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ABSTRACT

Sanchez, Kiara, A Parameter Sensitivity Analysis on a Simple Model of Stratospheric Dy-
namics. Master of Science Thesis, Department of Mathematics and Statistics, May 2020,
Sam Houston State University, Huntsville, Texas.

With the aim of understanding what drives the behavior of the stratospheric polar vor-

tex in the Northern Hemisphere, we conduct a parameter sensitivity analysis on a simple

model of stratospheric dynamics. This research will allow us to understand when and which

parameters exert significant influence on the overall dynamics. Thus giving way to what

potentially might drive the changes in the stratospheric polar vortex.
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CHAPTER 1

Introduction and Motivation

1.1 A Brief Background on the Atmosphere

The atmosphere is vertically divided into four horizontal layers. The first being the

troposphere which extends from the earths surface up to about 15km altitude. Most of

earths weather occurs in the troposphere [1]. The stratosphere extends from the top of the

troposphere (known as the tropopause) up to about 50 km altitude. The stratopause serves

as the upper bound of the stratosphere and above the stratopause is the mesosphere which

extends up until about 85-90km. The mesopause bounds the mesosphere and above it is

the thermosphere which extends to about 600km high [1].

The forces that act on the parcels of air in the atmosphere are the pressure gradient force,

the force of gravity, and the force of friction (or viscosity). The Coriolis force changes the

direction of the motion of wind in the atmosphere, but has no influence on speed. In the

northern hemisphere specifically, the Coriolis force acts to the right of the wind direction

[8]. "The approximate balance between the pressure gradient force and the Coriolis force

gives us geostrophic [wind] [8]," which provides us with a reasonable starting point for

modeling the actual atmospheric wind, at least outside the tropics. But this idealization

must be refined in order to understand the evolving dynamics of polar vortices, since in

a broad sense, atmospheric circulation is driven by temperature and pressure gradients

[5]. These effects, along with gravity and viscosity, are the starting point for most partial

differential equation models for atmospheric phenomena. Here we focus on the Arctic

polar vortex within the stratosphere.
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1.2 The Stratospheric Polar Vortex in the Northern Hemisphere

Many of the drastic changes in weather that have been observed in recent years have

been attributed to climate change. It is common that when winter days are warmer than

usual, and summer days are hotter than usual, people attribute such unusual warmth to

global warming. Though, when extreme cold is experienced, people tend to question where

is global warming, if it is getting colder than usual? In their paper "What is the Polar Vortex

and How Does It Influence Weather?" Darryn W. Waugh, Adam H. Sobel, and Lorenzo

M. Polvani claim that more recently, especially after the winter of 2014, climatologists

and weathermen have attributed this extreme cold to the polar vortex [9]. They go on to

explain how attributing such cold to the polar vortex is misguided and misleading, based

on differences in hemispheres and layers of the atmosphere.

In particular, Waugh, Sobel, and Polvani begin by clarifying the existence of a po-

lar vortex in the northern hemisphere and the existence of another distinct polar vortex in

the southern hemisphere. Thus, referring to the polar vortex as a singular phenomena is

both misguided and misleading. In both the northern hemisphere and in the southern hemi-

sphere, there exists a polar vortex in the troposphere and another one in the stratosphere [9].

Reports on the weather typically focus on events within the troposphere, but the vortices

within this layer are not completely independent of changes in the stratosphere.

All of the polar vortices are natural parts of the earth’s climate system. They have

always existed. Waugh, Sobel and Polvani claim that a more informed answer is that some

of these extreme weather events may be linked to a shift in the location of the tropospheric

polar vortex and/or the stratospheric polar vortex since, "the larger topographic and land-

sea contrasts in the northern hemisphere generate stronger upward propagating waves than
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in the southern hemisphere, causing the northern stratospheric vortex to be weaker and

more distorted than its southern counterpart [9].” Hence, this paper will focus on studying

the stratospheric polar vortex in the northern hemisphere.

As noted before, atmospheric circulation is driven by both pressure and temperature

gradients. Hence, the temperature gradient in the winter is normally strong, as the poles

are typically much colder than the tropics, which keeps the jet stream and subsequently the

tropospheric polar vortex where one would normally expect. However, as we have seen in

more recent years, the poles are warming at a much faster rate than the rest of the earth

due to climate change. Hence, the temperature gradient is not as strong. This weakening of

the temperature gradient is suspected to be weakening the polar front, or jet stream, which

typically keeps the tropospheric polar vortex above the tropical latitudes. However, since

this temperature gradient has lessened, the jet stream has weakened, and it is suspected

that this has allowed the tropospheric polar vortex to travel further south than we would

normally expect - leading to the extreme cold weather events that we have experienced in

the northern parts of the United States.

There is no clear connection between how the stratospheric polar vortex directly influ-

ences the weather that we experience here on earth [9]. Thus fully understanding strato-

spheric dynamics is the key first step for any hopes of understanding how it exerts influence

on weather and possibly how it causes changes in the tropospheric polar vortex.

It is important to note that Rossby waves, also known as planetary waves, are the fun-

damental disturbances in the stratosphere. In his work "A Simple Model of Stratospheric

Dynamics Including Solar Variability," Alexander Ruzmaikin provides a simple dynamic
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model consisting of three ordinary differential equations to study the interaction of plane-

tary (or Rossby) waves with zonal winds in the stratosphere [7]. In the next chapter we will

analyze Ruzmaikin’s model and its development.



