names of directories.
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Table 4.9 and 4.10 describe information in Section D and F respectively [59]. We
jump to the starting offset of section D after calculating it from the offset number
0x 00 6C from all the versions of the Windows prefetch files. Reaching the offset
of section D will show the relevant information. Figures 4.13 and 4.14 show the
snippet of Section D and Section F information from decompressedWindows 10
prefetch files.

Table 4.9. Volume information from Section D in prefetch file.

Offset Length Type of

(in hexadecimal) (in bytes) Information

0x 00 00 4 Offset to volume device path.
0x 00 04 4 Length of volume device path.

Note: Number of characters for volume device.

0x 00 08 4 Volume creation time.
0x 00 10 4 Serial number of volume
0x 00 14 4 Offset to section E.

Note: Must be calculated from the ”offset to volume

device path”.

0x 00 18 4 Length of section E.
0x 00 1C 4 Offset to section F.

Note: Must be calculated from the ”offset to volume

device path”.

0x 00 20 4 Length of section F.
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Table 4.10. Directory information from Section F in prefetch file.

Offset Length Type of

(in hexadecimal) (in bytes) Information

0x 00 00 2 Number of characters of the directory name.
0x 00 02 Directory name presented as

Unicode (UTF-16) little-endian string.

Fig. 4.13. The Section D information after decompressing Windows 10 prefetch
file.

Fig. 4.14. The Section F information after decompressing Windows 10 prefetch
file.
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Tools for Comparative Prefetch Forensics Analysis

In this section we have used both open-source and commercial tools
available for analyzing and parsing prefetch files to draw a comparison. These
tools can only display up to a maximum of eight last run times after parsing the
prefetch files.

1. OSForensics - This convenient proprietary digital forensics tool by
PassMark Software [60] has a dedicated Prefetch Viewer. The tool window
shows the application name, run count, prefetch file size, prefetch file,
prefetch hash, and last run time with seven other run times, if they exist, of
applications. It also shows mapped files and directories in the two bottom
tabs. We have used the full version of the software as a student license
having the same features as that of a full regular licensed software. We
have demonstrated the use of OSForensics in figure 4.15. OSForensics
is available on a 30-day free trial. A full-version student license can be
obtained an affordable price.

Fig. 4.15. Prefetch Artifacts Viewer from OSForensics tool.

2. Windows Prefetch Parser - This proficient open-source python script by
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Adam Witt parses Windows Prefetch (pf) files [61]. The script code
supports prefetch files from Windows XP up to Windows 10. The best
feature of the script is that it can support a directory of prefetch files for
parsing. The tool also displays the volume name, creation, and serial
number from the pf file. Also, it can output the result in CSV format
for better readability. We have demonstrated the use of this tool in the
command prompt in figure 4.16.

Fig. 4.16. Windows Prefetch Parser open-source python script.

3. WinPrefetchView - We have used this freeware tool by NirSoft [62].
The tool is very similar to OSForensics. Along with displaying all the
information as OSForensics, WinPrefetch displays the latest modified and
created time, with accuracy, of prefetch files whenever the NTFS file
system’s MFT record is updated. We have demonstrated the use of this
tool in figure 4.17.
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Fig. 4.17. WinPrefetchView freeware tool.

4. PECmd - This free stand-alone executable tool by Eric Zimmerman parses
prefetch files from Windows XP to Windows 10 [63]. Like the Windows
Prefetch Parser tool, this tool can also output the results in many different
formats such as JSON,HTML, CSV, CSVF, and JSONF. PECmddisplays the
latest modified, accessed, and created time, with accuracy, of prefetch files
whenever the NTFS file system’s MFT record is updated. Moreover, the
prefetch file header information displays the Windows version from a pf
file. Additionally, it can process volume shadow copies to parse prefetch
files if present. We have demonstrated the use of this tool in figure 4.18.

Fig. 4.18. PECmd tool by Eric Zimmerman.

5. Windows 10 Prefetch Decompress tool - This open-source python utility
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by Francesco Picasso [58] decompresses the compressed Windows 10
prefetch files. The decompressed files thus obtained can be used by any
prefetch parsing tool or can be manually examined to understand the
working of the Windows 10 pf files. We used this tool to decompress
the Windows 10 pf file and study it in the WinHex editor tool. The
demonstration ofWindows 10 Prefetch Decompress tool is shown in figure
4.19.

Fig. 4.19. Decompressing Windows 10 prefetch file using Francesco Picasso’s
python script.
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CHAPTER V

Windows Shellbag Forensics

Windows Shellbag

A huge number of forensically useful artifacts are produced by
Windows operating systems. The artifacts used in digital forensic examinations
contain information that could be used as incriminating evidence. One such
artifact is the Windows Shellbag. Shellbag, often known as Windows Shellbag,
is a Microsoft Windows operating system component. It was first introduced in
2001 with the release of Windows XP, and it has since become a fundamental
element of Windows.

Shellbag is a Windows Registry Key and is also the oddest named
artifact in the Microsoft Windows operating system. Shellbag allows you to
alter the way you see folders in Windows Explorer [32], [64]. For example,
changing the view options of any folder to extra large or small icons, adjusting
the sort order of a folder’s contents, adding more columns, expanding the
folder’s window, and so forth. After a user alters a style inWindows Shellbag, all
these customizations remain intact. Furthermore, these customization settings
stay the same even after a user shuts down his computer.

Every time the user adjusts folder settings, the corresponding update
triggers a change in the Shellbag entry. These Shellbag entries are vital and
forensically significant. When performing a digital forensics examination on
Shellbag entries, queries about when and which folder a culprit viewed can be
promptly answered; for example, suppose a corporation accuses an employee
of leaking private and sensitive trade secrets housed on a computer system. In
that case, the individual’s computer may include the essential Shellbag entries
confirming that he did indeed enter the folder to leak the secret to a competitor.
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Shellbag entries contain useful timestamp information. Therefore,
fully comprehending the activities that create and update Shellbag entries
becomes challenging. Many factors are considered, such as the version of the
Windows operating system used, folder settings, folder types, etc. In this paper,
we thoroughly analyzeWindows Shellbag in the latest version ofWindows 11. In
addition, we demonstrate our findings using both open-source and proprietary
tools for a holistic understanding of the Shellbag component.

Forensics Importance of Shellbag

All the files on a local system, network system, and attached external
devices like USB devices are tracked using Shellbag [32]. Shellbag data is
user-specific and user-driven. The changes made by a user will stay intact for
that user. Therefore, any Shellbag evidence is an indication of user activity
that happened on a system. This valuable evidence is helpful to a digital
forensics examiner. For example, traversing a directory, modifying window
size, timestamps information, etc. These are crucial artifacts for a forensics
investigation. The records in the Shellbag entries are updated as well, which
then can translate into suggestive information of the date and time a particular
user visited a specific folder. Each user on a system will have their Shellbag
information related to them.

Themost remarkable aspect of Shellbag is that it remains in the registry
record even if the folder is deleted from a local system or USB media or device
has been unmounted from the network [65]. The reason for this persistency is
that Shellbag information is local to the machine, and the Windows operating
system is constantly gathering and recording useful data on the local system.
Due to this information, while conducting a forensic examination, a forensic
investigator can uncover answers to many important questions such as:
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1. Did a user traverse within the local machine?
2. Did a user plug a removable USB media to access files for malicious

purposes?
3. Did a user plug the USB media to exfiltrate the company’s critical

information?

Shellbag Registry and File Location

Shellbag entries are registry keys stored in a specific location in the
WindowsRegistry. These keys can be viewedusing theWindowsRegistry Editor
(RegEdit) tool. The information presented in RegEdit, as shown in figure 5.1, is
exhibited as hives. A hive is a group of keys, subkeys, and values in theWindows
Registry. The Windows Registry has a fixed number of supportive files loaded
in computer memory when the Windows operating system is booted or when
a user logs in [66]. Hence, one can quickly determine when a particular folder
was first visited or last updated based on the timestamps mentioned. Table 5.1
lists these registry hives and their supporting files.

Fig. 5.1. Windows Registry Editor
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Table 5.1. The list of Windows Registry Hives and their supporting files.

Registry Hive Supporting files

HKEY CURRENT CONFIG System, System.alt,
System.log, System.sav

HKEY CURRENT USER NTUSER.DAT, ntuser.dat.log
HKEY CURRENT USER\Sofware\Classes UsrClass.DAT
HKEY LOCAL MACHINE\SAM Sam, Sam.log, Sam.sav
HKEY LOCAL MACHINE\Security Security, Security.log,

Security.sav
HKEY LOCAL MACHINE\Software Software, Software.log,

Software.sav
HKEY LOCAL MACHINE\System System, System.alt,

System.log, System.sav
HKEY USERS\.DEFAULT Default, Default.log,

Default.sav
Furthermore, there are user-specific files connected with the registry

keys in the case of Shellbag. NTUSER.DAT and UsrClass.DAT are those
associated files. Both NTUSER.DAT and UsrClass.DAT are user-specific files,
while the latter stores a user’s registry information separate from the main
registry hives [67]. NTUSER.DAT and UsrClass.DAT are presented in a unified
view as HKEY CURRENT USER (HKCU) in a live system. The UsrClass.DAT
file is plugged in HKCU\Software\Classes, while NTUSER.DAT is mapped to
HKCU [68]. Table 5.2 talks about Shellbag entries corresponding to SID. The SID
can be found by issuing a wmic command in the Windows Command Prompt

(cmd) as shown in figure 5.2.

Fig. 5.2. Issuing wmic command to obtain SID of a user account.
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Table 5.2. Location of Shellbag entries inside Windows Registry, and
NTUSER.DAT and UsrClass.DAT files.

Registry Location of NTUSER.DAT Shellbag entries
HKCU\Software\Microsoft\Windows\Shell\BagMRU
HKCU\Software\Microsoft\Windows\Shell\Bags
File Location of NTUSER.DAT
C:\Users\username\NTUSER.DAT
Registry Location of UsrClass.DAT Shellbag entries
HKCU\SOFTWARE\Classes\Local Settings\Software\Microsoft\Windows\
Shell\BagMRU
HKCU\SOFTWARE\Classes\Local Settings\Software\Microsoft\Windows\
Shell\Bags
File Location of UsrClass.DAT
C:\Users\username\AppData\Local\Microsoft\Windows\UsrClass.DAT
Other Important Shellbag entries location
HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\
RecentDocs\Folder
HKCU\Software\Microsoft\Windows\Shell\BagMRU
HKCU\Software\Microsoft\Windows\Shell\Bags\1\Desktop
HKEY USERS\sid\Software\Microsoft\Windows\Shell\BagMRU
HKEY USERS\sid\Software\Microsoft\Windows\Shell\Bags

Interpreting BagMRU and Bags Subkeys in the Registry

NTUSER.DAT and UsrClass.DAT files contain two important
subkeys, BagMRU and Bags as shown in table 5.2 listing.

1. BagMRU and Bags: BagMRU subkey shows the directory structures of
the folders that were interacted with within the numbered subkey/value
hierarchy format. Figure 5.3 demonstrates theBagMRU subkey as it shows
the registry path translation from the Shellbag entry to the corresponding
original path in the computer. On the other hand, the Bags subkey
constitutes numbered subkeys for each hierarchical corresponding child
subkey under BagMRU [69].

(a) For example: Windows 11 registry path:



57

HKCU\SOFTWARE\Classes\Local

Settings\Software\Microsoft\Windows\Shell\

BagMRU\1\1\1\0 will have the actual translation to
Desktop\ThisPC\C:\shell test\txt doc

Fig. 5.3. The registry path translation to original path from Shellbag entries.

(b) Each particular numbered subkey contains an entry calledNodeSlot.
The decimal number obtained from this entry points to the folder’s
customization settings in the Bags subkey, such as group view, icon
size, sort order, etc. So, to view the personalization choice values, we
have to see the NodeSlot value in decimal and move to a particular
numbered entry in the Bags subkey. Figures 5.4 and 5.5 show an
example of the NodeSlot entry for the txt doc folder’s view settings.
The txt doc view settings are in the 59th entry in the Bags subkey, as
shown in figure 5.4. Figure 5.5 shows an elaborated view of bags entry
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number 59 of the txt doc folder’s view settings. It is also possible to
obtain the folder’s name using the BagMRU numbered entry [69],
as demonstrated from the highlighted parts in figure 5.6. NOTE:
MRUListEx, shown in figure 5.7, is a 4-byte value indicating the order
in which folders were accessed. It shows the most recent access first.
The color-coding exhibited in figure 5.7 and the numbers preceded by
a # sign show the order in which the folders customization was done.

Fig. 5.4. The NodeSlot entry for txt doc folder’s view settings.

Fig. 5.5. The Bags entry number 59 for txt doc folder’s view settings.

(c) Windows Registry stores the Last Write Time of keys and subkeys;
however, it does not do so for the LastWrite Time of individual values
inside [69].
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Fig. 5.6. Obtaining name of folder using BagMRU entry.

Fig. 5.7. The MRUListEx inside BagMRU key.
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Experiment Initiation

We conducted our experiment on a Windows 10 v21H2 system
running on Samsung 970 Evo Plus NVMe SSD. Our test experiment focused
on Shellbag entries within a local machine and a USB media used on the local
machine. Table 5.3 summarizes the different test scenarios used throughout the
investigation.

Table 5.3. Summary of the test experiments.

Test Scenario Summary of Test Experiments
Local Machine Shellbag entries for a folder on Desktop
Local Machine Shellbag entries for a folder inside C:\ drive
Within a USB Shellbag entries for a folder inside a USB drive
Local Machine Shellbag entries for compressed files

Shellbag Entries for Desktop Folder and in C:\ Drive

In this scenario, we created a regular folder on a user’s Desktop called
sh test1. Then inside this folder, we created three nested folders, sh test2,
sh test3, and sh test4, respectively. Similarly, under C:\ drive, we created
shell test folder with txt doc directory under it. The Shellbag entries for these
two subcases are shown in figures 5.8, 5.9. The corresponding BagMRU entry
for the sh test1 folder was ten (10) and BagMRU entry for the C:\was one (1),
respectively.
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Fig. 5.8. BagMRU Shellbag entry for a folder customization inside Desktop.

Shellbag Entries for USB Drives

In our experiment described in this subsection, we created four folders
recursively inside our USB flash drive. These folders were called, folder1,
folder2, folder3, and folder4, respectively. The USB drive letter associated with
our device was E:\ as can been from figure 5.10.
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Fig. 5.9. BagMRU Shellbag entry for a folder customization inside C:\Drive.

Upon connecting the USB device to the USB port of our workstation,
Windows automatically assigned the letter E: to our storage device. The
operating systemdid so because drive letters,C:\ andD:\were already assigned
to the two partition entries. One for operating system partition and the other for
the optical drive. The corresponding BagMRU entry for the drive letter, E:\, of
our USB device was five (5).

Shellbag Entries for Compressed Files

Creating a zip file inside folder: Windows Registry keeps track of
Shellbag entries for zip (.zip) file. We created zip files for three places. One
was inside sh test zip which was created under sh test4 on the user’s desktop.
Windows created a separate entry specially for the zip file created. The name of
the zip file was zip txt.zip. The corresponding BagMRU entry for this zip file
was zero (0) as it was only zip file inside the sh test zip folder.
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Fig. 5.10. BagMRUShellbag entry for a folder customization on aUSBDrivewith
E:\drive letter.

The second zip file, txt.zip, was createdunder txt docdirectory (which
was inside the folder of C:\ drive), shell test). The BagMRU entries for txt doc
was one (1), and txt.zip was zero (0), respectively.

Lastly, the third zip file, e drive txt.zip, was created under folder4

inside the USB drive. The corresponding BagMRU entry for this zip file was
zero (0) as it was only zip file inside the folder4 directory. Figures 5.11, 5.12,
5.13 showcased our findings.

We extended this experiment to see if Windows 10 supports WinRar
(.rar) and 7zip (.7z) Shellbag entries. Unfortunately, we did not find any record
for the two file types even after changing the view options for the .rar and .7z.
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Fig. 5.11. BagMRU Shellbag entry for a ZIP file inside a folder on Desktop.

Fig. 5.12. BagMRU Shellbag entry for a ZIP file inside a folder under C:\.
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Fig. 5.13. BagMRU Shellbag entry for a ZIP file inside a folder in USB drive with
E:\drive letter.

Forensics Analysis using OSForensics

The OSForensics [60] tool by PassMark software is a proprietary
tool that we used to forensically analyze our Shellbag entries for all folder
customizations. This tool does a tremendous job is fetching all the Shellbag
entries information from the Windows 10 Registry. The display items for
Shellbag entries include items’ names and their full path starting from the
Desktop. Then followed by the timestamps information, i.e., created, modified,
and accessed dates. Figure 5.14 displays the information of OSForensics.
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OSForensics1 tool can scan both the live operating system and offline
registry hives to parse the Shellbag information. Furthermore, it also can export
registry files for later analysis. A detailed comparison of OSForensics with other
tools used in the study is shown in table 5.4.

Fig. 5.14. OSForensics analysis windows.

Forensics Analysis using ShellBags Explorer Tool

ShellBags Explorer [70], an open-source, easy-to-use tool authored
by Eric Zimmerman, is the most comprehensive tool for forensically analyzing
Windows Shellbag information. The tool parsed relevant forensics information
from the Registry. It even showed the parent-child relationship of a folder with
another folder or a zip file. Like the OSForensics tool, ShellBags Explorer

can analyze offline and online registries. A detailed comparison of ShellBags
Explorer2 with other tools is shown in table 5.4. Figures 5.15 and 5.16 display the
interface for ShellBags Explorer tool, which demonstrates the different forensics
analysis information such as the absolute path, last write time and modified-

access-created timestamps.
1 OSForensics is available at: https://www.osforensics.com/osforensics.html
2 ShellBags Explorer is available at: https://ericzimmerman.github.io/#!index.

md

https://www.osforensics.com/osforensics.html
https://ericzimmerman.github.io/#!index.md
https://ericzimmerman.github.io/#!index.md
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Fig. 5.15. Shellbags Explorer analysis window for folders.

Fig. 5.16. ShellBags Explorer analysis window for zip file.

Forensics Analysis using ShellBagsView Tool

The freeware tool called, ShellBagsView is a lightweight software
by Nirsoft. This tool thoroughly analyzes Shellbag entries from the Windows
Registry. Unfortunately, unlike ShellBagsExplorer, ShellBagsView cannot
handle offline registry analysis for Shellbags as this feature is not supported.
The tool by default displays seven default columns: path, slot number, last
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modified time, mode, icon size, slot key, slot modified time, windows

position, windows size, type, and username. However, not all column entries
will be filled after ShellBagsView parses the evidence from the Registry. A
detailed comparison of ShellBagsView3 with other tools is shown in Table 5.4.
Figure 5.17 presents the forensics information extracted using ShellBagsView

based on the created folders in the experiment.. In contrast, figure 5.18 shows
the extracted forensic information retrieved from the creation of zipped files.

Fig. 5.17. ShellBagsView analysis window for folders.

Fig. 5.18. ShellBagsView analysis window for zip files.

Comparative Findings from Tools used

Table 5.4 shows a detailed comparison of different tools used in
the experiment, i.e., proprietary, open-source, and freeware. We have used
OSForensics from Passmark Software [60], ShellBags Explorer [70] by Eric

Zimmerman, and ShellBagsView [71] from NirSoft. Every tool is unique and
displays evidence based on the ability to parse data from Shellbag entries from
Windows Registry.
3 ShellBagsView is available at: https://www.nirsoft.net/utils/shell_bags_

view.html

https://www.nirsoft.net/utils/shell_bags_view.html
https://www.nirsoft.net/utils/shell_bags_view.html
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We have listed the features of all the tools to showcase their
competency when conducting forensics analysis on the Windows 10 v21H2
operating system. The tools used in Windows 10 did not show any software
conflict and performed their tasks smoothly. The comparison chart aims to help
digital forensics practitioners to have a holistic viewwhen conducting a forensics
examination on Shellbag. Table 5.4 summarizes the forensic information
recovered from Shellbag entries from the three different tools used. From the
comparison shown in table 5.4, ShellBag Explorer stood out because it provides
much more information than other tools.
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Table 5.4. Tools comparison chart based on artifacts obtained.

Artifacts
Obtained

OSForensics
Proprietary Tool

ShellBags Explorer
Open-source Tool

ShellBagsView
Freeware Tool

Item/Value
Name Ë Ë é

Absolute/ Full
File Path Ë Ë Ë

Shell Type é Ë é
BagMRU/Registry
Position Exhibition Ë Ë é

Node Slot/Bag
subkey Position Ë∗ Ë Ë

View Mode é é Ë
Icon Size Value é é Ë
Key Value
Name Path Ë∗ Ë Ë

Modified
Timestamp Ë Ë Ë

Accessed
Timestamp Ë Ë é

Created
Timestamp Ë Ë é

First Interacted
Timestamp é Ë é

Last Interacted
Timestamp é Ë é

Registry Last
Write Time Ë∗∗ Ë Ë

OS Identifier from
Shellbag entry é Ë é

MFT Entry &
Sequence Numbers é Ë é

File System Hints é Ë é
Display Long and
Short File Names é Ë é

∗ Shown only after double-clicking the Shellbag entries.
∗∗ Presented as key edit time upon double-clicking Shellbag entries.
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CHAPTER VI

Windows 10 ETL File Forensics

Event Trace Logs (ETLs) are traces from Event Tracing for Windows
(ETW) that are saved to storage media. ETW was first launched with Windows
2000 and is still included in recent Windows operating systems. ETL files can
store a snapshot of events relating to state information at a specific time or events
relating to state information over time [53].

Event Tracing is a critical step for maintaining the well-being of a
system. As a result, bothWindows operating system and application developers
use it. Some of the applications or processes that generate events are Microsoft
Office, Windows Shutdown, Windows Booting, Windows SleepStudy, Skype,
Lync, OneDrive, Power Efficiency Diagnostics, Explorer Start-up [53]. Windows
ETW is enabled by default; however, several factors include the version of the
operating system, software installed, dictate when the tracing will start, what it
will consist of, etc.

