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ABSTRACT 

Warren-Hammack, David , Use of micropropagation techniques to improve germination 
success in six species of cacti. Master of Science (Biology), May, 2019, Sam Houston 
State University, Huntsville, Texas. 
 

Cacti have been a major contributor to the ecosystem of desert fauna as a constant 

food source during dry seasons. However, this resource has reached a point of dwindling 

due to many human interferences. In situ conservative efforts have not been stable 

enough to maintain the efforts of preserving population genetics. Therefore, in vitro 

techniques will be required to counter the effects. Following previous studies, 

micropropagation techniques were analyzed to optimize germination number, time, and 

rate around three variables; difference in nutrient media, gibberellic acids, and species. 

Two trials were run at intervals of eight weeks; the second trial a few weeks after the first 

had ended. Results showed a strong significance in emergence and germination affected 

by species type for both trials. There were other significant factors including interactions 

between variables. Overall, this experiment showed overwhelming evidence towards the 

need to treat species to separate protocols in micropropagation techniques. 

 

KEY WORDS: Cactus, Micropropagation, Botany, Conservation, Seed, Germination 
techniques, Sam Houston State University, Texas 
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CHAPTER I 

Introduction 

  



2 

 

“Take the rose—most people think it very beautiful: I don’t care for It at all. I prefer the 

cactus, for the simple reason that it has a more interesting personality. It has wonderfully 

adapted itself to its surroundings! It is the best illustration of the theory of evolution in 

plant life.” 

Charles Proteus Steinmetz, 1913 

Ecological Functions 

Cacti, a family of angiosperm plants, are some of the more unique plants within 

desert landscapes. They have many adaptations for survival in xeric, or water-limiting, 

environments. These plants are able to retain water in the cortical cells of their stems 

making them “stem succulent”. Cortical tissue in the succulent stem holds not only water, 

but malate used from the CAM pathway of photosynthesis, and compound sugars (Nobel 

2002). Most cacti stems are able to contract and expand with changing water availability 

through the morphological adaptations of ribs or tubercles. Ribs are large furrows of stem 

tissue that run longitudinally from the tip of the plant through to the base. Tubercles are 

extrusions of tissue along the stem (Mauseth 1995). These ribs and tubercles can allow 

the cactus stem to expand without rupturing when water is plentiful, and contract without 

collapsing when water is scarce. Along with the adaptation of water retention there are 

anatomical features that give these plants an advantage. Cacti have tightly packed fibers 

and sclereids for structural integrity (Figure 1). A thick cuticle covers the epidermis of 

cacti to avoid desiccation through evaporation as well as to reflect damaging sunlight. 

Many also have wool that sprouts from the areoles, or nodes, that can capture water from 

the air and siphon it to the roots via rib canals. All these allow cacti to survive in dry, hot 

deserts. 
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Figure 1. Oreocereus celsianus (Cactaceae) cut latitudinally. Notice the ring of fibers 
associated with the vascular tissue and the large ribs running through the length of the 
stem.  Outside this layer is the cortex layer that can hold volumes of water, acids, and 
sugar. 

Cacti are keystone species of deserts (Casas et al. 2015). They are nesting 

grounds for small birds, such as owls and wrens, and mammals, such as hares and 

rodents. Their flowers are important sources of nectar and pollen for bats, butterflies, 

honeybees, and birds (Steenberg and Lowe 1977; Fleming et al. 1996; Fleming et al. 

2001).  Reproductive biology in Cactaceae is very complex. There can be night bloomers 

or day bloomers. There are spring bloomers, summer bloomers, and winter bloomers 

(Mauseth 1995). To say that all species of cacti are uniform in their reproductive 

mechanisms is under-representative. Though, within the region of most cactus diversity, 

around the Chihuahuan Desert (Hernández et al. 2001), cacti typically flower during the 

early summer months from May to June right after the rainy season (Nerd & Mizrahi 

1997). Cacti can bloom every year at least once in drier or hotter years during times of 

extreme environmental stress while maintaining a large clutch of blooms many times in 
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rainy years (Nobel 1988). Some species of cacti, such as Ferocactus wislizeni, bloom 

through the dry-weather months, times that other plants do not flower thus cornering the 

market on pollinators (McIntosh 2002). This strategy provides resources for animals 

during the critical dry season (Fleming & Valiente-Banuet 2002). They are also essential 

sources of fruit for bats, mammals, and birds (Steenberg & Lowe 1977; Casas et al. 

1999). As much as 85-91 percent of the diet of two bat species consisted of pollen and 

seeds while many other bat species had diets of exclusively cactus (Petit, 2006). 

Despite the sometimes-large spines that deter animal herbivores, cacti provide 

essential high-nutrition food sources. Many ant species use these nectaries as sources of 

carbohydrates, amino acids, lipids, and other small essential compounds to maintain 

themselves during the summer temperatures (Assunção et al. 2014). Because sources of 

nutrition may be scarce during dry seasons, numerous animals including bats, insects, 

birds, and lizards eat the nectar from the flowers as sources of sugar and water (Fleming 

& Valiente-Banuet 2002). For example, Ferocactus gracilus contains extrafloral 

nectaries, glands in auxiliary meristems that give off nectar that feed 50% of the ant 

communities in the area (Blom & Clark 1980).  

Conservation 

Cacti have many uses to humans including food sources, ceremonial components, 

and fences. Due to their significant water storage, unique morphological features, and 

attractive and unique flowers, they have become popular ornamental plants in landscape 

designs (Powell & Weedin 2004). Unfortunately, many species of Cactaceae are near 

extinction. Factors contributing to this decline include narrow niche constraints, habitat 

destruction after human encroachment, human poaching of mature individuals for 
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horticultural interests, and extreme temperature changes and low rainfall associated with 

climate change (Nobel 1988; Hernández & Godínez 1994; Nobel 2002; Téllez-Valdés & 

D¡Villa-Aranda 2003; Lema-Ruminska & Kulus 2014; Orum et al. 2016). Cactus 

populations also have a propensity towards low genetic diversity due to decline of seed 

vectors such as bats (Rivera- Marchand & Ackerman 2006), restricted gene flow (Clark-

Tapia et al. 2005), clonal abundance, and inbreeding of clonal populations (Nassar et al 

2001; Palliero et al. 2006). Many cacti in the wild have lower abundance of cross-

fertilized progeny due to lack of pollinators and indirect effects of humans on seedlings 

such as introduction of invasive predators and pathogens (Rojas-Aréchiga et al 2001; 

Mandujano et al 2013; Arroyo-Cosultchi et al 2016).  