5

CHAPTER 2

Modeling a Stratospheric Polar Vortex

2.1 Stratospheric Vacillation Cycles

In 1976, James R. Holton and Clifford Mass published Stratospheric Vacillation Cy-

cles. In this work, they note that, "it is generally agreed that most planetary waves in the

stratosphere are produced and maintained by vertical propagation of wave energy from the

troposphere," and many dynamical and mechanistic models have confirmed such phenom-

ena. Though, on the other hand, there are wave-mean flow oscillations in the stratosphere

which occur on a 1-4 week cycle throughout the winter which at the time were observed

through data and some stratospheric simulation models, but for which an origin had not

yet been fully understood. Hence, they developed and studied a simple mechanistic model

to show that, "wave-mean flow oscillations in the stratosphere may exist even when the

tropospheric forcing is completely steady." Holton and Mass used a quasi-geostrophic b -

plane channel model with a sine jet meridional variation for their mean zonal wind. They

assumed that the mean zonal flow was confined to a b -plane channel centered at 60�N with

meridional extent of 60� latitude. They then go on to define specific upper, lower, and side

boundaries for their model. After analyzing the solution regimes for their model, Holton

and Mass conclude that their model conveys that large-scale stratospheric motions can in-

deed experience vacillations even when the tropospheric forcing is steady [4].
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2.2 Bifurcation Properties

In the 1987 paper, Bifurcation Properties of a Stratospheric Vacillation Model, Shigeo

Yoden explores the model mentioned in the previous section. Yoden assumes that the New-

tonian heating is zero at the upper boundary and that the amplitude of the wave forcing at

the bottom boundary is constant (to replicate steady forcing). Further, he decomposes the

equation for the conservation of quasi-geostrophic potential vorticity into two differential

equations for computational convenience. Applying the method of finite differences, he

reduces the model to a set of 81 nonlinear ordinary differential equations. With this sys-

tem in hand, Yoden completes a full bifurcation analysis of the system, including, but not

limited to finding the critical points of the system and analyzing their stability and type.

He finds that there are three branches of steady solutions, two of which coexist at certain

values of the wave forcing which represent the system being close to radiative equilibrium

and the system undergoing vacillations, respectively. The periodic solutions Yoden finds

come from the steady solutions undergoing a Hopf bifurcation [10].

2.3 Seasonal and Interannual Variations of the Stratospheric Circulation

In 1990, Yoden published further work that he did on the model developed by Holton

and Mass. This time, in An Illustrative Model of Seasonal and Interannual Variations of the

Stratospheric Circulation, Yoden varied the radiative heating periodically to try to mimic

and understand seasonal and interannual variability of the stratosphere. Yoden notes that,

"seasonal variation is the atmospheric response to the annual forcing by solar radiation."

Yoden also recognizes that there is large interannual variability in the stratosphere during

winter in the high latitudes of the northern hemisphere that is closely related to whether
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a stratospheric sudden warming occurs in the winter. He goes on to explain that this in-

terannual variability of the stratosphere has been attributed to a number of phenomena,

including but not limited to variations of the boundary conditions like the influence of the

quasi-biennial oscillation, variations of planetary waves in the troposphere, variations of

the intensity of the Hadley circulation, and finally, variations of solar activity. For all of the

phenomena he explains, Yoden contends that there are not enough observations to confirm

what causes the interannual variability. Hence, in this paper he uses the simple wave-zonal

flow interaction model that he used in his 1987 paper, but this time to illustrate the sea-

sonal and interannual variations of the stratosphere in both hemispheres. His analysis of

the model reveals that the response of the stratosphere to radiative heating depends on the

magnitude of wave forcing at the bottom boundary. That is, when the wave forcing is small,

"there are rapid transitions of the zonal mean quantities after the equinoxes." During the

transitions, wave activity is high and has a minimum in midwinter. But, when the wave

forcing is large, there is always vacillation and a series of stratospheric sudden warmings.

Yoden notes that a further study with a more realistic model should be conducted in order to

get a more valid explanation for the seasonal and interannual variations of the stratosphere

[11].

2.4 A Simple Model of Stratospheric Dynamics Including Solar Variability

The paper, A Simple Model of Stratospheric Dynamics Including Solar Variability, by

Ruzmaikin, et al., provides a simple dynamic model for studying stratospheric dynamics

including planetary waves, zonal wind, seasonal variations and solar variability [7]. The

authors use the model that Holton and Mass created and Yoden developed, and further
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simplified it into three ordinary differential equations by considering only one vertical layer

within the stratosphere. They first follow the same development of the model as in [4],

[10] and [11]. In these previous papers, a specific location for the lower boundary is not

defined. They claim that the specification of such a location does not quantitatively affect

the model, however, it may change how one qualitatively interprets the results. Hence, this

new model identifies a lower boundary condition at z = 0, which allowed a reduction of

the system to just the three ordinary differential equations. Similar to Yoden, Ruzmaikin

then applies the method of finite differences, but instead of Yoden’s detailed approach, with

only the simplest case where only three distinct z-values are used within the stratosphere –

one at the lower boundary (z = 0), one at the upper boundary, and one intermediate value,

denoted z = zT . This results in the ability to reduce the system to three ordinary differential

equations [7]:

Ẋ =�X/t1 � rY + sUY �x Y0 +dwẎ0, (1)

Ẏ =�Y/t1 � rX + sUX +z Y0U, (2)

U̇ =�(U �UR)/t2 �hY0Y �dLL̇. (3)

We will be using this system as the basis of our study. In Table 1, we define the variables

and parameters within the model. Unless otherwise noted, parameter values are found in

[7].

