
 DETECTION OF RED-COCKADED WOODPECKER HABITATS USING YOLO

ALGORITHMS

A Thesis

Presented to

The Faculty of the Department of Computer Science

Sam Houston State University

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science

by

Emerson Alfred de Lemmus II

August 2022

DETECTION OF RED-COCKADED WOODPECKER HABITATS USING YOLO

ALGORITHMS

by

Emerson Alfred de Lemmus II

APPROVED:

Hyuk Cho, PhD

Committee Director

Bing Zhou, PhD

Committee Co-Director

Qingzhong Liu, PhD

Committee Member

Min Kyung An, PhD

Committee Member

John B. Pascarella, PhD

Dean, College of Science and Engineering

Technology

 iii

DEDICATION

I dedicate this work to my family, who supported me throughout my education,

and to the Department of Computer Science, which provided me with a second family

throughout my years at Sam Houston State University.

 iv

ABSTRACT

de Lemmus, Emerson Albert. Detection of red-cockaded woodpecker habitats using

YOLO algorithms. Master of Science (Computing and Data Science), August, 2022, Sam

Houston State University, Huntsville, Texas.

Habitat and population monitoring are crucial for the preservation of endangered

species. However, gathering habitat data may be a hazardous and laborious task. As a

result, wildlife ecologists increasingly turn to remote sensing and automation to collect

large-scale ecological data on a given species. Particularly, the red-cockaded woodpecker

(RCW) is a species endemic to the southeastern United States. Endangered since 1973,

wildlife biologists have performed pedestrian surveys to assess the status of the species.

Through close interdisciplinary collaboration with ecologists, this work conducts

a pilot study that automatically detects potential habitats of RCW. The dataset of 978

images was collected by a team of wildlife ecologists from Raven Environmental Inc.

using unmanned aerial vehicles (UAVs). RCW habitat imagery is quite unique and is not

available in the public domain, thus it is considered novel image data. The primary goal

of this research is to assess the RCW habitat detection performance by You Only Look

Once (YOLO) object detection algorithms. As for the demanding computing

requirements of YOLO algorithms, only two small models, YOLOv4-tiny and

YOLOv5n, are employed and assessed for this study. Specifically, the best

hyperparameter values are identified per each model that maximize the precision

performance for the training data. YOLOv4-tiny reached a training mAP (minimum

Average Precision) of 0.96 (i.e., 96%) and a testing accuracy of 0.85 (i.e., 85%), while

YOLOv5n achieved a training mAP of 0.78 (i.e., 78%) and a testing accuracy of 0.82

 v

(82%). Overall, combining the inference results of both models achieved a 100%

detection of de facto habitats.

This study realizes a real-time platform that integrates computer vision with

domain knowledge and identifies potential habitats from large-scale image data.

Therefore, the deployment of the study on wildlife ecosystems will significantly assist

wildlife biologists in saving personnel hours through real-time detection of potential

habitats and accelerating proactive field validating for the preservation of RCW.

KEY WORDS: Red-Cockaded woodpecker, Wildlife management, Remote sensing,

Unmanned aerial vehicle, Object detection, YOLO algorithm

 vi

TABLE OF CONTENTS

Page

DEDICATION .. III

ABSTRACT .. IV

TABLE OF CONTENTS .. VI

LIST OF TABLES ... VIII

LIST OF FIGURES .. IX

CHAPTER I: INTRODUCTION ... 1

Problem Context ... 1

Red-Cockaded Woodpecker ... 2

Document Outline ... 4

CHAPTER II: RELATED RESEARCH.. 6

Computer Vision and Ecology .. 6

CHAPTER III: OBJECT RECOGNITION ... 10

Traditional Computer Vision .. 12

Modern Computer Vision ... 16

You Only Look Once .. 21

CHAPTER IV: PROPOSED APPROACH ... 27

Dataset Description ... 28

Hardware Tools ... 36

Software Tools .. 37

CHAPTER V: EXPERIMENTAL STUDY ... 39

Discussion ... 39

 vii

Training ... 40

Results ... 47

YOLOv5n ... 63

CHAPTER VI: CONCLUSION AND FUTURE WORK .. 70

Data ... 70

Demanding Computing Hardware .. 71

Model Ensembling .. 71

REFERENCES ... 72

APPENDIX ... 81

VITA ... 131

 viii

LIST OF TABLES

Table Page

1 Existing Works Combining Computer Vision and Ecology 9

2 Condensed model summary of YOLO ... 24

3 534 Images Taken at 76m Elevation ... 31

4 444 Images Taken at 46m Elevation ... 33

5 Computer Hardware Tools .. 36

6 Drones Deployed .. 36

7 Software tools for YOLOv4.. 37

8 Software tools used for YOLOv5 ... 38

9 Annotation box statistics ... 43

10 Detailed performance of YOLOv4-tiny .. 60

11 YOLOv5n confusion matrix results .. 67

 ix

LIST OF FIGURES

 Figure Page

1 Historic Red-cockaded Woodpecker Habitat Distribution 3

2 Relationship among Subfields in Artificial Intellence .. 6

3 Illustrating the Four Typical Computer Vision Tasks .. 8

4 Classification of Object Recognition Tasks .. 11

5 The Elementary Process of an Image Classifier ... 12

6 Traditional Computer Vision Approaches .. 14

7 Multi-layer Perceptron Standard Architecture .. 15

8 Flattening of a 2D Image to a 1D Input Vector .. 16

9 Modern Computer Vision Approaches ... 18

10 Basic Component of Convolutional Networks ... 19

11 Difference between single-stage detectors and two-stage detectors 20

12 A Simplified View of You Only Look Once Model Processing 21

13 Summary of the Detection Process Used by YOLO ... 22

14 History of the YOLO Model Famil .. 23

15 Montgomery County, Texas ... 29

16 Map Detailing all Locations where the Dataset was Gathered 30

17 Annotation Heatmap of 534 Images Taken at 76m Elevation 32

18 The Annotation Heatmap of 444 images Taken at 46m Elevation 34

19 Sample Images Demonstrating Altitude Differences ... 35

20 Sample Red-cockaded Woodpecker Habitat Signs... 41

 x

21 Illustration of a Small-size RCW Pine Resin Sign Compared to the Entire Image

... 42

22 Yolo Rescaling of an Image to Match Specified Input ... 44

23 Image Tiling in Practice .. 46

24 Scenario 1 using 534 images taken at 76m elevation ... 49

25 Scenario 2 using 534 images taken at 76m elevation .. 50

26 Scenario 3 using 534 images taken at 76m elevation ... 51

27 Scenario 4 using 444 images taken at 46m elevation ... 52

28 Proper annotation to capture pine resin cavity markers .. 53

29 Improper annotation featuring incorrectly labeled objects 54

30 Scenario 5 iteration merging batch 1 and batch 2 datasets 55

31 Optimal settings after trial and error ... 57

32 Optimal performance using YOLOv4-tiny with the merged dataset 58

33 Confusion matrix of YOLOv4-tiny .. 59

34 Sample inference with 76m altitude test data ... 61

35 Sample inferencing with 46m altitude test data .. 62

36 Performance of YOLOv5n with batch 1 data (top) and batch 2 data (bottom) 64

37 Distribution of class instances in YOLOv5 output result 65

38 YOLOv5n confusion matrix ... 66

39 Sample YOLOv4-tiny testing inference compared with YOLOv5n 69

1

CHAPTER I

Introduction

Problem Context

Monitoring the habitats and populations of endangered species is critical to the

conservation and measuring conservation programs' efficacy. Birds, in particular, have a

wide distribution, excellent mobility, and high sensitivity to environmental changes;

therefore, they have become significant groups for monitoring (Gregory & van Strien,

2010). However, surveying a species across its geographic range can be complex and

resource-intensive (Neate-Clegg, Horns, Aytekin, & Şekercioğlu, 2020). To reduce

economic cost, labor, and logistics, conservation efforts are increasingly automating the

sampling of natural environments (Pimm, Alibhai, Dehgan, & Giri, 2015). Collecting

habitat data with unmanned aerial vehicles (UAVs) provides a minimally invasive

approach to obtaining relative habitat densities and estimating population trends over

time. These devices can survey large, forested areas that humans cannot easily access or

stay in for long periods of time.

Additionally, captured imagery can be stored in convenient formats for analysis.

By analyzing the habitat elements in these images, conservationists can accurately record

nesting locations and cluster patterns (Carrascal, Galván, Sánchez-Oliver, & Rey

Benayas, 2013). Although UAVs are increasingly common devices and help collect

large-scale data, the ability to process and analyze huge amounts of images remains

challenging when turning data into information on animal presence, nesting patterns, and

behavior (Weinstein, 2017). To address challenges in large dataset analysis for the

preservation of species, ecologists are frequently turning to automation for accurate and

2

efficient processing of large image datasets. This work aims to propose, describe, and

implement an experimental system using the latest advances in computing capability to

analyze large UAV-generated datasets to identify red-cockaded woodpecker habitats.

