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correction (RMA-noBG), GCRMA, PLIER, and dChip (MBEI) for preprocessing of Affymetrix
microarray data. These results hold for two spike-in data sets and one real data set that were
analyzed. Comparisons with other methods on two spike-in data sets and one real data set show
that our nonparametric methods are a superior alternative for background correction of

Affymetrix data.

Introduction

Affymetrix GeneChip® arrays are widely used in biological
and medical research to estimate gene expression levels.
Each gene is interrogated using 11-20 probe pairs
(depending on the platform), each of which consists of a
perfect match (PM) and a mismatch (MM) probe. PM
probes are sequences of 25 nucleotides that are intended
to be a perfect complement to a subsequence of the target
transcript of interest (gene). A MM probe is also 25 nucle-
otides in length, with the same composition as the corre-
sponding PM probe, except that the middle base (13th) is
changed to its Watson-Crick complement. The MM
probes were originally designed to be different at one base
pair so that their intensities could be subtracted from
those of the PM as a measure of non-specific hybridiza-
tion.

In order to estimate gene expression values and perform
high-level analyses, such as classification and clustering,
probe-level pre-processing of the data is necessary. Typi-
cally, there are three steps of preprocessing: background
correction, normalization and summarization, although
not necessarily in that order. It has been argued that back-
ground correction is the most crucial step for probe level
processing [1,2]. Thus, it is important to understand the
assumptions underlying background correction methods,
and test those assumptions, before blindly applying any
preprocessing method.

One popular method, Robust Multichip Average (RMA)
uses an exponential-normal convolution model for back-
ground correction, quantile normalization for the nor-
malization step, and a median polish algorithm to
summarize probe level values into a single expression
value per gene [3]. Some software packages allow the user
to interchange background correction methods with the
normalization and summarization methods (e.g. Biocon-
ductor [4]).

The exponential-normal convolution model is given by X
=S + Y, where X is the observed PM intensity for a probe
on the array, S is the true signal, assumed to have an expo-
nential distribution with rate parameter ¢, and Y is nor-
mally distributed background noise [3]. The normal noise
distribution is truncated at zero so that the model does
not return negative intensity values. Background correc-
tion involves estimating the parameters ¢ and o of the

normal distribution and the rate parameter « of the expo-
nential distribution. In practice these parameters cannot
be estimated by conventional methods, such as maximum
likelihood [1]; therefore, the implementation of RMA
background correction in Bioconductor [4] uses an ad hoc
method. We have previously shown that this method
returns poor parameter estimates [5].

The exponential-normal convolution model is built on
the reasonable assumption that fluorescence intensities
from a microarray experiment are composed of both sig-
nal and noise, and that the noise is ubiquitous throughout
the signal distribution. A convolution model of a signal
distribution and a noise distribution is a natural choice in
such a situation. The choice of a normal distribution for
the background noise and an exponential distribution for
the signal was likely made for two reasons. First, density
estimates of raw PM intensities from the Affymetrix Latin
Square spike-in data sets show a right-skewed curve with
what looks like a long exponential tail (see Figure 1). Sec-
ond, the normal and exponential distributions are easy to
manipulate mathematically in order to obtain a closed
form for the expectation of the signal given the observed
values, which is necessary for parameter estimation. How-
ever, Figures 2 and 3 in the next section show that the con-
volution of a normal and an exponential distribution is
not generally a good fit for microarray data. These obser-
vations, plus the difficulty of checking assumptions and
estimating parameters, motivate a nonparametric back-
ground correction method.