Using a simple model such as this one allows us to investigate it analytically and can

provide us with a basic physical intuition of stratospheric dynamics without the need for

large computer resources. As Ruzmaikin mentioned, this system allows the study of the

long-term dynamics/behavior by revealing the following: (1) the interaction between waves

and zonal wind, (2) some of the same properties Holton and Mass observed, and (3), the
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x(t) Azimuthal coordinate
y(t) Latitudinal coordinate
u(t) Wind speed
t1 Dimensionless time parameter, approx. 1.060⇥107

t2 Dimensionless time parameter, approx. 2.624⇥106

r Dimensionless frequency parameter, approx. 7.276⇥10�6

s Dimensionless parameter, inversely proportional to length, approx. 3.083⇥10�7

x Dimensionless scaling parameter, approx. 1.492⇥10�3

z Dimensionless parameter, inversely proportional to speed, approx. 2.784⇥10�3

h Dimensionless parameter, inversely proportional to length, approx.2.605⇥10�13

dw Dimensionless time parameter, approx. 5.223⇥103

dL Dimensionless parameter, directly prop. to time and length, approx. 3.128⇥103

Y0(t) Wave stream function at the lower stratospheric boundary
k Wavenumber corresponding to the azimuthal coordinate x
l Wavenumber corresponding to the latitudinal coordinate y

UR Mean radiative zonal wind
f0 Coriolis parameter at latitude 60�N
b Meridional derivative of the Coriolis parameter
H Mean scale height

h(t) Wave Amplitude
g Gravitational acceleration

L(t) Gradient of the mean radiative zonal wind
N2 Buoyancy parameter
r Density
a Newtonian cooling/heating rate

Table 1: State variable, parameters, and functions used within the model (1)-(3).

transition between atmospheric states which further reveals the occurrence of warm and

cold winters [7]. The reduced system also allows for the study of long-term behavior rather

than just short-term behavior, which reveals more of the overall dynamics.

Stratospheric dynamics are largely influenced by an interaction between vertically prop-

agating waves from the troposphere and winds in the stratosphere. Hence, Ruzmaikin’s

model is well suited for studying the dynamics of the stratosphere because it incorporates

planetary waves, zonal wind, and their interaction.
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2.5 Explicitly Defining Functions Within the Model

Ruzmaikin, Lawrence, and Cadavid did not explicitly define a function for L(t). Al-

though, they noted that L(t) = dUR
dz (t) which allowed us to look back into the foundational

papers and find an explicit functtion for L. In his paper An Illustrative Model of Sea-

sonal and Interannual Variations of the Stratospheric Circulation, Shigeo Yoden defined
dUR
dz (t) = 0.75�2.25coswat[⇥10�3s�1] where wa =

2p

365 is a frequency of annual variation,

and the unit of time t is day. Similarly, Ruzmaikin, Lawrence, and Cadavid did not define

Y0 explicitly. However, they did state that Y0 = g
f0

h(t). Thus, we were able to find a

function defined as h, and use it in this expression to have a function for Y0. In that paper,

Yoden defined hB(t) = 130+30coswit[m] with 0.0459 day�1  wi  0.0823 day�1 [11].

UR(z, t) is the mean zonal wind in radiative equilibrium and hB(t) = Y(0, t) f0
g is the

wave amplitude at the bottom boundary where f0 is the Coriolis parameter and g is the

gravitational acceleration [7]. Hence it is of critical importance that we preserve the behav-

ior of these functions in our systems of differential equations since the physical role they

play in driving stratospheric dynamics is important. In the next section, we illustrate that

role numerically.

2.6 Transient and Steady-State Properties of the State Variables

The following three figures display the solutions, X , Y , and U , to the equations 1, 2, and

3, respectively. These solutions were generated using the ODE45 function in Matlab, all

with an initial condition of zero. The plots reveal that there is a periodicity to the dynamics,

which is in fact tied to the functions Y0 and L. However, all solutions become close to

a steady-state value within one year. Moreover, each solution includes a sharp gradiant

near t ⇡ 50, which led to instability in the sensitivity analysis. Based on the parameter

values in Table 1 and the nature of the transient solutions observed within the first 365

days, it appears that the parameters dw and dL, coefficients on the derivatives of Y0 and L,

respectively, have the most influence on the dynamics of the system initially.
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Figure 1: Plot of the azimuthal coordinate variable over time.
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Figure 2: Plot of the latitudinal coordinate variable over time
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Figure 3: Plot of the wind speed variable over time

In the next section dimensional analysis is performed on the model. This allows us to

confirm that the functions Y0 and L were well suited to be used in Rozmaikin, Lawrence,

and Cadavid’s model.

2.7 Dimensional Analysis

Dimensional analysis allows one to understand the relationships of the quantities in the

equations and their dimensional homogeneity [6]. What follows is the dimensional analysis

we performed on the system of ODEs with the functions L, h, and Y0 defined previously.

We begin with the material properties listed in Table 1, which are then used to construct

parameters in our system of ODEs as described in [7]. These are then used to validate each

term with the differential equations.