Red-Cockaded Woodpecker

Current Status

The primary subject of this study is the red-cockaded woodpecker (RCW). RCWs

are a species endemic across the southeastern United States (U.S. Fish and Wildlife

Service, 2003). RCWs were listed as endangered in 1970 and received federal protection

with the passage of the Endangered Species Act in 1973 (U.S. Fish and Wildlife Service,

2003). However, by the time of its endangered classification, RCWs had declined to

fewer than 10,000 individuals in scattered and isolated habitats and this figure represents

less than 3 percent estimated abundance at the time of European colonialization (Jackson,

1971).

Habitat Description

According to the U.S. Fish and Wildlife Service, the staggering decline was

caused by an almost complete loss of habitats. Southern longleaf pine once dominated the

southeastern United States and may have totaled over 800 million hectares during pre-

European colonialization; however, today, less than 1.2 million hectares remains (Conner

et al. 2001, Landers et al. 1995). Figure 1 visualizes the historical distribution of longleaf

pine and the historical and present-day distribution of red-cockaded woodpeckers (Butler,

2001).

3

Figure 1

Historic Red-cockaded Woodpecker Habitat Distribution

Note. Historical distribution of longleaf pine and historical and current distribution of red-

cockaded woodpecker (Butler, 2001). Courtesy of Dr. Mathew J. Butler.

The original pine ecosystem was lost due to intense logging during the 19th – 20th

century, exploitation of pine resins, and grazing done by livestock and free-ranging hogs

(U.S. Fish and Wildlife Service, 2003). RCWs are habitat specialists, strongly tied to old-

growth pine forests that burn frequently (Cornell Labs, 2019). RCWs exploit the ability

of live pines to produce large amounts of pine resin by creating cavity wounds known as

resin wells (U.S. Fish and Wildlife Service, 2003). Resin is a natural, effective barrier

against climbing snakes and is best created by old-growth longleaf pine. Regrowth of

4

these habitats has been severely restricted since the pre-colonial era due to free-ranging

hogs and fire suppression (U.S. Fish and Wildlife Service, 2003).

Threats

The primary threat to RCW viability is a lack of suitable habitat. On public and

private lands, the quantity and quality of RCW habitats are affected by past and present

policies on fire suppression and silvicultural practices. These policies and procedures

have led to an insufficient number of cavities, net loss of suitable cavity trees, habitat

fragmentation leading to isolation and genetic issues, lack of suitable foraging habitats,

and risk of extinction through genetic, environmental, and catastrophic events. For these

reasons, RCWs are now among the most endangered species on earth (Simberloff 1993,

Ware et al. 1993). RCW population monitoring is a critical component of their

conservation and recovery. Traditional RCW surveying is done by personnel experienced

in managing and monitoring the species. Potential nesting habitat is identified and

surveyed by visually inspecting all medium-size and large pine trees for cavity

excavation evidence (Environmental Analysis Unit, 2018). If cavities are located, more

intense land surveying is performed within 457 meters of each cavity (Environmental

Analysis Unit, 2018). This type of land surveying is costly, inefficient, and dangerous to

personnel.

Document Outline

The rest of the thesis is organized as follows. In Chapter II, the related work of

various interdisciplinary studies is reviewed. Chapter III is an in-depth discussion and

review of object recognition, including traditional and modern computer vision

approaches, and You Only Look Once (YOLO) is introduced. In Chapter IV, the

5

proposed method is discussed, where a detailed rationale of available techniques is

provided, and the available dataset and tools are thoroughly described. In Chapter V, the

experimental results are detailed, along with optimal settings and configurations. Finally,

Chapter VI concludes with summaries and suggestions for possible improvements.

6

CHAPTER II

Related Research

Computer Vision and Ecology

Computer vision (CV) is a subset field of machine learning, as summarized in

Figure 2, that is focused on mimicking the natural way human and animal visual systems

work (Krohn, Beyleveld, & Bassens, 2019). Computer vision was dominated by

traditional machine learning algorithms before the advent of deep learning (DL)

innovations and is now considered a unique DL area of study that uses pixel values to

infer image content (LeCun, Bengio, & Hinton, 2015). This allows computing systems to

process and identify objects in images and videos faster and more accurately than humans

can (Mahajlovic, 2019). Using this cutting-edge technology, CV can assist conservation

efforts by increasing the scope, duration, and repeatability of image-based ecological

studies through automated image analysis (Weinstein, 2017).

Figure 2

Relationship among Subfields in Artificial Intellence

Note. Figure 2 visualizes the relationship among artificial intelligence, machine learning, deep

learning and computer vision. Redrawn from (Mellit et al., 2020).

7

Particularly, ecologists choose CV algorithms as content analysis methodologies

due to the explosive volume of data generated by deployed UAVs rapidly surpasses the

capacity of human video viewers, making video analysis prohibitively expensive

(Konovalov et al., 2019). Humans may be good at inferring objects in an image by

manual visual inspection or have excellent knowledge on identifying habitats; however,

when confronted with thousands of data points, it is difficult to find the time,

organization, and concentration to validate each image manually (Berg et al., 2014).

Computer vision has been highly developed and frequently updated with new

models. Therefore, CV methodologies have been successfully adapted for numerous

ecological applications, including species identification, detection, and enumeration of

animals within an image and description of animal coloration, patterns, and relative sizes

(Weinstein, 2017). However, to date, CV has never been applied to the detection of RCW

habitats; thus, no direct references to the subject are available. Furthermore, no

benchmark image datasets on RCW habitats are available in the public domain.

Accordingly, this project addresses the need to collect a benchmark image dataset on

RCW habitats and offers a timely opportunity to create a CV application to detect RCW

habitats.

Ecologists often concentrate on three common tasks for ecological computer

vision: physical description of species such as coloration, patterns, background

relationships, and relative sizes, enumeration of animals in a target area, and

identification of species (Weinstein, 2017). Figure 3 demonstrates the typical CV tasks

related to ecology.

8

Figure 3

Illustrating the Four Typical Computer Vision Tasks

Note. From left: Image Classification (i.e., is there a fish in this image, or what type of fish is in

the image?), Object Detection/Localization (i.e., where are the fish in the image located, if at

all?), Semantic Segmentation (i.e., what is the relationship between the fish and their

surroundings?), Instance Segmentation (i.e., how many instances of fish are in this image?). From

(Saleh, Sheaves, & Azghadi, 2022).

For example, to correctly outline a flying bird, computer vision algorithms often

search for important pixels within images. (Atanbori, Duan, Murray, Appiah, &

Dickinson, 2016) was successfully able to detect distant birds in flight by looking at

pixels where wings intersect in the sky with an average accuracy of 0.89 using a modified

SVM classifier. Beyond detecting animals in a specific environment, (Mahndahar et al.,

2018) demonstrated the ability to classify potential coastal habitats for both marine and

terrestrial animals in satellite imagery using AlexNet with an average accuracy of .95.

(Wilber et al., 2013) implemented a variety of computer vision models and modified

SVMs to classify seven desert species given a large image. Table 1 lists previous relevant

research with applications of computer vision to animal ecology.

9

Table 1

Existing Works Combining Computer Vision and Ecology

Reference Technique Model
Training

Images
Habitat Taxa Species AP%

Wilber et al.,

2013

Traditional

ML
V1-like 5,362 Desert

Mammals,

Reptiles
7 76.4

Yu et al., 2013

Traditional

ML
SVM 22,533

Tropical

Rainforest,

Temperate

Forest

Mammals 18 83.8

Atanbori et al.,

2016 Traditional

ML

Normal

Bayes

Classifier,

SVM

- - Birds 7 89.0

Feng et al.,

2016
Traditional

ML

Semantic

Related

Visual

4,530 - Moths 50 53.12

Jin & Liang,

2017
DL

Custom

CNN
27,000 Tropical Fish 23 96.27

Mahndahar et

al., 2018
DL AlexNet 4096 Coastal - - 95.12

Tamou et al.,

2018
DL AlexNet 27,000 Tropical Fish 23 99.45

 Miao et al.,

2019
DL

VGG19,

ResNet-50
111,467 Savannah Varied 21 87.5

Iqbal et al.,

2021 DL
AlexNet

derived

13,200 +

20

videos

Tropical Fish 6 90.48

Note. Table 1 summarizes a collection of existing works combining computer vision and ecology.

An important difference to notice between traditional ML and DL techniques is the improved

performance, average precision (AP), with DL techniques. Adapted and expanded from

Weinstein, 2017.