The file extension of Event Trace Logs files is .etl. ETL files stored on
storage devices vary in their data and volatility. When first configuring a trace
session, the ETW settings are used to decide how log files will be stored and
what information will be stored. For example, some log files are circular, which
overwrites the present file content with new information when the maximum
file size is reached. Other settings of ETL contain log file’s contents starting from
scratch. Settings of ETL files can also include multiple log files for each instance
that the event trace information saved to the disk. Windows stores information
into ETL files when the system is shut down, booted, a second user logged into
the systemwhen performing updates, etc. Awealth of forensics information can
be determined when parsing an ETL file.
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In this chapter, we have talked about the BootPerfDiagLogger.etl
file, which is found at C:\Windows\System32\WDI\LogFiles.
BootPerfDiagLogger.etl is a Circular Kernel Context Logs (CKCL) file containing
information about the system that the event trace session knows when it booted.
In addition, we have used multiple ETL file parsing tools, open-source and
freeware, to exhibit a comprehensive understanding of the subject.

B ETLParser
B PerfView
B FullEventLogView
B SvclogViewer
B Windows Performance Analyzer
B TraceFMT by Windows Development Toolkit

NOTE: It is worth mentioning that when decoding an ETL on a system other
than the source system, the information needed to decode event data properly
may be unavailable. When a system registers an event provider, it records the
information required to interpret the event data. The tool will be unable to
correctly parse the events if the event provider is not listed on the system you
are using to decode an ETL file [53].

Circular ETL File Configuration

When the maximum file/buffer size is reached, the circular event
trace sessions will overwrite existing events with new ones. Therefore, the
previous events in the ETL will be overwritten and become unrecoverable.
This is why this kind of file is called Circular Kernel Context Logs (CKCL).
BootPerfDiagLogger.etl and ShutdownPerfDiagLogger.etl are all examples of
circular log files in Windows 10 [53]. Moreover, when a maximum file size
is reached in ETL files that use the new file option, a new file is created
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with an incrementing value as the new file’s name. WdiContextLog.etl.001,
WdiContextLog.etl.002, WdiContextLog.etl.003, are the examples of this
kind of file. Figure 6.1 displays the important events associated with
BootPerfDiagLogger.etl file 1.

Fig. 6.1. Events in BootPerfDiagLogger.etl file.

Forensics Analysis of BootPerfDiagLogger.etl with ETLparser.exe

This section talks about the parsing of BootPerfDiagLogger.etl using
ETLparser.exe. This simple command-line utility developed by Forensic Lunch2

is advantageous in parsing ETL files. Its usage is straightforward, and it
generates output in two formats, namely a CSV file and an SQLlite DB file. The
figures below show the use and output of the ETLparse.exe tool.

Figure 6.2 shows the execution of parsing from ETLParser.exe tool.
The command takes three arguments. First is the case folder name preceded

1 https://tinyurl.com/56hce3fd
2 https://github.com/forensiclunch/ETLParser
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Fig. 6.2. The parsing of BootPerfDiagLogger.etl using ETLParser.exe.

by -c switch, then the source directory where ETL files resides preceded by -s
switch and lastly, an output directory path preceded by -o switch.

Fig. 6.3. The parsing of BootPerfDiagLogger.etl using ETLParser.exe.

Figure 6.3 shows the completion of the parsing procedure from the
tool. It shows the total number of events parsed in three steps. It will report the
start and end times of parsing. The concludingmessage displays the total events
parsed.

Figure 6.4 shows the granular output from the CSV file generated by
ETLParser.exe. The output shows the name of the logfile, timestamp of the event
recording in UTC format, event name that triggered the event, provider name,
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Fig. 6.4. The output of ETLParser.exe in Microsoft Excel file.

GUID, process ID, thread ID, process name, task, opcode, version, channel, level,
task name. From a forensics standpoint, finding out any traces of malicious
activity and persistence left by virulent software is extremely convenient.

Fig. 6.5. The output of ETLParser.exe in DB Browser (SQLite) tool.

Figure 6.5 displays the DB Browser’s SQLite file output generated by
ETLParser.exe for the fields present in BootPerfDiagLogger.etl file. The output
shows the name of the table, the type of fields, and the table’s schema.
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Forensics Analysis of BootPerfDiagLogger.etl with PerfView.exe

This section talks about the parsing of BootPerfDiagLogger.etl using
PerfView.exe, developed by Microsoft3. This simple GUI tool parses ETL files
efficiently and displays the parsed contents in the tool window itself. Figure
6.6 shows the output of PerfView displaying the heading of the parsed contents
from our BootPerfDiagLogger.etl file. Figure 6.7 shows the details of trace and
machine. Figures 6.8 and 6.9 exhibit the process summary information including
the command-line execution of static and dynamic traces. Figures 6.10 and 6.11
displays the process details and event statistics.

Fig. 6.6. The output of Perfview.exe displaying headers from the parsed etl file.

3 https://www.microsoft.com/en-us/download/details.aspx?id=28567



77

Fig. 6.7. The output of Perfview.exe displaying information of trace andmachine.

Fig. 6.8. The output of Perfview.exe displaying dead process summary.
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Fig. 6.9. The output of Perfview.exe displaying live process summary.

Fig. 6.10. The output of Perfview.exe displaying event types and details.
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Fig. 6.11. The output of Perfview.exe showing event statistics.

Forensics Analysis of BootPerfDiagLogger.etl with FullEventLogView

This section talks about the parsing of BootPerfDiagLogger.etl using
Nirsoft’s FullEventLogView4. This efficient and easy to use tool parses ETL
files conveniently. Figure 6.12 shows the detailed output of the file parsed using
FullEventLogView.

Fig. 6.12. The output of FullEventLogView.

4 https://www.nirsoft.net/utils/fulleventlogview-x64.zip
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Forensics Analysis of BootPerfDiagLogger.etl with SVCLogViewer

This section talks about the parsing of BootPerfDiagLogger.etl using
Svclogviewer developed by Martijn Stolk5. Figure 6.13 displays the output of
the tool after parsing the BootPerfDiagLogger.etl file.

Fig. 6.13. The output of SvcLogViewer.

Forensics Analysis of BootPerfDiagLogger.etl with TraceFMT

TraceFMT is another simple command-line utility for parsing ETL
files from Windows Development Toolkit (WDK) by Microsoft6. Its use is
straightforward; the name of the ETL file has to be supplied as an argument
after typing traceFMT in the command prompt (CMD). The tool creates two txt
files. The first file shows the summary of the event parsed, whereas the second
txt file has the content of parsed BootPerfDiagLogger ETL file. Figures 6.14 and
6.15 show the output TraceFMT tool.
5 https://github.com/martijns/SvclogViewer
6 https://docs.microsoft.com/en-us/windows-hardware/drivers/other-wdk-downloads
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Fig. 6.14. The output of TraceFMT.

Fig. 6.15. The output of TraceFMT generated txt file of the parsed ETL file.
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Forensics Analysis of BootPerfDiagLogger.etl with Windows Performance

Analyzer

This section talks about the parsing of BootPerfDiagLogger.etl
using Windows Performance Analyzer7. This GUI application parses
BootPerfDiagLogger ETL file and shows system activity, processes, images,
computation information, process name, event name, duration of the event
and processes. Figure 6.16 shows the detailed output of the file parsed using
Windows Performance Analyzer.

Fig. 6.16. The output of Windows Performance Analyzer.

7 https://docs.microsoft.com/en-us/windows-hardware/test/wpt/windows-performance-
analyzer
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Forensics Importance of Analyzing BootPerfDiagLogger.etl with different Tools

We used different tools to conduct a comprehensive forensics analysis
on BootPerfDiagLogger.etl file (previously BootCKCL.etl till Windows 10 earlier
versions). All this information will help a forensics examiner get a complete
picture for drafting a report. We can obtain the following information using the
tools:

 Total number of event in the ETL file
 Process IDs
 Process name
 Computer name
 DLL files associated with the malicious process
 Duration for which a process ran
 Operating system version
 Time zone information
 Event trace time start and end
 Command-line executable for the process
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CHAPTER VII

Digital Forensics in USB NVMe SSDs with WriteBlocker

Storage is a vital mechanism that enables a computer system to
temporarily or permanently retain data. Computer storage devices store
digital information on itself. These devices are ubiquitous, and a fundamental
component of most digital devices since they allow users to store all kinds of
digital media [72].

There are currently numerous computer storage devices available in
the market such as hard drives (HDDs), memory cards, USB flash drives, solid-
state drives (SSDs), and non-volatile memory express solid-state drives (NVMe
SSDs), to name a few. Until the late 2000s, HDDs had the highest market share
in terms of storage devices, but recently there has been a gradual shift towards
SSDs [73]. The shift from using HDDs to NVMe SSDs in digital devices is
primarily driven by latter’s performance, durability, and reliability, to name a
few. Therefore, a user can get his task done ten times fasterwhen using anNVMe
SSD compared to an HDD [74].

Since the NVMe SSD technology is relatively new; there is not much
prior sound digital forensic research in this field. Unlike HDD, which stores
data on fundamental data storage units called sectors and can be written and
rewritten multiple times, NVMe SSD stores data on flash chips internally
controlled by the controller chip on the storage device. There are significant
discrepancies in the underpinnings between the two forms of storage media,
which have serious implications for security anddigital forensics. When it comes
to conducting file recovery on HDD, we have the certainty of finding the data as
it stays on the device’s storage unit. Since only the address reference to the stored
data is removed after deletion [54], it is not always guaranteed that deleted data
is erased from the hard drive. So, when we take a forensics image of an HDD
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and recover data, we would find the data as long it is not overwritten. On the
contrary, this is not the case for NVMe SSD, as the controller chip inside the
device is constantly moving data around the flash chips to prolong the life of
the storage device. The constant movement of data for elongating the life of an
NVMe SSD is achieved by the concept of wear-leveling, which the controller
implements autonomously [75]. Even if they are not connected, SSDs can
sometimes delete data independently. As a result, standard techniques aimed at
preserving forensics data on solid-state drives are ineffective. In addition, they
could also result in potential evidence being lost, destroyed, or corrupted, thus,
making evidence inadmissible in court. [76].

To address the problemof file recovery inNVMeSSDs, we conducted a
sound forensic analysis on fourNVMeSSDs: Samsung, Seagate,WesternDigital,
and Silicon Power. These storage devices were used inside USB enclosure
adapters. We aimed to determine the number of files recovered after they were
deleted from these devices. We prepared theNVMe SSDs by installingWindows
10 operating system on them. To recover the files and conduct the forensic
analysis, we used AccessData FTK [77], Autopsy, and WinHex [78] disk editor.
In addition, we explained our forensic findings based on the observations from
four the different brands of SSDs with varying controller chips.

Experimental Setup with USB WriteBlocker

Table 7.1 below shows the technical specifications of the equipment
used throughout the experiment, including the digital forensic workstation and
various hardware and software tools.
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Table 7.1. Equipment used in the experiment.

Tools Name
NVMe SSD 1 Samsung V-NAND SSD 970 Evo Plus
NVMe SSD 2 Seagate Barracuda 510 250GB NVMe SSD
NVMe SSD 3 Western Digital SN550 250GB NVMe SSD
NVMe SSD 4 Silicon Power 3D-NAND NVMe SSD
Operating System Windows 10 Pro v21H2
Forensic Analysis Tool AccessData FTK 7.5 and WinHex
Forensics Acquisition Tool AccessData FTK Imager 4.7
WriteBlocker Wiebetech USB 3.0 WriteBlocker
Workstation CPU: Intel Xeon W-2123 — RAM : 80GB

Fig. 7.1. Samsung NVMe SSD attached with USB WriteBlocker.
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Fig. 7.2. Seagate NVMe SSD attached with USB WriteBlocker.

Fig. 7.3. Western Digital NVMe SSD attached with USB WriteBlocker.
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Fig. 7.4. Silicon Power NVMe SSD attached with USB WriteBlocker.

Specifics of SSDs

The experiment was based on four brands of NVMe SSDs, namely
Samsung, Seagate, Western Digital, and Silicon Power. This was due to their
significant market dominance and reliability [79]. The four brands and the
specific models were chosen to reflect a real-life scenario since the specifications
of these SSDs mimic the specifications of a typical SSD a user might own.
Additionally, the choice of SSDs makes the experiment more meaningful to the
digital forensic community as these are the most prominent specifications of
SSDs embedded in a laptop or desktop computer. Tables 7.2 and 7.3, list down
the name, model, product number (P/N), storage capacity, number of flash
chips, type of NVMe flash chip, and the controller information of the NVMe
SSDs.
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Table 7.2. Information of Samsung and Seagate NVMe SSDs used in the
experiment.

SSD Information Samsung NVMe Specification 1.3
Name Samsung NVMe V-NAND SSD 970 Evo Plus

NVMe M.2
Model MZ-V7S250
P/N MZVLB250HBHQ
Storage Capacity 250 GB
Number of flash chips inside 2
Type of NVMe NAND Flash 3D TLC NAND
Controller information Samsung S4LR020 — 2117 ARM— Pheonix

SSD Information Seagate NVMe Specification 1.3
Name Seagate Barracuda 510 250GB NVMe SSD
Model ZP250CM30001
P/N 2NS312-300
Storage Capacity 250 GB
Number of flash chips inside 4
Type of NVMe NAND Flash 3D TLC NAND
Controller information SKHynix - H5AN4G6NBJR
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Table 7.3. Information of Western Digital and Silicon Power NVMe SSDs used
in the experiment.

SSD Information WD NVMe Specification 1.4
Name Western Digital SN550 250GB NVMe SSD
Model WDS250G2B0C-00PXH0/21146P801302
P/N 87161901478830731375399388282263
Storage Capacity 250 GB
Number of flash chips inside 4
Type of NVMe NAND Flash 3D TLC NAND
Controller information Sandisk 20-82-10023-A1 — 1015ZKLY0KN

SSD Information Silicon Power NVMe Specification 1.3
Name Silicon Power 3D-NAND NVMe SSD
Model A-60
P/N SP256GBP34A60M28
Storage Capacity 256 GB
Number of flash chips inside 2
Type of NVMe NAND Flash 3D TLC NAND
Controller information Phison PS5013-E13-31—C02102E— TB5V79/

001BB

Methodology and Experiment Initiation

This section lists down and explains the procedures and
configurations we followed and assigned throughout the experiment.

1. The partition scheme used for the NVMe SSDs inside the USB enclosure
adapters: MBR (Master Boot Record)

2. The number of partitions in each NVMe SSD: 1
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3. The file system of the one partition: NTFS

4. Prior to copying the files to the devices from Digital Corpora [80],
we checked the TRIM status in Windows 10 by issuing the following
command through the command prompt.

fsutil behavior query DisableDeleteNotify

*If the output is 1, then TRIM is disabled. If the output is 0, then TRIM is

enabled.

To enable TRIM: fsutil behavior set DisableDeleteNotify 0
To disable TRIM: fsutil behavior set DisableDeleteNotify 1

Fig. 7.5. The status of TRIM in Windows 10 using fsutil command.

Case scenario: TRIM ON from Windows 10 operating system with the USB

WriteBlocker

1. We copied the commonly used file types from the Digital Corpora dataset
[80] to the four NVMe SSDs. We used large file sizes to exhaust the storage
drives’ capacity.

2. We then kept the files for one daywith no user activity by keeping the drive
attached to the USB port.

3. Next, we deleted (shift+delete) the files from the devices and waited
for one day before taking four forensic images of the four NVMe SSDs
respectively using the physical USB writeblocker.
(a) We took four forensic images: three consecutive images with one day

gap and last image after a span of four days from the third acquisition.
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4. We analyzed the images in AccessData FTK and Autopsy for the NVMe
storage devices.

5. We performed file recovery of the deleted files from the forensics images
in TRIM ON case.

6. Based on our results from the file recovery and WinHex analysis we
documented the effects of wear-leveling.

Case scenario: TRIM OFF from Windows 10 operating system with the USB

WriteBlocker

1. Firstly, we disabled TRIM using Windows 10 command prompt before
copying the files.

2. We copied the commonly used file types from the Digital Corpora dataset
[80] to the four NVMe SSDs. We used large file sizes to exhaust the storage
drives’ capacity.

3. We then kept the files for one daywith no user activity by keeping the drive
attached to the USB port.

4. Next, we deleted (shift+delete) the files from the devices and waited
for one day before taking four forensic images of the four NVMe SSDs
respectively using the physical USB writeblocker.

(a) We took four forensic images: three consecutive images with one day
gap and last image after a span of four days from the third acquisition.

5. We analyzed the images in AccessData FTK and Autopsy for the NVMe
storage devices.

6. We performed file recovery of the deleted files from the forensics images
in TRIM OFF case.

7. Like the TRIM ON case, based on our results from the file recovery and
WinHex analysis we documented the effects of wear-leveling.
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Experiment Results, Analysis, and Discussion

In this section, we provided the results of the file recovery performed
using the AccessData FTK and Autopsy tools. Tables 7.4 and 7.5 show the
timeline information of forensic image acquisition in both TRIM ON and TRIM
OFF cases of Samsung, Seagate, Western Digital (WD), and Silicon Power (SP)
NVMe SSDs, respectively.

Table 7.4. Timeline information of forensic file acquisition.

TRIM ON information
Samsung NVMe Time Seagate NVMe Time
Copy file date 7:06 pm 10/18/21 Copy file date 5:38 pm 10/18/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 7:06 pm 10/19/21 Delete files 5:38 pm 10/19/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 7:06 pm 10/20/21 1st image 5:38 pm 10/20/21
2nd image 7:06 pm 10/21/21 2nd image 5:38 pm 10/21/21
3rd image 7:06 pm 10/22/21 3rd image 5:38 pm 10/22/21
4th image 7:06 pm 10/26/21 4th image 5:38 pm 10/26/21
TRIM OFF information
Samsung NVMe Time Seagate NVMe Time
Copy file date 7:51 pm 9/29/21 Copy file date 7:51 pm 9/29/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 7:51 pm 9/30/21 Delete files 7:51 pm 9/30/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 7:51 pm 10/1/21 1st image 7:51 pm 10/1/21
2nd image 7:51 pm 10/2/21 2nd image 7:51 pm 10/2/21
3rd image 7:51 pm 10/3/21 3rd image 7:51 pm 10/3/21
4th image 7:51 pm 10/7/21 4th image 7:51 pm 10/7/21
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Table 7.5. Timeline information of forensic file acquisition.

TRIM ON information
WD NVMe Time SP NVMe Time
Copy file date 11:22 pm 10/18/21 Copy file date 9:02 pm 10/10/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 11:22 pm 10/19/21 Delete files 9:02 pm 10/11/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 11:22 pm 10/20/21 1st image 9:02 pm 10/12/21
2nd image 11:22 pm 10/21/21 2nd image 9:02 pm 10/13/21
3rd image 11:22 pm 10/22/21 3rd image 9:02 pm 10/14/21
4th image 11:22 pm 10/26/21 4th image 9:02 pm 10/18/21
TRIM OFF information
WD NVMe Time SP NVMe Time
Copy file date 10:51 pm 9/29/21 Copy file date 10:48 pm 9/28/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 10:51 pm 9/30/21 Delete files 10:48 pm 9/29/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 10:51 pm 10/1/21 1st image 10:48 pm 9/30/21
2nd image 10:51 pm 10/2/21 2nd image 10:48 pm 10/1/21
3rd image 10:51 pm 10/3/21 3rd image 10:48 pm 10/2/21
4th image 10:51 pm 10/7/21 4th image 10:48 pm 10/6/21

Samsung and Seagate TRIM ON Analysis

The TRIM command allows the operating system to tell the SSD that
specific sections are no longer needed. As a result, the SSD controller can now
undertakemany of the processes required to clear datawell ahead of any request
from the operating system. These internal procedures could even be carried out
when the SSD is under low load, hiding or masking the activity from the user.

Despite this, the TRIM ON analysis on both the Samsung NVMe and
SeagateNVMe SSDs’ forensics images showed that all files were recovered using
the AccessData FTK and Autopsy tools. However, the controller chip did not act
on files under 693 bytes in Samsung NVMe SSD and 696 bytes in Seagate NVMe
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SSD, respectively. As a result, they were all intact without any content wiped or
corrupted. In addition, files greater than 693 bytes in Samsung NVMe, and 696
bytes in Seagate NVMe SSD were all corrupted, i.e., their file contents were all
zeroed out and hence were rendered unusable. Tables 7.6, 7.7, 7.8, and 7.9 give
the statistics of the different files used from the Digital Corpora dataset and the
files recovered from Samsung and Seagate NVMe SSDs in TRIM on case.

Table 7.6. The number of files recovered from FTK in Samsung NVMe SSD in
USB enclosure adapter in Windows 10 TRIM ON case.

Samsung FTK Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 693 bytes were intact after recovery in Samsung
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 7.7. The number of files recovered from Autopsy in Samsung NVMe SSD
in USB enclosure adapter in Windows 10 TRIM ON case.

Samsung Autopsy Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 693 bytes were intact after recovery in Samsung
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 7.8. The number of files recovered from FTK in Seagate NVMe SSD in USB
enclosure adapter in Windows 10 TRIM ON case.

Seagate FTK Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Seagate
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 7.9. The number of files recovered from Autopsy in Seagate NVMe SSD in
USB enclosure adapter in Windows 10 TRIM ON case.

Seagate Autopsy Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Seagate
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Fig. 7.6. File, Set-1-xml(296).xml, over 693 bytes in Samsung NVMe SSD TRIM
ON case, with using a USB WriteBlocker.

Figure 7.6 shows a snippet of an XML file with regards to the Samsung
NVMe SSD TRIM ON case using a USB WriteBlocker. The file which over 693
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered, but the contents of the file were corrupted, making the
file unusable, as shown by the zeroes.
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Fig. 7.7. File, Set-1-xml(15).xml, under 693 bytes in Samsung NVMe SSD TRIM
ON case, with using a USB WriteBlocker.