[ f0] =
1
T , [g] = L

T 2 , [zT ] = L, [N] = 1
T , [k] = 1

L , [l] = 1
L

[L] = 1
T , [b ] = 1

LT , [h] = L, [UB] =
L
T , [a] = 1

T , [H] = L
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The equations a(1)�a(9), and b(1)�b(4) below are listed in the appendix of [7]. They

are used to then develop the parameters used directly in the model. Thus we first had to

perform a dimensional analysis on these relationships to then determine the dimensions of

the parameters in the differential equations.

a(1) = k2 + l2 +
f 2
0

N2 (
1

4H2 +
8
z2

T
)

[a(1)] = ( 1
L)

2 +( 1
L)

2 +
( 1

T
2
)

( 1
T

2
)
( 1

L2 +
8

L2 ) = ( 1
L)

2 +( 1
L)

2 +1( 1
L2 +

1
L2 )

a(2) = f 2
0

N2 [
1

2H
∂a

∂ z �a( 1
4H2 +

8
z2

T
)]

[a(2)] = ( 1
T

2
)

( 1
T

2
)
[ 1

L
1

T L �
1
T (

1
L2 +

1
L2 )] = 1[ 1

T L2 � 1
T L2 +

1
T L2 ]

a(3) =�kb

[a(3)] = 1
L

1
LT = 1

L2T

a(4) = 8k
3p

f 2
0

N2 (
2
zT
� 1

2H )

[a(4)] = 1
L
( 1

T
2
)

( 1
T

2
)
( 1

L �
1
L) =

1
L ⇥1( 1

L �
1
L)

a(5) = 8k
3p

f 2
0

N2 (
4
z2

T
+ 1

HzT
)

[a(5)] = 1
L(

1
T

2
)( 1

T
2
)( 1

L2 +
1

LL) =
1
L(

1
L2 +

1
L2 ) =

1
L3 +

1
L3

a(6) = 8k
3p

[k2 + f+02

N2 ( 1
4H2 +

4
z2

T
� 1

HzT
)]
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[a(6)] = 1
L [

1
L2 +

( 1
T

2
)

( 1
T

2
)
( 1

L2 +
1

L2 � 1
LL)] =

1
L3 +

1
L3 +

1
L3 � 1

L3

a(7) = f 2
0

N2
g

zT f0
(�∂a

∂ z +
4a

zT
)

[a(7)] = ( 1
T

2
)

( 1
T

2
)

L
T 2

L 1
T
( 1

T L +
1
T
L ) = 1 L

T 2
T
L (

1
T L +

1
T

1
L) =

1
T 2L +

1
T 2L

a(8) = 4 f 2
0

z2
T N2

f
f0

[a(8)] =
1

T 2

L2 1
T 2

⇥
L

T 2
1
T
= 1

T 2
T 2

L2
L

T 2
T
1 = 1

LT

a(9) = 32k
3pz2

T

f 2
0

N2
g
f0

[a(9)] =
1
L

L2

1
T 2
1

T 2

L
T 2
1
T
= 1

L3
L
T = 1

L2T

b(1) = l2 +
f 2
0

N2 (
4
z2

T
+ 1

HzT
)

[b(1)] = 1
L2 +

1
T 2
1

T 2
( 1

L2 +
1

L2 ) =
1

L2 +
1

L2 +
1

L2

b(2) = f 2
0

N2 [
1
zT

∂a

∂ z �a( 4
z2

T
+ 1

HZT
)]

[b(2)] =
1

T 2
1

T 2
[ 1

L
1

T L �
1
T (

1
L2 +

1
L2 )] =

1
T L2 � 1

T L2 +
1

T L2

b(3) =�16kl2

3pz2
T

f 2
0

N2
g
f0

exp zT
2H

[b(3)] =
1
L

1
L2

L2

1
T 2
1

T 2

L
T 2
1
T

L
L = 1

L3
1

L2
L

T 2
T
1 = 1

L5
L
T = 1

T L4
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b(4) =� f 2
0

N2 (
1

2H � 2
zT
)

[b(4)] = 1( 1
L �

1
L)

Now we can calculate the dimensions of the parameters in the model. The formulas of

the parameters using a(1)�a(9) and b(1)�b(4) listed below are employed again from the

appendix of [7].

[z ] = [a(9)
a(1) ] =

1
L2T

1
L2

= 1
L2T

L2

1 = 1
T [h ] = [b(3)

b(1) ] =
1

T L4
1

L2
= 1

T L4
L2

1 = 1
T L2

[t1] = [a(1)
a(2) ] =

1
L2
1

L2T

= 1
L2

L2T
1 = T [s] = [a(6)

a(1) ] =
1

L3
1

L2
= 1

L3
L2

1 = 1
L

[r] = [a(3)+a(4)L+a(5)UB
a(1) ] =

1
L2T

+ 1
L2

1
T +

1
L3

L
T

1
L2

=
1

L2T
+ 1

L2T
+ 1

L2T
1

L2
= 1

L2T
L2

1 = 1
T

[x ] = [a(7)
a(1) ] =

1
LT 2

1
L2

= 1
LT 2

L2

1 = L
T 2 [t2] = [b(1)

b(2) ] =
1

L2
1

L2T

= 1
L2

L2T
1 = T

[dw] = [a(8)
a(1) ] =

1
LT
1

L2
= 1

LT
L2

1 = L
T [dL] = [b(4)

b(1) ] =
1
L
1

L2
= 1

L
L2

1 = L

Now we use the dimensions calculated above along with

[X ] = length2

time2 [Y ] = length2

time2 [U ] = length
time [Y0] = length [Ẏ0] =

length
time

in order to determine the dimensional homogeneity of the equations in the model:

[Ẋ ] = [
�X
t1

� rY + sUY �x Y0 +dwẎ0]

=
L2

T
T

� 1
T

L2

T
+

1
L

L
T

L2

T
� L

T 2 L+
L
T

L
T

=
L2

T 2 �
L2

T 2 +
L2

T 2 �
L2

T 2 +
L2

T 2
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[Ẏ ] = [
�Y
t1

+ rX � sUX +z Y0U ]

=
L2

T
T

+
1
T

L2

T
� 1

L
L
T

L2

T
+

1
T

L
L
T

=
L2

T 2 +
L2

T 2 �
L2

T 2 +
L2

T 2

[U̇ ] = [
�U
t2

+
UR

t2
�hY0Y �dLL̇]

=
L
T
T
+

L
T
T
� 1

T L2 L
L2

T
�L

1
T 2

=
L

T 2 +
L

T 2 �
L

T 2 �
L

T 2

As one can observe, Ẋ , Ẏ , and U̇ are dimensionally homogeneous. We confirmed Ruz-

maikin’s claim that Ẋ and Ẏ both have dimension L2

T 2 [7]. Now that we know the dimensions

of the parameters and variables in the equations, this allows us to non-dimensionalize them.