10

CHAPTER III

Object Recognition

Object recognition is a broad term to describe a collection of methodologies that

involve identifying objects within digital images. Object recognition can be split into two

distinct branches: image classification and object localization. Image classification

predicts a class given a single input image with a single object within the image, see

Figure 5. Object localization is the methodology used to locate the pixel presence of an

object(s) in an image and denote the object's location with a drawn bounding box. Object

localization can be further decomposed into object detection, where objects are drawn

with bounding boxes and labels, and object segmentation, where instances are

highlighted and separated from their background, see Figure 4. According to (Zhao et al.,

2019), object recognition can be traced back to the 1940s, when (Pitts & McCulloch,

1947) first described an artificial neural mechanism that solved simple, general learning

problems. (Hinton et al., 1986, Zhao et al., 2019) renewed interest in neural structures

and has remained consistently popular since 2006. The emergence of large-scale

annotated image datasets like ImageNet, the broader availability of high-performance

computing, and significant improvements in neural network structure designs such as

AlexNet, GoogLeNet, VGG, ResNet, and YOLO have attributed to huge impacts in

object recognition.

11

Figure 4

Classification of Object Recognition Tasks

Note. Object recognition is often mistaken for object detection. However, object recognition

broadly encompasses image classification and object detection (Russakovsky et al., 2015). This

work focuses on object localization and object detection. Adapted from (Brownlee, 2019).

12

Figure 5

The Elementary Process of an Image Classifier

Note. Adapted from (Redmond et al., 2016).

Traditional Computer Vision

The research community achieves a new state-of-the-art benchmark in object

recognition every year. These immense achievements would not be possible without

seminal historical works and the evolution of Deep Neural Networks and NVIDIA GPUs.

The history of modern object detection can be split into two distinct eras. Traditional

machine learning relied heavily on extracting handcrafted features (Krohn, Beyleveld, &

Bassens, 2020). Edges, corners, gradients, and object components were all manually

identified, such as the Deformable Parts Model (University of Central Florida, 2016).

Viola-Jones created the first real-time face detector commercially applied to Kodak

cameras (Krohn, Beyleveld, & Bassens, 2020); however, it struggled to detect faces

sideways or upside down due to the nature of these angles not being considered (Sharma,

2022). Similar to traditional machine learning, these early detectors relied heavily on

feature-engineered modifications on training data and less time modeling data through a

detector (Krohn, Beyleveld, & Bassens, 2020). Figure 6 provides a timeline for seminal

traditional computer vision methodologies.

13

Historically, traditional computer vision is derived from how natural neurons are

arranged in the visual systems of animals. Hierarchical processing of vision was first

discovered by (Hubel & Weisel, 1959). Images are first detected by visual receptors and

processed by simple neurons that feed more complex neurons that can process more

complex shapes, colors, and features of an object (Krohn, Beyleveld, & Bassens, 2020).

Early versions of neural networks are referred to as Artificial Neural Networks (ANNs)

or Multi-Layer Perceptrons (MLPs). At first, they were a shallow collection of neurons

that were stacked on top of each other with weight connections as illustrated in Figure 7

(Elgendy, 2020). Traditional MLP architecture consists of an input layer, one or more

hidden layers, and an output layer and its input layer only takes one-dimensional vectors;

thus, for the process of complex imagery, two-dimensional images must be transformed

into a one-dimensional vector. This required transformation is a process called image

flattening demonstrated in Figure 8.

Figure 6

Traditional Computer Vision Approaches

1
4

15

Figure 7

Multi-layer Perceptron Standard Architecture

Note. MLP architecture consists of layers of neurons connected by weights. Input layer may

contain one or more neurons that take an input and forward-feed it to one or more layers of

hidden neurons. Denoted by this graphic, hidden layers are often considered a "black-box" that

observers do not access. These layers perform feature extraction of an image and then connect to

the output layer that classifies an input. Adapted from (Elgendy, 2022).

16

Figure 8

Flattening of a 2D Image to a 1D Input Vector

Note. This figure visualizes the necessary conversion from a 2D image (top) to a 1D input vector

(bottom). This is called image flattening and is required for MLP processing. In this example, a

pixelated letter 'C' is converted from a two-dimensional image into a 'flattened' one-dimensional

vector. Adapted from (Elgendy, 2022).

Modern Computer Vision

In 2012, a new era of neural networks began with the advent of convolutional

neural networks (CNN), as summarized in Figure 9. Alex Krizhevsky and Illya Sutskever

created a CNN called AlexNet and presented it at the 2012 ImageNet Large Scale Visual

Recognition Challenge (ILSVRC), and it beat long-standing traditional machine learning

techniques by a massive margin (Krohn, Beyleveld, & Bassens, 2020). Modern-era CNN

models eliminated the long-standing method of handcrafted feature engineering and

focused more on neural network architecture optimization. Feature engineering is now

17

mainly done by a neural network (Krohn, Beyleveld, & Bassens, 2020). CNNs achieve

automatic feature extraction by expanding on traditional MLP architectures. Three main

layers are prevalent in almost every CNN: convolutional layer, pooling layer, and fully

connected layer (Elgendy, 2020). As shown in Figure 10, the fully connected layer

borrows heavily from traditional MLP architectures. Modern CNNs expand previous

generations of neural networks by focusing heavily on automatic feature extraction. Most

CNNs share this formula; however, they all differ in the feature extraction layers. These

advancements lead to the creation of single-stage object detectors (SSD) that treat object

detection as a simple regression problem (Sharma, 2022). Treating object detection as a

regression problem allows a much simpler network structure that accepts a variable-sized

input image and, without prior feature engineering, is processed directly by the neural

network. The output of this process is the class probability, along with bounding box

coordinates (Sharma, 2022). In addition, SSDs can skip the region proposal stage and

automatically detect areas of an image that could contain an object, as shown in Figure 11

(Sharma, 2022). This ability to skip a second stage allows SSDs like You Only Look

Once (YOLO) to achieve much faster real-time detection speeds, albeit with an accuracy

penalty.

Figure 9

Modern Computer Vision Approaches

1
8

Figure 10

Basic Component of Convolutional Networks

1
9

20

Figure 11

Difference between single-stage detectors and two-stage detectors

Note. Single-stage detectors skip the Region Proposal Network and this skip allows for much

faster image processing than two-stage detectors. Albeit at a loss of accuracy penalty. Adapted

from (Sharma, 2022).

21

You Only Look Once

The computer vision work featured in this thesis is over a popular single-stage

detector family of object recognition models known as You Only Look Once (YOLO),

developed by (Redmond et al., 2016). While other object recognition models such as

ResNet, R-CNN, or Faster R-CNN may be more accurate, YOLO models are much faster

in achieving real-time object recognition. Like many previous classifiers, YOLO takes an

image input, breaks it into a grid, processes it through network layers, and directly

predicts bounding boxes and class labels. For example, see Figures 12 and 13.

Figure 12

A Simplified View of You Only Look Once Model Processing

Note. Adapted from (Redmond et al., 2016).

The YOLO family is an end-to-end deep learning model that was one of the first

attempts to successfully build a fast real-time object detector (Elgendy, 2020). It predicts

over a limited number of probability areas by splitting an input image into a grid of cells,

as summarized in Figure 13. Processing an image as a grid result in many potential

bounding boxes consolidated into a final prediction using non-maximum suppression

(Elgendy, 2020).

22

Figure 13

Summary of the Detection Process Used by YOLO

Note. An input image is broken up into a grid, and each cell is processed for potential bounding

boxes using learned image features. As seen in the upper-central image, this generates many

possible bounding boxes. To reduce all possible bounding boxes, YOLO implements non-

maximum suppression to consolidate probabilities into a final detection (Elgendy, 2020). Taken

from You Only Look Once: Unified, Real-Time Object Detection (Redmond et al., 2016).

YOLO is a breakthrough and seminal work in object recognition because it

treated object detection with an SSD approach and as a regression problem. As a result,

you only look once was chosen as an appropriate name because the detection layer only

looked at an image once to predict the objects' location and class labels (Redmond et al.,

2016). Over the years, YOLO has significantly improved through various releases and

continues to be a premier real-time detection neural network available, as summarized in

Figure 14. Table 2 details mainline YOLO models.

23

Figure 14

History of the YOLO Model Family

24

Table 2

Condensed model summary of YOLO

Reference Model Train Set
Conv.