According to the International Union for Conservation of Nature and Natural 

Resources, 85% of Cactaceae species are on the IUCN Red List, 10% of which are 

endangered and 6% of which are critically endangered (Poole & Riskind 1987; IUCN 

2017). The U.S. Fish and Wildlife Service (USFWS) includes 109 species within the 

Environmental Conservation Online System (ECOS). As of 1973, the Endangered 

Species Act prohibits unauthorized taking, possession, sale, or trafficking of endangered 

plant species on federally owned land. Conversely, according to the Institute of 

Renewable Natural Resources at Texas A&M, 95% of Texas lands are privately owned 

(Joiner 2017). This represents one of main conflicts of conserving species of cacti in the 

U.S. as native populations can be subject to destruction without consequence. Natural 

cacti populations have narrow niche constraints that include temperature and sunlight 

requirements. Due to these factors, a third of all cacti species may be on the brink of 

extinction (Goettsch et al. 2015).  
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Though cacti demonstrate adaptations against xeric conditions, these are most 

functional at maturity. In the natural habitat, cacti species tend to experience high 

mortality in their seeds due to predation (Turner et al. 1969; García-Chávez et al. 2010) 

and other factors including climate change (Aragón-Gastélum et al. 2018), yet the 

population dynamic requires a variation of age and genetics to survive variable 

environmental changes (Parker 1987). There are many explanations for low germination 

rate of cactus seeds. One of these is the ability to go through dormancy. Dormancy is 

defined as a seed’s inability to germinate without a specific cue. Germination is the first 

step towards successful population health. During germination, imbibition of water is 

essential for breaking open the seed coat and allowing the embryo to grow (Mayer & 

Shain 1974), even for cactus species with a thick seed coat offering a level of dormancy 

(Álvarez-Aguirre & Montaña 1997). Factors favorable for seedling survival include water 

availability, protection from disease and predation (Godínez-Alvarez & Valiente-Banuet 

2004) and infection, high speed of growth, and reduced competition for sources of light.  

Cacti seeds will also not germinate unless they are outside the range of any fruit 

structure, also known as innate dormancy. They require some type of zoochory, or seed 

ingestion, to break the seed from the fruit structures (Rojas-Aréchiga & Vásquez-Yanes 

2000). Other factors that decrease the amount of seed progeny in the wild include 

incompatibility. Some cacti will avoid inbreeding depression through self-incompatibility 

mechanisms (Clark-Tapia et al. 2005); once clonal, such cactus populations would 

incapable of sexual reproduction (Boyle 1996; Casas et al 1999; Boyle & Idnurm 2001; 

Boyle 2003). 
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Population dynamics in cacti species have been studied extensively. Once cacti 

reach their reproductive age, fecundity increases with increasing size (Godinez Alvarez et 

al. 2003); however, few germinated seedlings live to reproductive age (Nobel 1988, 

2002). For example, a cactus can produce between 50 to 350 seeds per plant per year 

(Godínez–Álvarez & Valiente-Banuet 2004; Arroyo-Cosultchi et al. 2016) but can take 

anywhere from 3-5 years in cultivation or 10-50 good rainy-season years in the wild to 

flower (Clayton et al. 1990). Some species like saguaros (Carnegiea gigantea (Engelm.) 

Britton & Rose) can take 33 years to produce its first flowers or up to 50-100 years if 

environmental conditions are not favorable (Steenbergh & Lowe 1977; Pérez-Molphe-

Balch et al. 2015). This presents a conservation problem; drought and high temperature 

years can be expected to occur more frequently due to climate change and seedlings of 

cacti tend to die early due to these factors (Orum et al. 2016). Most successful cacti will 

grow underneath a “nurse plant” that hides it from most of the heat and allows for 

sustained moisture (Leirana-Alcocer & Parra-Tabla 1999; Flores & Juardo 2003). If 

species abundance decreases in deserts, seed vectors would not be available to ingest the 

fruit and spread the seeds and nurse plants would not be available to shade the seeds. 

Conservation of genetically healthy cactus populations requires that these factors are well 

understood. 

Solutions 

To combat damage from human encroachment, institutions propagate mature cacti 

in controlled environments and transplant them back into the wild. One of the 

conservation teams, the Cactus Rescue Project, was initiated by John Oberhausen and Joe 

Newman (2017) to encourage the public to save Santa Fe cholla, also known as 
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Cylindropuntia viridiflora, and educate about the importance of cacti in the wild. They 

have worked with the Ladybird Johnson Wildflower Center, the Lower Colorado River 

Authority, and various other botanical gardens of the southwest to host volunteer efforts 

to relocate and propagate cacti from development sites to local greenhouses. Although 

this method of conservation is good, it does not consider either the transplantation back to 

wild systems or preserve the genetic diversity that a population needs to adapt to 

environmental change.  

As such ex situ conservation may not be a practical option for preservation of 

cacti species. This solution may be improved by ornamental horticulture techniques. 

Tissue culture is effective means of proliferating plants and it has been considered as a 

method to recover endangered plants that undergo crassulacean acid metabolism (Malda 

et al. 1999). This process relies on the use of meristematic tissue placed on an artificial 

medium, usually agar, mixed with nutrients and sometimes hormones to cultivate and 

propagate new cells and living tissue (Vasil & Vasil 1972). Previous studies have used 

tissue culturing to multiply individual cacti through use of axillary bud or explant 

proliferation to increase populations (Johnson & Emino 1979a; Johnson & Emino 1979b; 

Mauseth 1979; Escobar et al. 1986; Clayton et al. 1990; Hubstenberger et al. 1992; 

Pérez-Molphe-Balch et al. 2002; Giusti et al. 2002; Chavez et al. 2006; Estrada-Luna et 

al. 2008; Pérez-Molphe-Balch et al. 2015). However, culturing of mature individuals 

produces clones of the parent which does not remedy the problems of genetic diversity in 

natural populations when transplanted.  