Non-dimensionalization gives us a huge advantage when solving the differential equations

and building sensitivity functions because it reduces the computation time. In the next

chapter we will develop and simulate all of the sensitivity functions.
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CHAPTER 3

Sensitivity Analysis

In the paper by Ruzmaikin, et al., the authors make the assumption that that the parame-

ters h and L drive the dynamics of the system. Hence they assume that the other parameters

are more robust, and do not significantly influence the dynamics of the system [7]. This

assumption is justified by noting that most of the other parameters are well-fixed (e.g., grav-

itational acceleration g). The overarching objective of my research is to test these claims,

and see if Ruzmaikin’s assumptions are justified. The following questions will drive my

research:

• When does each parameter in the model exert significant influence on the overall

dynamics?

• Which parameters in the model influence the long-term behavior most during the

course of a simulation where each parameter value is chosen at random within the

region of feasibility?

We will answer such questions by conducting a parameter sensitivity analysis, detailed in

section 3.3.

Understanding which parameters drive the the most changes in the stratosphere will

tremendously contribute to the work being done to understand what drives the changes

in the northern hemisphere’s polar vortex. Knowing which parameters we should try and

understand more allows us to make studies of the atmosphere, in particular the stratosphere,

more feasible by enabling the studies to be more focused, and direct, minimizing the tools

necessary to conduct such research and thus, minimizing the costs associated with such

research. Further, the sensitivity functions themselves can focus the data collection process

by identifying when (during the course of a given season) we should try to collect data for

the most relevant parameter values. This makes the parameter estimation process much
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more likely to be successful, since the data would be collected at a time when the system is

most sensitive to changes in its value. If scientists are able to conduct studies and research

that ultimately will provide us real life data, this data will serve to validate or debunk many

of the existing atmospheric models. Another, more applicable advantage of my research

is that by understanding this phenomena, (i.e., the polar vortex) individuals, organizations

and agencies with existing efforts into reducing the anthropogenic contributions to climate

change would be more informed and thus, their efforts would become more focused. Lastly,

the outcomes of my research could help scientists in predicting what changes and behavior

we should expect in the future, helping us better prepare for such life threatening events.

3.1 Sensitivity Functions

First, a numerical ODE solver in Matlab was used to solve the system of ordinary dif-

ferential equations outlined in Chapter 2 with equations (1), (2), and (3). This will produce

the appropriate functions for x, y, and u. Doing so will require that I simulate L(t), L̇(t),

Y0, and Ẏ0 appropriately, which was also performed in Matlab. We then build a dynamical

system for the sensitivity functions associated with each parameter, enabling a thorough

sensitivity analysis to be conducted in tandem with the original state variable equations.

Conducting a parameter sensitivity analysis allows us to, "evaluate the effects of param-

eter variations on the time course of model outputs and to identify the parameters to which

the model is most/least sensitive." [2] Further, it will allow us to determine the optimal

times for data collection, in that time periods of high sensitivity are more likely to provide

useful information for estimating a particular parameter value.

In order to compute parameter sensitivity, we first compute the sensitivity functions

associate with each parameter. The sensitivity functions for a generic parameter, say q ,
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and a differential equation of the form ẋ = f (x; t;q) are defined as follows:

ṡ(t) = fxs(t)+ f
q

(4)

s(0) = 0, (5)

where f would describe the right side of each differential equation (1), (2), and (3). Equa-

tion (5) denotes the suggested initial condition of 0 for the sensitivity functions. The deriva-

tives of f with respect to x and q are fx = ∂ f/∂x and f
q

= ∂ f/∂q , respectively. Hence,

I will have to calculate the partial derivatives of each differential equation with respect to

each parameter, producing upwards of about 27 sensitivity functions. With these functions

in hand, we are able to build a dynamical system for the sensitivity functions associated

with each parameter [2].

First we need the partial derivative of (1), (2), and (3) with respect to x, y, and u,

respectively. We get the following:

∂ Ẋ
∂X

=� 1
t1
,
∂Ẏ
∂Y

=� 1
t1
,
∂U̇
∂U

=� 1
t2
,

To illustrate our general process, we now display the development of the sensitivity func-

tions for the parameter r.

∂ Ẋ
∂ r =�Y ∂Ẏ

∂ r = X ∂U̇
∂ r = 0

) ṠX
r =� 1

t1
⇥SX

r �Y , ṠY
r =� 1

t1
⇥SY

r +X , ṠU
r =� 1

t2
⇥SU

r .

Since r only appears in the Ẋ and Ẏ equations, it is expected that it does not have any im-

pact on U . Hence the SU
r plot is constantly zero, as observed in the next figure. Sensitivity

for x and y increases in magnitude as time goes on.
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Figure 4: Sensitivities with respect to r

Next is the development of the sensitivity functions for the parameter s.