Figure 7.7 shows a snippet of the Set-1-xml(15).xml file with regards
to the Samsung NVMe SSD TRIM ON case using a USB WriteBlocker. The file
under 693 bytes was opened in theWinHex tool. As seen from the experimental
results, the file was recovered, and the contents of the file were intact.
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Fig. 7.8. File, Set-1-xml(296).xml, over 696 bytes in Seagate NVMe SSD TRIM
ON case, with using a USB WriteBlocker.

Figure 7.8 shows a snippet of an XML file with regards to the Seagate
NVMe SSDTRIMON case using aUSBWriteBlocker. The file over 696 byteswas
opened in the WinHex tool. As seen from the experimental results, the file was
recovered, but the contents of the file were corrupted, making the file unusable,
as shown by the zeroes.
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Fig. 7.9. File, Set-1-xml(15).xml, under 696 bytes in Seagate NVMe SSD TRIM
ON case, with using a USB WriteBlocker.

Figure 7.9 shows a snippet of the Set-1-xml(15).xml file with regards
to the Seagate NVMe SSD TRIM ON case using a USB WriteBlocker. The file
under 696 bytes was opened in theWinHex tool. As seen from the experimental
results, the file was recovered and the contents of the file were intact.
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Samsung and Seagate TRIM OFF Analysis

Interestingly, all files were recovered successfully in the TRIM OFF
analysis from the four forensics Samsung NVMe and Seagate NVMe SSD
images, respectively. This is because the TRIM OFF feature prevents the
computer’s operating system fromnotifying the SSD to erase useless data blocks.
Thus, the SSD controller no longer manages all of the available storage space.
Hence, in our experiment, the controller chip did not wipe/clear the pages of
the storage devices. Therefore, this time the contents of all the files were intact.
i.e., files could be opened and worked on regularly. Furthermore, there was no
instance of file corruption in the case. Tables 7.10, 7.11, 7.12, and 7.13 show the
statistics of different files used and the files that were recovered.

Table 7.10. The number of files recovered from FTK in Samsung NVMe SSD in
USB enclosure adapter in Windows 10 TRIM OFF case.

Samsung FTK Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115 115 115 115
All files recovered and intact in TRIM OFF case of Samsung NVMe SSD



104

Table 7.11. The number of files recovered fromAutopsy in Samsung NVMe SSD
in USB enclosure adapter in Windows 10 TRIM OFF case.

Samsung Autopsy Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115 115 115 115
All files recovered and intact in TRIM OFF case of Samsung NVMe SSD

Table 7.12. The number of files recovered from FTK in Seagate NVMe SSD in
USB enclosure adapter in Windows 10 TRIM OFF case.

Seagate FTK Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115 115 115 115
All files recovered and intact in TRIM OFF case of Seagate NVMe SSD
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Table 7.13. The number of files recovered from Autopsy in Seagate NVMe SSD
in USB enclosure adapter in Windows 10 TRIM OFF case.

Seagate Autopsy Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115 115 115 115
All files recovered and intact in TRIM OFF case of Seagate NVMe SSD

Figure 7.10 shows a snippet of the Set-1-xml(296).xml file in the
Samsung NVMe SSD TRIM OFF case using a USB WriteBlocker. The file over
693 bytes in size was opened in the WinHex tool to be analyzed. As seen from
the experimental results, the file was recovered, and the contents of the file were
not wiped.
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Fig. 7.10. File, Set-1-xml(296).xml, over 693 bytes in Samsung NVMe SSD TRIM
OFF case, with using a USB WriteBlocker.

Figure 7.11 shows a snippet of the Set-1-xml(15).xml file with regards
to the Samsung NVMe SSD TRIM ON case using a USB WriteBlocker. The file
under 693 bytes was opened in the Win Hex tool. The file was recovered and
intact. Moreover, the file contents were not wiped, as shown in WinHex.
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Fig. 7.11. File, Set-1-xml(15).xml, under 693 bytes in SamsungNVMe SSD TRIM
OFF case, with using a USB WriteBlocker.

Figure 7.12 shows a snippet of the Set-1-xml(296).xml filewith regards
to the Seagate NVMe SSD TRIM OFF case using a USB WriteBlocker. The
file over 696 bytes in size was opened in the WinHex tool. As seen from the
experimental results, the file was recovered, and the contents of the file were not
wiped out.
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Fig. 7.12. File, Set-1-xml(296).xml, over 696 bytes in Seagate NVMe SSD TRIM
OFF case, with using a USB WriteBlocker.

Figure 7.13 shows a snippet of the Set-1-xml(15).xml file with regards
to the Seagate NVMe SSD TRIM ON case using a USB WriteBlocker. The fil
under 696 bytes was opened in the Win Hex tool. The file was recovered and
intact. Moreover, the file contents were not wiped, as shown by the hexadecimal
characters.
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Fig. 7.13. File, Set-1-xml(15).xml, under 696 bytes in Seagate NVMe SSD TRIM
OFF case, with using a USB WriteBlocker.

Hash Analysis for Samsung and Seagate NVMe SSDs

In this section, we exhibited our findings via MD5 hash values of
the files following the TRIM ON and OFF recovery operations. We used the
QuickHash hashing tool to generate hash values.

Initially, the hash value of the original file is displayed, followed by
TRIM ON and TRIM OFF MD5 hashes, and file size for Samsung NVMe SSD,
shown in figure 7.14. Similarly, figure 7.15 shows the hash values of the original
file, followed by TRIM ON and TRIM OFF MD5 hashes, and file size in the
Seagate NVMe SSD case. These figures aim to validate and verify the claims
made due to experimental observation.
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Fig. 7.14. Hash values of Set-1-xml(15).xml and Set-1-xml(296).xml files in
original dataset, and after recovery from TRIM ON and OFF cases in Samsung
NVMe SSD.

Fig. 7.15. Hash values of Set-1-xml(15).xml and Set-1-xml(296).xml files in
original dataset, and after recovery from TRIM ON and OFF cases in Seagate
NVMe SSD.

Table 7.14 shows the names of all forensically acquired images, image
type, size in kilobytes, MD5 and SHA1 hashes. The hash of all the image files
constantly changed through the steps of the experiment. For example, in the
case of TRIM OFF, the hash values of all the forensic images changed even
though exact files were recovered. In the case of TRIM ON for Samsung and
Seagate NVMe SSDs, the hash values of all the forensics images were different.
Furthermore, file recovery was impossible when the file size was greater than
693 bytes in Samsung and 696 in Seagate, respectively.
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Table 7.14. Digital forensics information about forensically acquired image files of Samsung and Seagate NVMe SSDs with
USB WriteBlocker.

File Names
Image
Type

Image
Size (KB)

MD5 Hash SHA1 Hash

Imaging TRIM ON Samsung NVMe SSD with USB WriteBlocker using FTK Imager
wwb-sam nvme usb image 1 e01 475 381 0fcf46557dd96ca090736a8d83a810ab 0a1e689519d4187fe2d9557d058e5dc53c91e966
wwb-sam nvme usb image 2 e01 475 380 634d99ae8749160b1d448f4e2711fceb 35db9a9bde217666553130ed7525a530633ddece
wwb-sam nvme usb image 3 e01 475 375 86e9e536ab1287d8f924b5cdc46cb787 e763ad799563d00c4d564abecaab7eab32d75f77
wwb-sam nvme usb image 4 e01 475 370 7acaa78d12c10e77a759faf02da1daba 262c45b09581762453a8da7876a8fce64e9c1401

Imaging TRIM ON Seagate NVMe SSD with USB WriteBlocker using FTK Imager
wwb-sg nvme usb image 1 e01 486 133 b8adcbe881cc289d48588677e4d3e058 de89e807b89a298d6dc7837d7a3ae03547694cea
wwb-sg nvme usb image 2 e01 486 130 3425bc4e3067e2d8260e417b986be443 3a9e6bfa0f95c9580394bb5e7e1f285f5fe19e9a
wwb-sg nvme usb image 3 e01 486 127 cdd68873ec87d7fa4c238b91f03c19b9 e010d7b88f4de114d84675f173dc777bc9f87a40
wwb-sg nvme usb image 4 e01 486 118 a9b9815c7100720b7a9a1612df6e3bf9 dceada2448129964a6a4ab6f6dc38060df493f23

Imaging TRIM OFF Samsung NVMe SSD with USB WriteBlocker using FTK Imager
wwb-sam nvme usb image 1 e01 154 417 284 c5dfce8d2373ea10db669247d961b6fd 35e2b78047d03e7102d0534b30eff1ffc31c565e
wwb-sam nvme usb image 2 e01 154 417 284 72401002a3282952a955baa0eb25c4fb b34a92e79c733c7182f370fb610b77e72fded536
wwb-sam nvme usb image 3 e01 154 417 282 617a56356cb1bec21429f5ffc497794d 58671d7860765abcd2a9dd43ed5e31ee3c486894
wwb-sam nvme usb image 4 e01 154 417 281 8ddb9e6ca6836ca3a168729add43aba0 70fbc297993fd9454d2ff7413851949ef05e5600

Imaging TRIM OFF Seagate NVMe SSD with USB WriteBlocker using FTK Imager
wwb-sg nvme usb image 1 e01 154 417 193 2a5aab29392eea665c945c728f29e51c 3240d787b6d3763a037694b07beeafe218a99742
wwb-sg nvme usb image 2 e01 154 417 191 036baa93abc61cdf38137ce7e530e6b6 25bd325ba7d2278743ad787289dfa32fdde75e8a
wwb-sg nvme usb image 3 e01 154 417 190 acff78b2ea6f39ec1fd622ae868a47af c95987513a4747bae35d7910d3dff675a9ec173b
wwb-sg nvme usb image 4 e01 154 417 189 251e3f565a640ace74b7edb77a216d70 69fdef2fb40ceaaa6abe77508149625819833d59
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Western Digital and Silicon Power TRIM ON Analysis

The analysis of TRIM ON cases in Western Digital and Silicon Power
shows a similar trend in file recovery procedures as seen in the Seagate NVMe
SSD. The controller chip did not act on files under 696 bytes in Western Digital
and Silicon Power storage devices. As a result, all files under 696 bytes were
intact without any file content corruption. However, when the files’ size was
greater than 696 bytes in Western Digital and Silicon Power NVMe SSDs, the
files’ contents were cleared or zeroed out and hence rendered unusable. Tables
7.15, 7.16, 7.17, and 7.18 show the statistics of different files used and the files
that were recovered.

Table 7.15. The number of files recovered from FTK in Western Digital NVMe
SSD in USB enclosure adapter in Windows 10 TRIM ON case.

Western Digital FTK Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 693 bytes were intact after recovery in Western Digital
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 7.16. The number of files recovered from Autopsy in Western Digital
NVMe SSD in USB enclosure adapter in Windows 10 TRIM ON case.

Western Digital Autopsy Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 693 bytes were intact after recovery in Western Digital
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 7.17. The number of files recovered from FTK in Silicon Power NVMe SSD
in USB enclosure adapter in Windows 10 TRIM ON case.

Silicon Power FTK Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13152 13152* 13152* 13152* 13152*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115*
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Silicon Power
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 7.18. The number of files recovered from Autopsy in Silicon Power NVMe
SSD in USB enclosure adapter in Windows 10 TRIM ON case.

Silicon Power Autopsy Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13152 13152* 13152* 13152* 13152*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115*
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Silicon Power
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Fig. 7.16. File, Set-1-xml(296).xml, over 696 bytes in Western Digital NVMe SSD
TRIM ON case, with using a USB WriteBlocker.

Figure 7.16 shows a snippet of an XML file with regards to theWestern
Digital NVMe SSD TRIM ON case using a USB WriteBlocker. The file over 696
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered, and the contents of the file were wiped out.
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Fig. 7.17. File, Set-1-xml(296).xml, under 696 bytes in Western Digital NVMe
SSD TRIM ON case, with using a USB WriteBlocker.

Figure 7.17 shows a snippet of an XML file with regards to theWestern
Digital NVMe SSD TRIM ON case using a USBWriteBlocker. The file under 696
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered and the contents of the file were not wiped.
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Fig. 7.18. File, Set-1-xml(296).xml, over 696 bytes in Silicon Power NVMe SSD
TRIM ON case, with using a USB WriteBlocker.

Figure 7.18 shows a snippet of an XML file with regards to the Silicon
Power NVMe SSD TRIM ON case using a USB WriteBlocker. The file over 696
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered, and the contents of the file were wiped out.
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Fig. 7.19. File, Set-1-xml(296).xml, under 696 bytes in Silicon Power NVMe SSD
TRIM ON case, with using a USB WriteBlocker.

Figure 7.19 shows a snippet of an XML file with regards to the Silicon
Power NVMe SSD TRIM ON case using a USB WriteBlocker. The file under 696
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered, and the contents of the file were not wiped out.
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Western Digital and Silicon Power TRIM OFF Analysis

File recovery with TRIM OFF of four forensics Western Digital and
Silicon Power NVMe SSD images, using AccessData FTK and Autopsy tools was
successful. This happened because the TRIM OFF feature stops the operating
system from informing the SSD to erase unusable data blocks. Hence, theNVMe
SSD controller no longer oversees the available storage space to its full potential.
Therefore, the controller chip did not clear out the pages so the contents of all the
files were intact i.e., files could be viewed, opened, and worked on consistently.
Furthermore, there was no instance of file corruption in the case. Tables 7.19,
7.20, 7.21, and 7.22 show the statistics of different files used and the files that
were recovered.

Table 7.19. The number of files recovered from FTK in Western Digital NVMe
SSD in USB enclosure adapter in Windows 10 TRIM OFF case.

Western Digital FTK Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13152 13152 13152 13152 13152
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 150 150 150 150 150
All files recovered and intact in TRIM OFF case of Western Digital NVMe SSD



121

Table 7.20. The number of files recovered from Autopsy in Western Digital
NVMe SSD in USB enclosure adapter in Windows 10 TRIM OFF case.

Western Digital Autopsy Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13152 13152 13152 13152 13152
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 150 150 150 150 150
All files recovered and intact in TRIM OFF case of Western Digital NVMe SSD

Table 7.21. The number of files recovered from FTK in Silicon Power NVMe SSD
in USB enclosure adapter in Windows 10 TRIM OFF case.

Silicon Power FTK Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13152 13152 13152 13152 13152
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 150 150 150 150 150
All files recovered and intact in TRIM OFF case of Silicon Power NVMe SSD
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Table 7.22. The number of files recovered from Autopsy in Silicon Power NVMe
SSD in USB enclosure adapter in Windows 10 TRIM OFF case.

Silicon Power Autopsy Case Statistics in Windows 10 with WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13152 13152 13152 13152 13152
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 150 150 150 150 150
All files recovered and intact in TRIM OFF case of Silicon Power NVMe SSD

Figure 7.20 shows a snippet of an XML file with regards to theWestern
Digital NVMe SSD TRIM OFF case using a USB WriteBlocker. The file over 696
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered and the contents of the file were not wiped out.
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Fig. 7.20. File, Set-1-xml(296).xml, over 696 bytes in Western Digital NVMe SSD
TRIM OFF case, with using a USB WriteBlocker.

Figure 7.21 shows a snippet of an XML file with regards to theWestern
Digital NVMe SSD TRIMOFF case using a USBWriteBlocker. The file under 696
byteswas opened in theWinHex tool. As seen from the experimental results, the
file was recovered and the contents of the file were not wiped out.
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Fig. 7.21. File, Set-1-xml(296).xml, under 696 bytes in Western Digital NVMe
SSD TRIM OFF case, with using a USB WriteBlocker.

Figure 7.22 shows a snippet of an XML file with regards to the Silicon
Power NVMe SSD TRIM OFF case using a USB WriteBlocker. The file over 696
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered and the contents of the file were not wiped out.
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Fig. 7.22. File, Set-1-xml(296).xml, over 696 bytes in Silicon Power NVMe SSD
TRIM OFF case, with using a USB WriteBlocker.

Figure 7.23 shows a snippet of an XML file with regards to the Silicon
Power NVMe SSD TRIM OFF case using a USBWriteBlocker. The file under 696
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered and the contents of the file were not wiped out.
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Fig. 7.23. File, Set-1-xml(296).xml, under 696 bytes in Silicon Power NVMe SSD
TRIM OFF case, with using a USB WriteBlocker.

Hash Analysis for Western Digital and Silicon Power NVMe SSDs

In this section, we presented our findings via MD5 hash values of
the files following the TRIM ON and OFF recovery operations. We used the
QuickHash hashing tool to generate the hash values.

The hash value of the original file is displayed, followed by TRIM ON
and TRIM OFF MD5 hashes, and file size for Western Digital NVMe SSD, as
shown in figure 7.24. Similarly, Figure 7.25 shows the hash values of the original
file, followed byTRIMONandTRIMOFFMD5hashes, andfile size in the Silicon
Power NVMe SSD case. The figures aim to validate and verify the claims which
were made due to experimental observation.



127

Fig. 7.24. Hash values of Set-1-xml(15).xml and Set-1-xml(296).xml files in
original dataset, and after recovery from TRIM ON and OFF cases in Western
Digital NVMe SSD.

Fig. 7.25. Hash values of Set-1-xml(15).xml and Set-1-xml(296).xml files in
original dataset, and after recovery from TRIM ON and OFF cases in Silicon
Power NVMe SSD.

Table 7.23 contains the names of all forensically obtained images, as
well as their types, sizes in kilobytes, and MD5 and SHA1 hashes. Throughout
the experiment, the hash of all the image files changed regularly. In the case of
TRIM OFF, for example, the hash values of all the forensic images were altered
even if exact files were recovered. However, for the TRIM ON case for WD and
SP NVMe SSDs, the hash values of all forensics images were different, and file
recovery was not feasible when the file size exceeded 696 bytes.
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Table 7.23. Digital forensics information about forensically acquired image files of Western Digital and Silicon Power NVMe
SSDs with USB WriteBlocker.

File Names
Image
Type

Image
Size (KB)

MD5 Hash SHA1 Hash

Imaging TRIM ON Western Digital NVMe SSD with USB WriteBlocker using FTK Imager
wwb-wd nvme usb image 1 e01 475 384 9747ef574e5ea691286f92d6ed6f0b1b 893cec583ef5a2720fa7251175934e94de45fc16
wwb-wd nvme usb image 2 e01 475 378 12c96ff6c39731e85b56d8ed07470e49 3a8d2511f168e197bfcab109d848bd70d837a622
wwb-wd nvme usb image 3 e01 475 378 bfc80533e9af9c30129b12038f2e62de 7eb3edbf2a180518dfc03196921eb58e36e8afd1
wwb-wd nvme usb image 4 e01 475 373 60fad6107bc9e02f7ca549eaef3acda0 23778f71989835db54979c50f11589221e22f5e6

Imaging TRIM ON Silicon Power NVMe SSD with USB WriteBlocker using FTK Imager
wwb-sp nvme usb image 1 e01 470 826 6401fd22ee10bfe1dd576d29bf1f71d6 d4a39202c36897cce7c9df7cfac90486dd310db9
wwb-sp nvme usb image 2 e01 470 825 f15f747abf8e905beb3598981befb61f 1b359933b070df95eb609cc1be5131140783a6bd
wwb-sp nvme usb image 3 e01 470 825 22f26a6baafb98a6f0c34a3d898a89b5 b8658f796451adfdc826d548699da1bba3479212
wwb-sp nvme usb image 4 e01 470 825 8c140fb4b880631c38b0006809d33bc9 64b6e25581451316d799f27a3a217f3e036a0dce

Imaging TRIM OFF Western Digital NVMe SSD with USB WriteBlocker using FTK Imager
wwb-wd nvme usb image 1 e01 154 417 179 1157dda1e4ea07f5014361ab09bd14cc d33654f553c58ff2170c3107f133dd6849e0c437
wwb-wd nvme usb image 2 e01 154 417 176 e4c7a7369b2180322f5b11118ec93ea2 49bef3ab38d9434a1e5f31a0dde935b0ae2cb3a1
wwb-wd nvme usb image 3 e01 154 417 175 6201a0dee3e92e1fb7df09353c6f7b19 afa9fe58f2abab8aa4f9ce2c38b909eeaa7b92eb
wwb-wd nvme usb image 4 e01 154 417 179 418a0d5725c6c79cc48a1ccd99722c28 b3b56d65c2bd90cd70a512ab39953137be9ecb5a

Imaging TRIM OFF Silicon Power NVMe SSD with USB WriteBlocker using FTK Imager
wwb-sp nvme usb image 1 e01 160 276 543 8b397574e606ea5bb405b000dca33203 1eb2f504e52362c654b0052efa8c01a3ad6fd008
wwb-sp nvme usb image 2 e01 160 276 540 3ab94d65dc06be9bc81f2f21209607bd 20e2f2cf3af64e2a429ca7d54f9f39b1e71ebad9
wwb-sp nvme usb image 3 e01 160 276 539 d90952fcb67c4b9190fc6c48ad7627db 3522e70fbf715ccef8d7f0d2e91c8c4fc1249b27
wwb-sp nvme usb image 4 e01 160 276 539 89ea36f99bb3e8b90afe1031e508153d 82b239130ad0dcbc48f95b373c03af1356a63278
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CHAPTER VIII

Digital Forensics in USB NVMe SSDs without WriteBlocker

This chapter is the continuation of digital forensics analysis in USB
NVMe SSDs. We enhanced our research method and modified our approach to
investigate the behavior of the four NVMe SSDs enclosed in USB adapters when
nowrite blocker is used. This chapter aimed to find the number of files recovered
after they were deleted from four NVMe storage devices connected to computer
systems. However in this case, the forensics images are taken without using a
USB WriteBlocker.

Similar to the work done in Chapter VII, we installed Windows 10
operating system on four NVMe SSDs. We used AccessData FTK [77], Autopsy,
and WinHex [78] tools to recover and conduct forensics examination. Lastly,
we explained the forensics observation based on the findings with varying
controller chips of the four NVMe SSD devices.