The objective of this paper is to introduce a new back-
ground correction method, called Distribution Free Con-
volution Model (DFCM). The model has the same form as
the exponential-normal convolution model (X = § +Y),
except that no distributional assumptions are made on
the signal (S) of the noise (Y). The mean and variance for
the noise distribution are estimated using MM probe
intensities in a novel way that is more consistent with
their biological and structural characteristics. The signal is
given by the PM intensities once the estimated back-
ground has been subtracted (as explained in Methods);
therefore, there is no need to estimate parameters for the
signal. We compare DFCM against RMA, RMA with no
background correction (RMA - noBG) [6], GCRMA [7],
MAS 5.0 [8], dChip [9,10], and PLIER [11]. In general,
DFCM outperforms these other methods for two different
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have found that the number of spike-in probe sets should
be 16 instead of 14. Two articles [6,13] report that probe
set 546_at should be considered with the same concentra-
tion as 36202 _at since both of them were designed against
the target Unigene ID Hs. 75209. Further, probe set
33818_at should be included as a spiked transcript in the
12th column of the Latin square design. Our definition of
spike-ins for the HG-U95Av2 data includes all four of the
above mentioned probes, resulting in a total of 18 spiked-
in transcripts.

The HG-U133A experiment differs from the HG-U95Av2
experiment in several important ways. First, the HG-
U133A experiment consists of 42 specific transcripts that
are spiked in at 14 concentrations ranging from 0 pM to
512 pM, again arranged in a Latin Square design. There-
fore, there is a finer gradation of concentrations used than
in the HG-U95Av2 experiment. Also, there are three tran-
scripts spiked-in at each concentration and three replicate
arrays for each experiment, thus a total of 42 arrays. For
convenience, we will call the triples of probe sets that rec-
ognize transcripts spiked-in at the same concentration
"groups”.

Recently, the HG-U133A data has also been examined for
the presence of additional spike-ins [14]. Twenty-two
additional spiked-in transcripts were found. Most of the
"new" spike-ins are variants of the original spike-in probe
sets, or share a large percentage of probe sequences in
common with original spike-ins. For example, the probe
sets initially described as recognizing bacterial controls
(e.g. AFFX-LysX-3_at, AFFX-DapX-3_at, AFFX-PheX-3_at)
are targeted at the 3' end of the gene (hence the notation
"-3" in the name of the probe set). It makes sense that the
probe sets recognizing the 5' and middle sections of the
same genes would behave as spike-ins, since the target
RNA mixture for hybridization is likely to be made up
sequences covering the 5' end and middle regions of the
genes. Indeed, the use of 22 additional spike-ins in
Receiver Operating Characteristic (ROC) curve plots and
Area Under the Curve (AUC) calculations improved the
sensitivity and specificity of RMA, RMA with no back-
ground correction (RMA-noBG), MAS 5.0, PLIER, and
dChip. GCRMA performed slightly worse with the use of
all 64 spike-ins. For the ROC curves and AUC calculations
that follow, we use a total of 64 spike-ins for the HG-
U133A data (42 original spike-ins plus 22 "new" spike-
ins)..

We use a third spike-in experiment to examine the distri-
butional assumptions of the exponential-normal convo-
lution model [2]. This series of spike-in experiments was
run on the DrosGenomel chip, and has been named the
GoldenSpike experiment. In addition to targeting a differ-
ent organism than the Affymetrix spike-in data, the Gold-
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enSpike experiment contains 1331 spiked-in transcripts
whose levels are varied and 2,551 RNA species whose lev-
els are held constant between the control and test array
sets. The large number of spiked-in transcripts allows for
more accurate estimates of the false positive and false neg-
ative rates and provides an RNA mix that more closely
resembles total cellular RNA. Furthermore, no transcript
targets were included for approximately two-thirds of the
probe sets, allowing for an accurate definition of back-
ground data. In contrast, Affymetrix uses an uncharacter-
ized RNA background for their spike-in data sets. Lastly,
the fold differences between the test and control array sets
for some of the spike-in transcripts are very low (1.2 fold),
which allows an estimate of the reliability and sensitivity
of detection of small fold differences.

While this data set was used to examine the distributional
assumptions of the exponential-normal convolution
model, these data were not used for evaluation of the rel-
ative performance of DFCM versus other algorithms due
to controversy surrounding the use of the GoldenSpike
dataset for method comparison. It has been observed that
the GoldenSpike experiment uses technical replicates of a
single experiment, rather than biological replicates. Thus,
random variability in the experiment is confounded with
real signal [15]. Others have found that features spiked-in
at a 1:1 ratio tend to have different behavior for the con-
trol and spike-in experiments [16]. For these reasons, we
restricted our comparisons of ROC curves and AUC calcu-
lations to the two Affymetrix Latin Square data sets.