Seed micropropagation is a method of using agar as a substrate for growing seeds 

in culture plates. Seed micropropagation improves germination in cactus seeds (Clayton 
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et al. 1990; Chávez et al. 2006) compared to conventional propagation in soil. Because it 

is more than 95% water, agar allows for seeds to imbibe water and nutrients necessary to 

break dormancy. Previous studies have also used Murashige and Skoog powder and agar 

to optimize germination rate and provide ideal conditions for the longevity of the 

seedlings (Lema-Rumińska & Kulus 2014; Civatti et al. 2017). Murashige and Skoog 

powder was first introduced in 1962 as a nutrient supplement in agar micropropagation 

and is industry standard for plant tissue culturing.  

Hormones dissolved in agar could also influence the dormancy of many species of 

cacti. There are three types of plant growth regulators; cytokinins, auxins, and 

gibberellins. Cytokinins were discovered by Skoog and Miller (1957) and were shown to 

regulate the expanse of cellular division in plant tissue culture. Auxins are plant 

hormones that promote growth responses such as phototropism and development of 

organs. Auxins are typically used in tissue culturing as a hormone to induce root 

formation.  

Gibberellic acids are plant growth regulators of stem elongation, flowering time, 

and senescence of leaves and fruits. Gibberellic acids also induce germination in seeds. 

One of the first studies to use the hormone on cactus seeds (Alcorn and Kurtz 1959) 

showed that addition of gibberellic acids might help seeds grown in less-than-ideal light 

conditions, specifically lower wavelength light and darkness. Their study did find that 

gibberellic acids may affect the way that seeds germinate, but their results and data did 

not show a significant correlation between the light quality. In normal light conditions 

with no gibberellic acids, the seeds displayed the most germination of all treatments. 

Ortega-Baes and Rojas-Aréchiga 2007 found the greatest rate of germination for 
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Trichocereus terscheckii was recorded at 25°C with 0 ppm gibberellins and white light, 

the same as shown previously. A number of studies (Arias & Lemus 1984; Rojas-

Aréchiga et al. 2001, 2011; Olvera-Carrillo et al. 2003) show the same pattern and 

contribute to the idea that gibberellins may not have anything to do with the germination 

process at all. However, these studies did not determine multispecies interactions and 

media effects on how the gibberellin acids affect germination. Different media may affect 

the way the hormone is absorbed and other taxonomically distinct species may react to 

gibberellic acids variably. 

Propagation by seed is ecologically superior to vegetative propagation of tissues 

by traditional means or tissue culture, because resultant embryos may differ genetically 

from either parent, thus maintaining genetic diversity in the population. Seed propagation 

offers another advantage. Cuttings for tissue culture are difficult to disinfect due to the 

abstract shape of the explant (Chávez et al. 2006). Seeds, with smaller, simpler surfaces, 

can be decontaminated more easily. The seed is protected by a layer of cellulose and 

other components of the testum unlike the explant which may be harmed during 

sterilization. On the other hand, in situ propagation is not ideal. Seeds have low 

probability of survival in natural settings due to desiccation, (Fraiser 1989; Dubrovsky 

1996; Dubrovsky 1998), light quantity changes due to lack of nurse plants (plants that 

provide shade for seedlings) (Flores & Juardo 2003), and both seeds and seedlings suffer 

predation from animals (Godínex-Alvarez and Valiente-Banuet 2004). There is evidence 

to support that growing cacti as well as many other types of plants in vitro improves seed 

germination and overall health of the seedling (Rubluo et al. 1993; Chávez et al. 2006). 

Micropropagation also requires less space than soil propagation. In short, the propagation 
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of cacti in a laboratory setting should show a more rapid onset of biomass as well as a 

greater chance of survival when transplanted back into the wild. 

Study Questions 

In this study we are exploring the variables of media and concentrations of 

gibberellic acids on the emergence and germination of six species of cacti. The concept 

of the experiment reveals the actuality of reproducing cacti on a large scale through 

micropropagation techniques. Three different media will be used: Murashige and Skoog 

(1962) agar, nutrient-less agar, and absorbent filter paper. These types of media were 

chosen based on the availability of nutrients and moisture availability. The MS agar gives 

nutrients and constant moisture while the agar is missing the nutrients and the filter paper 

is missing constant moisture and nutrients. The second variable will be concentration of 

gibberellic acid within the media being used. Four concentrations will determine 

effectiveness; 0 parts per million, 500 ppm, 1000 ppm, and 1500 ppm. These 

concentrations are based on a study done by Rojas-Aréchiga et al. 2011. 

This study will clarify two questions regarding in vitro seed micropropagation; 1. 

What media should be used in the process of micropropagation for the optimum 

emergence and germination of six species of cacti; 2. What concentration of gibberellic 

acid has the most positive effect on the emergence and germination of six species of 

cacti? Interactions between species, hormone, and media effects will be measured as 

well. This will be tested through two crucial developmental stages in cacti; emergence 

and germination (Arroyo-Cosultchi et al. 2016).  
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The protocol for in vitro germination experiment was devised through my own 

pilot experiments and incorporating protocol elements from published studies (Johnson & 

Emino 1979; Clayton et al. 1990; Giusti et al. 2002; Rojas-Aréchiga et al. 2011). The 

species being used in this experiment are Carnegiea gigantea (Engelm.) Britton & Rose 

(Saguaro), Echinocactus grusonii Hildm. (Golden-Barrell cactus), Echinocereus 

reichenbachii (Terscheck ex Walp.) Haage f. (Hedgehog cactus), Mammillaria 

parkinsonii Ehrenb. (Pincushion cactus), Hylocereus undatus (Haworth) Britton & Rose 

(Dragonfruit cactus), and Opuntia engelmannii Salm-Dyck ex Engelmann (Texas prickly 

pear cactus). These species were chosen for several reasons. The first is to best represent 

multiple levels of IUCN index of endangerment. C. gigantea has been known to be in a 

state of decline due to human influence, yet the IUCN still reports the species as “Least 

Concern” (Burquez Montijo et al. 2017). This is most likely attributed to the high clonal 

population numbers within their range. However, the range is fragmented because of lack 

of conservation control in certain areas and there has been evidence to support a massive 

decline in populations of saguaro (Orum et al. 2016). Echinocactus grusonii is considered 

“Endangered” and protected on the national species list in Mexíco due to high population 

fragmentation (Guadalupe Martínez et al. 2013) and illegal collections (IUCN 2013). 

Echinocereus reichenbachii is listed as “Least Concern” in the IUCN, however the 

species is considered endangered in the Texas Parks and Wildlife listings. Mammillaria 

parkinsonii is characterized as endangered by IUCN with only a few wild individuals 

known to exist in one part of one state in Mexíco.  