Layers

Total Layers

(Conv + Filters)
Input size

mAP

(%)
FPS

Redmon et

al., 2016
YOLO ImageNet 24 26 448x448 63.4 45

Redmon et

al., 2016
Fast YOLO ImageNet 9 11 448x448 52.7 155

Redmond

& Farhadi,

2017

YOLO9000

Darknet-19

ImageNet &

MS COCO
19 26 416x416 16.0 -

Redmond

& Farhadi,

2017

YOLOv2

Darknet-19

VOC 2007

& MS

COCO

19 26 288x288 69.0 91

Redmond

& Farhadi,

2017

YOLOv2

Darknet-19

VOC 2007

& MS

COCO

19 26 352x352 73.7 81

Redmond

& Farhadi,

2017

YOLOv2

Darknet-19

VOC 2007

& MS

COCO

19 26 416x416 76.8 67

Redmond

& Farhadi,

2017

YOLOv2

Darknet-19

VOC 2007

& MS

COCO

19 26 480x480 77.8 59

Redmond

& Farhadi,

2017

YOLOv2

Darknet-19

VOC 2007

& MS

COCO

19 26 544x544 78.6 40

Redmond

& Farhadi,

2018

YOLOv3

Darknet-53

Darknet

Framework
53 106 320x320 51.5 45

Redmond

& Farhadi,

2018

YOLOv3

Darknet-53

Darknet

Framework
53 106 416x416 55.3 35

Redmond

& Farhadi,

2018

YOLOv3

Darknet-53

Darknet

Framework
53 106 608x608 57.9 20

Bochkovsk

iy, Wang,

& Liao,

2020

YOLOv4

Darknet-53
MS COCO 53 162 416x416 41.7 92

(continued)

25

Reference Model Train Set
Conv.

Layers

Total Layers

(Conv + Filters)
Input size

mAP

(%)
FPS

Bochkovsk

iy, Wang,

& Liao,

2020

YOLOv4 MS COCO 53 162 512x512 43.0 87

Bochkovsk

iy, Wang,

& Liao,

2020

YOLOv4 MS COCO 53 162 608x608 44.0 68

ultralytics,

2020
YOLOv5n MS COCO 53

Darknet-

53+PANet+Yolov

3

640x640 45.7 -

ultralytics,

2020
YOLOv5s MS COCO 53

Darknet-

53+PANet+Yolov

3

640x640 56.8 -

ultralytics,

2020
YOLOv5m MS COCO 53

Darknet-

53+PANet+Yolov

3

640x640 64.1 -

ultralytics,

2020
YOLOv5l MS COCO 53

Darknet-

53+PANet+Yolov

3

640x640 67.3 -

ultralytics,

2020
YOLOv5x MS COCO 53

Darknet-

53+PANet+Yolov

3

640x640 68.9 -

Long et al.,

2020
PP-YOLO MS COCO 50 ResNet50-vd-dcn 320x320 39.3 132

Long et al.,

2020
PP-YOLO MS COCO 50 ResNet50-vd-dcn 416x416 42.2 109

Long et al.,

2020
PP-YOLO MS COCO 50 ResNet50-vd-dcn 512x512 44.4 90

Long et al.,

2020
PP-YOLO MS COCO 50 ResNet50-vd-dcn 608x608 45.2 73

Zheng, et

al., 2021

YOLOX-

Nano
MS COCO - - 416x416 28.5 -

Zheng, et

al., 2021

YOLOX-

Tiny
MS COCO - - 416x416 32.8 -

Zheng, et

al., 2021
YOLOX-S MS COCO - - 640x640 40.5 -

(continued)

26

Reference Model Train Set
Conv.

Layers

Total Layers

(Conv + Filters)
Input size

mAP

(%)
FPS

Zheng, et

al., 2021

YOLOX-

DarkNet53
MS COCO 53

Darknet-

53+Yolov3
640x640 47.7 -

Zheng, et

al., 2021
YOLOX-L MS COCO - - 640x640 50.0 -

Wang et

al., 2021
YOLOR-P6 MS COCO - YOLOv4-CSP

1280x12

80
54.1 76

Wang et

al., 2021
YOLOR-W6 MS COCO - YOLOv4-CSP

1280x12

80
55.5 66

Wang et

al., 2021
YOLOR-E6 MS COCO - YOLOv4-CSP

1280x12

80
56.4 45

Note. Table 2 is compiled with information provided by Sharma, 2022, and each respective model

reference. The models above are the ones listed upon release in their respective works. Nearly all

models have updated versions, such as Scaled-YOLOv4 (Chien et al., 202), PP-YOLOE (Xu et

al., 2022), or YOLOv5 ver. 6 (ultralytics, 2022). Listing all possible variations and configurations

is irrelevant to this work, and not all updated versions are accompanied by peer-reviewed work. A

vast majority of these models are based on Darknet-19 or Darknet-53 architectures. This means a

model has 19 or 53 convolutional layers. Commonly, 19-layer or 53-layer notations do not

include the varying filter, drop-out, or classification layers featured in Figure 10. Notably, the

YOLOX family uses a primary baseline model, YOLOX-Darknet53, which uses the Darknet53

framework. However, its derived models, such as YOLOX-Nano or YOLOX-L, use a

modification of the baseline architecture (Sharma, 2022). These modifications are not directly

stated in the work by (Zheng et al. 2021). YOLOR, for instance, uses YOLOv4-CSP as a baseline

model and Scaled-YOLOv4 training parameters along with the YOLOv5 training data directory

structure. Table 2 summarizes the characteristics of each model in terms of model architecture

size, input image size, and frames-per-second. The deeper the architecture and the larger the input

image size, the greater mean average precision (mAP) that can be achieved, which usually comes

at the cost of lower frames-per-second.

27

CHAPTER IV

Proposed Approach

The ultimate goal of this project is to lay down a foundation that will allow UAV-

mounted real-time object detection of RCW habitats. Achieving this goal means

considering the small memory availability on a UAV system. Considering this constraint,

the proposed approach will use the smallest versions of YOLOv4 and YOLOv5. The

benefit of using two models is to validate results real-time when performing testing

inferencing. The smallest models, YOLOv4-tiny and YOLOv5n, are trained using the

identical training data. However, due to the two models technically belonging to different

families, their architectures and parameters are slightly different. These differences are

reconciled and explained later. As shown in Table 2, models with fewer layers achieve

faster object recognition times, and this is a benefit when flying a drone in real-time.

Another justification, when choosing the two models, is on graphical processing unit

(GPU) memory limitations. Despite achieving better mean average precision (mAP)

results, larger versions of YOLOv4 and YOLOv5 are more memory intensive and have a

slower identification time.

The GPU memory constraint is a universal issue in object recognition training,

particularly with images. For example, given a relatively small input image of 416×416

pixel dimensions and using YOLOv4-tiny, it would take around 2 hours of training for an

NVIDIA RTX 2080 GPU system to complete the standard 10,000 training iterations. In

contrast, it may take an 8-core 3.40 GHz central processing unit (CPU) based system

around six days to achieve the same result (ccoderun, 2018). Updated models such as

YOLOv5 ver. 6 and Scaled-YOLOv4 require an image input dimension of 1280×1280.

28

i.e. the larger the image input dimension, the larger the GPU memory requirements. The

maximum input size possible before running out of GPU memory is 738×738 pixels on

the hardware available for this project. In essence, memory limitations severely hamper

the number of possible models that can be trained. Cloud computing services such as

Google's Google Colab, Amazon Web Services, Google Cloud Platform Deep Learning

VM, Roboflow, or Kaggle are possible replacements for direct hardware training.

However, these services require payment, credit limitations, or purchasing an upgrade tier

to receive faster computing speeds, and are still not as fast as training on a local

computer.

Dataset Description

The entire dataset used in this study was created by wildlife biologists, Brett

Lawrence and Jesse Exum, at Raven Environmental Services, Inc. All images were

photographed at Cook's Branch Conservancy (CBC) and various parts of the greater Sam

Houston National Forest (SHNF) located in Montgomery County, Texas, as illustrated in

Figures 15 and 16. The dataset was collected between March 2020 and March 2021 and

split into two batches. The imagery was captured with a DJI Mavic Pro Platinum and a

DJI Mavic Pro in the red-green-blue color bands with approximate flight times of 4-5

hours (Lawrence, 2022). See Table 6 for more details on drone hardware. The spring

season is the best time to capture imagery as it is the dormant season when deciduous

trees are in a leaf-off state (Lawrence, 2022). Less foliage allows for more direct

discrimination between hardwood and pine species and easier detection of red-cockaded

woodpecker resin markers that leaves may obscure. This dataset is publicly available at

29

Roboflow.com courtesy of Raven Environmental Services, the Mitchell Foundation, the

U.S. Fish and Wildlife Service, and the U.S. Forest Service.

Geographic Location

As shown in Figure 16, the image data for this project was captured in the Sam

Houston National Forest (SHNF) and Cook's Branch Conservancy (CBC), located in

Montgomery County, Texas.

Figure 15

Montgomery County, Texas

Note. Highlighted in red is Montgomery County, Texas. This study focuses on this region of East

Texas. Adapted from nationalatlas.gov.