Examining distributional assumptions

In order to test the validity of the noise and signal distri-
butional assumptions, we compared background noise
distribution estimated by the exponential-normal convo-
lution model with the standard normal distributions in
both quantile-quantile (QQ) plots and density plots using
the Affymetrix Latin Square spike-in data sets. All calcula-
tions were done using the Bioconductor suite in the R soft-
ware package for statistical analysis [4].

Quantile-quantile (QQ) plots are designed to compare
the distributions of two data sets usually a "gold standard"
and a test data set. Sometimes, the gold standard consists
of simulated values from a distribution of interest (e.g. the
normal distribution), and sometimes it is simply data
observed from another experiment. If the gold standard is
simulated from a known distribution, the purpose of the
plot is to see if the observed data have that particular dis-
tribution. The sorted values for one data set (quantiles)
are plotted on the horizontal axis, and the sorted values of
the other data set on the vertical axis. If the plot results in
a straight line, then this is evidence that the two data sets
have the same distribution.
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We also examined the assumption of a normal back-
ground distribution using three normality tests: Shapiro-
Wilk, Anderson-Darling, and Kolmogorov-Smirnov
[17,18], as implemented by the R software package [19].
For each of the spike-in data sets, the background noise
was estimated using the Bioconductor implementation of
RMA background correction [4]. Once the noise vector
was estimated, a random sample of length 100 was taken
and the tests were applied to this vector. This was done
because normality tests can be extremely sensitive to sam-
ple size, often rejecting the null hypothesis of normality
just because the sample size is extremely large. A sample
size of 100 is large enough to have reasonable power
against some alternatives, but not so large that the tests
would reject in error [20]. The samples were submitted to
each of the three tests 1000 times, and the p-values for
each iteration recorded. The results are given in Table 1.

ROC curves and Area Under the Curve (AUC)

In order to compare the performance of DFCM versus cur-
rently available methods, we examined ROC curves and
AUC for the two Latin Square spike-in data sets men-
tioned previously. We tested the performance of DFCM
against RMA, RMA-noBG, GCRMA, MAS, dChip, and
PLIER. All data files were preprocessed together for each
method. For the Affymetrix data sets, we compared pairs
of experiments that were separated by the same number of
permutations of the Latin Square (where d = number of
permutations), and obtained average true and false posi-
tive rates for each preprocessing method for each value of
d, d = 1,..., 7. In these Latin Square designs, d can be
thought of as the log2 fold difference in spike-in transcript
levels for a majority of the transcripts. For example, for the
HG-U133A data set, experiments 1 and 2, 2 and 3, 3 and
4, etc. are separated by one shift in the Latin Square
design; therefore, d = 1 for these pairs. For twelve groups
of spiked-in transcripts (there are three spike-in tran-
scripts per concentration group in the HG-U133A experi-
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ment) in each of these fourteen pairs of experiments, there
is a 2-fold difference in concentration. Similarly, experi-
ments 3 and 5, 4 and 6, and 5 and 7 are separated by two
permutations in the Latin Square design; therefore, d = 2.
Eleven spike-in groups have fold changes of 2 on the log
base 2 scale between pairs of experiments.

We compared experiments with d = 1 through d = 7, since
d = 8 is equivalent to d = 6, d = 9 equivalent to d = 5, and
so on. AUC calculations were done for a cutoff of 100 false
positives for the HG-U95Av2 experiment, and 200 false
positives for the HG-U133A experiment. These cutoff
points correspond to a false positive rate of approximately
0.8% for both experiments.

Again, the GoldenSpike data was not used for methods
comparison due to serious design flaws, described fully in
[15,16].