The other two species, Hylocereus undatus and Opuntia engelmannii are not 

endangered but will be used as mechanisms for common-type cactus germination. 
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Opuntia engelmannii is not expected to emerge as the species has a very thick testa that 

prevents it. Hylocereus undatus is a common crop plant that is used frequently in both 

seed and tissue propagation.  

The second reason for selecting these six species is that they cover a broad 

taxonomic sampling, each representing a different tribe within Cactaceae. Carnegiea 

gigantea is in Pachycereeae, Echinocactus grusonii is in Cacteae, Echinocereus 

reichenbachii is in Pachycereeae, Mammillaria parkinsonii is in Cacteae, Hylocereus 

undatus is in Hylocereae, and Opuntia engelmannii is in Opuntieae. Using an array of 

different life history types gives a generalized method of how species within Cactaceae 

can germinate and how they grow in response to variations from in vitro.  

The first experimental treatment exposes seeds to four concentrations of 

gibberellic acid: 0 parts per million, 500 ppm, 1000 ppm, and 1500 ppm. These 

concentrations have been shown to produce different germination percent for species 

even within the same genus (Rojas-Aréchiga et al. 2011).  

The second treatment is variation in media. Three levels of substrate will include 

filter paper moistened with water, 1% agar possessing little to no nutrients or salts, and 

1% Murashige and Skoog agar (MS) with a uniform quantity of fertilizer (Johnson and 

Emino 1979; Mauseth 1979; Escobar et al. 1986; Chavez et al. 1990; Clayton et al. 1990; 

Hubstenberger et al. 1992; Giusti et al. 2002; Estrada-Luna et al. 2008; Pérez-Molphe-

Balch et al. 2015). 

The full experiment consists of two trials. The first trial started on April 11, 2018 

and ended eight weeks later on June 6th. The entire experiment was repeated with a 
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second trial with the same seeds and started on September 7th and ended in eight weeks 

on November 1st.  

Substrate Preparation 

The agar plates contained 1% (w/v) bacteriological grade agar in deionized water. 

The Murashige and Skoog agar was made with 4.3g L-1 MS following the supplier’s 

recommendation (Carolina, Burlington) and 1% bacteriological agar with deionized 

water. Agar-containing mixtures as well as the water used for the filter paper were 

autoclaved before use. After four weeks the agar-containing plates require replacement to 

maintain adequate water storage. Entire transplantation of seeds and seedlings happened 

at this time. Gibberellic acid in powder form was added to the appropriate concentration 

of either none, 500 ppm, 1000 ppm, or 1500 ppm. Due to the thermosensitive nature of 

gibberellic acids, the concentrated powders were not added until after the agar solution 

had come out of the autoclave otherwise the acids could degrade (Hodson and Hamner 

1971). The solutions were added to 9 cm diameter petri dishes with about 25 ml in each. 

The filter paper treatment consisted of a circle of filter paper fitted to the size of the petri 

dishes and sprayed with sterile water mixed with the required amount of gibberellic acid. 

Each treatment consisted of twenty seeds for one of six species placed in one of three 

media containing one of four GA concentrations, for a total of 72 treatments. The entire 

experiment was duplicated, requiring 2,880 seeds planted in 144 dishes.  

Sterilization 

Methods for sterilizing seeds vary in the literature. Castro et al. (2011) washed 

Nopalea cochenilifera (Cactaceae) seeds in low concentrations of sodium hypochlorite, 

0.5%, 1%, and 1.5%, for ten minutes and washed three times to produce a sterile 
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treatment set. Balch et al. (1998) washed seeds five times with 0.1% Extran, a liquid 

detergent, then disinfected for 1 minute in 70% ethanol, 25 minutes in 2% sodium 

hypochlorite, and rinsed four times with sterile distilled water.  

For this experiment, seeds were placed 20-25 at a time into 1.5 ml 

microcentrifuge tubes and washed for one minute in 80% ethanol and then drained of the 

ethanol. Then the seeds were washed in 5% sodium hypochlorite with 0.1% Tween 20 for 

10 minutes and then drained of the solution. The seeds were then washed three times with 

sterile deionized water to remove any extraneous detergent.  

Once the seeds were completely sterile and the plates were cool, they were plated 

to maximize distance between adjacent seeds. The plates were taped along the sides to 

prevent opening and contamination. Seeds were grown under Taopu 40W E27 full-

spectrum light bulbs. The chamber was lined with reflective material to avoid position 

bias in the chamber. Daylight conditions were set at a daily schedule of 14 hours 

(Dubrovsky 1996, 1998; Rojas-Aréchiga et al. 2001).  

Measurements and Analysis 

Observations were recorded every day for 8 weeks for emergence and total 

germination. Emergence was recorded as soon as the radicle or any part of the embryo 

broke from the testum of the seed. Germination was recorded when the seedling was 

completely separated from the testum and free-living. These measurements are defined 

by the difference between only imbibition of water and nutrients versus total health of the 

plant. Variables were as follows in table 1 with species with six types, hormones with 

four concentrations, and media with three types. 
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Table 1 
 
Experimental Variables in Type 

Main effect variable Variable Name 

Species 

1. Carnegiea gigantea 

2. Echinocactus grusonii 

3. Echinocereus reichenbachii 

4. Hylocereus undatus 

5. Mammillaria parkinsonii 

6. Opuntia engelmannii 

Hormone 

1. 0 ppm 

2. 500 ppm 

3. 1000 ppm  

4. 1500 ppm 

Medium 

1. Filter paper 

2. Agar 

3. MS + agar 

 

To obtain mean emergence and germination, the sum of the counted data was 

calculated as the total number divided by the duration of the experiment (Ranal et al. 