Experimental Setup without USB WriteBlocker

Table 8.1 below shows the technical specifications of the equipment
we have used for the experiment in this chapter.

Table 8.1. Equipment used in the experiment.

Tools Name
NVMe SSD 1 Samsung V-NAND SSD 970 Evo Plus
NVMe SSD 2 Seagate Barracuda 510 250GB NVMe SSD
NVMe SSD 3 Western Digital SN550 250GB NVMe SSD
NVMe SSD 4 Silicon Power 3D-NAND NVMe SSD
Operating System Windows 10 Pro v21H2
Forensic Analysis Tool AccessData FTK 7.5 and WinHex
Forensics Acquisition Tool AccessData FTK Imager 4.7
Workstation CPU: Intel Xeon W-2123 — RAM : 80GB



130

Fig. 8.1. Samsung NVMe SSD attached without USB WriteBlocker.

Fig. 8.2. Seagate NVMe SSD attached without USB WriteBlocker.
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Fig. 8.3. Western Digital NVMe SSD attached without USB WriteBlocker.

Fig. 8.4. Silicon Power NVMe SSD attached without USB WriteBlocker.
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Specifics of SSDs

The test included four differentNVMe SSD brands: Samsung, Seagate,
Western Digital, and Silicon Power. These devices were picked due to their
substantialmarket share anddependability. The fourmanufacturers andmodels
used in the experiment were chosen to reflect a real-world scenario as the
specifications of the SSDs used in the experiment closely resemble those of a
common SSD that a regular user may own. Furthermore, because these are
the most common characteristics of SSDs incorporated in a laptop or desktop
computer, the choice of SSDs makes the experiment more meaningful to the
digital forensic community. The name, model, product number (P/N), storage
capacity, number of flash chips, kind of NVMe flash chip, and controller
information of the NVMe SSDs used are all listed in the tables 8.2 and 8.3.
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Table 8.2. Information of Samsung and Seagate NVMe SSDs used in the
experiment.

SSD Information Samsung NVMe Specification 1.3
Name Samsung NVMe V-NAND SSD 970 Evo Plus

NVMe M.2
Model MZ-V7S250
P/N MZVLB250HBHQ
Storage Capacity 250 GB
Number of flash chips inside 2
Type of NVMe NAND Flash 3D TLC NAND
Controller information Samsung S4LR020 — 2117 ARM— Pheonix

SSD Information Seagate NVMe Specification 1.3
Name Seagate Barracuda 510 250GB NVMe SSD
Model ZP250CM30001
P/N 2NS312-300
Storage Capacity 250 GB
Number of flash chips inside 4
Type of NVMe NAND Flash 3D TLC NAND
Controller information SKHynix - H5AN4G6NBJR
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Table 8.3. Information of Western Digital and Silicon Power NVMe SSDs used
in the experiment.

SSD Information WD NVMe Specification 1.4
Name Western Digital SN550 250GB NVMe SSD
Model WDS250G2B0C-00PXH0/21146P801302
P/N 87161901478830731375399388282263
Storage Capacity 250 GB
Number of flash chips inside 4
Type of NVMe NAND Flash 3D TLC NAND
Controller information Sandisk 20-82-10023-A1 — 1015ZKLY0KN

SSD Information Silicon Power NVMe Specification 1.3
Name Silicon Power 3D-NAND NVMe SSD
Model A-60
P/N SP256GBP34A60M28
Storage Capacity 256 GB
Number of flash chips inside 2
Type of NVMe NAND Flash 3D TLC NAND
Controller information Phison PS5013-E13-31—C02102E— TB5V79/

001BB

Methodology and Experiment Initiation

The protocols and setups we followed and assigned during the
experiment are listed and explained in this section.

1. The partition scheme used for the NVMe SSDs inside the USB enclosure
adapters: MBR (Master Boot Record)

2. The number of partitions in each NVMe SSD: 1
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3. The file system of the one partition: NTFS

4. Prior to copying the files to the devices from Digital Corpora [80],
we checked the TRIM status in Windows 10 by issuing the following
command through the command prompt.

fsutil behavior query DisableDeleteNotify

*If the output is 1, then TRIM is disabled. If the output is 0, then TRIM is

enabled.

To enable TRIM: fsutil behavior set DisableDeleteNotify 0
To disable TRIM: fsutil behavior set DisableDeleteNotify 1

Fig. 8.5. The status of TRIM in Windows 10 using fsutil command.

Case scenario: TRIM ON from Windows 10 operating system without

WriteBlocker

1. We copied the commonly used file types from the Digital Corpora dataset
[80] to the four NVMe SSDs. We used large file sizes to exhaust the storage
drives’ capacity.

2. We then kept the files for one daywith no user activity by keeping the drive
attached to the USB port of the computer system.

3. Next, we deleted (shift+delete) the files from the devices and waited for
one day before acquiring four forensic images of the four NVMe SSDs
respectively.
(a) We took four forensic images: three consecutive images with one day

gap and last image after a span of four days from the third acquisition.
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4. We analyzed the images in AccessData FTK and Autopsy for the NVMe
storage devices.

5. We performed file recovery of the deleted files from the forensics images
in the TRIM ON case.

6. Based on our results from the file recovery and WinHex analysis we
documented the effects of wear-leveling.

Case scenario: TRIM OFF from Windows 10 operating system without

WriteBlocker

1. Firstly, we disabled TRIM using Windows 10 command prompt before
copying the files.

2. We copied the commonly used file types from the Digital Corpora dataset
[80] to the four NVMe SSDs. We used large file sizes to exhaust the storage
drives’ capacity just like we talked about in chapter 6.

3. We then kept the files for one daywith no user activity by keeping the drive
attached to the USB port of the computer system.

4. Next, we deleted (shift+delete) the files from the devices and waited for
one day before acquiring four forensic images of the four NVMe SSDs
respectively.

(a) We took four forensic images: three consecutive images with one day
gap and last image after a span of four days from the third acquisition.

5. We analyzed the images in AccessData FTK and Autopsy for the NVMe
storage devices.

6. We performed file recovery of the deleted files from the forensics images
in the TRIM OFF case.

7. Like the TRIM ON case, based on our results from the file recovery and
WinHex analysis, we documented the effects of wear-leveling.
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Experiment Results, Analysis, and Discussion

The results of the file recovery utilizing the AccessData FTK and
Autopsy tools are presented in this section. We began by populating the NVMe
SSDs with the most frequently used files from the Digital Corpora dataset [80].
We then used the forensically acquired images of the four NVMe SSDs to
undertake the file recovery operation. Tables 8.4 and 8.5, respectively, present
the forensic image acquisition timeline information in both TRIMON and TRIM
OFF scenarios of Samsung, Seagate, Western Digital (WD), and Silicon Power
(SP) NVMe SSDs.

Table 8.4. Timeline information of forensic file acquisition.

TRIM ON information without WriteBlocker
Samsung NVMe Time Seagate NVMe Time
Copy file date 11:20 pm 8/19/21 Copy file date 11:47 pm 8/22/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 11:20 pm 8/20/21 Delete files 11:47 pm 8/23/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 11:20 pm 8/21/21 1st image 11:47 pm 8/24/21
2nd image 11:20 pm 8/22/21 2nd image 11:47 pm 8/25/21
3rd image 11:20 pm 8/23/21 3rd image 11:47 pm 8/26/21
4th image 11:20 pm 8/27/21 4th image 11:47 pm 8/30/21
TRIM OFF information without WriteBlocker
Samsung NVMe Time Seagate NVMe Time
Copy file date 8:17 pm 9/14/21 Copy file date 11:45 pm 9/14/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 8:17 pm 9/15/21 Delete files 11:45 pm 9/15/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 8:17 pm 9/16/21 1st image 11:45 pm 9/16/21
2nd image 8:17 pm 9/17/21 2nd image 11:45 pm 9/17/21
3rd image 8:17 pm 9/18/21 3rd image 11:45 pm 9/18/21
4th image 8:17 pm 9/22/21 4th image 11:45 pm 9/22/21



138

Table 8.5. Timeline information of forensic file acquisition.

TRIM ON information without WriteBlocker
WD NVMe Time SP NVMe Time
Copy file date 12:15 pm 8/20/21 Copy file date 9:40 pm 8/22/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 12:15 pm 8/21/21 Delete files 9:40 pm 8/23/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 12:15 pm 8/22/21 1st image 9:40 pm 8/24/21
2nd image 12:15 pm 8/23/21 2nd image 9:40 pm 8/25/21
3rd image 12:15 pm 8/24/21 3rd image 9:40 pm 8/26/21
4th image 12:15 pm 8/28/21 4th image 9:40 pm 8/30/21
TRIM OFF information without WriteBlocker
WD NVMe Time SP NVMe Time
Copy file date 10:04 pm 9/14/21 Copy file date 6:10 pm 9/15/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 10:04 pm 9/15/21 Delete files 6:10 pm 9/16/21
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 10:04 pm 9/16/21 1st image 6:10 pm 9/17/21
2nd image 10:04 pm 9/17/21 2nd image 6:10 pm 9/18/21
3rd image 10:04 pm 9/18/21 3rd image 6:10 pm 9/19/21
4th image 10:04 pm 9/22/21 4th image 6:10 pm 9/23/21

Samsung and Seagate TRIM ON Analysis without WriteBlocker

The TRIM command allows the operating system to tell the SSD that
specific sections are no longer needed. As a result, the SSD controller can now
undertakemany of the processes required to clear datawell ahead of any request
from the operating system. These internal procedures could even be carried out
when the SSD is under low load, hiding or masking the activity from the user.

Despite this, the TRIM ON analysis on both the Samsung NVMe and
SeagateNVMe SSDs’ forensics images showed that all files were recovered using
the AccessData FTK and Autopsy tools. However, the controller chip did not act
on files under 693 bytes in Samsung NVMe SSD and 696 bytes in Seagate NVMe
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SSD, respectively. As a result, they were all intact without any content wiped or
corrupted. In addition, files greater than 693 bytes in Samsung NVMe, and 696
bytes in Seagate NVMe SSD were all corrupted, i.e., their file contents were all
zeroed out and hence were rendered unusable. Tables 8.6, 8.7, 8.8, and 8.9 give
the statistics of the different files used from the Digital Corpora dataset and the
files recovered from Samsung and Seagate NVMe SSDs in TRIM on case.

Table 8.6. The number of files recovered from FTK in Samsung NVMe SSD in
USB enclosure adapter without using WriteBlocker in Windows 10 TRIM ON
case.

Samsung FTK Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
.bin 3 3* 3* 3* 3*
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 693 bytes were intact after recovery in Samsung
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 8.7. The number of files recovered from Autopsy in Samsung NVMe SSD
in USB enclosure adapter without using WriteBlocker in Windows 10 TRIM ON
case.

Samsung Autopsy Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
.bin 3 3* 3* 3* 3*
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
Note:
1) Files under 693 bytes were intact after recovery in Samsung
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 8.8. The number of files recovered from FTK in Seagate NVMe SSD in USB
enclosure adapter without using WriteBlocker in Windows 10 TRIM ON case.

Seagate FTK Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
.bin 3 3+ 3+ 3+ 3+
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
+: Recovered all but one file of out the three was corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Seagate
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 8.9. The number of files recovered from Autopsy in Seagate NVMe SSD
in USB enclosure adapter without using WriteBlocker in Windows 10 TRIM ON
case.

Seagate Autopsy Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
.bin 3 3+ 3+ 3+ 3+
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
+: Recovered all but one file of out the three was corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Seagate
NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Fig. 8.6. File, Set-1-xml(296).xml, over 693 bytes in Samsung NVMe SSD TRIM
ON case, without using a USB WriteBlocker.

Figure 8.6 shows a snippet of an XML file with regards to the Samsung
NVMe SSD TRIM ON case without using a USB WriteBlocker. The file over 693
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered, but the contents of the file were corrupted, making the
file unusable, as shown by the zeroes.
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Fig. 8.7. File, Set-1-xml(15).xml, under 693 bytes in Samsung NVMe SSD TRIM
ON case, without using a USB WriteBlocker.

Figure 8.7 shows a snippet of the Set-1-xml(15).xml file with regards
to the Samsung NVMe SSD TRIM ON case without using a USB WriteBlocker.
The file under 693 bytes was opened in the Win Hex tool. As seen from the
experimental results, the file was recovered, and the contents of the file were
intact.
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Fig. 8.8. File, Set-1-xml(296).xml, over 696 bytes in Seagate NVMe SSD TRIM
ON case, without using a USB WriteBlocker.

Figure 8.8 shows a snippet of an XML file with regards to the Seagate
NVMe SSD TRIM ON case without using a USB WriteBlocker. The file over 696
bytes was opened in the WinHex tool. As seen from the experimental results,
the file was recovered, but the contents of the file were corrupted, making the
file unusable, as shown by the zeroes.
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Fig. 8.9. File, Set-1-xml(15).xml, under 696 bytes in Seagate NVMe SSD TRIM
ON case, without using a USB WriteBlocker.

Figure 8.9 shows a snippet of the Set-1-xml(15).xml file with regards
to the Seagate NVMe SSD TRIM ON case without using a USB WriteBlocker.
The file under 696 bytes was opened in the WinHex tool. As seen from the
experimental results, the file was recovered, and the contents of the file were
intact.
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Samsung and Seagate TRIM OFF Analysis without WriteBlocker

Interestingly, all files were recovered successfully in the TRIM OFF
analysis from the four forensics Samsung NVMe and Seagate NVMe SSD
images, respectively. This is because the TRIM OFF feature restricts the
computer’s operating system to inform the SSD to erase useless data blocks.
Thus, the SSD controller no longer manages the available storage space to its
full potential. Hence, in our experiment, the controller chip did not wipe/clear
the pages of the storage devices. Therefore, this time the contents of all the files
were intact. i.e., files could be opened and worked on regularly. Furthermore,
there was no instance of file corruption in the case. Tables 8.10, 8.11, 8.12, and
8.13 show the statistics of different files used and the files that were recovered.

Table 8.10. The files recovered from FTK in Samsung NVMe SSD in USB
enclosure adapter without using WriteBlocker in Windows 10 TRIM OFF case.

Samsung FTK Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115 115 115 115
.bin 3 1+ 1+ 1+ 1+
1. Some extra NTFS metadata files were theretoo
2. 66 pdf folders are created for some pdffiles
3. 4 zip files extracted inside folders +original files
4. + = Only one bin file was recovered + no traces of the two files.
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Table 8.11. The files recovered from Autopsy in Samsung NVMe SSD in USB
enclosure adapter without using WriteBlocker in Windows 10 TRIM OFF case.

Samsung Autopsy Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115 115 115 115
.bin 3 1+ 1+ 1+ 1+
1. + = Only one bin file was recovered + no traces of the two files.

Table 8.12. The files recovered from FTK in Seagate NVMe SSD in USB enclosure
adapter without using WriteBlocker in Windows 10 TRIM OFF case.

Seagate FTK Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115 115 115 115
.bin 3 1+ 1+ 1+ 1+
1. + = Only one bin file was recovered + no traces of the two files.
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Table 8.13. The files recovered from Autopsy in Seagate NVMe SSD in USB
enclosure adapter without using WriteBlocker in Windows 10 TRIM OFF case.

Seagate Autopsy Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115*** 115*** 115*** 115***
.bin 3 1+ 1+ 1+ 1+
1. + = Only one bin file was recovered + no traces of the two files.

Figure 8.10 shows a snippet of the Set-1-xml(296).xml file with
regards to the Samsung NVMe SSD TRIM OFF case without using a USB
WriteBlocker. The file over 693 bytes was opened in the WinHex tool. As seen
from the experimental results, the file was recovered, and the contents of the
file were not wiped, as shown by the hexadecimal characters.
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Fig. 8.10. File, Set-1-xml(296).xml, over 693 bytes in Samsung NVMe SSD TRIM
OFF case, without using a USB WriteBlocker.

Figure 8.11 shows a snippet of the Set-1-xml(15).xml file with regards
to the Samsung NVMe SSD TRIM ON case without using a USB WriteBlocker.
The file under 693 bytes was opened in theWin Hex tool. The file was recovered
and intact. Moreover, the file contents were not wiped, as shown in the figure.
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Fig. 8.11. File, Set-1-xml(15).xml, under 693 bytes in SamsungNVMe SSD TRIM
OFF case, without using a USB WriteBlocker.

Figure 8.12 shows a snippet of the Set-1-xml(296).xml filewith regards
to the Seagate NVMe SSD TRIM OFF case without using a USB WriteBlocker.
The file over 696 bytes was opened in WinHex. As seen from the experimental
results, the file was recovered, and the contents of the file were not wiped out.
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Fig. 8.12. File, Set-1-xml(296).xml, over 696 bytes in Seagate NVMe SSD TRIM
OFF case, without using a USB WriteBlocker.

Figure 8.13 shows a snippet of the Set-1-xml(15).xml file with regards
to the SeagateNVMe SSDTRIMONcasewithout using aUSBWriteBlocker. The
file under 696 bytes was opened in WinHex and was fully recovered and intact.
Moreover, the file contents were not wiped out, as shown by the hexadecimal
characters.
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Fig. 8.13. File, Set-1-xml(15).xml, under 696 bytes in Seagate NVMe SSD TRIM
OFF case, without using a USB WriteBlocker.

Hash Analysis for Samsung and Seagate NVMe SSDs without WriteBlocker

In this section, we exhibited our findings via MD5 hash values of
the files following the TRIM ON and OFF recovery operations. We used the
QuickHash hashing tool to generate the hash values.

Initially, the hash value of the original file is displayed, followed by
TRIM ON and TRIM OFF MD5 hashes, and file size for Samsung NVMe SSD,
as shown in figure 8.14. Figure 8.15 shows the original file hash values, TRIM
ON and TRIM OFF MD5 hashes, and file size in the Seagate NVMe SSD case.
These figures aim to validate and verify the claims made due to experimental
observation without using a USB WriteBlocker.
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Fig. 8.14. Hash values of Set-1-xml(15).xml and Set-1-xml(296).xml files in
original dataset, and after recovery from TRIM ON and OFF cases in Samsung
NVMe SSD, without using a USB WriteBlocker.

Fig. 8.15. Hash values of Set-1-xml(15).xml and Set-1-xml(296).xml files in
original dataset, and after recovery from TRIM ON and OFF cases in Seagate
NVMe SSD, without using a USB WriteBlocker.

Table 8.14 shows names of all forensically acquired images, image
type, size in kilobytes, MD5 and SHA1 hashes. The hash of all the image files
constantly changed through the steps of the experiment. For example, in the case
of TRIM OFF, the hash values of all the forensic images changed even though
exact files were recovered. But in the case of TRIMON for Samsung and Seagate
NVMe SSDs, the hash values of all the forensics images were different, and
file recovery was not possible when the file size was greater than 693 bytes in
Samsung and 696 bytes in Seagate, respectively.
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Table 8.14. Digital forensics information about forensically acquired image files of Samsung and SeagateNVMe SSDswithout
USB WriteBlocker.

File Names
Image
Type

Image
Size (KB)

MD5 Hash SHA1 Hash

Imaging TRIM ON Samsung NVMe SSD without USB WriteBlocker using FTK Imager
wowb-sam nvme usb image 1 e01 475 355 caa14bef0c7d14a9eb74dc5d25398d3b c0c975cb9481ccb2cb07b9e6a769e622bd4daac8
wowb-sam nvme usb image 2 e01 475 345 fd24d4766a662d6b5f6dd727ec003465 1f4826b5b9772fc09f30a58efab1526f3dec2b77
wowb-sam nvme usb image 3 e01 464 929 800e62134ff8cb3857623e64a538a98b d1f08981213c0351dc3860f9e56adcab7d3f0392
wowb-sam nvme usb image 4 e01 464 938 79d60c51690d70884d06754d9f27e24c f475f439d9ddca837989ceb1279b6790c280ba4e

Imaging TRIM ON Seagate NVMe SSD without USB WriteBlocker using FTK Imager
wowb-sg nvme usb image 1 e01 475 291 fbc4779010c46231235fe743ef7496a2 5995419bd912727c30a7ce17d97023cdb9eca45f
wowb-sg nvme usb image 2 e01 475 285 84b7d1820203e3e0db4d0fd2b44dbc2e 8248a1efcd9f1772ff7590a803960fd9d46c7724
wowb-sg nvme usb image 3 e01 475 274 5f38ba9a16cd0c3e21ec31be08f7fbde 4eb13aa792194064e8687165b3e05e33c52f9616
wowb-sg nvme usb image 4 e01 475 239 b97401f22b37038833e98a4f86f3bad5 7a47670619cc8f0dd11a270c17c0935934c8caa9

Imaging TRIM OFF Samsung NVMe SSD without USB WriteBlocker using FTK Imager
wowb-sam nvme usb image 1 e01 154 416 700 bdb8dba80ba6ed739e7859a33d2a71db bbdddd59629006ac182d40e9b76389e95aaf7175
wowb-sam nvme usb image 2 e01 154 416 696 5b21f56dcbe770128c973655f8a014de c4e5df22f31cb9169c197d5204d0ca37017723d9
wowb-sam nvme usb image 3 e01 154 416 691 245aa23ad114d924c3f38ce9ef81aa22 76287dbe8413c181b428637788e4be61dd68563b
wowb-sam nvme usb image 4 e01 154 416 684 d705b9e4db3b0db42f1d2300a6b18b87 16582e106d9867f96de74ec6c5537aff7536cfa2

Imaging TRIM OFF Seagate NVMe SSD without USB WriteBlocker using FTK Imager
wowb-sg nvme usb image 1 e01 154 417 191 fee0b2d53bf09e7fe740dc96c9805580 f9e0b8c27216d979e39b64383e7cb466265d89e9
wowb-sg nvme usb image 2 e01 154 417 184 4b5b749b9b7a0386f4cdb9a983eff1d6 2cd6ce0c9529995d5fdd65d4ad964bcbed352bdb
wowb-sg nvme usb image 3 e01 154 417 182 744899aa01d83bbcce0c57b051aef940 06f16e22d7b749e41129a620efa90432aa03d40c
wowb-sg nvme usb image 4 e01 154 417 177 4aed8747238c684e4950cbeb974e42c2 399caf5b1a10b8136f2cc1c913266c4481f003d3
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Western Digital and Silicon Power TRIM ON Analysis without WriteBlocker

The analysis of TRIM ON cases in Western Digital and Silicon Power
shows a similar trend in file recovery procedures as was seen in Seagate NVMe
SSD. The controller chip did not act on files under 696 bytes in Western Digital
and Silicon Power storage devices. As a result, they were all intact without any
file content corruption. Tables 8.15, 8.16, 8.17, and 8.18 show the statistics of
different files used and the files that were recovered.