Results

Testing distributional assumptions for the convolution
model

In order to test the validity of the noise and signal distri-
butional assumptions, we compared background noise
distribution estimated by the exponential-normal convo-
lution model with the standard normal distribution in
both quantile-quantile (QQ) plots and density plots using
the Affymetrix spike-in data sets. All calculations were
done using the Bioconductor suite in the R software pack-
age for statistical analysis [4]. R code is provided in Addi-
tional file 1.

Figure 2a shows a QQ plot of the estimated background
noise for four randomly selected experiments (and their
replicates, for a total of 12 arrays) from the HG-U95A
spike-in data. The plot is given on the original scale, since
the assumption of normal background noise is applied to
the probe-level intensities on the original scale. The back-

Table I: Results of the tests of normality of the background noise as estimated by the exponential-normal convolution model.

Data Set Test Rejection Rate Min P-valuea Med P-value Max P-value
HG-U95Av2 AD 962 0 0.0008 0.4738
KS 796 0 0.0082 0.8261
%% 999 0 0.0036 0.1186
HG-UI33A AD 850 0 0.0064 0.5915
KS 594 0 0.0307 0.7700
%% 962 0 0.0031 0.3010
GoldenSpike AD 885 0 0.0035 0.3559
KS 639 0 0.0259 0.7490
%% 987 0 0.0016 0.1502

The rejection rates (number of p-values less than 0.05) are much higher than expected, indicating that the background noise is not likely to be

normally distributed.

a P-values are not identically 0, but are O to at least five decimal places.

AD = Anderson-Darling test, KS = Kolmorgorov-Smirnov test, SW = Shapiro-Wilk test.
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ground was estimated using the RMA background correc-
tion method as coded in the affy package of Bioconductor
[4]. According to the assumptions of the exponential-nor-
mal convolution model, the background noise should
have a truncated normal distribution. Therefore, a plot of
the background noise estimated using the convolution
model versus values simulated from a truncated normal
distribution should produce a straight line. In Figure 2a,
there are several values deviating from a straight line in
the lower left corner of the graph, and the line is bent
slightly. However, both of these departures are small. For
this data set, assumption of normality for the background
noise seems to be reasonable.

Figure 2b is a QQ plot of the background corrected PM
intensities (on the original scale) versus quantiles from an
exponential distribution for the same data set. The rate
parameter used for the exponential distribution is equal
to the estimated rate parameter of the signal given by the
affy package. The QQ plot for the background corrected
(signal) intensities does not show a straight line; in fact, it
shows that the distribution of the signal is much heavier
tailed than one would expect if the data were exponen-
tially distributed. This suggests that either the exponential
model is not a good one for the signal from the PM inten-
sities, or the background correction algorithm is flawed.
Indeed, given the heterogeneity of the variances for the
intensity level of each gene, we would not expect a clean
fit to any distribution, which further bolsters our argu-
ment for the application of a non-parametric background
correction method.

Figure 2c shows density estimates of the observed log base
2 PM intensities (solid line) and the same intensities after
background correction with the exponential-normal con-
volution model (dashed line). The background corrected
intensities should exhibit an exponential distribution.
However, the signal from these data has two modes, sug-
gesting that the estimated signal is composed of a mixture
of two or more distributions rather than a single exponen-
tial distribution, at least for this data set. This density esti-
mate suggests that there are two groups of genes in this
data set — genes that are expressed at low levels, and fewer
genes expressed at higher levels.

Figure 2d shows the same density estimate of the original
PM intensities that was seen in plot 4¢, but now this den-
sity is plotted against a density consisting of a simulated
convolution of a truncated normal and an exponential,
using parameters estimated by the background correction
algorithm given in Bioconductor. The parameters for the
normal and exponential distributions were obtained
using estimates given by the Bioconductor implementa-
tion of RMA. The estimation procedure for the convolu-
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tion model produces a decent estimate of the mean, but is
not accurate for the rate parameter.