2006). This data was conglomerated in four databases; Trial 1 Emergence, Trial 1 

Germination, Trial 2 Emergence, and Trial 2 Germination. I first combined the data 

between the two emergence trials and termed the “Trial” effect as a block comparison to 

verify significance between trials. I also did this between the two germination trials to 

verify significance. If there was significance, I could treat them as separate. If not, they 

must be treated as similar trials and analyzed together. After that, the data was analyzed 

using an analysis of variance under a general linear model with p<0.05 in SAS (Ranal et 
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al. 2009). Under the general linear model, each main effect was compared separately and 

then compared between each other variable such as species versus media, species versus 

hormone, and hormone versus media to understand interactions in the variables. I also 

compared the three variables together to determine significant interactions. Once 

interaction significance was found between variables, contrast analysis was used to show 

where in the data the interactions took place. The contrast statements were written using 

the main effects’ significance as a reference to judge where the interaction would lie. For 

example, if the MS media was significantly higher than the filter paper, I would compare 

species versus media by comparing MS higher than filter paper. This was paralleled by a 

least significant difference (LSD) test with “slice” option in SAS at p<0.05 to examine 

effect differences within LSD mean interactions. I analyzed the data of the main effects 

using Tukey’s pairwise comparison to compare how the means of each effect grouped 

together. This helped in establishing how different each mean was from another. The 

Tukey’s test results were edited with Microsoft PowerPoint within the graph of average 

emergence or germination. 
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Data from trials were analyzed separately due to the significant difference in trial 

effects in the trial block test (p < 0.0001) (Table 2; Table 3). The trial effect had 

interactions on other variables such as species and media as well as an interaction with all 

three variables. Species had a very significant effect (p < 0.0001) in both emergence and 

germination for both trials. Media and hormone had varying effects on each development 

step and trial that will be explained further in this section.  

Table 2 
 
ANOVA results of emergence with Trial block 

Source DF Type III SS Mean Square F Value Pr > F 
Trial 1 1001.281250 1001.281250 260.97 <0.0001 

Trial*Species 5 1879.739583 375.947917 97.98 <0.0001 
Trial*Hormone 3 24.427083 8.142361 2.12 0.1000 

Trial*Media 2 26.645833 13.322917 3.47 0.0337 

Trial*Species*Hormone*Media 61 411.656250 6.748463 1.76 0.0032 

Note. Significant results are in bold. 

 
Table 3 
 
ANOVA results of germination with Trial block 

Source DF Type III SS Mean Square F Value Pr > F 
Trial 1 75.0312500 75.0312500 49.91 <0.0001 
Trial*Species 5 148.3645833 29.6729167 19.74 <0.0001 
Trial*Hormone 3 1.7048611 0.5682870 0.38 0.7690 
Trial*Media 2 2.4375000 1.2187500 0.81 0.4466 

Trial*Species*Hormone*Media 30 37.2569444 1.2418981 0.83 0.7240 

Note. Significant results are in bold. 
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Trial 1 

Emergence.   

Species had a significant effect on the number of emergents (p<0.0001) as did 

hormone (p = 0.0006) (Table 4). Every species exhibited significantly different number 

of emergents than every other species, with the exception of Echinocereus reichenbachii 

and Opuntia engelmannii, both of which had near zero emergence number (Figure 2). 

Table 4 
 

ANOVA results of Trial 1 emergence 
Source DF Type I SS Mean Square F Value Pr > F 
species 5 4771.638889 954.327778 225.28 <0.0001 

hormone 3 82.000000 27.333333 6.45 0.0006 

media 2 18.097222 9.048611 2.14 0.1255 

species*hormone 15 81.250000 5.416667 1.28 0.2382 

species*media 10 139.986111 13.998611 3.30 0.0014 

hormone*media 6 131.791667 21.965278 5.19 0.0002 

species*hormone*
media 

30 278.458333 9.281944 2.19 0.0035 

Note. Significant values in bold. 
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Figure 2. Distribution of Trial 1 emergence by species. The letters illustrate the grouping for means of 
species from the Tukey’s test. Carnegiea gigantea (CG), Echinocactus grusonii (EG), Echinocereus 
reichenbachii (ER), Hylocereus undatus (HU), Mammillaria parkinsonii (MP), and Opuntia engelmannii 
(OE). In the box and whisker plots, the line in the center of the boxes represent the median, the total box 
represents 50% of the range of scores, and the whiskers represent scores outside the 50% range. 

 

 

Figure 3. Distribution of Trial 1 emergence by hormone concentration. In the box and whisker plots, the 
line in the center of the boxes represent the median, the total box represents 50% of the range of scores, and 
the whiskers represent scores outside the 50% range. 
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Hormone concentration was also shown to affect emergence significantly. As 

gibberellic acid concentration increased, emergence decreased (Figure 3). There is a 

significant drop between the highest concentrations, 1500 ppm, and the three lower 

concentrations, 0 ppm and 500 ppm, as seen in the Tukey’s Studentized Range Test.  

There was a significant interaction between species and media treatments 

(p=0.0014) (Table 4). All species demonstrate little difference between emergence on 

agar or Murashige-Skoog media (Figure 4). Variance in emergence on filter paper 

produces significant interactions in Carnegiea gigantea, Echinocactus grusonii, and 

Mammillaria parkinsonii (Figure 4).  

Table 5 
 
Emergence contrast between Species with respect to Media 

Contrast DF Contrast SS Mean 
Square 

F Value Pr > F 

CG 1 27.5625 27.5625 6.51 0.0129 

EG 1 18.0625 18.0625 4.26 0.0425 

ER 1 0.25 0.25 0.06 0.8087 

HU 1 0.0625 0.0625 0.01 0.9037 

MP 1 72.25 72.25 17.06 <0.0001 

OE 1 0 0 0 1 

Note. Significant values in bold. 
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Figure 4. Species versus media least significant difference of Trial 1 emergence. Carnegiea gigantea 
(CG), Echinocactus grusonii (EG), Echinocereus reichenbachii (ER), Hylocereus undatus (HU), 
Mammillaria parkinsonii (MP), and Opuntia engelmannii (OE). (FI) filter paper, (AG) agar, and (MS) 
Murashige and Skoog with agar. 

Similarly, significant interactions were also detected between hormone and media 

(p=0.0002). The most significant interaction is with GA at 1500 ppm, which results in 

significantly lower emergence on filter paper than other hormone treatment levels 

(p<0.0001; Table 6; Figure 5).  

Table 6 
 
Emergence contrast between Hormones with respect to Media 

Contrast DF Contrast SS Mean Square F Value Pr > F 

0 ppm 1 4.166667 4.166667 0.98 0.3246 

500 ppm 1 0.375 0.375 0.09 0.7669 

1000 ppm 1 0.375 0.375 0.09 0.7669 

1500 ppm 1 108.375 108.375 25.58 <0.0001 

Note. Significant results in bold 
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Figure 5. Hormone versus media least significant difference of Trial 1 emergence. (FI) filter paper, (AG) 
agar, and (MS) Murashige and Skoog with agar. 