Table 8.15. The number of files recovered from FTK in Western Digital (WD)
NVMe SSD in USB enclosure adapter without using WriteBlocker in Windows
10 TRIM ON case.

WD FTK Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
.bin 3 3* 3* 3* 3*
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
+: Recovered all but one file of out the three was corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Western
Digital (WD) NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 8.16. The number of files recovered fromAutopsy inWesternDigital (WD)
NVMe SSD in USB enclosure adapter without using WriteBlocker in Windows
10 TRIM ON case.

WDAutopsy Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
.bin 3 3* 3* 3* 3*
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
+: Recovered all but one file of out the three was corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Western
Digital (WD) NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 8.17. The number of files recovered from FTK in Silicon Power NVMe SSD
in USB enclosure adapter without using WriteBlocker in Windows 10 TRIM ON
case.

SP FTK Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
.bin 3 3* 3* 3* 3*
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
+: Recovered all but one file of out the three was corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Silicon
Power (SP) NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Table 8.18. The number of files recovered from Autopsy in Silicon Power NVMe
SSD in USB enclosure adapter without usingWriteBlocker inWindows 10 TRIM
ON case.

SP Autopsy Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976* 20976* 20976* 20976*
.docx 161 161* 161* 161* 161*
.ppt 13524 13524* 13524* 13524* 13524*
.pptx 23 23* 23* 23* 23*
.xls 14881 14881* 14881* 14881* 14881*
.xlsx 46 46* 46* 46* 46*
.pdf 59432 59432* 59432* 59432* 59432*
.xml 8372 8372** 8372** 8372** 8372**
.jpg 27577 27577* 27577* 27577* 27577*
.png 920 920* 920* 920* 920*
.mp4 92 92* 92* 92* 92*
.zip 115 115*** 115*** 115*** 115***
.bin 3 3* 3* 3* 3*
*: All files recovered but corrupted.
** : All files recovered but 8280 corrupted + 92 not corrupted.
*** : All files recovered but 69 corrupted + 46 not corrupted.
+: Recovered all but one file of out the three was corrupted.
Note:
1) Files under 696 bytes were intact after recovery in Silicon
Power (SP) NVMe SSD.
2) For corrupted files, the size of the files was the same, but the
contents were wiped out.
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Western Digital and Silicon Power TRIM OFF Analysis without WriteBlocker

File recovery successfully took place in the TRIM OFF analysis
from the four forensics Western Digital and Silicon Power NVMe SSD images,
respectively, using AccessData FTK and Autopsy tools. All the files were intact
as the functionality of SSD controller chip was limited by TRIM OFF feature of
the operating system. Therefore, the controller chip did not clear out the pages
having deleted data from the storage devices in our experiment. Tables 8.19,
8.20, 8.21, and 8.22 show the statistics of files recovery.

Table 8.19. The number of files recovered from FTK in Western Digital NVMe
SSD in USB enclosure adapter without usingWriteBlocker inWindows 10 TRIM
OFF case.

WD FTK Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115*** 115*** 115*** 115***
.bin 3 1+ 1+ 1+ 1+
1. Some extra NTFS metadata files were there too.
2. 66 pdf folders are created for some pdf files.
3. ***4 zip files extracted inside folders +original files.
4. + = Only one bin file was recovered + no traces of the two files.
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Table 8.20. The number of files recovered from Autopsy in Western Digital
NVMe SSD in USB enclosure adapter without using WriteBlocker in Windows
10 TRIM OFF case.

WDAutopsy Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115*** 115*** 115*** 115***
.bin 3 1+ 1+ 1+ 1+
1. Some extra NTFS metadata files were there too.
2. 66 pdf folders are created for some pdf files.
3. ***4 zip files extracted inside folders +original files.
4. + = Only one bin file was recovered + no traces of the two files.
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Table 8.21. The number of files recovered from FTK in Silicon Power NVMe SSD
in USB enclosure adapter without usingWriteBlocker inWindows 10 TRIMOFF
case.

SP FTK Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115*** 115*** 115*** 115***
.bin 3 3 3 3 3
1. Some extra NTFS metadata files were there too.
2. 66 pdf folders are created for some pdf files.
3. ***4 zip files extracted inside folders +original files.
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Table 8.22. The number of files recovered from Autopsy in Silicon Power NVMe
SSD in USB enclosure adapter without usingWriteBlocker inWindows 10 TRIM
OFF case.

SP Autopsy Case Statistics in Windows 10 without WriteBlocker
File Type Original Image Image-1 Image-2 Image-3 Image-4
.doc 20976 20976 20976 20976 20976
.docx 161 161 161 161 161
.ppt 13524 13524 13524 13524 13524
.pptx 23 23 23 23 23
.xls 14881 14881 14881 14881 14881
.xlsx 46 46 46 46 46
.pdf 59432 59432 59432 59432 59432
.xml 8372 8372 8372 8372 8372
.jpg 27577 27577 27577 27577 27577
.png 920 920 920 920 920
.mp4 92 92 92 92 92
.zip 115 115*** 115*** 115*** 115***
.bin 3 3 3 3 3
1. Some extra NTFS metadata files were there too.
2. 66 pdf folders are created for some pdf files.
3. ***4 zip files extracted inside folders +original files.
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Fig. 8.16. File, Set-1-xml(296).xml, over 696 bytes in Western Digital NVMe SSD
TRIM OFF case, without using a USB WriteBlocker.

Figure 8.16 shows a snippet of an XML file with regards to theWestern
Digital NVMe SSD TRIM OFF case without using a USB WriteBlocker. The file
over 696 bytes was opened in WinHex. As seen from the experimental results,
the file was recovered and the contents of the file were not wiped, as shown by
the hexadecimal characters.
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Fig. 8.17. File, Set-1-xml(296).xml, under 696 bytes in Western Digital NVMe
SSD TRIM OFF case, without using a USB WriteBlocker.

Figure 8.17 shows a snippet of an XML file with regards to theWestern
Digital NVMe SSD TRIM OFF case without using a USB WriteBlocker. The file
under 696 bytes was opened in WinHex. As seen from the experimental results,
the file was recovered and the contents of the file were not wiped, as shown by
the hexadecimal characters.
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Fig. 8.18. File, Set-1-xml(296).xml, over 696 bytes in Silicon Power NVMe SSD
TRIM OFF case, without using a USB WriteBlocker.

Figure 8.18 shows a snippet of an XML file with regards to the Silicon
Power NVMe SSD TRIM OFF case without using a USB WriteBlocker. The file
over 696 bytes was opened in WinHex. As seen from the experimental results,
the file was recovered and the contents of the file were not wiped out.
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Fig. 8.19. File, Set-1-xml(296).xml, under 696 bytes in Silicon Power NVMe SSD
TRIM OFF case, without using a USB WriteBlocker.

Figure 8.19 shows a snippet of an XML file with regards to the Silicon
Power NVMe SSD TRIM OFF case without using a USB WriteBlocker. The file
under 696 bytes was opened in WinHex. As seen from the experimental results,
the file was recovered and the contents of the file were not wiped, as shown by
the hexadecimal characters.
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Hash Analysis for Western Digital and Silicon Power NVMe SSDs without

WriteBlocker

In this section, we exhibited the MD5 hash values for the TRIM ON
and OFF cases using QuickHash. The hash values of the original file, followed
by TRIM ON and TRIM OFF MD5 hashes, and file size for Western Digital and
Silicon Power NVMe SSDs are shown in figures 8.20, 8.21. The figures aim to
validate and verify the claims made due to experimental observation when a
USB WriteBlocker was not used.

Fig. 8.20. Hash values of Set-1-xml(15).xml and Set-1-xml(296).xml files in
original dataset, and after recovery from TRIM ON and OFF cases in Western
Digital NVMe SSD, without using a USB WriteBlocker.

Fig. 8.21. Hash values of Set-1-xml(15).xml and Set-1-xml(296).xml files in
original dataset, and after recovery from TRIM ON and OFF cases in Silicon
Power NVMe SSD, without using a USB WriteBlocker.
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Table 8.23. Digital forensics information about forensically acquired image files of Western Digital and Silicon Power NVMe
SSDs without USB WriteBlocker.

File Names
Image
Type

Image
Size (KB)

MD5 Hash SHA1 Hash

Imaging TRIM ON Western Digital NVMe SSD without USB WriteBlocker using FTK Imager
wowb-wd nvme usb image 1 e01 475 306 0582ad4002ad5ce34aae34b78fed3722 ad6f3e913439d85779e3bf1070f285c564126f45
wowb-wd nvme usb image 2 e01 475 299 4a18adfc9a920bf6a6c2fc054ef485f8 dc7a663f4e2e5ac2bb7209caffad955170af0132
wowb-wd nvme usb image 3 e01 464 928 ba4322c3bd2f8e0bb13ec08b64227d0a b9f292ff1769868a44bb5836c9c0590186616d4d
wowb-wd nvme usb image 4 e01 464 936 dda9ef260b077c7aac76c133a63d8180 f702d88df3f8ab1e8a249c9460e432f2dfe035fd

Imaging TRIM ON Silicon Power NVMe SSD without USB WriteBlocker using FTK Imager
wowb-sp nvme usb image 1 e01 486 033 4f718d16b26eb07e3b5de64fdce73425 eca0d91389c9f6941d890b7f130618acadead308
wowb-sp nvme usb image 2 e01 486 027 de52b7b0f4389a94f3282a7bd21b6c1d 8b9aa4266a8f6dd6842b277466c3bef32fefbd0c
wowb-sp nvme usb image 3 e01 486 016 06923b858229c610091da1d0afa7b0fc 1373dc05e1874bec5f38e61ec36028920fd7a205
wowb-sp nvme usb image 4 e01 485 948 ec2615f04b4f91b5609fb5455b99d2da f72b8a959254fbdfa0818d0c4c3f7df634da2909

Imaging TRIM OFF Western Digital NVMe SSD without USB WriteBlocker using FTK Imager
wowb-wd nvme usb image 1 e01 154 416 713 c2627eccde4010871bedb368fe7515fb 0e4e2d30159285bf4978e7f3ccb50a36bdce2347
wowb-wd nvme usb image 2 e01 154 416 708 f9bbff78205f7e5363876daf84af4545 380a67e713dbae2af795e64a6deae41cd5e8b7b5
wowb-wd nvme usb image 3 e01 154 416 704 973af13c1e82ef0021ea4eed06da438d 51a452b587b272daef602e9739a2125aa1b45d9a
wowb-wd nvme usb image 4 e01 154 416 698 c84f017d98a2c339340dc1ceb6bf089e ab4d01f3ea593c0d40a02d3767b8116a29f91926

Imaging TRIM OFF Silicon Power NVMe SSD without USB WriteBlocker using FTK Imager
wowb-sp nvme usb image 1 e01 160 278 230 595cc00fa3aa9a1c6d31b1b0ca6fd9f3 9bb411ea6bab251eed064d20dcd0e8cdd68009f8
wowb-sp nvme usb image 2 e01 160 276 206 bebab4cfefb700f24b18dad67da369f2 e49254783e27a902027fa4ceddcee7f3081e7196
wowb-sp nvme usb image 3 e01 160 276 206 36c58edb5af5f984896ce1889984729d 1bc35bd1991f11dc03ec750a738e97543b71cbf7
wowb-sp nvme usb image 4 e01 160 276 204 3d74d5457243b0636ebacf4eb3b84780 836589536518c853f1eeeed0543ec3d12e627a6c
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CHAPTER IX

Digital Forensics in PCIe NVMe SSDs with NVMe WriteBlocker

PCIe NVMe SSDs are becoming popular in computer systems. They
are now gradually replacing the regular SATA SSDs as a primary boot device.
A primary boot device is a storage device with an operating system installed on
it. Due to the advanced protocol of NVMe, the speed of reading and writing
operations in NVMe SSDs is far greater than in SATA SSDs. In this chapter,
we have worked on NVMe SSDs as a primary boot device. We have installed
Windows 10 v21H2 operating system on the SSD devices. The work in this
chapter is similar to chapters VII and VIII. However, the results produced by
NVMe SSDs are distinct when it comes to hashing and file recovery when a
dedicated NVMe WriteBlocker is used when acquiring forensics images.

We used Autopsy, AccessData FTK [77], and WinHex [78] tools to
recover and conduct a digital forensics examination. Lastly, we explained the
forensics observations based on the findings with various controller chips of the
four NVMe SSD devices.

Experimental Setup with NVMe WriteBlocker

Table 9.1 below enumerates the technical specifications of the
equipment we have used for the experiment in this chapter. The equipment
used for this experiment is the same as the one used in chapter VII but we used
Wiebetech NVMe WriteBlocker instead of the USB WriteBlocker. Lastly, figures
9.1, 9.2, 9.3, and 9.4 show the NVMe SSDs attached to the NVMe WriteBlocker.
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Table 9.1. Equipment used in the experiment with NVMe WriteBlocker.

Tools Name
NVMe SSD 1 Samsung V-NAND SSD 970 Evo Plus
NVMe SSD 2 Seagate Barracuda 510 250GB NVMe SSD
NVMe SSD 3 Western Digital SN550 250GB NVMe SSD
NVMe SSD 4 Silicon Power 3D-NAND NVMe SSD
Operating System Windows 10 Pro v21H2
Forensic Analysis Tool AccessData FTK 7.5 and WinHex
Forensics Acquisition Tool AccessData FTK Imager 4.7
WriteBlocker Wiebetech NVMe WriteBlocker
Workstation CPU: Intel Xeon W-2123 — RAM : 80GB

Fig. 9.1. Samsung NVMe SSD attached with NVMe WriteBlocker.

Fig. 9.2. Seagate NVMe SSD attached with NVMe WriteBlocker.
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Fig. 9.3. Western Digital NVMe SSD attached with NVMe WriteBlocker.

Fig. 9.4. Silicon Power NVMe SSD attached with NVMe WriteBlocker.

Specifications of SSDs

The test in this chapter included the same four NVMe SSD brands:
Samsung, Seagate, Western Digital (WD), and Silicon Power (SP). We chose
these drives due to their dense popularity, market share, and dependability. We
chose them because the parameters of the SSDs used in the experiment closely
mimic those of a standard SSD that a regular user may own, so they will reflect a
real-world scenario. Furthermore, the experiment is more relevant to the digital
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forensic community because these are the most frequent properties of SSDs
found in laptops and desktop computers. The tables 9.2 and 9.3 detail the name,
model, product number (P/N), storage capacity, number of flash chips, kind of
NVMe flash chip, and controller information for NVMe SSDs.

Table 9.2. Information of Samsung and Seagate NVMe SSDs used in the
experiment.

SSD Information Samsung NVMe Specification 1.3
Name Samsung NVMe V-NAND SSD 970 Evo Plus

NVMe M.2
Model MZ-V7S250
P/N MZVLB250HBHQ
Storage Capacity 250 GB
Number of flash chips inside 2
Type of NVMe NAND Flash 3D TLC NAND
Controller information Samsung S4LR020 — 2117 ARM— Pheonix

SSD Information Seagate NVMe Specification 1.3
Name Seagate Barracuda 510 250GB NVMe SSD
Model ZP250CM30001
P/N 2NS312-300
Storage Capacity 250 GB
Number of flash chips inside 4
Type of NVMe NAND Flash 3D TLC NAND
Controller information SKHynix - H5AN4G6NBJR
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Table 9.3. Information of Western Digital and Silicon Power NVMe SSDs used
in the experiment.

SSD Information WD NVMe Specification 1.4
Name Western Digital SN550 250GB NVMe SSD
Model WDS250G2B0C-00PXH0/21146P801302
P/N 87161901478830731375399388282263
Storage Capacity 250 GB
Number of flash chips inside 4
Type of NVMe NAND Flash 3D TLC NAND
Controller information Sandisk 20-82-10023-A1 — 1015ZKLY0KN

SSD Information Silicon Power NVMe Specification 1.3
Name Silicon Power 3D-NAND NVMe SSD
Model A-60
P/N SP256GBP34A60M28
Storage Capacity 256 GB
Number of flash chips inside 2
Type of NVMe NAND Flash 3D TLC NAND
Controller information Phison PS5013-E13-31—C02102E— TB5V79/

001BB

Methodology and Experiment Initiation

The methodology followed and configuration assigned during the
experiment are listed and explained in this section.

1. The partition scheme used for the NVMe SSDs: GPT (GUID Partition

Table)

2. The number of partitions in each NVMe SSD: 1
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3. The file system of the one partition: NTFS

4. Before copying the files to the primary boot devices from Digital Corpora
[80], we checked the TRIM status in Windows 10 by issuing the following
command through the Windows command prompt (CMD).

fsutil behavior query DisableDeleteNotify

*If the output is 1, then TRIM is disabled. If the output is 0, then TRIM is

enabled.

To enable TRIM: fsutil behavior set DisableDeleteNotify 0
To disable TRIM: fsutil behavior set DisableDeleteNotify 1

Fig. 9.5. The status of TRIM in Windows 10 using fsutil command issued from
CMD.

Case scenario: TRIM ON from Windows 10 operating system with NVMe

WriteBlocker

1. We copied the commonly used file types having 160GB of total size, from
the Digital Corpora dataset [80] to the four NVMe SSDs.

2. We then kept the system powered on for one day with no user activity.
3. Next, we deleted (shift+delete) the files from the devices and waited for

one day before acquiring four forensic images of the four NVMe SSDs
respectively.
(a) We took four forensic images: three consecutive images with one day

gap and last image after a span of four days from the third acquisition.
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4. We analyzed the images in AccessData FTK and Autopsy for the NVMe
storage devices.

5. We performed file recovery of the deleted files from the forensics images
in the TRIM ON case.

6. Based on our results from the file recovery and WinHex analysis we
documented the effects of wear-leveling.

Case scenario: TRIM OFF from Windows 10 operating system with NVMe

WriteBlocker

1. First and foremost, we disabled TRIM using Windows 10 command
prompt (CMD) before copying the files.

2. We copied the commonly used file types having 160GB of total size, from
the Digital Corpora dataset [80] to the four NVMe SSDs.

3. We then kept the system powered on for one day with no user activity.
4. Next, we deleted (shift+delete) the files from the devices and waited for

one day before acquiring four forensic images of the four NVMe SSDs
respectively.

(a) We took four forensic images: three consecutive images with one day
gap and last image after a span of four days from the third acquisition.

5. We analyzed the images in AccessData FTK and Autopsy for the NVMe
storage devices.

6. We performed file recovery of the deleted files from the forensics images
in the TRIM OFF case.

7. Like the TRIM ON case, based on our results from the file recovery and
WinHex analysis, we documented the effects of wear-leveling.



177

Experiment Results, Analysis, and Discussion

The results of the file recovery utilizing the AccessData FTK and
Autopsy tools are presented in this section. We began by populating the NVMe
SSDs with the most frequently used files from the Digital Corpora dataset [80].
We then used the forensically acquired images of the four NVMe SSDs using
the NVMeWriteBlocker to undertake the file recovery operation. Tables 9.4 and
9.5 present the timeline information of forensic image acquisition in both TRIM
ON and TRIM OFF scenarios of Samsung, Seagate, Western Digital (WD), and
Silicon Power (SP) NVMe SSDs.

Table 9.4. Timeline information of forensic file acquisition with NVMe
WriteBlocker.

TRIM ON information with NVMeWriteBlocker
Samsung NVMe Time Seagate NVMe Time
Copy file date 11:49 pm 2/11/22 Copy file date 5:30 pm 2/20/22
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 11:49 pm 2/12/22 Delete files 5:30 pm 2/21/22
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 11:49 pm 2/13/22 1st image 5:30 pm 2/22/22
2nd image 11:49 pm 2/14/22 2nd image 5:30 pm 2/23/22
3rd image 11:49 pm 2/15/22 3rd image 5:30 pm 2/24/22
4th image 11:49 pm 2/19/22 4th image 5:30 pm 2/28/22
TRIM OFF information with NVMeWriteBlocker
Samsung NVMe Time Seagate NVMe Time
Copy file date 11:09 pm 2/28/22 Copy file date 10:23 pm 3/1/22
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 11:09 pm 3/1/22 Delete files 10:23 pm 3/2/22
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 11:09 pm 3/2/22 1st image 10:23 pm 3/3/22
2nd image 11:09 pm 3/3/22 2nd image 10:23 pm 3/4/22
3rd image 11:09 pm 3/4/22 3rd image 10:23 pm 3/5/22
4th image 11:09 pm 3/8/22 4th image 10:23 pm 3/9/22
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Table 9.5. Timeline information of forensic file acquisition with NVMe
WriteBlocker.