∂ Ẋ
∂ s =UY ∂Ẏ

∂ s =�UX ∂U̇
∂ s = 0

ṠX
s =� 1

t1
⇥SX

s +UY ṠY
s =� 1

t1
⇥SY

s �UX ṠU
s =� 1

t2
⇥SU

s

Since s only appears in the Ẋ and Ẏ equations, it is expected that there is no sensitivity with

respect to it in U . Hence the SU
s plot is constantly zero. It also holds very little influence on

the other two state variables, only showing a moderate increase in magnitude as time goes

on for the x-variable.
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Figure 5: Sensitivities with respect to s

Now we examine the development of the sensitivity functions for the parameter t1, our

first non-dimensionalized time parameter.

∂ Ẋ
∂t1

=�X ∂Ẏ
∂t1

=�Y ∂U̇
∂t1

= 0

ṠX
t1
=� 1

t1
⇥SX

t1
�X ṠY

t1
=� 1

t1
⇥SY

t1
�Y ṠU

t1
=� 1

t2
⇥SU

t1

Since t1 only appears in the Ẋ and Ẏ equations, it is expected that there is no sensitivity

with respect to it in U . Hence the SU
t1

plot is constantly zero. Similar to the plots for the

parameter r, we observe increasing sensitivity in the coordinate variables as time goes on.

In the development of the sensitivity functions for the parameter t2, we notice that many

terms are identically zero, which has an obvious effect in our plots.



22

0 10 20 30 40 50 60 70 80
0

10

20

0 10 20 30 40 50 60 70 80
-0.01

-0.005

0

0 10 20 30 40 50 60 70 80
-1

0

1

Figure 6: Sensitivities with respect to t1

∂ Ẋ
∂t2

= 0 ∂Ẏ
∂t2

= 0 ∂U̇
∂t2

=�U +UR

ṠX
t2
=� 1

t1
⇥SX

t2
ṠY

t2
=� 1

t1
⇥SY

t2
ṠU

t2
=� 1

t2
⇥SU

t2
�U +UR

Since t2 only appears in the U̇ equation, it is expected that there is no sensitivity with re-

spect to it in X or Y . Hence the SX
t2

and SY
t2

plots are constantly zero in the next figure. We

notice a moderate increase in sensitivity over time for the wind speed u.

For the parameter dw,

∂ Ẋ
∂dw

= Ẏ0, ∂Ẏ
∂dw

= 0, and ∂U̇
∂dw

= 0,

yielding the following sensitivity derivatives:
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Figure 7: Sensitivities with respect to t2

ṠX
dw

=� 1
t1
⇥SX

dw
+ Ẏ0, ṠY

dw
=� 1

t1
⇥SY

dw
, ṠU

dw
=� 1

t2
⇥SU

dw
.

Since dw only appears in the Ẋ equation, it is expected that there is no sensitivity with

respect to it in Y or U . Hence the SY
dw

and SU
dw

plots are constantly zero. Moreover, the

sensitivity for the y-coordinate is so insignificant that all three plots appear to be constantly

zero, so we omit them here.

Similarly we develop of the sensitivity functions for the parameter dL:

∂ Ẋ
∂dL

= 0 ∂Ẏ
∂dL

= 0 ∂U̇
∂dL

=�L̇

ṠX
dL

=� 1
t1
⇥SX

dL
ṠY

dL
=� 1

t1
⇥SY

dL
ṠU

dL
=� 1

t2
⇥SU

dL
� L̇
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Figure 8: Sensitivities with respect to dL

Since dL only appears in the U̇ equation, it is expected that there is no sensitivity with re-

spect to it in X or Y . Hence the SX
dL

and SY
dL

plots are constantly zero in the previous figure.

As with dw, the third sensitivity plot also shows very little effect on the variable u, with

only a very minor increase in magnitude as time goes on. It is worth noting that the sensi-

tivity plots for the parameters dw and dL were somewhat surprising given their magnitude

in comparison with other parameters in the model. This indicates that the choice of models

for the functions Y0 and L will have an extremely significant impact on the dynamics, so

special attention is needed to correlate observable data with the functions used here.

Staying with the wind speed equation, we now present the development of the sensitiv-

ity functions for the parameter UR.
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∂ Ẋ
∂UR

= 0 ∂Ẏ
∂UR

= 0 ∂U̇
∂UR

= 1
t2

ṠX
UR

=� 1
t1
⇥SX

UR
ṠY

UR
=� 1

t1
⇥SY

UR
ṠU

UR
=� 1

t2
⇥SU

UR
+ 1

t2

As with the previous parameter, UR only appears in the wind speed equation and so there is

no sensitivity with respect to the coordinate variables x and y. A small increase in sensitivity

is observed over time with respect to the wind speed itself.
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Figure 9: Sensitivities with respect to UR

Continuing, we see a familiar patter in the development of the sensitivity functions for

the parameter h :
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∂ Ẋ
∂h

= 0 ∂Ẏ
∂h

= 0 ∂U̇
∂h

=�Y0Y

ṠX
h

=� 1
t1
⇥SX

h

ṠY
h

=� 1
t1
⇥SY

h

ṠU
h

=� 1
t2
⇥SU

h

�Y0Y

Since h only appears in the U̇ equation, it is expected that there is no sensitivity with re-

spect to it in X or Y . Hence the SX
h

and SY
h

plots are constantly zero in the figure. Again,

there is also very little sensitivity with respect to the wind speed as well, further illustrating

the strong impact in the choice of the model for L(t).
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Figure 10: Sensitivities with respect to h

Moving back to the differential equation for the latitude coordinate, we have the devel-

opment of the sensitivity functions for the parameter z :
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∂ Ẋ
∂z

= 0 ∂Ẏ
∂z

= Y0U ∂U̇
∂z

= 0

ṠX
z

=� 1
t1
⇥SX

z

ṠY
z

=� 1
t1
⇥SY

z

+Y0U ṠU
z

=� 1
t2
⇥SU

z
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Figure 11: Sensitivities with respect to z

Since z only appears in the Ẏ equation, it is expected that there is no sensitivity with respect

to it in X or U . Hence the SX
z

and SU
z

plots are constantly zero in the figure. Only a small

increase in the magnitude of the sensitivity occurs for SY
z

as time goes on.