Finally, there was a three-way interaction between species, hormone, and media 

(p=0.0035) (Table 4). In C. gigantea the interaction the most effect in 0 ppm GA over the 

three media types and had the lowest significant decrease in emergence at filter paper and 

1500 ppm GA (p=0.0009) (Figure 6). Filter paper and 1500 ppm GA had a similar effect 

in E. grusonii (p<0.0001) and M. parkinsonii (p<0.0001).  
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Figure 6. Species, media, and hormone least significant difference of Trial 1 emergence. Carnegiea 
gigantea (CG), Echinocactus grusonii (EG), Echinocereus reichenbachii (ER), Hylocereus undatus (HU), 
Mammillaria parkinsonii (MP), and Opuntia engelmannii (OE). (FI) filter paper, (AG) agar, and (MS) 
Murashige and Skoog with agar. 

Much of this three-way interaction is the result of the varying effects of filter 

paper treatment and high GA (1500 ppm) treatment. For example, there were significant 

differences in number of emergents when seeds were grown with 1500 ppm GA on agar 

vs. filter paper for both C. gigantea and M. parkinsonii, but none of the other species. 

Similarly, the number of emergents in E. grusonii was lowest on filter paper with 1500 

ppm GA, but highest on filter paper with 0 ppm GA. Mammillaria parkinsonii also 

showed the lowest emergence on filter paper with 1500 ppm GA. 

Germination.   

Species had a significant effect on germination (p<0.0001) as did media 

(p<0.0001) (Table 7). A post-hoc Tukey’s test indicates significantly different groups; M. 

parkinsonii had the highest germination followed by C. gigantea and E. grusonii. The 

other three species had negligible germination and grouped together. 
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Filter paper resulted in significantly lower germination than either agar or 

Murashige and Skoog media (Figure 8). 

Table 7 
 
ANOVA results of Trial 1 germination 

Source DF SS Mean Square F Value Pr > F 

species 5 3546.06250 709.212500 301.26 <0.0001 
hormone 3 6.854167 2.284722 0.97 0.4115 

media 2 65.791667 32.895833 13.97 <0.0001 

species*hormone 15 90.187500 6.012500 2.55 0.0042 
species*media 10 198.208333 19.820833 8.42 <0.0001 

hormone*media 6 54.375000 9.062500 3.85 0.0022 
species*hormone

*media 
30 138.958333 4.631944 1.97 0.0102 

Note. Significant values in bold 

 

Figure 7. Distribution of Trial 1 germination by species. The letters illustrate the grouping for means of 
species from the Tukey’s test. Carnegiea gigantea (CG), Echinocactus grusonii (EG), Echinocereus 
reichenbachii (ER), Hylocereus undatus (HU), Mammillaria parkinsonii (MP), and Opuntia engelmannii 
(OE).  In the box and whisker plots, the line in the center of the boxes represent the median, the total box 
represents 50% of the range of scores, and the whiskers represent scores outside the 50% range. 
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Figure 8. Distribution of Trial 1 germination by media. The letters illustrate the grouping for means of 
species from the Tukey’s test. (FI) filter paper, (AG) agar, and (MS) Murashige and Skoog with agar. In the 
box and whisker plots, the line in the center of the boxes represent the median, the total box represents 50% 
of the range of scores, and the whiskers represent scores outside the 50% range. 

There was a significant interaction between the species type and hormone 

(p=0.0042) due to the different effect of GA within one species, Mammillaria parkinsonii 

(p=0.0004) in which the lowest germination was produced by 1000 ppm of gibberellic 

acids (Figure 9). 

Table 8 
 
Germination contrast between Species with respect to Hormone 

Species DF Contrast SS Mean Square F Value Pr > F 

CG 1 0.166667 0.166667 0.07 0.7909 

EG 1 3.375 3.375 1.43 0.2351 

ER 1 0.041667 0.041667 0.02 0.8945 

HU 1 0.041667 0.041667 0.02 0.8945 

MP 1 32.66667 32.66667 13.88 0.0004 

OE 1 0 0 0 1 

Note. Significant results in bold 
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Figure 9. Species versus hormone least significant difference of Trial 1 germination. Carnegiea gigantea 
(CG), Echinocactus grusonii (EG), Echinocereus reichenbachii (ER), Hylocereus undatus (HU), 
Mammillaria parkinsonii (MP), and Opuntia engelmannii (OE). 

A significant interaction also existed between species and media This was due to 

variation in Carnegiea gigantea (p<0.0001) with the lowest germination on filter paper, 

and Mammillaria parkinsonii (p<0.0001) with highest germination on MS agar (Table 9). 

Table 9 
 
Germination contrast between Species with respect to Media 

Species DF Contrast SS Mean Square F Value Pr > F 

CG 1 144 144 61.17 <0.0001   

EG 1 0.25 0.25 0.11 0.7455   

ER 1 0.0625 0.0625 0.03 0.871   

HU 1 0.0625 0.0625 0.03 0.871   

MP 1 52.5625 52.5625 22.33 <0.0001   

OE 1 0 0 0 1   

Note. Significant results in bold. 
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Figure 10. Species versus media least significant difference of Trial 1 germination. Carnegiea gigantea 
(CG), Echinocactus grusonii (EG), Echinocereus reichenbachii (ER), Hylocereus undatus (HU), 
Mammillaria parkinsonii (MP), and Opuntia engelmannii (OE) 

There was also interaction between hormone and media (p=0.0002) due to effects 

at 0 ppm GA (p<0.0002), 1000 ppm GA (p =0.137), and 1500 ppm GA (p=0.0192) 

(Table 10). So many significant contrasts make the joint effects of hormone and media on 

germination unpredictable (Figure 11). 

Table 10 
 
Germination contrast between Hormone with respect to Media 

Contrast DF Contrast SS Mean Square F Value Pr > F 

0 ppm 1 35.04167 35.04167 14.88 0.0002 

500 ppm 1 7.041667 7.041667 2.99 0.088 

1000 ppm 1 15.04167 15.04167 6.39 0.0137 

1500 ppm 1 13.5 13.5 5.73 0.0192 

Note. Significant results in bold 
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Figure 11. Hormone versus media least significant difference of Trial 1 germination. (FI) filter paper, 
(AG) agar, and (MS) Murashige and Skoog with agar. 