TRIM ON information with NVMeWriteBlocker
WD NVMe Time SP NVMe Time
Copy file date 9:27 pm 2/22/22 Copy file date 1:18 pm 2/25/22
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 9:27 pm 2/23/22 Delete files 1:18 pm 2/26/22
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 9:27 pm 2/24/22 1st image 1:18 pm 2/27/22
2nd image 9:27 pm 2/25/22 2nd image 1:18 pm 2/28/22
3rd image 9:27 pm 2/26/22 3rd image 1:18 pm 3/1/22
4th image 9:27 pm 3/2/22 4th image 1:18 pm 3/5/22
TRIM OFF information with NVMeWriteBlocker
WD NVMe Time SP NVMe Time
Copy file date 8:43 pm 3/2/22 Copy file date 9:59 pm 3/4/22
Wait for 24 hrs Waited Wait for 24 hrs Waited
Delete files 8:43 pm 3/3/22 Delete files 9:59 pm 3/5/22
Wait for 24 hrs Waited Wait for 24 hrs Waited
1st image 8:43 pm 3/4/22 1st image 9:59 pm 3/6/22
2nd image 8:43 pm 3/5/22 2nd image 9:59 pm 3/7/22
3rd image 8:43 pm 3/6/22 3rd image 9:59 pm 3/8/22
4th image 8:43 pm 3/10/22 4th image 9:59 pm 3/12/22

Samsung and Seagate TRIM ON Analysis with NVMe WriteBlocker

The TRIM ON analysis of Samsung NVMe SSD with NVMe
WriteBlocker (WB) shows that most files become unrecoverable even after one
day of deletion. As we have seen in chapters VII and VIII, in the case of Samsung
NVMe SSD used under a USB enclosure, files with file size under 693 bytes stay
intact even though they were deleted in the TRIM ON case scenario. However,
this is not the case for Samsung NVMe SSDs used as primary boot devices.
Recovery with AccessData FTK and Autopsy show similar results. Tables 9.6
and 9.7 give the recovery statistics from AccessData FTK and Autopsy of the
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different files from Samsung NVMe SSD in the TRIM ON case. Surprisingly,
all the files were irrecoverable in the TRIM ON case of Seagate NVMe SSD. The
Seagate controller chip acted instantly on the deleted file as soon as the files
were deleted from the device. The recovery operation from AccessData FTK
and Autopsy showed the same results, i.e., there was no recovery possible in the
case of Seagate. Tables 9.8 and 9.9 give the recovery statistics from AccessData
FTK and Autopsy of the different files from Seagate NVMe SSD in the TRIMON
case.
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Table 9.6. The number of files recovered using AccessData FTK in Samsung
NVMe SSD as a primary boot device in Windows 10 TRIM ON case.

TRIM ON: Samsung FTK Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 0 0 0 0
.dbase 480 0 0 0 0
.dmg 32 0 0 0 0
.doc 14592 0 0 0 0
.docx 112 0 0 0 0
.dwf 16 0 0 0 0
.e01 352 0 0 0 0
.eps 640 0 0 0 0
.f 160 0 0 0 0
.file 32 0 0 0 0
.fits 16 0 0 0 0
.flv 48 0 0 0 0
.fm 16 0 0 0 0
.gif 5952 0 0 0 0
.gls 32 0 0 0 0
.gz 2176 0 0 0 0
.hlp 112 0 0 0 0
.java 80 0 0 0 0
.jpg 19184 16792* 16792* 16792* 16792*
.key 16 16* 16* 16* 16*
.kml 192 189* 189* 189* 189*
.kmz 320 317* 317* 317* 317*
.log 1680 974* 974* 974* 974*
.mp4 64 30* 30* 30* 30*
.numbers 16 10* 10* 10* 10*
.odt 16 16* 16* 16* 16*
.pages 16 16* 16* 16* 16*
.pcap 32 1* 1* 1* 1*
.pdf 41344 40630* 40630* 40630* 40630*
.png 640 640* 640* 640* 640*
.pps 176 176* 176* 176* 176*
.ppt 9408 9406* 9406* 9406* 9406*
.pptx 16 16* 16* 16* 16*
.xls 10352 10004* 10004* 10004* 10004*
.xlsx 32 32* 32* 32* 32*
*: All files recovered but corrupted.
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Table 9.7. The number of files recovered using Autopsy in Samsung NVMe SSD
as a primary boot device in Windows 10 TRIM ON case.

TRIM ON: Samsung Autopsy Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 0 0 0 0
.dbase 480 0 0 0 0
.dmg 32 0 0 0 0
.doc 14592 0 0 0 0
.docx 112 0 0 0 0
.dwf 16 0 0 0 0
.e01 352 0 0 0 0
.eps 640 0 0 0 0
.f 160 0 0 0 0
.file 32 0 0 0 0
.fits 16 0 0 0 0
.flv 48 0 0 0 0
.fm 16 0 0 0 0
.gif 5952 0 0 0 0
.gls 32 0 0 0 0
.gz 2176 0 0 0 0
.hlp 112 0 0 0 0
.java 80 0 0 0 0
.jpg 19184 0 0 0 0
.key 16 16* 16* 16* 16*
.kml 192 64 64 64 64
.kmz 320 317* 317* 317* 317*
.log 1680 19 19 19 19
.mp4 64 0 0 0 0
.numbers 16 0 0 0 0
.odt 16 0 0 0 0
.pages 16 0 0 0 0
.pcap 32 0 0 0 0
.pdf 41344 0 0 0 0
.png 640 0 0 0 0
.pps 176 0 0 0 0
.ppt 9408 0 0 0 0
.pptx 16 0 0 0 0
.xls 10352 0 0 0 0
.xlsx 32 0 0 0 0
*: All files recovered but corrupted.
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Table 9.8. The number of files recovered usingAccessData FTK in SeagateNVMe
SSD as a primary boot device in Windows 10 TRIM ON case.

TRIM ON: Seagate FTK Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 0 0 0 0
.dbase 480 0 0 0 0
.dmg 32 0 0 0 0
.doc 14592 0 0 0 0
.docx 112 0 0 0 0
.dwf 16 0 0 0 0
.e01 352 0 0 0 0
.eps 640 0 0 0 0
.f 160 0 0 0 0
.file 32 0 0 0 0
.fits 16 0 0 0 0
.flv 48 0 0 0 0
.fm 16 0 0 0 0
.gif 5952 0 0 0 0
.gls 32 0 0 0 0
.gz 2176 0 0 0 0
.hlp 112 0 0 0 0
.java 80 0 0 0 0
.jpg 19184 0 0 0 0
.key 16 0 0 0 0
.kml 192 0 0 0 0
.kmz 320 0 0 0 0
.log 1680 0 0 0 0
.mp4 64 0 0 0 0
.numbers 16 0 0 0 0
.odt 16 0 0 0 0
.pages 16 0 0 0 0
.pcap 32 0 0 0 0
.pdf 41344 0 0 0 0
.png 640 0 0 0 0
.pps 176 0 0 0 0
.ppt 9408 0 0 0 0
.pptx 16 0 0 0 0
.xls 10352 0 0 0 0
.xlsx 32 0 0 0 0
None of the files were recovered from AccessData FTK.
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Table 9.9. The number of files recovered using Autopsy in Seagate NVMe SSD
as a primary boot device in Windows 10 TRIM ON case.

TRIM ON: Seagate Autopsy Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 0 0 0 0
.dbase 480 0 0 0 0
.dmg 32 0 0 0 0
.doc 14592 0 0 0 0
.docx 112 0 0 0 0
.dwf 16 0 0 0 0
.e01 352 0 0 0 0
.eps 640 0 0 0 0
.f 160 0 0 0 0
.file 32 0 0 0 0
.fits 16 0 0 0 0
.flv 48 0 0 0 0
.fm 16 0 0 0 0
.gif 5952 0 0 0 0
.gls 32 0 0 0 0
.gz 2176 0 0 0 0
.hlp 112 0 0 0 0
.java 80 0 0 0 0
.jpg 19184 0 0 0 0
.key 16 0 0 0 0
.kml 192 0 0 0 0
.kmz 320 0 0 0 0
.log 1680 0 0 0 0
.mp4 64 0 0 0 0
.numbers 16 0 0 0 0
.odt 16 0 0 0 0
.pages 16 0 0 0 0
.pcap 32 0 0 0 0
.pdf 41344 0 0 0 0
.png 640 0 0 0 0
.pps 176 0 0 0 0
.ppt 9408 0 0 0 0
.pptx 16 0 0 0 0
.xls 10352 0 0 0 0
.xlsx 32 0 0 0 0
None of the files were recovered from Autopsy.
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Samsung and Seagate TRIM OFF Analysis with NVMe WriteBlocker

There was a promising sign of file recovery from AccessData FTK in
the TRIM OFF case of Samsung NVMe SSD as a primary boot device. All the
files were recovered successfully except for .bin, .vhd, .ps2, .aff, and .csv files.
However, in the case of .doc, .flv, .numbers, .odt, .pcap, .pdf, .png, .ppt remainder
of the files from the original count were corrupted or zeroed out. Unfortunately,
Autopsy could not recover any files even from the TRIM OFF case. Tables 9.10
and 9.11 show the statistics.

Tables 9.12 and 9.13 show the statistics of file recovery fromAccessData
FTK and Autopsy from Seagate NVMe SSD with NVMe WriteBlocker. The
following special trend was seen from the AccessData FTK recovery process for
the files below (refer to table 9.12 for statistics):

• .csv: Recovered all 3184 files but file size greater than 391 bytes had content
zeroed out.

• .dbase3: Recovered all 480 files but file size greater than 418 bytes had
content zeroed out.

• .gif: Recovered all 5952 files but 92 files were zeroed out.
• .jpg: Recovered all 19184 files but 114 files were zeroed out.
• .png: Recovered all 626 files but 14 files were zeroed out.

Controller chips of both Samsung and SeagateNVMeSSD restrict their
operation, respectively, in the case of TRIM OFF. The similar behavior gave us a
surety of finding data with success. However, this trend is not valid for all types
of files, as the tables 9.10, 9.11, 9.12, and 9.13 below demonstrate.
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Table 9.10. The number of files recovered using AccessData FTK in Samsung
NVMe SSD as a primary boot device in Windows 10 TRIM OFF case.

TRIM OFF: Samsung FTK Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 0 0 0 0
.dbase 480 480 480 480 480
.dmg 32 32 32 32 32
.doc 14592 14590* 14590* 14590* 14590*
.docx 112 112 112 112 112
.dwf 16 16 16 16 16
.e01 352 352 352 352 352
.eps 640 640 640 640 640
.f 160 160 160 160 160
.file 32 32 32 32 32
.fits 16 16 16 16 16
.flv 48 47* 47* 47* 47*
.fm 16 16 16 16 16
.gif 5952 5952 5952 5952 5952
.gls 32 32 32 32 32
.gz 2176 2176 2176 2176 2176
.hlp 112 112 112 112 112
.java 80 80 80 80 80
.jpg 19184 19184 19184 19184 19184
.key 16 16 16 16 16
.kml 192 192 192 192 192
.kmz 320 320 320 320 320
.log 1680 1680 1680 1680 1680
.mp4 64 64 64 64 64
.numbers 16 8* 8* 8* 8*
.odt 16 13* 13* 13* 13*
.pages 16 16 16 16 16
.pcap 32 26* 26* 26* 26*
.pdf 41344 41338* 41338* 41338* 41338*
.png 640 626* 626* 626* 626*
.pps 176 176 176 176 176
.ppt 9408 9335* 9335* 9335* 9335*
.pptx 16 16 16 16 16
.xls 10352 10327 10327 10327 10327
.xlsx 32 32 32 32 32
*: Remainder of the files got recovered but were corrupted/zeroed out.



186

Table 9.11. The number of files recovered usingAutopsy in SamsungNVMe SSD
as a primary boot device in Windows 10 TRIM OFF case.

TRIM OFF: Samsung Autopsy Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 0 0 0 0
.dbase 480 0 0 0 0
.dmg 32 0 0 0 0
.doc 14592 0 0 0 0
.docx 112 0 0 0 0
.dwf 16 0 0 0 0
.e01 352 0 0 0 0
.eps 640 0 0 0 0
.f 160 0 0 0 0
.file 32 0 0 0 0
.fits 16 0 0 0 0
.flv 48 0 0 0 0
.fm 16 0 0 0 0
.gif 5952 0 0 0 0
.gls 32 0 0 0 0
.gz 2176 0 0 0 0
.hlp 112 0 0 0 0
.java 80 0 0 0 0
.jpg 19184 0 0 0 0
.key 16 0 0 0 0
.kml 192 0 0 0 0
.kmz 320 0 0 0 0
.log 1680 0 0 0 0
.mp4 64 0 0 0 0
.numbers 16 0 0 0 0
.odt 16 0 0 0 0
.pages 16 0 0 0 0
.pcap 32 0 0 0 0
.pdf 41344 0 0 0 0
.png 640 0 0 0 0
.pps 176 0 0 0 0
.ppt 9408 0 0 0 0
.pptx 16 0 0 0 0
.xls 10352 0 0 0 0
.xlsx 32 0 0 0 0
None of the files were recovered from Autopsy.
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Table 9.12. The number of files recovered using AccessData FTK in Seagate
NVMe SSD as a primary boot device in Windows 10 TRIM OFF case.

TRIM OFF: Seagate FTK Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 1* 1* 1* 1*
.vhd 1 1 1 1 1
.ps2 2 2 2 2 2
.aff 16 16 16 16 16
.csv 3184 3184 3184 3184 3184
.dbase 480 480 480 480 480
.dmg 32 32 32 32 32
.doc 14592 14592 14592 14592 14592
.docx 112 112 112 112 112
.dwf 16 16 16 16 16
.e01 352 352 352 352 352
.eps 640 640* 640* 640* 640*
.f 160 160 160 160 160
.file 32 32 32 32 32
.fits 16 16 16 16 16
.flv 48 48 48 48 48
.fm 16 16 16 16 16
.gif 5952 5860 5860 5860 5860
.gls 32 32 32 32 32
.gz 2176 2176 2176 2176 2176
.hlp 112 112 112 112 112
.java 80 80 80 80 80
.jpg 19184 19070 19070 19070 19070
.key 16 16 16 16 16
.kml 192 192 192 192 192
.kmz 320 320 320 320 320
.log 1680 1680 1680 1680 1680
.mp4 64 64 64 64 64
.numbers 16 16 16 16 16
.odt 16 16 16 16 16
.pages 16 16 16 16 16
.pcap 32 32 32 32 32
.pdf 41344 41344 41344 41344 41344
.png 640 626 626 626 626
.pps 176 176 176 176 176
.ppt 9408 9408* 9408* 9408* 9408*
.pptx 16 16 16 16 16
.xls 10352 10352* 10352* 10352* 10352*
.xlsx 32 32* 32* 32* 32*
* : Recovered all but hash of some files were different with wiped out contents.
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Table 9.13. The number of files recovered using Autopsy in Seagate NVMe SSD
as a primary boot device in Windows 10 TRIM OFF case.

TRIM OFF: Seagate Autopsy Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 1 1 1 1
.ps2 2 1 1 1 1
.aff 16 16* 16* 16* 16*
.csv 3184 3181* 3181* 3181* 3181*
.dbase 480 480* 480* 480* 480*
.dmg 32 32* 32* 32* 32*
.doc 14592 14591* 14591* 14591* 14591*
.docx 112 112* 112* 112* 112*
.dwf 16 16 16 16 16
.e01 352 347 347 347 347
.eps 640 640* 640* 640* 640*
.f 160 160* 160* 160* 160*
.file 32 32 32 32 32
.fits 16 16 16 16 16
.flv 48 48 48 48 48
.fm 16 16 16 16 16
.gif 5952 5871 5871 5871 5871
.gls 32 32 32 32 32
.gz 2176 2176 2176 2176 2176
.hlp 112 112 112 112 112
.java 80 80 80 80 80
.jpg 19184 19183 19183 19183 19183
.key 16 16 16 16 16
.kml 192 192 192 192 192
.kmz 320 320 320 320 320
.log 1680 1680 1680 1680 1680
.mp4 64 64 64 64 64
.numbers 16 16 16 16 16
.odt 16 16 16 16 16
.pages 16 16 16 16 16
.pcap 32 32 32 32 32
.pdf 41344 41344 41344 41344 41344
.png 640 627 627 627 627
.pps 176 176 176 176 176
.ppt 9408 9408 9408 9408 9408
.pptx 16 16 16 16 16
.xls 10352 10348* 10348* 10348* 10348*
.xlsx 32 32* 32* 32* 32*
* : Recovered all but hash of some files were different with wiped out contents.
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Fig. 9.6. Hexadecimal contents of xls-files(1).xls file in the original dataset from
Samsung NVMe SSD.

Figure 9.6 shows a snippet of the original xls-files(1).xls file with
regards to the Samsung NVMe SSD TRIM ON case in the original dataset. The
hexadecimal contents are shown along with ASCII value when a file is opened
in a disk editor such as WinHex. In this case, the original contents of the file are
shown in the figure.
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Fig. 9.7. Hexadecimal contents of xls-files(1).xls file after recovery from
Samsung NVMe SSD TRIM ON case.

Figure 9.7 shows a snippet of the xls-files(1).xls file after recovery
from Samsung NVMe SSD in the TRIM ON case. In this case, the file contents
are wiped out for the file as shown by zeroes in the figure.
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Fig. 9.8. Hexadecimal contents of xls-files(1).xls file after recovery from
Samsung NVMe SSD TRIM OFF case.

Figure 9.8 shows a snippet of the xls-files(1).xls file after recovery
from Samsung NVMe SSD in the TRIM OFF case. In this case, the file contents
are wiped out for the file as shown by zeroes in the figure.
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Fig. 9.9. Hexadecimal contents of xls-files(1).xls file in the original dataset from
Seagate NVMe SSD.

Figure 9.9 shows a snippet of the original xls-files(1).xls file with
regards to the Seagate NVMe SSD TRIM ON case in the original dataset. In this
case, the original contents of the file are shown in the figure. Since there was
no recovery of xls-files(1).xls from Seagate NVMe SSD, we could not show the
hexadecimal contents of the recovered file.
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Fig. 9.10. Hexadecimal contents of xls-files(1).xls file after recovery fromSeagate
NVMe SSD TRIM OFF case.

Figure 9.10 shows a snippet of the xls-files(1).xls file after recovery
from Seagate NVMe SSD in the TRIM OFF case. The original contents of the file
are shown in the figure above.
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Hash Analysis for Samsung and Seagate NVMe SSDs with NVMe WriteBlocker

In this section, we presented our findings via MD5 hash values of the
files following the TRIM ON and OFF recovery operations from Samsung and
Seagate NVMe SSDs. We used the QuickHash hashing tool to generate the hash
values. TheMD5 hash value of the original file, followed by TRIMONand TRIM
OFF MD5 hash, and the file size, for Samsung NVMe SSD, are shown in figure
9.11. However, figure 9.12 shows the hash value of the original file, followed by
TRIM OFF MD5 hash, and file size in the Seagate NVMe SSD case. Since xls-
files(1).xls file was not recovered in the TRIM ON case, we could not show its
hash value in 9.12. The figures aim to validate and verify the claims made due
to experimental observation when using an NVMe WriteBlocker.

Fig. 9.11. Hash values of xls-files(1).xls in Samsung NVMe SSD when using
NVMe WriteBlocker.

Fig. 9.12. Hash values of xls-files(1).xls in Seagate NVMe SSD when using
NVMe WriteBlocker.
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Table 9.14. Digital forensics information about forensically acquired image files of Samsung and Seagate NVMe SSDs with
NVMe WriteBlocker.

File Names
Image
Type

Image
Size (KB)

MD5 Hash SHA1 Hash

Imaging TRIM ON Samsung NVMe SSD with PCIe WriteBlocker using FTK Imager
ton wwb-sam e01 pcie img 1 e01 12 012 969 db57eed1616f5f6aac5ae9f75b1f2f33 966ce9ae480c72e96012e964b716480474241f83
ton wwb-sam e01 pcie img 2 e01 12 012 969 db57eed1616f5f6aac5ae9f75b1f2f33 966ce9ae480c72e96012e964b716480474241f83
ton wwb-sam e01 pcie img 3 e01 12 012 969 db57eed1616f5f6aac5ae9f75b1f2f33 966ce9ae480c72e96012e964b716480474241f83
ton wwb-sam e01 pcie img 4 e01 12 012 969 db57eed1616f5f6aac5ae9f75b1f2f33 966ce9ae480c72e96012e964b716480474241f83

Imaging TRIM ON Seagate NVMe SSD with PCIe WriteBlocker using FTK Imager
ton wwb-sg e01 pcie img 1 e01 17 075 465 9e8f73e6ab6f9c135536900ee5a5a037 206bd3674088623a174a6ec46046acf0f76c1b88
ton wwb-sg e01 pcie img 2 e01 17 075 465 9e8f73e6ab6f9c135536900ee5a5a037 206bd3674088623a174a6ec46046acf0f76c1b88
ton wwb-sg e01 pcie img 3 e01 17 075 465 9e8f73e6ab6f9c135536900ee5a5a037 206bd3674088623a174a6ec46046acf0f76c1b88
ton wwb-sg e01 pcie img 4 e01 17 075 465 9e8f73e6ab6f9c135536900ee5a5a037 206bd3674088623a174a6ec46046acf0f76c1b88

Imaging TRIM OFF Samsung NVMe SSD with PCIe WriteBlocker using FTK Imager
toff wwb-sam e01 pcie img 1 e01 125 889 025 d4152d87f93ad8fdfee2c97e1d7e7aee fc848104d67c636cf2e32bbe2f45274391b1f631
toff wwb-sam e01 pcie img 2 e01 125 889 025 d4152d87f93ad8fdfee2c97e1d7e7aee fc848104d67c636cf2e32bbe2f45274391b1f631
toff wwb-sam e01 pcie img 3 e01 125 889 025 d4152d87f93ad8fdfee2c97e1d7e7aee fc848104d67c636cf2e32bbe2f45274391b1f631
toff wwb-sam e01 pcie img 4 e01 125 889 025 d4152d87f93ad8fdfee2c97e1d7e7aee fc848104d67c636cf2e32bbe2f45274391b1f631

Imaging TRIM OFF Seagate NVMe SSD with PCIe WriteBlocker using FTK Imager
toff wwb-sg e01 pcie img 1 e01 123 818 402 282e7fc9c54203ba40fd7264e0c16cc1 d47a9cdc320f7fe4c98039d2da92aaccb1ab2ab1
toff wwb-sg e01 pcie img 2 e01 123 818 402 282e7fc9c54203ba40fd7264e0c16cc1 d47a9cdc320f7fe4c98039d2da92aaccb1ab2ab1
toff wwb-sg e01 pcie img 3 e01 123 818 402 282e7fc9c54203ba40fd7264e0c16cc1 d47a9cdc320f7fe4c98039d2da92aaccb1ab2ab1
toff wwb-sg e01 pcie img 4 e01 123 818 402 282e7fc9c54203ba40fd7264e0c16cc1 d47a9cdc320f7fe4c98039d2da92aaccb1ab2ab1
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Western Digital and Silicon Power TRIM ON Analysis with NVMe WriteBlocker

The TRIM ON analysis of Western Digital (WD) NVMe SSD with
NVMe WriteBlocker (WB) shows that none of the files could be recovered even
after one day of deletion with both AccessData FTK and Autopsy tools. Tables
9.15 and 9.16 give the recovery statistics from AccessData FTK and Autopsy of
the different files from Western Digital NVMe SSD in the TRIM ON case. In
addition, the results of file recovery using AccessData FTK and Autopsy on
Silicon Power (SP) NVMe SSD were identical. Tables 9.17 and 9.18 show the
statistics from Silicon Power NVMe SSD file recovery using AccessData FTK and
Autopsy tools.