The results shown for the HG-U95Av2 spike-in data apply
to the HG-U133A spike-in data, with one notable excep-
tion. Figure 3a shows the QQ plot for 3 randomly selected
experiments (and their replicates, for a total of nine
arrays) from the HG-U133A experiment. Clearly, the
background as estimated by the exponential-normal
model does not have a normal distribution, since the QQ
plot does not display a straight line. In addition, once the
data are background corrected, the resulting distribution
is not exponential (Figure 3b). Figure 3¢ shows a QQ plot
of estimated background noise data from the Golden-
Spike experiment [2]. This plot seems to support a nor-
mally distributed background, but not an exponentially
distributed signal (Figure 3d).

Table 1 gives the results of the three tests of normality for
the estimated background noise for all three data sets.
Tests were done using probe-level data on the original
scale. We calculated the number of p-values that were less
than 0.05, in order to ascertain how often each test
rejected. If the null hypothesis were true, we would expect
rejections approximately 5% of the time. For all of the
results, the rejection rates are much higher, indicating that
the data are not at all normally distributed. We also give
the minimum, median, and maximum of the 1000 p-val-
ues calculated for each test. The minimum p-values are all
0 to at least five decimal places. Median p-values are typi-
cally less than 0.001, again indicating that the tests reject
often. The fact that the low power KS test at n = 100 yields
such a preponderance of small p-values is convincing evi-
dence against normality.

Downstream performance of DFCM

The quantile-quantile plots provide evidence that the
exponential-normal convolution model does not fit the
data. These observations lead us to develop the DFCM as
a means of background correction that does not rely on
specific distributional assumptions. The estimation of
noise and signal using DFCM is described in the Methods
section. In order to determine if DFCM leads to an
improvement of background correction and signal esti-
mation, we applied DFCM and the other methods to each
of the Affymetrix Latin Square data sets, and evaluated
their performance characteristics using ROC/AUC analy-
sis. The GoldenSpike data set was not used for this com-
parison because of the controversy around this data set
[15,16]. Once the background is corrected using DFCM,
the data are normalized using quantile normalization and
summarized with median polish.

In order to compare the performance of DFCM with other

commonly used methods, we examined ROC curves and
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Table 2: Average AUC for RMA, RMA-noBG, MAS 5.0, dChip,
and PLIER for detection of spiked-in genes in the Affymetrix
Latin Square spikein experiments, according to the value of d,
which is related to the log base 2 fold change between
experiments.

d DFCM RMA RMA-noBG MAS5 dChip  PLIER

Average AUC for the HG-U95Av2 Latin Square Spike-In Data Set

I 0732 0715 0.721 0.063 0572  0.062
2 0871 0869 0.918 0.167 0.803 0316
3 0.936 0935 0.935 0.484 0.886  0.629
4 0997 0994 0.986 0.798 0948 0769
5 1.000 099 0992 0916 0.980 0.853
6 1.000 1.000 1.000 0.967 0.987 0876
7 1.000 1.000 1.000 0.981 0.999 0876
Average AUC for the HG-U|33A Latin Square Spike-In Data Set

I 0768 0738 0734 0.060 0.600  0.365
2 0.858 083l 0.8l12 0.307 0709 0752
3 0935 094 0908 0.561 0.38l1 0.883
4 0934 0.964 0.964 0.837 0913 0951
5 0983 09% 0983 0.939 0.971 0.985
6 0999 0998 0.9% 0.968 0.989  0.994
7 0999 0.999 0.999 0.978 0972 099

Larger values of d correspond to larger fold changes among spiked-in
transcripts between pairs of experiments. Eighteen spike-in probes
sets were used for the HG-U95Av2 experiment, and 64 spiked-in
probe sets were used for the HG-U133A to calculate true and false
positives, as discussed in Methods. To calculate the AUCs, the
number of false positives was set to 100 for the HG-U95Av2
experiment, and 200 for the HG-U33a experiment. Numbers in bold
indicate the best value for each row.

tests show that the background corrected signal is clearly
not exponentially distributed for any of the data studied
here. These observations lend credibility to the notion
that preprocessing approaches should not rely heavily on
distributional assumptions.