Figure 16

Map Detailing all Locations where the Dataset was Gathered

3
0

31

Dataset (1)

Brett Lawrence and Jesse Exum collected the first part of the dataset. The dataset

collection occurred in the SHNF and CBC during the spring 2022 season. UAVs were

utilized for data collection, and the dataset is further described in Table 3 with a featured

annotation heatmap in Figure 17.

Table 3

534 Images Taken at 76m Elevation

Total

Images
Class Train Valid Test

Total

Annotations

Null

Images

Average

Annotation

per Image

Average

Image

Size

Average

Image

Ratio

534 1 428 53 53 765 94 1.4 16.84mp 5472×3078

Note. The total image count is split 80% training, 10% validation, and 10% test. This split is

standard practice; however other divisions can be possible, such as 80% training and validation

and 20% test. No test images contained annotations.

32

Figure 17

Annotation Heatmap of 534 Images Taken at 76m Elevation

Note. Figure 17 represents 765 annotations across the first batch of images. The image

demonstrates the distribution of all annotation locations. Note the wide distribution of annotation

box locations and annotation box size. Black annotation boxes denote the area does not overlap

with other annotation boxes. White annotation regions indicate a high density of annotation

overlapping. Generated with Roboflow.

33

Dataset (2)

Brett Lawrence and Jesse Exum also created the second dataset to provide a

diverse approach. It was taken during the same period, spring 2022; however, forest

imagery was captured at 46m altitude. This elevation difference is visualized in Figure

19. This batch of data contains 90 fewer images than the first batch. The dataset is further

described in Table 4 with a featured annotation heatmap in Figure 18.

Table 4

444 Images Taken at 46m Elevation

Total

Images
Class Train Valid Test

Total

Annotations

Average

Annotation

per Image

Null

Images

Average

Image

Size

Average

Image

Ratio

444 1 307 87 50 678 1.5 27 9.00mp 4000×2250

Note. The total image count is split 80% training, 10% validation, and 10% test. This dataset was

taken at a much lower 46m elevation. Note that the average image ratio decreased by over 1,000

pixels in height and width compared to the first batch. This dataset batch introduces a closer look

at the forest and provides more angle diversity when observing RCW sap signs.

34

Figure 18

The Annotation Heatmap of 444 images Taken at 46m Elevation

Note. The image above represents 678 annotations across the second batch of images. This

dataset displayed a different distribution of annotations compared to Figure 15. Generated with

Roboflow.

35

Figure 19

Sample Images Demonstrating Altitude Differences

Note. Altitude matters when surveying tracts of forest. The top image was taken at 76m altitude,

and the bottom image was at 46m altitude. Note the difference in forest coverage and potential

nesting locations.

36

Hardware Tools

Hardware tools used for this study include both computational hardware and

UAVs. Computational hardware is detailed in Table 5, and UAV hardware is detailed in

Table 6. Raven Eviornmental Inc owns all UAV hardware used for this study.

Table 5

Computer Hardware Tools

GPU GPU Memory CPU RAM

NVIDIA GeForce RTX 2080

Super Max Q (Notebook)
8 GB

Intel Core i9-

10980HK @ 2.40

GHz x 16

32 GB

NVIDIA GeForce RTX 3080

(Notebook)
12 GB

AMD Ryzen 9

5900HK
32 GB

Table 6

UAVs Deployed

Model DJI Mavic Pro Platinum DJI Mavic Pro 2

Weight 734 g 907 g

Flight time 30 m 31 m

Sensor 1/2.3" (CMOS) 1" (CMOS)

Pixels 12.35 million 20 million

Lens
FOV 78.8°, 26mm (35mm format

equivalent), aperture f/2.2, shooting

range from 0.5 m to ∞

FOV about 77°, 28mm (35mm format

equivalent), aperture f/2.8-f/11, shooting

range from 1 m to ∞

ISO Range 100-1600 100-3200 (auto), 100-12800 (manual)

Electronic

Shutter Speed

8-1/8000 s 8-1/8000 s

Size 4000x3000 5472x3648

Note. Information provided by Brett Lawrence at Raven Environmental Inc.

37

Software Tools

The software tools used for YOLOv4 and YOLOv5 are detailed in Tables 7 and 8,

respectively.

Table 7

Software Tools for YOLOv4

Software Version

Operating System Ubuntu 20.04.4 LTS 64 Bit

Python >=3.8

Github Package github.com/AlexeyAB/darknet.git

CMake 3.18

CUDA 11.6

cuDNN 8.3

Darknet AlexeyAB version

DarkHelp darkhelp-1.1.18-3

DarkMark darkmark-1.6.28-1

YOLO Model yolov4-tiny.cfg (Bochovskiy, 2020)

Note. All necessary tools are outlined by (Bochkovskiy, 2020) and (Charette, 2020). Installation

of the aforementioned software tools requires careful instruction, and environments such as

Anaconda are recommended but not required. All the software listed is freely available to use as

of this writing.

38

Table 8

Software Tools used for YOLOv5

Software Version

Operating System
Microsoft Windows 10 Pro 10.0.19044 Build

19044

Python >=3.8

Github Package github.com/ultralytics/yolov5.git

Microsoft Visual Studio 2022 17.2

CMake C++ CMake tools for Windows

CUDA 11.6

cuDNN 8.3

Darknet -

DarkHelp -

DarkMark -

OpenCV 7.1.2

PyTorch 1.8.1

Tensorboard 2.4.1

Torchvision 0.8.1

Torch 1.7.0

YOLO Model YOLOv5n (ultralytics, 2020)

Note. All necessary tools are outlined by (ultralytics, 2020). Installation of the software

mentioned above tools requires careful instruction, and environments such as Anaconda are

recommended but not required. All the software listed is freely available to use as of this writing.

YOLOv5 is the most accessible model as it is compatible with cloud-based services like Google

Colab, Kaggle, Docker, Amazon Web Services, and Google Cloud Deep Learning V.M.

(ultralytics, 2020).

39

CHAPTER V

Experimental Study

Discussion

 The experimental study to detect RCW habitats was performed with YOLOv4 tiny

and YOLOv5n. The two YOLO models are chosen to verify each other's results in the

form of a majority vote. Like ensemble modeling, two or more similar or diverse models

are trained to predict or verify an outcome (Kotu & Deshpande, 2015). Ensembling

aggregates each model's prediction and presents a result in one final prediction. Manual

verification of ensembling can be used to compare two or more model output predictions

and compare them to validate a result. Essentially, if more than one model produces a

positive response for output, there is a higher likelihood of it being an accurate positive

result. Due to the aforementioned hardware constraints, YOLOv4-tiny and YOLOv5n are

the two appropriate YOLO models with the small layer configuration and the small input

size requirement. YOLOv4-tiny is optimized at 416×416 pixel input, while YOLOv5n is

optimized at 640x640 pixel input. Technically speaking, images larger than 736×736

image dimensions on an NVIDIA GeForce RTX 2080 Super Max Q notebook variant

and images larger than 1,280×1,280 on an NVIDIA GeForce RTX 2080 notebook variant

exceed the memory requirements. Therefore, more expensive hardware capacity is

required for deep models and larger input image sizes. For instance, the famous

repository created by (Bochkovskiy, 2020), popularly known as AlexeyAB, benchmarked

YOLOv4 using a very high capacity, albeit expensive NVIDIA Tesla V100 GPU.

40

Training

The challenging aspect of training with red-cockaded woodpecker (RCW)

habitats is the wide diversity of potential habitat signs, as shown in Figure 19. RCWs

prefer nesting on the upper-third of old-growth pine trees (Lawrence, 2022) and keep

pine resins constantly flowing by creating tree cavities. Therefore, pine resin is a highly

visible and effective sign that denotes RCW presence. Due to camera angle, tree growth

orientation, image quality, and extremely small object area, as shown in Figure 20, the

resin signs are challenging to detect even with an expert’s visual inspection. Furthermore,

the signs are only partially consistent in their creamy white color that fades over time.

Figure 21 also creates a perspective on the challenging training task. In addition, most

object recognition models are trained on datasets such as MS COCO or ImageNet, where

training data only contains highly defined objects with little ambiguity to their shape,

color, or size. Therefore, strangely shaped objects such as the RCW pine resin signs

require large amounts of training data to account for their diverse shape.

Initial training attempts on Roboflow yielded disastrous results due to a poor

understanding of image augmentation techniques and image auto-resizing done by a

neural network to fit its input dimension shape. Later attempts were made using

DarkHelp and Darknet with much more successful results. Although Roboflow is very

user-friendly, DarkHelp provides better technical control over data augmentation, data

preparation, and configuration file generation on both Windows and Linux operating

systems.