The behavior of the controller chips on WD and SP NVMe SSDs
exhibited unique results. There were no files recovered from Western Digital
NVMe SSD using both AccessData FTK and Autopsy. However, in the case of
Silicon Power, file types specifically .csv, .dbase3, .doc, .docx, .eps, .f, .file, .flv,
.gif, .gz, .hlp, .jpg, .kml, .kmz, .log, .pages, .pdf, .png, .xls, .xlsx, under 12KB
were intact as the controller chip did not clear them out. However, files greater
than 12KB were all zeroed out.
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Table 9.15. The number of files recovered using AccessData FTK in Western
Digital NVMe SSD as a primary boot device in Windows 10 TRIM ON case.

TRIM ON: WD FTK Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 0 0 0 0
.dbase 480 0 0 0 0
.dmg 32 0 0 0 0
.doc 14592 0 0 0 0
.docx 112 0 0 0 0
.dwf 16 0 0 0 0
.e01 352 0 0 0 0
.eps 640 0 0 0 0
.f 160 0 0 0 0
.file 32 0 0 0 0
.fits 16 0 0 0 0
.flv 48 0 0 0 0
.fm 16 0 0 0 0
.gif 5952 0 0 0 0
.gls 32 0 0 0 0
.gz 2176 0 0 0 0
.hlp 112 0 0 0 0
.java 80 0 0 0 0
.jpg 19184 0 0 0 0
.key 16 0 0 0 0
.kml 192 0 0 0 0
.kmz 320 0 0 0 0
.log 1680 0 0 0 0
.mp4 64 0 0 0 0
.numbers 16 0 0 0 0
.odt 16 0 0 0 0
.pages 16 0 0 0 0
.pcap 32 0 0 0 0
.pdf 41344 0 0 0 0
.png 640 0 0 0 0
.pps 176 0 0 0 0
.ppt 9408 0 0 0 0
.pptx 16 0 0 0 0
.xls 10352 0 0 0 0
.xlsx 32 0 0 0 0
None of the files were recovered from AccessData FTK.
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Table 9.16. The number of files recovered using Autopsy in Western Digital
NVMe SSD as a primary boot device in Windows 10 TRIM ON case.

TRIM ON: WD Autopsy Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 0 0 0 0
.dbase 480 0 0 0 0
.dmg 32 0 0 0 0
.doc 14592 0 0 0 0
.docx 112 0 0 0 0
.dwf 16 0 0 0 0
.e01 352 0 0 0 0
.eps 640 0 0 0 0
.f 160 0 0 0 0
.file 32 0 0 0 0
.fits 16 0 0 0 0
.flv 48 0 0 0 0
.fm 16 0 0 0 0
.gif 5952 0 0 0 0
.gls 32 0 0 0 0
.gz 2176 0 0 0 0
.hlp 112 0 0 0 0
.java 80 0 0 0 0
.jpg 19184 0 0 0 0
.key 16 0 0 0 0
.kml 192 0 0 0 0
.kmz 320 0 0 0 0
.log 1680 0 0 0 0
.mp4 64 0 0 0 0
.numbers 16 0 0 0 0
.odt 16 0 0 0 0
.pages 16 0 0 0 0
.pcap 32 0 0 0 0
.pdf 41344 0 0 0 0
.png 640 0 0 0 0
.pps 176 0 0 0 0
.ppt 9408 0 0 0 0
.pptx 16 0 0 0 0
.xls 10352 0 0 0 0
.xlsx 32 0 0 0 0
None of the files were recovered from Autopsy.
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Table 9.17. The number of files recovered using AccessData FTK in SP NVMe
SSD as a primary boot device in Windows 10 TRIM ON case.

TRIM ON: SP FTK Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 4* 4* 4* 4*
.vhd 1 1* 1* 1* 1*
.ps2 2 2* 2* 2* 2*
.aff 16 16* 16* 16* 16*
.csv 3184 3184 3184 3184 3184
.dbase3 480 480 480 480 480
.dmg 32 32* 32* 32* 32*
.doc 14592 14539 14539 14539 14539
.docx 112 112 112 112 112
.dwf 16 16* 16* 16* 16*
.e01 352 352* 352* 352* 352*
.eps 640 640 640 640 640
.f 160 160 160 160 160
.file 32 32 32 32 32
.fits 16 16* 16* 16* 16*
.flv 48 48 48 48 48
.fm 16 16* 16* 16* 16*
.gif 5952 5943 5943 5943 5943
.gls 32 0 0 0 0
.gz 2176 1940 1940 1940 1940
.hlp 112 112 112 112 112
.java 80 80* 80* 80* 80*
.jpg 19184 19184 19184 19184 19184
.key 16 16* 16* 16* 16*
.kml 192 192 192 192 192
.kmz 320 320 320 320 320
.log 1680 1676 1676 1676 1676
.mp4 64 64* 64* 64* 64*
.numbers 16 16* 16* 16* 16*
.odt 16 16* 16* 16* 16*
.pages 16 16 16 16 16
.pcap 32 32* 32* 32* 32*
.pdf 41344 41296 41296 41296 41296
.png 640 640 640 640 640
.pps 176 176* 176* 176* 176*
.ppt 9408 9408* 9408* 9408* 9408*
.pptx 16 16* 16* 16* 16*
.xls 10352 10347 10347 10347 10347
.xlsx 32 32 32 32 32
* All files were recovered from AccessData FTK but corrupted.
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Table 9.18. The number of files recovered using Autopsy in SP NVMe SSD as a
primary boot device in Windows 10 TRIM ON case.

TRIM ON: SP Autopsy Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 4* 4* 4* 4*
.vhd 1 1* 1* 1* 1*
.ps2 2 2* 2* 2* 2*
.aff 16 16* 16* 16* 16*
.csv 3184 3184 3184 3184 3184
.dbase3 480 480 480 480 480
.dmg 32 32* 32* 32* 32*
.doc 14592 14539 14539 14539 14539
.docx 112 112 112 112 112
.dwf 16 16* 16* 16* 16*
.e01 352 352* 352* 352* 352*
.eps 640 640 640 640 640
.f 160 160 160 160 160
.file 32 32 32 32 32
.fits 16 16* 16* 16* 16*
.flv 48 48 48 48 48
.fm 16 16* 16* 16* 16*
.gif 5952 5943 5943 5943 5943
.gls 32 0 0 0 0
.gz 2176 1940 1940 1940 1940
.hlp 112 112 112 112 112
.java 80 80* 80* 80* 80*
.jpg 19184 19184 19184 19184 19184
.key 16 16* 16* 16* 16*
.kml 192 192 192 192 192
.kmz 320 320 320 320 320
.log 1680 1676 1676 1676 1676
.mp4 64 64* 64* 64* 64*
.numbers 16 16* 16* 16* 16*
.odt 16 16* 16* 16* 16*
.pages 16 16 16 16 16
.pcap 32 32* 32* 32* 32*
.pdf 41344 41296 41296 41296 41296
.png 640 640 640 640 640
.pps 176 176* 176* 176* 176*
.ppt 9408 9408* 9408* 9408* 9408*
.pptx 16 16* 16* 16* 16*
.xls 10352 10347 10347 10347 10347
.xlsx 32 32 32 32 32
* All files were recovered from Autopsy but corrupted.
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Western Digital and Silicon Power TRIM OFF Analysis with NVMe WriteBlocker

In this section, we have analyzed forensics images taken using NVMe
WriteBlocker in TRIM OFF cases of Western Digital (WD) and Silicon Power
(SP) NVMe SSDs. The controller chips on WD and SP NVMe SSDs behaved in
a distinctive way for this case. Except for a few, most of the files were recovered
fromWestern Digital and Silicon Power devices. Tables 9.19, 9.20, 9.21, and 9.22
show the statistics of file recovery from AccessData FTK and Autopsy.

The controller chip on Western Digital NVMe SSD mostly targeted
.bin, .vhd, .ps2, .aff specifically and there were no traces of recovery from
AccessData FTK in all of the four forensics images. Furthermore, even though
some files were fully recovered, there were found to be corrupted or content
wiped out, which happened in the case of, .csv, .dbase3, .dmg, .dmp, .e01, .eps,
.f, .hlp, .jpg, .png, .ppt, .xls, and .xlsx. In addition, the recovery process from
Autopsy was not up to mark. The tool recovered the files, but their contents
were all jumbled up, except for .gif, .jpg. and .key files.

For the controller chip of Silicon Power, the trend of recovery looked
quite similar to Western Digital. Files such as .bin, .vhd, .ps2, .aff, .csv, .dbase3,
.dmg, .dmp, .doc, .fits, .fm, .java, .numbers, .odt, .pages, .txt could not be said to
be fully recovered as they were corrupted, after recovery from AccessData FTK.
The recovery fromAutopsy showed similar results as shown in the caseWestern
DigitalAutopsy recovery. File types such as .bin, .vhd, .ps2, .aff, .csv, .dmg, .dmp,
.doc, .eps, .f, .fits, .fm, .jpg, .numbers, .odt, .pages, .png, .ppt, and .xls got mostly
affected by the deletion process as their contents were totally jumbled even after
full recovery.
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Table 9.19. The number of files recovered using AccessData FTK in Western
Digital NVMe SSD as a primary boot device in Windows 10 TRIM OFF case.

TRIM OFF: WD FTK Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 2991* 2991* 2991* 2991*
.dbase 480 480* 480* 480* 480*
.dmg 32 32* 32* 32* 32*
.doc 14592 14592 14592 14592 14592
.docx 112 112 112 112 112
.dwf 16 16 16 16 16
.e01 352 352* 352* 352* 352*
.eps 640 640* 640* 640* 640*
.f 160 160* 160* 160* 160*
.file 32 17 17 17 17
.fits 16 16 16 16 16
.flv 48 48 48 48 48
.fm 16 16 16 16 16
.gif 5952 5952 5952 5952 5952
.gls 32 32 32 32 32
.gz 2176 2176 2176 2176 2176
.hlp 112 112* 112* 112* 112*
.java 80 80 80 80 80
.jpg 19184 19184* 19184* 19184* 19184*
.key 16 16 16 16 16
.kml 192 192 192 192 192
.kmz 320 320 320 320 320
.log 1680 1680 1680 1680 1680
.mp4 64 64 64 64 64
.numbers 16 16 16 16 16
.odt 16 16 16 16 16
.pages 16 16 16 16 16
.pcap 32 32 32 32 32
.pdf 41344 41344 41344 41344 41344
.png 640 640* 640* 640* 640*
.pps 176 176 176 176 176
.ppt 9408 9408* 9408* 9408* 9408*
.pptx 16 16 16 16 16
.xls 10352 10279* 10279* 10279* 10279*
.xlsx 32 32* 32* 32* 32*
*: Recovered all but some files were corrupted or contents wiped out
with different hash values.
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Table 9.20. The number of files recovered using Autopsy in Western Digital
NVMe SSD as a primary boot device in Windows 10 TRIM OFF case.

TRIM OFF: WD Autopsy Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 0 0 0 0
.vhd 1 0 0 0 0
.ps2 2 0 0 0 0
.aff 16 0 0 0 0
.csv 3184 2991* 2991* 2991* 2991*
.dbase 480 480* 480* 480* 480*
.dmg 32 32* 32* 32* 32*
.doc 14592 14592* 14592* 14592* 14592*
.docx 112 112* 112* 112* 112*
.dwf 16 16* 16* 16* 16*
.e01 352 352* 352* 352* 352*
.eps 640 640* 640* 640* 640*
.f 160 160* 160* 160* 160*
.file 32 32* 32* 32* 32*
.fits 16 16* 16* 16* 16*
.flv 48 48* 48* 48* 48*
.fm 16 16* 16* 16* 16*
.gif 5952 5949 5949 5949 5949
.gls 32 32* 32* 32* 32*
.gz 2176 2176* 2176* 2176* 2176*
.hlp 112 112* 112* 112* 112*
.java 80 80* 80* 80* 80*
.jpg 19184 19184* 19184* 19184* 19184*
.key 16 16* 16* 16* 16*
.kml 192 192* 192* 192* 192*
.kmz 320 320* 320* 320* 320*
.log 1680 1680* 1680* 1680* 1680*
.mp4 64 64* 64* 64* 64*
.numbers 16 16* 16* 16* 16*
.odt 16 16* 16* 16* 16*
.pages 16 16* 16* 16* 16*
.pcap 32 32* 32* 32* 32*
.pdf 41344 41344* 41344* 41344* 41344*
.png 640 640* 640* 640* 640*
.pps 176 176* 176* 176* 176*
.ppt 9408 9408* 9408* 9408* 9408*
.pptx 16 16* 16* 16* 16*
.xls 10352 10352* 10352* 10352* 10352*
.xlsx 32 32* 32* 32* 32*
*: Files recovered but their contents were jumbled.
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Table 9.21. The number of files recovered usingAccessData FTK in Silicon Power
NVMe SSD as a primary boot device in Windows 10 TRIM OFF case.

TRIM OFF: SP FTK Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 3* 3* 3* 3*
.vhd 1 1* 1* 1* 1*
.ps2 2 2* 2* 2* 2*
.aff 16 16* 16* 16* 16*
.csv 3184 3184* 3184* 3184* 3184*
.dbase 480 480* 480* 480* 480*
.dmg 32 32* 32* 32* 32*
.doc 14592 14590* 14590* 14590* 14590*
.docx 112 112 112 112 112
.dwf 16 16 16 16 16
.e01 352 352 352 352 352
.eps 640 640 640 640 640
.f 160 160 160 160 160
.file 32 32 32 32 32
.fits 16 16* 16* 16* 16*
.flv 48 48 48 48 48
.fm 16 16 16 16 16
.gif 5952 5952 5952 5952 5952
.gls 32 32 32 32 32
.gz 2176 2176 2176 2176 2176
.hlp 112 112 112 112 112
.java 80 80 80 80 80
.jpg 19184 19184 19184 19184 19184
.key 16 16 16 16 16
.kml 192 192 192 192 192
.kmz 320 320 320 320 320
.log 1680 1680 1680 1680 1680
.mp4 64 64 64 64 64
.numbers 16 16* 16* 16* 16*
.odt 16 16* 16* 16* 16*
.pages 16 16* 16* 16* 16*
.pcap 32 32 32 32 32
.pdf 41344 41344 41344 41344 41344
.png 640 626 626 626 626
.pps 176 176* 176* 176* 176*
.ppt 9408 9403 9403 9403 9403
.pptx 16 16* 16* 16* 16*
.xls 10352 10352 10352 10352 10352
.xlsx 32 32 32 32 32
* : Recovered all but some files were corrupted or contents wiped out
with different hash values
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Table 9.22. The number of files recovered using Autopsy in Silicon Power NVMe
SSD as a primary boot device in Windows 10 TRIM OFF case.

TRIM OFF: SP Autopsy Statistics in Windows 10 with NVMe WB
File Type Original Image Image-1 Image-2 Image-3 Image-4
.bin 4 4* 4* 4* 4*
.vhd 1 1* 1* 1* 1*
.ps2 2 2* 2* 2* 2*
.aff 16 16* 16* 16* 16*
.csv 3184 3184* 3184* 3184* 3184*
.dbase 480 480 480 480 480
.dmg 32 32* 32* 32* 32*
.doc 14592 14592* 14592* 14592* 14592*
.docx 112 112 112 112 112
.dwf 16 16 16 16 16
.e01 352 352 352 352 352
.eps 640 640* 640* 640* 640*
.f 160 160* 160* 160* 160*
.file 32 32 32 32 32
.fits 16 16 16 16 16
.flv 48 48 48 48 48
.fm 16 16* 16* 16* 16*
.gif 5952 5949 5949 5949 5949
.gls 32 32 32 32 32
.gz 2176 2176 2176 2176 2176
.hlp 112 112 112 112 112
.java 80 80 80 80 80
.jpg 19184 19184* 19184* 19184* 19184*
.key 16 16 16 16 16
.kml 192 192 192 192 192
.kmz 320 320 320 320 320
.log 1680 1680 1680 1680 1680
.mp4 64 64 64 64 64
.numbers 16 16* 16* 16* 16*
.odt 16 16* 16* 16* 16*
.pages 16 16* 16* 16* 16*
.pcap 32 32 32 32 32
.pdf 41344 41344 41344 41344 41344
.png 640 621 621 621 621
.pps 176 176 176 176 176
.ppt 9408 9403* 9403* 9403* 9403*
.pptx 16 16 16 16 16
.xls 10352 10352 10352 10352 10352
.xlsx 32 32 32 32 32
* : Files recovered but their contents were jumbled or wiped out.
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Fig. 9.13. Hexadecimal contents of xls-files(1).xls file in the original dataset from
Western Digital NVMe SSD.

Figure 9.13 shows a snippet of the original xls-files(1).xls file with
regards to theWestern Digital NVMe SSD TRIMON case in the original dataset.
The hexadecimal contents are shown along with ASCII value when a file is
opened in a disk editor such as WinHex. In this case, original contents of the
file are shown in the figure.
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Fig. 9.14. Hexadecimal contents of xls-files(1).xls file after recovery from
Western Digital NVMe SSD TRIM OFF case.

Figure 9.14 shows a snippet of the xls-files(1).xls file after recovery
from Western Digital NVMe SSD in the TRIM OFF case. In this case, the file
contents were not wiped out for the file as shown in the figure.
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Fig. 9.15. Hexadecimal contents of xls-files(1).xls file in the original dataset from
Silicon Power NVMe SSD.

Figure 9.15 shows a snippet of the original xls-files(1).xls file with
regards to the Silicon Power NVMe SSD TRIM ON case in the original dataset.
The hexadecimal contents are shown along with ASCII value when a file is
opened in a disk editor such as WinHex. In this case, original contents of the
file are shown in the figure.
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Fig. 9.16. Hexadecimal contents of xls-files(1).xls file after recovery from Silicon
Power NVMe SSD TRIM ON case.

Figure 9.16 shows a snippet of the xls-files(1).xls file after recovery
from Silicon Power NVMe SSD in the TRIM ON case. In this case, the file
contents were wiped out for the file as shown by zeroes in the figure.
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Fig. 9.17. Hexadecimal contents of xls-files(1).xls file after recovery from Silicon
Power NVMe SSD TRIM OFF case.

Figure 9.17 shows a snippet of the xls-files(1).xls file after recovery
from Silicon Power NVMe SSD in the TRIM OFF case. The original contents of
the file are shown in the figure.
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Hash Analysis for Western Digital and Silicon Power NVMe SSDs with NVMe

WriteBlocker

The MD5 hash values of the files following the TRIM ON and OFF
recovery operations from Western Digital and Silicon Power NVMe SSDs are
displayed in this part to demonstrate our findings. We used the QuickHash
hashing tool to generate hash values. The MD5 hash value of the original file,
followed by TRIM OFF MD5 hash, and the file size for Western Digital NVMe
SSD, are shown in figure 9.18. Unfortunately, we could not show the TRIM ON
hash value due to the absence of recovery of xls-files(1).xls file. However, figure
9.19 shows the hash values of the original file, followed by TRIM ON and OFF
MD5 hash values and file size in the Silicon Power NVMe SSD case as shown
in figure 9.19. These figures aim to validate and verify the claims made due to
experimental observation when using an NVMe WriteBlocker.

Fig. 9.18. Hash of xls-files(1).xls in Western Digital NVMe SSD using NVMe
WriteBlocker.
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Fig. 9.19. Hash of xls-files(1).xls in Silicon Power NVMe SSD using NVMe
WriteBlocker.
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Table 9.23. Digital forensics information about forensically acquired image files of Western Digital and Silicon Power NVMe
SSDs with NVMe WriteBlocker.