The last interaction was a three-way among species, media, and hormone 

(p=0.0102) that can be explained through effect in three species; C. gigantea (p<0.0001), 

E. grusonii (p=0.0025), and M. parkinsonii (p<0.0001) (Figure 12). 

 

Figure 12. Species, media, and hormone least significant difference of Trial 1 germination. Carnegiea 
gigantea (CG), Echinocactus grusonii (EG), Echinocereus reichenbachii (ER), Hylocereus undatus (HU), 



45 

 

Mammillaria parkinsonii (MP), and Opuntia engelmannii (OE). (FI) filter paper, (AG) agar, and (MS) 
Murashige and Skoog with agar. 

 
Trial 2 

Difference between trials.   

Overall the number of emergent and germinated seeds was lower in the second 

trial than the first. Mammillaria parkinsonii for instance dropped from 16 emergence to 

1.92 emergence and Carnegiea gigantea dropped from 5.96 to 0.08 (Figure 13). 

Echinocereus reichenbachii, Hylocereus undatus, and Echinocactus grusonii did not 

change much in emergence and Opuntia engelmannii did not emerge in either trial as 

expected. 

 

Figure 13. Emergence and Germination Differences Trials 1 and 2. This figure shows the differences 
between the average emergence or germination between species of the two trials. Carnegiea gigantea 
(CG), Echinocactus grusonii (EG), Echinocereus reichenbachii (ER), Hylocereus undatus (HU), 
Mammillaria parkinsonii (MP), and Opuntia engelmannii (OE). 

 
Emergence.   

Similar to the first trial, there was a significant effect of species on the emergence 

(p<0.0001) (Table 11). Echinocactus grusonii had the highest emergence followed by 

Hylocereus undatus (Figure 14). These species were grouped individually in the post-hoc 

Tukey’s pairwise analysis. M. parkinsonii and E. reichenbachii grouped together as they 
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are near the same range of means. C. gigantean and O. engelmanii were not significantly 

different from E. reichenbachii with near-zero means. 

Media also affected emergence significantly (p=0.0029) with filter paper and agar 

treatments resulting in significantly less emergence than Murashige and Skoog medium 

(Figure 15). There were no significant interactions among main effects. 

Table 11 
 
ANOVA results of Trial 2 emergence 

Source DF Type I SS Mean Square F Value Pr > F 
species 5 1406.368056 281.273611 81.83 <0.0001 

hormone 3 17.187500 5.729167 1.67 0.1818 

media 2 43.597222 21.798611 6.34 0.0029 
species*hormone 15 37.604167 2.506944 0.73 0.7472 

species*media 10 65.986111 6.598611 1.92 0.0561 

hormone*media 6 8.458333 1.409722 0.41 0.8700 

specie*hormone*
media 

30 107.625000 3.587500 1.04 0.4282 

Note. Significant values in bold. 

 

Figure 14. Distribution of Trial 2 emergence by species. The letters illustrate the grouping for means of 
species from the Tukey’s test. Carnegiea gigantea (CG), Echinocactus grusonii (EG), Echinocereus 
reichenbachii (ER), Hylocereus undatus (HU), Mammillaria parkinsonii (MP), and Opuntia engelmannii 
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(OE). In the box and whisker plots, the line in the center of the boxes represent the median, the total box 
represents 50% of the range of scores, and the whiskers represent scores outside the 50% range. 

 

Figure 15. Distribution of Trial 2 emergence by media. The letters illustrate the grouping for means of 
species from the Tukey’s test. (FI) filter paper, (AG) agar, and (MS) Murashige and Skoog with agar. In the 
box and whisker plots, the line in the center of the boxes represent the median, the total box represents 50% 
of the range of scores, and the whiskers represent scores outside the 50% range. 

 

Germination.   

The germination test during the second group of tests only showed a significant 

result through the variation of species (p<0.0001) (Table 12). E. grusonii demonstrated 

significantly greater germination than the rest of the species (Figure 16). There were no 

significant interactions among main effects. 

Table 12 
 
ANOVA results of Trial 2 germination 

Source DF Type I SS Mean Square F Value Pr > F 
species 5 296.7291667 59.3458333 19.74 <0.0001 

hormone 3 3.4097222 1.1365741 0.38 0.7691 

media 2 4.8750000 2.4375000 0.81 0.4486 

species*hormone 15 32.9652778 2.1976852 0.73 0.7456 

species*media 10 7.7083333 0.7708333 0.26 0.9884 

     (Continued) 
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Source DF Type I SS Mean Square F Value Pr > F 
hormone*media 6 10.2361111 1.7060185 0.57 0.7549 

species*hormone*
media 

30 74.5138889 2.4837963 0.83 0.7150 

Note. Significant result in bold. 

 

 

Figure 16. Distribution of Trial 2 germination by species. The letters illustrate the grouping for means of 
species from the Tukey’s test. Carnegiea gigantea (CG), Echinocactus grusonii (EG), Echinocereus 
reichenbachii (ER), Hylocereus undatus (HU), Mammillaria parkinsonii (MP), and Opuntia engelmannii 
(OE). In the box and whisker plots, the line in the center of the boxes represent the median, the total box 
represents 50% of the range of scores, and the whiskers represent scores outside the 50% range.  
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CHAPTER IV 

Discussion 
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Emergence 

The first conclusions that can be made about this data is that species have to be 

treated separately with regard to treatment. Mammillaria parkinsonii was found to be the 

highest in emergence in trial 1 but failed to reach the same level in trial 2. The result in 

trial 1 is expected as M. parkinsonii has a very small seed with a thin testa, but it was 

comparatively different than its closest relative in this experiment E. grusonii. They both 

retain phylogenetic similarities as they are within the tribe Cacteae (Hernández-

Hernández et al. 2011), however these phylogenetic relationships did not offer parallels 

to emergence as they are outside significant groupings of means. Similarly, Echinocereus 

reichenbachii, which is in the same tribe as C. gigantea, Pachycereeae (Hernández-

Hernández et al. 2011), did not show parallel results. Phylogenetic relationships do not 

necessarily tend towards similar growth patterns or response to treatments. 

Hylocereus undatus was expected to demonstrate the highest level of emergence 

and germination, due to its thin seed coat (Cisneros et al. 2011), but it did not. Similarly, 

Mammillaria seeds tend to also have a thin testum that allows for moisture absorption; 

they exhibited strong emergence in the first trial, but markedly less in the second. 