Finally, we present the development of the sensitivity functions for the parameter x :

∂ Ẋ
∂x

=�Y0
∂Ẏ
∂x

= 0 ∂U̇
∂x

= 0

ṠX
x

=� 1
t1
⇥SX

x

�Y0 ṠY
x

=� 1
t1
⇥SY

x

ṠU
x

=� 1
t2
⇥SU

x
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Figure 12: Sensitivities with respect to x

Since x only appears in the Ẋ equation, it is expected that there is no sensitivity with re-

spect to it for Y or U . Hence the SY
x

and SU
x

plots are constantly zero in the figure. A

small increase in the magnitude of the sensitivity for the azimuthal coordinate is observed

as times goes on.

Treating the function Y0 as a constant given by its median value, we now develop the

sensitivity functions for this as though it were a parameter in the model, similar to the

approach taken in [7].

∂ Ẋ
∂Y0

=�x

∂Ẏ
∂Y0

= zU ∂U̇
∂Y0

=�hY

ṠX
Y0

=� 1
t1
⇥SX

Y0
�x ṠY

Y0
=� 1

t1
⇥SY

Y0
+zU ṠU

Y0
=� 1

t2
⇥SU

Y0
�hY
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Figure 13: Sensitivities with respect to Y0

Here we now see the significant impact of this function in all three differential equations,

especially as time goes on.

Likewise, we can develop the sensitivity functions for Ẏ0 by first computing the deriva-

tive of Y0 and then substituting its median value.

∂ Ẋ
∂ Ẏ0

= dw
∂Ẏ

∂ Ẏ0
= 0 ∂U̇

∂ Ẏ0
= 0

ṠX
Ẏ0

=� 1
t1
⇥SX

Ẏ0
�dw ṠY

Ẏ0
=� 1

t1
⇥SY

Ẏ0
ṠU

Ẏ0
=� 1

t2
⇥SU

Ẏ0

Since Ẏ0 only appears in Ẋ , it is expected that there is no sensitivity with respect to it in

Y or U . Hence the SY
Ẏ0

and SU
Ẏ0

plots are constantly zero in the next figure. However, as

with Y0 itself, its time derivative will have a very strong impact on the dynamics of our

azimuthal coordinate over time.
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Figure 14: Sensitivities with respect to Ẏ0

Finally, we develop the sensitivity functions for the function L̇ by computing the deriva-

tive of L(t) and taking its median value as a constant within our model:

∂ Ẋ
∂ L̇ = 0 ∂Ẏ

∂ L̇ = 0 ∂U̇
∂ L̇ =�dL

ṠX
L̇ =� 1

t1
⇥SX

L̇ ṠY
L̇ =� 1

t1
⇥SY

L̇ ṠU
L̇ =� 1

t2
⇥SU

L̇ �dL

Since L̇ only appears in U̇ , it is expected that there is no sensitivity with respect to it in X or

Y . Hence the SX
L̇ and SY

L̇ plots are constantly zero in the next figure. Only a minor increase

in the magnitude of sensitivity is observed in the wind speed equation. This provides some

justification for the choice in [7] to treat L as a constant and correlate it with the non-

dimensional frequency r and the appropriate values for UR in winter conditions. By doing



31

0 10 20 30 40 50 60 70 80
-1

0

1

0 10 20 30 40 50 60 70 80
-1

0

1

0 10 20 30 40 50 60 70 80
-0.015

-0.01

-0.005

0

Figure 15: Sensitivities with respect to L̇

this, their bifurcation analysis could then illustrate how key differences in the value of L

led to different equilibrium solutions.

In the next chapter we will summarize our results from this sensitivity analysis and

discuss the limitations we encountered during our study.
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CHAPTER 4

Conclusions

In the paper by Ruzmaikin, et al., they assumed that L and h have the most significant

influence on the overall dynamics of the model. In the previous chapter, Figure 13 demon-

strates how sensitive equations (1), (2), and (3) are with respect to Y0. This observation

validates the Ruzmaikin assumption regarding h, since Y0 = g
f0

h. Due to the fact that L

does not explicitly show up in any of the equations, we were unable to determine any direct

sensitivity to it. Although, L̇ is in U̇ and so we were able to compute its sensitivity, which

was of significantly lower magnitude.

We were also able to observe that Y grows in sensitivity with respect to r, whereas X is

less sensitive. Overall, s strongly influences X . t1 mostly influences X , r mostly influences

Y , and t2 has a significant influence on U .

Further, dL does not have significant influence on any of the equations. There is a very

small influence on U . Similarly, dw has no influence on any of the equations. The parame-

ters x , z , and similarly only have a very small influence on X , Y , and U , respectively.