File Names
Image
Type

Image
Size (KB)

MD5 Hash SHA1 Hash

Imaging TRIM ON Western Digital NVMe SSD with PCIe WriteBlocker using FTK Imager
ton wwb-wd e01 pcie img 1 e01 19 373 246 e612c339d9b3001c18b13a8ba3250093 77521c6fdf0767be9b9840b9517438d58e015828
ton wwb-wd e01 pcie img 2 e01 19 373 246 e612c339d9b3001c18b13a8ba3250093 77521c6fdf0767be9b9840b9517438d58e015828
ton wwb-wd e01 pcie img 3 e01 19 373 246 e612c339d9b3001c18b13a8ba3250093 77521c6fdf0767be9b9840b9517438d58e015828
ton wwb-wd e01 pcie img 4 e01 19 373 246 e612c339d9b3001c18b13a8ba3250093 77521c6fdf0767be9b9840b9517438d58e015828

Imaging TRIM ON Silicon Power NVMe SSD with PCIe WriteBlocker using FTK Imager
ton wwb-sp e01 pcie img 1 e01 16 531 698 14d8b304d966ac894322e359f33cd601 6a2ed6ea5d7d42554dc2f050d72816bbe9ed18d3
ton wwb-sp e01 pcie img 2 e01 16 531 698 14d8b304d966ac894322e359f33cd601 6a2ed6ea5d7d42554dc2f050d72816bbe9ed18d3
ton wwb-sp e01 pcie img 3 e01 16 531 698 14d8b304d966ac894322e359f33cd601 6a2ed6ea5d7d42554dc2f050d72816bbe9ed18d3
ton wwb-sp e01 pcie img 4 e01 16 531 698 14d8b304d966ac894322e359f33cd601 6a2ed6ea5d7d42554dc2f050d72816bbe9ed18d3

Imaging TRIM OFF Western Digital NVMe SSD with PCIe WriteBlocker using FTK Imager
toff wwb-wd e01 pcie img 1 e01 125 161 110 025181d55629d0876c881b479c0be4cf 74b4f195df8faf66997b28d30644018baa048396
toff wwb-wd e01 pcie img 2 e01 125 161 110 025181d55629d0876c881b479c0be4cf 74b4f195df8faf66997b28d30644018baa048396
toff wwb-wd e01 pcie img 3 e01 125 161 110 025181d55629d0876c881b479c0be4cf 74b4f195df8faf66997b28d30644018baa048396
toff wwb-wd e01 pcie img 4 e01 125 161 110 025181d55629d0876c881b479c0be4cf 74b4f195df8faf66997b28d30644018baa048396

Imaging TRIM OFF Silicon Power NVMe SSD with PCIe WriteBlocker using FTK Imager
toff wwb-sp e01 pcie img 1 e01 124 938 768 59ec02930b9df63922d4396c4509c00d 5ccf99e78bcb89d07d921ee5c874ce4422536bca
toff wwb-sp e01 pcie img 2 e01 124 938 768 59ec02930b9df63922d4396c4509c00d 5ccf99e78bcb89d07d921ee5c874ce4422536bca
toff wwb-sp e01 pcie img 3 e01 124 938 768 59ec02930b9df63922d4396c4509c00d 5ccf99e78bcb89d07d921ee5c874ce4422536bca
toff wwb-sp e01 pcie img 4 e01 124 938 768 59ec02930b9df63922d4396c4509c00d 5ccf99e78bcb89d07d921ee5c874ce4422536bca
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CHAPTER X

NVMe-Assist PyTsk Codes

In this chapter, we have explained and defined the Python libraries
used to develop the NVMe-Assist toolkit. A library in computer programming
is a collection of files, programs, routines, scripts, or procedures that can be
referenced in the code. The library is a collection of pre-written code that users
can utilize to speed up their work. We have used the following Python libraries
to achieve our task. Figures 10.1 to 10.11 exhibit the working of our NVMe-
Assist framework toolkit. Also, we have hosted our code on � GitHub link:
https://github.com/asharneyaz/nvme-assist

1. Python os library: This module allows you to use operating system-
dependent functions on the go. If you only want to read or write a file, use
open(), the os.path module if you want to change paths, and the fileinput
module if youwant to read all the lines in all the files on the command line.
The tempfile module can be used to create temporary files and directories,
and the shutil module can be used to handle high-level file and directory
operations.

2. Python sys library: This module gives you access to some variables that
the interpreter uses or maintains, as well as functions that have a lot of
interaction with it. It is available at all times.

3. Python pytsk3 library: This is a Python binding for the libtsk library
(SleuthKit library). The goal is to make the binding as close to the TSK
API as possible in terms of capabilities, while still providing a pleasant
Pythonic interface.

4. Python datetime library: The datetime module supplies classes for
manipulating dates and times. While date and time arithmetic is

https://github.com/asharneyaz/nvme-assist
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supported, the focus of the implementation is on efficient attribute
extraction for output formatting and manipulation.

5. Python hashlib library: This module provides a standardised interface
to a variety of secure hash and message digest methods. The SHA1,
SHA224, SHA256, SHA384, and SHA512 secure hash algorithms (specified
in FIPS 180-2) are included, as well as RSA’s MD5 algorithm (defined in
internet RFC 1321). The phrases ”message digest” and ”secure hash” are
synonymous. Message digests were the name for older algorithms. Secure
hash is the modern phrase for it.

6. Python itertools library: Thismodule implements a set of iterator building
pieces based on APL, Haskell, and SML principles. Each has been recast
in a Python-friendly format. The module standardizes a core collection of
quick, memory-efficient utilities that can be used alone or in tandem. They
constitute a ”iterator algebra” when combined, making it easy to build
specialized tools in pure Python quickly and effectively.

7. Python tabulate library: tabulate is a module that allows you to present
table data in a visually appealingmanner. Because tabulate is not included
in the standard Python library, it must be installed separately.

8. Python pyfiglet library: pyfiglet transformsASCII text into ASCII art fonts.
ASCII text is converted toASCII art fonts using thefiglet format technique.

9. Python art library: The art package is used to print attractive art on the
display.

10. Python pathlib library: This module contains classes that represent
filesystem paths and provide semantics for various operating systems.
Pure paths, which allow purely computational operations without I/O,
and concrete paths, which inherit from pure pathways but additionally
provide I/O operations, are the two types of path classes.

11. Python simple-colors library: Exhibits colorful output in terminal.
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Algorithm 1 NVMe-Assist Toolkit Algorithm
Requirement: User runs the NVMe-Assist code using python nvme df1.py

if no. of arguments is two and the first argument is either –help or -h or /? then

print manual page of NVMe-Assist Toolkit.

else proceed with code execution

check for operating system (os) family: Linux, Windows, macOS then

if os is Linux then

clear the screen, print NVMe-Assist banner, and Linux machine

if os is Apple macOS then

clear the screen, print NVMe-Assist banner, and macOS machine

if os is Windows then

clear the screen, print NVMe-Assist banner, and Windows machine

User chooses the file path then

Change the default location to file path then

List the contents of the file path then

Choose forensics image between: .dd/.raw/.img/.001/.e01 then

Show the file chosen to the user then

if file chosen is .dd/.raw/.img/.001 then

call nvme df2.py then

print modified and created times of the image file then

print the partition scheme from the image file then

print the partition table from the image file then

print the MD5 and SHA1 hashes of the image file then

else file chosen is .e01 then

call nvme df3.py then

print modified and created times of the image file then

print the partition scheme from the image file then

print the partition table from the image file then

print the MD5 and SHA1 hashes of the image file then

Ask the user for program continuation: option of Y or N

end if

end if
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Algorithm 2 GPT Sector Parser Algorithm
Requirement: User runs the GPT sector parser code using python
nvme df4 gpt sector parser.py

if no. of arguments is two and the first argument is either –help or -h or /? then

print manual page of GPT Sector Parser Toolkit.

else proceed with code execution

check for operating system (os) family: Linux, Windows, macOS then

if os is Linux then

clear the screen, print NVMe-Assist banner, and Linux machine

if os is Apple macOS then

clear the screen, print NVMe-Assist banner, and macOS machine

if os is Windows then

clear the screen, print NVMe-Assist banner, and Windows machine

User chooses the file path then

Change the default location to file path then

List the contents of the file path then

Choose forensics image between: .dd/.raw/.img/.001/.e01 then

Show the file chosen to the user then

if file chosen is .dd/.raw/.img/.001 then

call nvme df5 gpt partition parser.py then

print basic information of the image file then

print the partition scheme from the image file then

print the total partitions present from the image file then

print the GPT Header from the image file then

print the GPT partition table from the image file then

Ask the user for program continuation: option of Y or N

end if

end if
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Algorithm 3 Logical Partition OEM Checker
Requirement: User runs the GPT sector parser code using python
nvme df4 gpt sector parser.py

if User chooses the file path then

Change the default location to file path then

List the contents of the file path then

Choose logical partition forensics image between: .dd/.raw/.img/.001/.e01
then

Show the file chosen to the user then

if file chosen is .dd/.raw/.img/.001 then

read the imagefile as binary file then

read the three bytes of the jump instructions from the imagefile
then

read the eight bytes of the OEM from the imagefile then

print the OEM identifier of the partition then

decode the hexadecimal value to utf-8 encoding from the imagefile
then

if decoded value == ”4E54465320202020” then

print NTFS partition.

else if decoded value == ”4D5357494E342E31” then

print FAT-16 partition.

else if decoded value == ”4D53444F53352E30” then

print FAT-32 partition.

end if

Ask the user for program continuation: option of Y or N

end if

end if
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Fig. 10.1. Manual page of NVMe-Assist Toolkit.

Fig. 10.2. Running demonstration of NVMe-Assist step-1.

Fig. 10.3. Running demonstration of NVMe-Assist step-2.
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Fig. 10.4. Running demonstration of NVMe-Assist step-3.

Fig. 10.5. Running demonstration of NVMe-Assist step-4.
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Fig. 10.6. Running demonstration of NVMe-Assist step-5.

Fig. 10.7. Running demonstration of NVMe-Assist step-6.

Fig. 10.8. Manual page of GPT Sector Parser of NVMe-Assist Toolkit.
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Fig. 10.9. Running demonstration of GPT Sector Parser step-1.

Fig. 10.10. Running demonstration of GPT Sector Parser step-2.
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Fig. 10.11. Running demonstration of GPT Sector Parser step-3.

Fig. 10.12. Running demonstration of Logical Partition Parser step-1.
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Fig. 10.13. Running demonstration of Logical Partition Parser step-2.

Fig. 10.14. Running demonstration of Logical Partition Parser step-3.

Fig. 10.15. Running demonstration of Logical Partition Parser step-4.
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CHAPTER XI

Reporting Guidelines and Instructions

In this chapter, we talk about framing guidelines for digital forensics
practitioners. The instructions present in this chapter will serve as a precursor to
conducting digital forensics investigations when a non-volatile memory express
solid-state drive (NVMe SSD) is acquired in any case. Moreover, this will also
assist in examining forensics artifacts of Windows 10 operating systems. The
instructions in the chapter are listed in a question-answer format for better
understanding.

Q1. What is Windows Prefetch?

A. Windows Prefetch is a component of Microsoft Windows operating
systems that aims to speed up the application launch and booting process.
Also, prefetching depends on the size and complexity of the program
and storage devices such as hard-disk drives (HDDs), solid-state drives
(SSDs), non-volatilememory express solid-state drives (NVMe SSDs). For
example, prefetching MATLAB will take longer compared to MS Paint.
Refer chapter IV for a detailed explanation.

Q2. Is Windows Prefetch still available in Windows 10?

A. Yes, Microsoft still has this feature available for quicker execution of the
programs. However, the Windows service related to Prefetch is now
called SysMain, which can be found in the Service snap-in on Windows
or executing services.msc command. Refer chapter IV for a detailed
explanation.

Q3. What is the endianness of the registry values for EnablePrefetcher key

in Windows Registry for Windows Prefetch?
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A. EnablePrefetcher is represented in a big-endian format. However, upon
right-clicking EnablePrefetcher value and then selecting Modify Binary

Data, the values are represented as little-endian.

Q4. What is the header signature of the Windows Prefetch file?

A. The header signature is SCCA. However, from Windows 10 onwards,
contents of Windows Prefetch are compressed using XPRESS HUFFMAN

algorithm. Hence, the compressed file header signature is MAM.
Decompression is required to analyze Windows 10 Prefetch files
forensically. Refer chapter IV for a detailed explanation.

Q5. Does Windows Prefetch still work to speed the execution of programs

when a Windows operating system is installed on a solid-state drive?

A. Yes, Prefetch is always running irrespective of the storage media type. It
also works on a non-volatile memory express solid-state drive (NVMe
SSD) with Windows installed.

Q6. What are the contents of a prefetch file?

A. Name of the executable, list of DLLs, program run counter, last run time,
prefetch file size, the executable path of the program, created andmodified
times of prefetch file, and the path of DLL described a device path.

Q7. What is Windows Shellbag?

A. Shellbag is aWindowsRegistryKey that stores information about directory
customization, such as changing view options, adding more columns,
altering sort order, etc.

Q8. What is the forensic importance of Shellbag?

A. All files on a local computer system, network system, and attached external
devices such as USB flash drives, external HDDs, and SSD are tracked
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using Windows Shellbag. The records of files are also updated, which
suggests information regarding timestamps of visiting a directory.

Q9. What are the two user-specific files for Windows Shellbag?

A. UsrClass.DAT and NTUSER.DAT are the user-specific files.

Q10. Are shellbag entries only created for zip files?

A. Yes, Windows track the customization changes only for zip files.
Unfortunately, Windows does not do so for rar and 7zip files. Refer V for
more details.

Q11. What is the file location of NTUSER.DAT file in Windows 10?

A. C:\Users\〈username〉\NTUSER.DAT

Q12. What is the file location of UsrClass.DAT file in Windows 10?

A. C:\Users\〈username〉\AppData\Local\Microsoft\Windows\UsrClass.DAT

Q13. Out of the three software tools, OSForensics, ShellBags Explorer,

and ShellBagView, which one of these produces the most forensics

information?

A. ShellBags Explorer by Eric Zimmerman produces the most relevant
information regarding Shellbag entries.

Q14. What are ETL files?

A. Event Trace Logs (ETL) files store a snapshot of events relating to a
system’s state information at a specific time or event. Refer chapter VI for
a more detailed explanation.

Q15. What kind of information can be found from ETL files?

A. Information about the system shut down, startup, restarting, user logon,
secondary user logon, etc.

Q16. Is BootCKCL.etl file the same as BootPerfDiagLogger.etl?
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A. Yes, Microsoft has changed the name of BootCKCL.etl file to
BootPerfDiagLogger.etl.

Q17. Where is BootPerfDiagLogger.etl file located in Windows 10 operating

system?

A. It is located in: C:\Windows\System32\WDI\LogFiles.

Q18. What information is displayed by ETLParser?

A. The information displayed by ETLParser: log file name, timestamp of
event recording in UTC format, triggering event, provider name, GUID,
process ID, thread ID, process name, task, opcode, version, channel, level,
task name.

Q19. What information is displayed by PerfView?

A. PerfView exhibits process summary information that includes command-
line execution of static and dynamic traces. Furthermore, it displays
the trace machine’s details, including the trace start time, trace end
time, operating system information, total number of events, live process
summary, event types, and details. Refer chapter VI for a more detailed
explanation.

Q20. What information is exhibited by FullEventLogview?

A. FullEventLogview shows event time, record ID, event ID, level, opcode,
keywords, process ID, thread ID, computer name, user, log file, etc.

Q21. What information is presented by SVCLog Viewer?

A. Information regarding event description, process name, event time, source,
basic information, and general properties of events are displayed.

Q22. What information is put forth by TraceFMT?
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A. Information about the operating system version, the event’s start time, end
time of the event, timezone information, maximum file size information,
total events, etc., are parsed by TraceFMT from an ETL file.

Q23. What information of forensics importance is reported by Windows

Performance Analyzer (WPA)?

A. WPA shows system activity, processes, images, computation information,
process name, event name, duration of the event, and processes.

Q24. When using Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs enclosed in a USB enclosure, what behavior did they

exhibit in the TRIM ON case when images were acquired using a USB

WriteBlocker?

A. In the TRIM on case of Samsung and Seagate NVMe SSDs, files under 693
bytes and 696 bytes were found to be intact after file recovery. However,
files over 693 and 696 bytes had their contents wiped out. Whereas in
Western Digital and Silicon Power NVMe SSDs, files under 696 bytes were
found to be intact after file recovery. But there was no recovery possible in
Western Digital and Silicon Power NVMe SSDs when the file size was over
696 bytes. Refer chapter VII for more details.

Q25. When using Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs enclosed in a USB enclosure, what behavior did they

exhibit in the TRIM OFF case when images were acquired using a USB

WriteBlocker?

A. In the TRIM off case of Samsung Seagate, Western Digital, and Silicon
Power NVMe SSDs all the files were recovered successfully. File contents
and hash values of the files were intact. Refer chapter VII for more details.
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Q26. Did the hash values change when consecutive forensics images were

acquired of Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs enclosed in a USB enclosure withWriteBlocker connected?

A. Yes, MD5 and SHA-1 hash values were all different for all the four NVMe
SSDs brand types in the both cases of TRIM on and TRIM off cases. Refer
chapter VII for more details.

Q27. When using Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs enclosed in a USB enclosure, what behavior did they

exhibit in the TRIMON case when images were acquired without using

a USB WriteBlocker?

A. The drives exhibited a very similar behavior as shown in chapter VII.
However, files with larger sizes were impacted the most by the NVMe
SSDs’ controller chips. Refer chapter VIII for further information.

Q28. When using Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs enclosed in a USB enclosure, what behavior did they

exhibit in the TRIMOFF casewhen imageswere acquiredwithout using

a USB WriteBlocker?

A. All the files were recovered successfully in the TRIM off case of Samsung
Seagate, Western Digital, and Silicon Power NVMe SSDs without using
a USB WriteBlocker. However, only one .bin file out of three was fully
recovered from all drives. This indicated that controller chips of the drives
acted in .bin files the most. Refer chapter VIII for more details.

Q29. Did the hash values change when consecutive forensics images were

acquired of Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs enclosed in a USB enclosure when USB WriteBlocker was
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not used for forensics image acquisition purposes?

A. Yes, all hash values were different for the respective NVMe SSDs. Refer
chapter VIII for more details.

Q30. When using Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs as a primary boot device, what behavior did they exhibit

in the TRIM ON case when images were acquired using an NVMe

WriteBlocker?

A. Only the controller chips of Samsung and Silicon Power NVMe SSDs
behaved intelligently to a certain extent for the file recovery operation.
Most of the file types were irrecoverable in the case of Samsung NVMe
SSD, while in the case of Silicon Power, most file types were recovered but,
unfortunately, corrupted. Refer chapter IX for more details.

Q31. When using Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs as a primary boot device, what behavior did they exhibit

in the TRIM OFF case when images were acquired using an NVMe

WriteBlocker?

A. Most of the files were recovered from all four NVMe SSDs. However, even
after recovery, some files were corrupted, or their contents were zeroed
out. Refer chapter IX for more details.

Q32. Did the hash values change when consecutive forensics images were

acquired of Samsung, Seagate, Western Digital, and Silicon Power

NVMe SSDs used as a primary boot device using NVMeWriteBlocker?

A. No, hash values for all the NVMe SSDs did not change till seven days,
which is extremely surprising. The autonomousmovement of data around
pages of NVMe SSDs was stopped due to NVMe WriteBlocker for seven
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days. Thiswas true for both TRIMon andTRIMoff cases of the experiment.
Refer chapter IX for more details.

Q33. Based on the experiment’s results, are controller chipsmore intelligently

designed to retain data after deletion for file recovery purposes?

A. Yes. Storage manufacturers have considered the factor of file recovery for
better reliability of user data, which makes data retention capability better
compared to controller chips of SATA SSDs, which do not have complete
reliability.

Q34. Based on the experimental scenario and results, which brand of NVMe

SSDs can be considered the most reliable?

A. As can be seen from our experimental analysis, Samsung NVMe SSD
was the most reliable. Silicon Power came second when it comes to data
retention after deletion and file recovery.

Q35. What type of device usage is affected by wear-leveling the most?

A. NVMe SSD used as a primary boot device shows the affect of wear-leveling
to the maximum. The chances of file recovery is slim when the device is
used a primary boot medium.
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CHAPTER XII

Conclusion and Future Work

Conclusion

In this dissertation, we have conducted a rigorous study of NVMe SSD
forensics, namely on four brands, Samsung, Seagate,WesternDigital, and Silicon
Power, respectively for our NVMe-Assist framework. In addition, we conducted
exhaustive experiments to find out the behavior pattern of wear-leveling in our
four different storage media. The objective of our investigation was to find a
trend of deletion patterns based on the four different controller chips used in the
media. We developed steps for conducting qualitative research and empirical
procedure to support our hypothesis. We filled our NVMe storage devices with
files from the Digital Corpora dataset. The unique thing about our experiment
was that we used two different WriteBlockers from WiebeTech, one for USB
protocol and another for PCIe mechanism.

The design approach for recovering deleted files from the NVMe SSD
was simple. First, we populated the devices with files from Digital Corpora.
After copying the files, we kept the computer system powered on with the
storage media attached, and then after that, we deleted the files after twenty-
four hours. We started acquiring full physical images one day after deletion.
Altogether we took four forensics images, with three taken at a gap of one
day and the last one taken four days from the third image. Lastly, we used
AccessData FTK and Autopsy tools to recover files and note down the deletion
pattern of our four different devices.

In addition to investigating deletion patterns and thereby conducting
file recovery from AccessData FTK and Autopsy tools, we also touched upon
Windows 10 artifacts. Particularly, we investigated Prefetch, Shellbag, and the
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new BootPerfDiafLogger.etl files of Windows 10 v21H2 operating system. We
applied different open-source, proprietary, and freeware tools to formulate a
decisive result and contribute to the digital forensics community.

Future Work

In thiswork, we have focused on file deletion patterns of four brands of
NVMe SSD having varying controller chips and conducting recovery alongwith
investigating Windows 10 artifacts. In addition, our NVMe-Assist framework
accommodated two popular digital forensics tools of different, AccessData FTK,
which is proprietary, and Autopsy, which is open-source. Finally, we also used
other tools to investigate artifacts generated by Windows 10 forensically and
present the result. The ability to conduct a forensics investigation with only
a specific selected toolset can be expanded, thereby improving the quality of
the inquiry. This will help practitioners answer further questions which might
have been left unanswered by only using selective tools. Findings from our
experiment can be expanded by using tools such as Belkasoft X,Magnet AXIOM,
Cellebrite Inspector, and Oxygen Forensic Detective, to name a few. Using these
tools and investigating file deletion patterns for different brands of NVMe SSDs
will only enhance the literature in storage media forensics.
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