41

Figure 20

Sample Red-cockaded Woodpecker Habitat Signs

Note. These are sample bounding boxes from the training set for YOLOv4-tiny and YOLOv5n.

To isolate the object of interest, bounding boxes are manually drawn using annotation software

such as DarkMark, LabelImg, or Roboflow. The neural network model will then learn to identify

the object of interest. Note the significant variance in image quality, angle, shape, and color.

Screenshots were taken using DarkMark (ccoderun, 2018).

42

Figure 21

Illustration of a Small-size RCW Pine Resin Sign Compared to the Entire Image

Note. Pine resin is often no more than a smudgy, low-resolution object on average ~12,000 times

smaller than its parent image. This significant difference leads to many challenges when detecting

a successful nesting location.

YOLOv4-tiny requires an input size of 416×416 pixels, and YOLOv5n requires

an input size of 640×640 pixels. As input sizes are variable, any multiple of 32 pixels is

allowed; however, these models are optimized to work on these pre-defined dimensions.

As known, increasing the image input size leads to more GPU memory requirements, and

decreasing the image input size may lead to a loss in image quality due to compression.

For example, taking an image of ~5,000×3,000 pixels and allowing YOLO to compress it

down to 416×416 pixels to match its designed input size automatically leads to a

significant loss of image quality, which makes the detection of any small object

impossible. Table 9 demonstrates the average pixel sizes of all the annotations featured in

the combined datasets. Note the sizes are in terms of pixels. See Figure 22 for an example

of YOLOv4-tiny input dimension compression.

43

Table 9

Annotation Box Statistics

Class ID Class Name Images Min Size Avg Size Max Size

0 cavity tree 612 15×36 36.24×115.80 149×342

1 empty image 167 4000×2250 5137.05×2950.85 5472×3648

Note. All dimensions are in terms of pixels.

Figure 22

Yolo Rescaling of an Image to Match Specified Input

4
4

45

Image Tiling

Image tiling is a technique that prevents data loss when an image must match a

neural network input dimension. Using high-resolution images assists in small object

detection; however, it requires enormous GPU memory. Division of a large image into

multiple small tiles guarantees no image quality is lost, as illustrated in Figure 23. If a

training image approximately matches the network dimensions, then a user does not need

to change anything. However, if an image exceeds 1.5 times the input dimensions and the

object of interest is very small, then image tiling is necessary (Charette, 2020). For

example, RCW pine resin is on average ~12,000× smaller than its parent image, and the

object of interest only occupies approximately ~0.008% of the original image area.

However, if we incorporate image tiling at 416×416 pixels, the object of interest

occupies on average ~0.789% of the new image area. This noticeable increase in the

apparent object-to-image ratio is beneficial when detecting smaller objects.

Figure 23

Image Tiling in Practice

 4
6

47

Results

YOLOv4-tiny

YOLOv4 has the most significant amount of usage and online documentation to

date. Unfortunately, YOLOv5 has no associated formal research paper, and it is difficult

to reference a specific version due to constant Github updates. Thus, many of the

experimental optimization for this novel object was done with YOLOv4-tiny using

Darknet. Each complete run of 100,000 iterations took an average of 35 hours, and some

experimental trials were cut short due to initial negative training results and the length of

time required for completion. Once the dataset was slowly corrected and optimal

parameters were found for a particular object, YOLOv5n was trained with very few

scenarios.

Scenario 1

The first training scenario began with the first batch of 534 images and YOLOv4-

tiny. 'Cavity' was the class name assigned to our object of interest. Any image with no

cavities was deemed 'null'. To gain benchmark training mAP and preserve the original

dataset provided, only 416×416 image tiling was applied to each training and validation

image. No modifications to the original bounding boxes were applied. Darknet, by

default, performs the following image augmentations 90-degree rotation, 15% zoom, and

horizontal flipping. The total amount of images resulting from the default image

augmentations was 146,040, of which 116,832 (i.e., 80%) images served as training data,

and 29,208 (i.e., 20%) images served as validation data.

48

YOLOv4 requires a specific directory format that must be specified in its training

path. Therefore, each image file must have a corresponding annotation text file matching

the same name.

If this format is violated, training will not be executed. Test images are not

necessary to start the training process. To avoid the risk of potentially exposing the model

at learning step to unseen testing images, test data is stored in a separate directory and

only to be used for inferencing. The following directory structure is required for

YOLOv4 training.

../datasets/train/img1.jpg # image

../datasets/train/img1.txt # label

../datasets/valid/img1.jpg # image

../datasets/valid/img1.txt # label

The following command-line tool argument started the training process for 18,000

iterations.

./darknet detector -map -dont_show train /home/usr/NeuralNets/YOLO/Yolov4-RCW.data
/home/usr/NeuralNets/YOLO/Yolov4-RCW.cfg

The following training scenarios are separated into individual sections. Figures 24

to 27 display training performance on individual parts of the dataset i.e., dataset (1) and

dataset (2) separately, while Figures 30 and 32 display training performance on the

merged dataset.

49

Figure 24

Scenario 1 using 534 Images taken at 76m Elevation

Note. The initial mAP, 0.51, was relatively poor and unsatisfying. The learning curve was far

from smooth, and the training loss could be improved further. This result was due to a number of

reasons, including relatively small training time, poor annotation box drawing, poor image

quality, and small dataset size of 534 images with a large variance in object appearance.

50

Scenario 2

Figure 25

Scenario 2 using 534 Images taken at 76m Elevation

Note. To improve the results of scenario one, 23 relatively bad samples from the dataset were

removed to enhance the mAP. The training parameters did not change for the second iteration.

Removing bad examples worked to some extent, as it raised mAP by 14%. However, 'cherry-

picking' is an inappropriate practice and should not be done. Diversity in object appearance is

crucial to training a robust model.

51

Scenario 3

Figure 26

Scenario 3 using 534 Images taken at 76m Elevation

Note. Since removing bad quality samples is not a reasonable practice, they were put back in the

pool annotated cavities. Another way to improve mAP is to increase the iteration number from

18,000 to 50,000 iterations. Most YOLOv4 training samples found by (Bochkovskiy, 2020)

showed a standard iteration size of 10,000. Due to the nature of this object, training

length reached 5× the normal range.

52

Scenario 4

The previous three scenarios demonstrated that all samples should be included in

a training run, and better results were starting to appear at 100,000 iterations. The fourth

scenario of training used only the second batch of 444 images taken at 46m altitude data.

This scenario is designed to assess how altitude change affects accuracy performance.

With a much lower altitude, better results were logically expected.

Figure 27

Scenario 4 using 444 Images taken at 46m Elevation

53

Annotation Technique

Contrary to our belief, as shown in Figure 27, the second batch of 46m altitude

images performed worse than the first batch of 76m altitude images. This was caused by

inefficient bounding box annotation and attempting to include objects that were not resin

samples. Figure 28 displays the proper annotation technique, and Figure 29 displays the

improper annotation technique.

Figure 28

Proper Annotation to Capture Pine Resin Cavity Markers

Note. Above is an example of a proper annotation. Annotation boxes should be drawn with the

tightest borders possible. Including too much background and irrelevant features will cause a

model to learn unnecessary features and will skew its learning process. Note that Open Images

Dataset V6 demonstrates more excellent examples of properly drawn annotation boxes.

54

Figure 29

Improper Annotation Featuring Incorrectly Labeled Objects

Note. These are ambiguous images that do not clearly illustrate what a pine resin cavity should

look like. The bounding boxes do not tightly define the object of interest, and too many irrelevant

features are present in these images for a model to fully learn. Bounding boxes like these were

removed from the dataset altogether.

55

Merging Datasets

After observing the combined results of each iteration, the next step is to merge

both datasets. Merging both datasets resulted in 978 images used for train and test. Figure

30 displays the training performance with the merged dataset.

Figure 30

Scenario 5 Iteration Merging Batch 1 and Batch 2 Datasets

Note. Merging both datasets resulted in a classic example of overfitting. Plenty of abnormal

outliers skew the training results. This image demonstrates why calculating of custom anchors is

beneficial. The model is recorded as having the 'best' mAP of 0.90, however this is an outlier.

56

Final Optimal Scenario

The previous scenarios slowly updated the configuration file to find an optimal

setting. Network input dimensions, batch size, subdivision, limiting validation images,

recalculating bounding box anchors, and various miscellaneous data augmentations were

performed and eventually led to finding the best results out of 100,000 iterations using

the yolov4-tiny configuration.

A few important things to highlight with YOLOv4, batch size and subdivision

size, require careful implementation. Ideally, batch size should be a multiple of

subdivision size and should be slowly incremented to avoid GPU memory issues. With a

small dataset size, i.e., under a few thousand samples, training with all images should be

toggled on with a default 80% train, 20% validation split. Most importantly, when

training with a novel object such as pine resin, recalculating yolo anchors must be

enabled; this allows the model to adjust and fine-tune boundary boxes during training.