Future work could include a sensitivity analysis on the initial conditions. Such work

would allow us to know if there is always low sensitivity at first, as we have seen here, or

if the initial conditions have a significant influence on the overall dynamics.
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CHAPTER 5

Limitations

Throughout this study we faced a number of limitations, or shortcomings that we could

not control. The first being a drastic difference in the time scale of the parameters. Physi-

cally, this makes sense. According to Saha, "motions in the atmosphere occur on different

space and time scales." [8] Although mathematically this presents issues with calculations

and accurate analysis, we were able to non-dimensionalize the parameters which helped to

mitigate this time scale problem. Without doing so, the differential equations often tended

to infinity and could not be solved. On this note, in [7], some of the parameter values were

non-dimensionalized and some were not, without any specifications as to which were and

which were not. This posed many problems when trying to solve the system because of the

huge time scale differences. Performing the dimensional analysis and considering Justin

Finkel’s work in his paper Path properties of climate transitions: a sudden stratospheric

warming case study simultaneously helped us solve this issue [3]. Once resolved, the Mat-

lab code ran much faster and much more accurately.

Second, there were no given initial conditions for the differential equations in the sys-

tem under study. Initial conditions specify a point that the solution curve (of the respective

differential equation) passes through [6]. Hence, initial conditions are critical for solving

the differential equation. To remedy this, we started each differential equation at zero.

As mentioned previously, Y0,Ẏ0,L and L̇ were not defined explicitly in Ruzmaikin’s

paper. Thus, we had to look back at other foundational papers to find such functions.

Though we were successfully able to do so, which helped with conducting the dimensional

analysis, we were unfortunately not able to include these functions in our sensitivity anal-

ysis. Our simulations there treat Y0,Ẏ0,L and L̇ as constant parameters. The values used

were values listed in [7].



34

In Figure 2 and 3, at t = 82.16502 the equations reach an extremely large slope that

caused our sensitivity solutions to tend to infinite magnitude. This resulted in Matlab pro-

ducing an error. Hence we had to stop the sensitivity simulations at t = 80. Future work

would include the use of an advanced stiff ODE solver that would provide better resolution.
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tion, Financial Math

CONFERENCES AND WORKSHOPS

• 2020 Joint Mathematics Meeting, American Mathematical Society, January 2020,
Denver, CO
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• The Field of Dreams Conference, The National Alliance for Doctoral Studies in
Mathematics, November 2019, St. Louis, MO

• Mathematics & Climate Research Network Summer School and Academic Year En-
gagement Program, July 2019, American Institute of Mathematics and National Sci-
ence Foundation, Durham, NC

• 2019 Industrial Mathematics/Statistics Modeling Workshop for Graduate Students,
July 2019, The Statistical and Applied Mathematics Institute, North Carolina State
University, Raleigh, NC

• 2019 Houston Summer School on Dynamical Systems, May 2019, The Department
of Mathematics at the University of Houston, Houston, TX

• Critical Issues in Mathematics Education 2019: Mathematical Modeling in K-16:
Community and Cultural Context, March 2019, Mathematical Sciences Research In-
stitute, Berkeley, CA

• 10th biannual Blackwell-Tapia Conference, November 2018, Institute for Computa-
tional and Experimental Research in Mathematics, Providence, RI

• 2018 SACNAS - The National Diversity in STEM Conference, October 2018, Henry
B. Gonzalez Convention Center, San Antonio, TX

GRANTS AND AWARDS

• American Mathematical Society
2020 Travel Funds to work the BIG Career Center at the 2020 Joint Mathematics
Meeting

• The Graduate School at Sam Houston State University
2020 Travel Funds to attend the 2020 Joint Mathematics Meeting

• College of Science and Engineering Technology at Sam Houston State University
2019 College of Science and Engineering Technology Graduate Achievement Schol-
arship
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• The Graduate School at Sam Houston State University
2019 The General Graduate School Scholarship

• The National Alliance for Doctoral Studies in Mathematics (Math Alliance)
2019 Funding to attend the Field of Dreams Conference

• American Institute of Mathematics and the National Science Foundation
2019 Funding for the MCRN Summer School and Academic Year Engagement Pro-
gram

• The Statistical and Applied Mathematics Institute, North Carolina State University
2019 Funding to attend the SAMSI 2019 IMSM Workshop for Graduate Students

• University of Houston
2019 Funding to attend the 2019 Houston Summer School in Dynamical Systems

• Sam Houston State University
2019 Graduate Student Appreciation Week Scholarship

• Sam Houston State University
2019 Outstanding Graduate Student in Mathematics Award

• Mathematical Sciences Research Institute
2019 Funding to attend the Critical Issues in Mathematics Education 2019 Workshop

• Institute for Computational and Experimental Research in Math, Brown University
2018 Funding to attend 10th biannual Blackwell-Tapia Conference

• Dr. Luis Garcia, Sam Houston State University
2018 Funding to attend 2018 SACNAS - The National Diversity in STEM Confer-
ence

• Sam Houston State University
2018 Graduate Assistantship

• Sam Houston State University
2018 Academic Success Program in Research Empowerment Scholarship
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• College of the Holy Cross
2014-2018 Pedro Arrupe, S.J. Scholarship

• IDEAL Industries
2014-2018 Educational Scholarship

PRESENTATIONS

• Sanchez, K., Swim, E. (2019, April). Mathematical Modeling in College Algebra.
Sam Houston State University. Huntsville, TX.

• Anifowoshe, F., Sanchez, K., Sterk Barrett, M. (2018, November). Being a racially
minoritized female at Holy Cross: Young alumni perspectives. ENGAGE Summit.
College of the Holy Cross. Worcester, MA.

PROFESSIONAL MEMBERSHIPS

• President, Sam Houston State University Chapter of American Mathematical Society