There is some evidence that the gene distributions within
groups are normally distributed after preprocessing with
MBEI and MAS 5.0 [25]; and these distributions are
indeed relevant for the purposes of testing the differential
expression of genes with parametric methods such as the
t-test. However, we are concerned in this paper with the
distribution of the background noise, and not with the
distribution of individual probes. In our framework, the
background noise results from a combination of auto-
flourescence (a constant) and non-specific hybridization.
As non-specific hybridization is not likely to be gene (and
thus probe) specific, it is reasonable to model it with a glo-
bal distribution [26].

Recently, it has been argued that the assumption that
intensity values from a microarray study are random sam-
ples from any statistical distribution is seriously flawed
[27]. The notion of a random sample implies independ-
ence of the intensity values, or at least that the depend-
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ence structure is sufficiently weak so that the random
sample assumption is plausible. However, the depend-
ence structure among genes, and the probe sets that inter-
rogate them is quite complicated and, in some cases,
strong. In this light, a nonparametric approach to back-
ground correction is a good alternative. DFCM does not
make any assumptions on the dependency structure of the
PM or MM intensities. This is manifested in the fact that
linear interpolation is used to correct for background with
small intensities. With larger intensities, the estimated
background mean is simply subtracted because the impact
of background noise is minor for the larger intensities.

DFCM uses q2th percentile of the MM signal correspond-
ing to the smallest q1 percentage of PM intensities to esti-
mate background noise. The original intent of the MM
probes was to provide a measure of non-specific hybridi-
zation that could be subtracted from the PM intensities,
leaving the true signal. MAS 5.0 was developed under this
assumption. It should be noted that the use of PM values
alone could be justified by the noisiness and lack of valid-
ity of the MM measurement [3]. For example, approxi-
mately one-third of the MM intensities are greater than
their corresponding PM intensities, and this tends to be
constant across all Affymetrix platforms |3]. Furthermore,
the MM measurements tend to be highly correlated with
the corresponding PM measurements, indicating that the
MM probes are either cross hybridizing to the incorrect
gene or non-specifically hybridizing to the correct gene.
Therefore MM probes are imperfect predictors of non-spe-
cific binding [28]. Thus, PM signal correction through
MM subtraction has been largely rejected in the field.

There is a biochemically defensible rationale for estima-
tion of background noise using DFCM. By selecting the
lowest q1 percent of PM, we ensure that non-specific
hybridization will not be an issue. However, there could

Table 3: Number of GO terms with p-values less than 10-'%for
four pre-processing algorithms, according to CLASSIFI on the
GSE2350 data. Larger numbers indicate better performance.

Normalization Background Correction Methods

DFCM RMA None MAS 5
Loess 86 87 88 57
Quantile 48 47 50 60
Scale 83 80 76 24

To examine the effect of normalization on the results, quantile
normalization, scale normalization (as defined for the MAS 5.0
algorithm) or loess was used in combination with each of the
background methods discussed in this paper. All methods (except for
MAS 5.0) used median polish summarization. Differentially expressed
genes were selected using two-sample t-tests. The methods GCRMA,
dChip and PLIER could not be used because their background
correction, normalization, and summarization algorithms cannot be
separated easily.
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and MM within a probe pair. Therefore, it would be better
to use "nonspecific hybridization" rather than the
observed intensities. The difference between the observed
intensity and the unknown nonspecific hybridization rate
might be of practical importance.

Second, any background correction method based on
assumptions that the background noise is normally dis-
tributed and that the real signal is exponentially distrib-
uted may not be valid for any given array platform.
Testing the distributional assumptions for real data is
impossible, since we cannot know what is background
and what is signal. Third, it is clear that we need to
develop an understanding of the reasons certain methods
perform better on certain platforms, and the role that
non-specific hybridization and cross-hybridization play
in the observed intensities from microarray data. Finally,
the fact that different methods perform better (or worse)
on different platforms indicates that no one method may
be a panacea for all preprocessing needs. However, in
order to test this conjecture, more spike-in data sets on a
variety of platforms are necessary, as well as performance
measures for use on real data sets. Automated methods for
choosing the best method to analyze a particular microar-
ray data set would be an important contribution.
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