The default anchor values will be used without recalculating these anchors, which are

trained on MS COCO or ImageNet data. Data augmentation should be tested differently

with each data set as there is no standard rule for using it. For this dataset, a vertical flip

was most helpful as pine resin has some degree of vertical symmetry. Using the

configuration settings shown in Figure 31, the best mAP of .95 was achieved; the final

result is displayed in Figure 32.

57

Figure 31

Optimal Settings after Trial and Error

Note. Important things to note with this configuration. Recalculation of YOLO anchors was

imperative to enable, either manually or through DarkMark, the software running this

configuration, as it impacted training performance the most (Solawetz, 2020). Due to the small

size of this dataset, training with all images and not limiting validation image augmentation was

essential.

58

Figure 32

Optimal Performance using YOLOv4-tiny with the Merged Dataset

Note. The irregular object appearance of pine resin makes certain outliers inevitable. However,

the training curve is relatively smooth compared to previous scenarios.

59

Test Results

The final optimal scenario of 0.95 training mAP produced the best model. Hence,

this version of the trained model was used to inference test data. There are many

techniques, commands, and software packages for inferencing test data. This particular

model used DarknetServer API with 416x416 tiles. Figure 33 displays the confusion

matrix created from this process.

Figure 33

Confusion Matrix of YOLOv4-tiny

Actual Values

1 0

P
re

d
ic

te
d
 V

a
lu

es

1

130 37

0

8 0

Note. This result is recorded using 103 testing images. The test images are all unique and unseen

at the training step. The high false-positive cases (i.e., 37) can be explained by a relatively low

threshold of 0.30. This is done to have the most bounding box predictions possible. In this

particular problem, false positives are preferred because wildlife biologists would rather have

more possible identifications instead of missing cased (i.e., false negatives).

 Table 10 summarizes the performance of YOLOv4-tiny, and Figures 34 and 35

demonstrate the performance on 76m and 46m test data.

60

Table 10

Detailed Performance of YOLOv4-tiny

Metric Definition Equation Result

TP Positive values predicted

positive

- 130

FP Negative values predicted

positive

- 37

FN Positive values predicted

negative

- 8

T.N. Negative values predicted

negative

- 0

Accuracy Proportion of correct

predictions out of all

predictions made

(TP + TN) / (P + N) 0.7429

Precision Proportion of correct

predictions out of all

positive predictions

(TP) / (TP+FP) 0.7784

Recall

(Sensitivity

or TPR)

Proportion of correct

predictions out of all

positive classes

(TP) / (TP + FN) 0.942

F1-Score Test accuracy, weighted

average of precision and

recall. 1 best, 0 worst.

2*(Precision*Recall) / (Precision +Recall) 0.8525

Specificity

(TNR)

Probability that a negative

prediction will be true

(TN) / (TN+FP) 0

False

Negative

Rate

(FNR)

Probability of labeling a

negative class as positive

(FN) / (FN + TP) 0.05797

False

Positive

Rate (FPR)

Probability of labeling a

positive class as negative

(FP) / (FP + TN) 1.00

False

Discovery

Rate

(FDR)

Ratio of FP to total

number of positive

predictions

(FP) / (FP + TP) 0.2216

61

Figure 34

Sample Inference with 76m Altitude Test Data

Note. These inference results were performed with YOLOv4-tiny.weights realized with the final

training scenario. To inference this, the following command was run: DarkHelp –keep –tiles on –

autohide off – YOLOv4-tiny {.cfg, .names, best.weights} test_dir. Nearly all of the cavities in

this image were detected with very high accuracy. Variance is normal as shown in the bottom

right cavity with 66% confidence, which is expected with many single-shot detectors.

62

Figure 35

Sample Inferencing with 46m Altitude Test Data

Note. These inference results are gathered in the same fashion as Figure 34. Note two cavities on

the right side were too small or obscured by foliage to be identified with large confidence. The

detection threshold was set relatively low at 0.30 as there is a functional preference to consider

false positives for potential cavities. These low-confidence cases can by unidentified by setting

the threshold to be 0.50, which is the standard default detection threshold.

63

YOLOv5n

YOLOv5n is the second model of choice for this study. Due to technical

constraints, this model did not perform as well as YOLOv4-tiny. All parameters for

training YOLOv5n were the same as YOLOv4-tiny except for network input dimension.

YOLOv5n requires a recommended input dimension of 640×640 pixels, which reduces

the average annotation box apparent size to ~0.333% of the tiled from ~0.789% as

featured in YOLOv4-tiny. Training for 300 epochs, YOLOv5n reached a training mAP of

78%, which is much lower than YOLOv4-tiny. Figure 36 suggests that the increased

epoch size might achieve better mAP values. However, this 300 epoch run took 6 days

and 13 hours to complete; thus, increasing the epoch length to 1,000 would be unfeasible

and unreliable to keep a workstation online without interruption. Figure 37 visualizes the

class distribution and the overall imprint of the average annotation box label.

The YOLOv5 family formats training inputs are slightly different compared to

previous models. The expected format is as follows.

../datasets/train/images/img1.jpg # image

../datasets/train/labels/img1.txt # label

../datasets/valid/images/img1.jpg # image

../datasets/valid/labels/img1.txt # label

The corresponding training command was used to start the training process for

300 epochs in an Anaconda environment as follows.

python3 C:/yolov5-gpu/yolov5-master/train.py --img 640 --batch 3 --epochs 300 --data
C:/yolov5-gpu/yolov5-master/data/RCW_custom.yaml --weights yolov5n.pt --device 0

64

Figure 36

Performance of YOLOv5n with Batch 1 Data (Top) and Batch 2 Data (Bottom)

Note. YOLOv5 uses Results are generated in WandB.ai; the service YOLOv5 uses to

automatically store results online. mAP_0.5 was 0.78.

65

Figure 37

Distribution of Class Instances in YOLOv5 Output Result

66

YOLOv5 automatically deploys its auto-anchoring during training. In addition,

AutoAnchor enables the fine-tuning of the expected anchor box values. Figure 38

demonstrates the test confusion matrix recorded by YOLOv5, and Table 11 further

defines the performance metrics.

Test Results

Figure 38

YOLOv5n Confusion Matrix

Actual Values

1 0

P
re

d
ic

te
d
 V

a
lu

es

1

92 2

0

39 0

Note. The same test images used by YOLOv4-tiny were also used for YOLOv5. The test images

are all unique and unseen at the training step. This model displayed more false-negative

identification and much fewer false positives.

67

Table 11

YOLOv5n Confusion Matrix Results

Metric Definition Equation Result

TP Positive values predicted

positive

- 92

FP Negative values predicted

positive

- 2

FN Positive values predicted

negative

- 39

TN Negative values predicted

negative

- 0

Accuracy Proportion of correct

predictions out of all

predictions made

(TP + TN) / (P + N) 0.6917

Precision Proportion of correct

predictions out of all

positive predictions

(TP) / (TP+FP) 0.7023

Recall

(Sensitivity

or TPR)

Proportion of correct

predictions out of all

positive classes

(TP) / (TP + FN) 0.9787

F1-Score Test accuracy, weighted

average of precision and

recall. 1 best, 0 worst.

2*(Precision*Recall) / (Precision +Recall) 0.8178

Specificity

(TNR)

Probability that a negative

prediction will be true

(TN) / (TN+FP) 0

False

Negative

Rate

(FNR)

Probability of labeling a

negative class as positive

(FN) / (FN + TP) 0.0212

False

Positive

Rate (FPR)

Probability of labeling a

positive class as negative

(FP) / (FP + TN) 1.00

False

Discovery

Rate

(FDR)

Ratio of FP to total

number of positive

predictions

(FP) / (FP + TP) 0.2977

68

Comparison between YOLOv4-tiny and YOLOv5n

The F1-scores are used to assess a model's testing accuracy. Both models tiled

images. The input image size is 416×416 for YOLOv4-tiny and 640×640 for YOLOv5n.

YOLOv4-tiny ran inferencing using Darknet Detector, while YOLOv5n used Sliced

Aided Hyper Inferencing (SAHI) created by (Akyon, 2021). Running both models at a

threshold of 0.30. The F1-score for test data is 0.8525 for YOLOv4-tiny and 0.8178 for

YOLOv5n. They are quite comparable in terms of overall performance. However,

training mAP was quite different. YOLOv4-tiny achieved an mAP of 0.96, and

YOLOv5n achieved an mAP of 0.78 for training data. A visual comparison is provided in

Figure 39.

Numerically, YOLOv5n made 46 better predictions compared to YOLOv4-tiny.