Probability of emergence clearly depends on more than the thickness of the testa.  

The first trial showed that GA at high concentrations negatively affects 

emergence, as expected (Ortega-Baes & Rojas-Aréchiga 2007). The interaction between 

hormone and media might be explained by their combined effects on the ability of a seed 

to absorb water. Emergence was significantly lower when seeds were grown on filter 

paper with 1500 ppm GA. Absorption of water through the testa is likely less efficient on 

filter paper than either agar solution. The flow of water into a plant is governed by the 
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difference in osmotic pressure between the substrate and the plant itself. For water to 

flow into a plant, water potential in the substrate must be higher than in the plant (Nobel 

1988). Filter paper holds less water than agar. To exacerbate this, adding solutes, such as 

GA, to this what water the filter paper does hold, decreases the strength of the osmotic 

gradient between substrate and plant. Osmotic pressure has only been measured in seeds 

of four species of cactus: Neobuxbaumia tetetzo at -0.66 MPa, Pachycereus hollianus at -

0.44 MPa (De la Barrera & Nobel 2002) Cereus validus at -0.28 to -0.34, and Ferocactus 

acanthodes at -0.09 to -0.20 (Nobel 1988).  

Although overall emergence was less in the second trial than the first, the main 

findings are similar; species and media main effects were significant. Echinocactus 

grusonii remained to a relatively moderate emergence and filter paper remained the 

lowest emergence in media. However, there were also differences. Mammillaria 

parkinsonii demonstrated much lower emergence in the second test than the first test. 

This may be because seeds were 22 weeks older when the second trial began than they 

were at the onset of the first trial. In the second trial, C. gigantea showed a decrease in 

emergence to near zero while E. grusonii only decreased slightly. Carnegiea gigantea 

was unexpected to emerge in the first trial with such an adequate amount because it does 

not usually in the wild (Nobel 1988), however it had an extreme decrease in emergence 

average to near zero. Though dormancy is a factor in the seed development of these 

plants, the aspect of time may alter their emergence. The time may also be altered by the 

sterilization process used.  

Media effects from the second trial were different from the first trial grouping 

filter paper and agar as a decreased emergence average. As a possible explanation for this 
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result, older or drier seeds may require more nutrients such as the MS solution in order to 

emerge from their testa. This result is not very surprising as MS only adds to the 

foundation of the substrate what the seed needs to grow, however it is interesting from an 

ecological perspective. If cacti seeds require more nutrients to emerge and they live in a 

mostly nutrient-poor environment it begs to question how the majority of them germinate 

after a certain time.  

Germination 

Once again, the species effect had a significant influence on the germination of 

the seeds. In C. gigantea, E. grusonii, and M. parkinsonii, a high proportion of seeds that 

emerged also germinated. Though H. undatus seeds demonstrated moderate emergence, 

almost none of them germinated. This suggests that H. undatus seeds that imbibed water 

did not necessarily support growth of the embryo. This could be due to an evolutionary 

trait exendospermism (Cisneros et al. 2011), in which the embryo consumes the 

endosperm during development instead of during dormancy. Without the endosperm, the 

embryo without endosperm, the embryo isn’t able to grow following emergence. There 

was also the problem that in Cisneros et al. (2011) sometimes the seed testa looked intact, 

but the embryo was missing. This could have been a problem in my experiment as well. 

Moisture can open the seed, but no embryo will germinate. 

The interaction between species and media can be explained by Mammillaria 

parkinsonii demonstrating significantly higher germination under Murashige and Skoog 

medium, than agar or filter paper. It could be that germination in M. parkinsonii is 

particularly sensitive to nutrient availability while other species tend not to be. The thin 

testa on the seed could also explain the ready absorbance of nutrients. Four species of 
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Mammillaria were shown to have no physiological or morphological signs of dormancy 

(Benítez-Rodríguez et al. 2004). This could mean that the seeds are directly ready for 

germination once the embryo is developed. This explains the dramatic difference in 

germination rate of M. parkinsonii between trial 1 and trial 2. 

Hormone versus media interaction on germination in trial 1 can be explained in 

the same manner as the hormone versus media interaction on emergence interaction of 

the same trial. Low water capacity of filter paper and low water potential of 1500 ppm 

GA (Ortega-Baes & Rojas-Aréchiga 2007) have an additive negative effect on 

germination.  

Problems 

 

Figure 17. Hyphae on Echinocereus reichenbachii seeds. Left is from above; right is 
below. It seems to originate from within the testum of the seed 

During the experiment, there were multiple instances of fungal contamination that 

became detrimental to the health of the seedlings. Even with sterilization, contamination 

occurred. The most reasonable explanation was that the spores were possibly embedded 

on the testum ridges or were inside the testum itself next to the embryo. There is no 

published support for this, but either place may have preserved spores during seed 
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sterilization. There is evidence of this from this experiment (Figure 17); hyphae 

originated from the testa of the seeds of Echinocereus reichenbachii, rather than 

elsewhere on the petri dish. 

Some cacti seeds have a layer of hydrophilous subcuticular layer that can be used 

for absorbance. Germination of Echinopsis thionantha and Gymnocalycium gibbosum 

increased with the subcuticular layer intact versus the layer stripped off the seed testa 

(Bregman & Graven 1997). If this layer is removed during sterilization it may be 

decreasing the absorption rate of seeds. However, denying the sterilization method to the 

seeds defeats the purpose of a sterile environment in the petri plates. I do not believe 

current sterilization protocols are adequate to optimize the germination of these seeds. 

Conclusions 

The most significant conclusion to take away from this experiment is that cactus 

species may have very different requirements for seedling establishment. The data shows 

such differences even among closely related genera. If micropropagation can be used to 

establish seedlings, these seedlings represent genetically diverse candidates for 

reintroduction of endangered species into the wild. At least in regard to the species 

investigated here, we can make the following recommendations for achieving seedling 

survival in situ. Carnegiea gigantea is supported with MS agar without GA, 

Echinocactus grusonii is supported with filter paper without GA, and Mammillaria 

parkinsonii is supported with MS agar without GA. No particular combination of media 

and GA is more successful than any other for either Hylocereus undatus or Echinocereus 

reichenbachii. Finally, conditions other than those tested here are necessary for 

successful micropropagation of Opuntia engelmannii.  
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