On the other hand, YOLOv4-tiny made 37 better predictions compared to YOLOv5n.

However, test results showed that both models complemented each other. Various RCW

markers that one model missed were detected by the other. Using both models for

inferencing and combining their results, the cavity detection 1.0 (i.e., 100%) on the

testing data was achieved. Not a single cavity was overlooked or missed. In practice, this

is a massive benefit for wildlife ecologists to ensure a robust detection system. Below are

a few samples that compare YOLOv4-tiny and YOLOv5n.

69

Figure 39

Sample YOLOv4-tiny Testing Inference Compared with YOLOv5n

Note. This figure clearly shows an example of difference in detecting RCW habitats between

YOLOv4-tiny (left) and YOLOv5n (right). Using SAHI, which is only available for YOLOv5

and newer models, detections are made with any desired tiling size. Overall, YOLOv5n found 46

more cavity instances than YOLOv4-tiny.

70

CHAPTER VI

Conclusion and Future Work

For the preservation of red-cockaded woodpecker (RCW), this work implemented

two computer vision models and performed a comparison to find the best solution to

assist in automating the RCW habitat detection process. This process saves thousands of

personnel hours and reduces dangers associated with pedestrian surveying in remote

locations. Computer vision, a machine learning subfield, promises to expand the scope of

many ecological conservation projects. YOLOv4-tiny reached a mean average precision

(mAP) of 0.95 and test accuracy of 0.85, and YOLOv5n achieved a mAP of 0.78 and test

accuracy of 0.82 using low fidelity data. Although the result is respectable, more can be

done to improve testing performance and deploy a real-time detection system.

Data

The data set featured in this work is small in quantity, contains too much

variation, and is not robust. The dataset needs to be increased by a few orders of

magnitude to have better effects on model training. Simple models trained on large data

sets generally perform better than complex models trained on small data sets. When

expanding the dataset, care should be taken to include different kinds of pine resin

appearances, seasonal variation, time of day, and increased geographic distribution. The

current dataset suffers from a lack of reliability. A reliable RCW dataset should consider

proper annotation technique, deletion of all duplicate, low-resolution images should be

omitted, and creation of a multi-class structure if ecologists wish to classifiy other types

of RCW habitats, i.e. non-sap.

71

Demanding Computing Hardware

The hardware used for this project had limitations. The maximum training image

size was 736×736 pixels before running out of GPU memory. Increasing memory

availability alleviates this problem however, GPUs are often costly and out of reach for

most practitioners. An alternative to buying local hardware is using GPU cloud services

that offer free training capabilities. However, they are often paywalled and are very slow

compared to local hardware.

With more excellent hardware capabilities, larger models that promise better mAP

values can be trained and tested. Unfortunately, YOLOR, YOLOX, YOLOv5, and

YOLOv4 all have large or extra-large model configurations that require enormous

memory requirements.

Model Ensembling

This work set out to perform model ensembling using the YOLO family. Using

various models, working together helps validate the results. Model ensembling for real-

time detection may be tricky but not impossible. In an ideal use case, the extra-large

models that promise a higher mAP value should be used to infer one data point

simultaneously.

The work featured in this study can be implemented in other ecological projects.

Large and small animal species identification, animal population counting, habitat

detection, territory segmentation, forest categorization, tree health measurements, etc.

Implementing computer vision is becoming much more accessible in recent years due to

artificial intelligence democratization and the streamlined approach model developers

take when releasing the latest innovations.

72

REFERENCES

Akyon, F. C. (2022, January 13). SAHI: A vision library for large-scale object detection

& instance segmentation. Medium. https://medium.com/codable/sahi-a-vision-

library-for-performing-sliced-inference-on-large-images-small-objects-

c8b086af3b80

Atanbori, J., Duan, W., Murray, J., Appiah, K., & Dickinson, P. (2016). Automatic

classification of flying bird species using computer vision techniques. Pattern

Recognition Letters, 81, 53–62. https://doi.org/10.1016/j.patrec.2015.08.015

Berg, T., Liu, J., Lee, S. W., Alexander, M. L., Jacobs, D. W., & Belhumeur, P. N.

(2014). Birdsnap: Large-scale fine-grained visual categorization of birds. 2014

IEEE Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/cvpr.2014.259

Bochkovskiy, A., Wang, C., & Liao, H. (2020). YOLOv4: Optimal speed and accuracy of

object detection. arXiv.Org. https://arxiv.org/abs/2004.10934?

Bochkovskiy, A. (2020a). GitHub - AlexeyAB/darknet: YOLOv4 / Scaled-YOLOv4 /

YOLO - Neural networks for object detection (Windows and Linux version of

Darknet). GitHub. https://github.com/AlexeyAB/darknet

Butler, M. J., & Tappe, P. A. (2008). Relationships of red-cockaded woodpecker

reproduction and foraging habitat characteristics in Arkansas and Louisiana.

European Journal of Wildlife Research, 54(4), 601–608.

https://doi.org/10.1007/s10344-008-0184-9

https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80
https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80
https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80
https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80
https://doi.org/10.1016/j.patrec.2015.08.015
https://doi.org/10.1109/cvpr.2014.259
https://arxiv.org/abs/2004.10934?
https://github.com/AlexeyAB/darknet
https://doi.org/10.1007/s10344-008-0184-9

73

Brownlee, J. (2021, January 26). A gentle introduction to object recognition with deep

learning. Machine Learning Mastery. https://machinelearningmastery.com/object-

recognition-with-deep-learning/

Carrascal, L. M., Galván, I., Sánchez-Oliver, J. S., & Rey Benayas, J. M. (2013).

Regional distribution patterns predict bird occurrence in Mediterranean cropland

afforestations. Ecological Research, 29(2), 203–211.

https://doi.org/10.1007/s11284-013-1114-1

Chien, W., Bochkovskiy, A., & Liao, H. (2020, November 16). Scaled-YOLOv4: Scaling

cross stage partial network. arXiv.Org. https://arxiv.org/abs/2011.08036

Charette, S. (2020, August 22). Darknet, DarkMark tutorial for Ubuntu [video].

YouTube. https://www.youtube.com/watch?v=RcLL8Lea6Ec&t

Charette, S. (2020, August 22) Programming comments - Darknet FAQ. Ccoderun.

https://www.ccoderun.ca/programming/darknet_faq/

Dedhia, P. R. (2022, March 30). Understanding SPPNet for object classification and

detection. Medium. https://towardsdatascience.com/understanding-sppnet-for-

object-detection-and-classification-682d6d2bdfb

Elgendy, M. (2020). Deep learning for vision systems (1st ed.). Manning.

Fukushima, K., & Wake, N. (1991). Handwritten alphanumeric character recognition by

the neocognitron. IEEE Transactions on Neural Networks, 2(3), 355–365.

https://doi.org/10.1109/72.97912

https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://machinelearningmastery.com/object-recognition-with-deep-learning/
https://doi.org/10.1007/s11284-013-1114-1
https://arxiv.org/abs/2011.08036
https://www.youtube.com/watch?v=RcLL8Lea6Ec&t
https://www.ccoderun.ca/programming/darknet_faq/
https://towardsdatascience.com/understanding-sppnet-for-object-detection-and-classification-682d6d2bdfb
https://towardsdatascience.com/understanding-sppnet-for-object-detection-and-classification-682d6d2bdfb
https://doi.org/10.1109/72.97912

74

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for

accurate object detection and semantic segmentation. 2014 IEEE Conference on

Computer Vision and Pattern Recognition. https://doi.org/10.1109/cvpr.2014.81

Gregory, R. D., & Strien, A. V. (2010). Wild bird indicators: Using composite population

trends of birds as measures of environmental health. Ornithological Science, 9(1),

3–22. https://doi.org/10.2326/osj.9.3

Hubel, D. H., & Weisel, T. N. (1959). Receptive fields of single neurons in the cat's

striate cortex. The Journal of Physiology. 148, 574-91.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/

Jackson, J. A. (1971). The evolution, taxonomy, distribution, past populations, and

current status of the red-cockaded woodpecker. Symposium on the Red-Cockaded

Woodpecker. 4-29. U.S. Bureau of Sport Fisheries and Wildlife.

Jin, L., & Liang, H. (2017). Deep learning for underwater image recognition in small

sample size situations. OCEANS 2017 - Aberdeen.

https://doi.org/10.1109/oceanse.2017.8084645

Konovalov, D. A., Saleh, A., Bradley, M., Sankupellay, M., Marini, S., & Sheaves, M.

(2019). Underwater fish detection with weak multi-domain supervision. 2019

International Joint Conference on Neural Networks (IJCNN).

https://doi.org/10.1109/ijcnn.2019.8851907

Kotu, V., & Deshpande, B. (2015). Predictive analytics and data mining. Elsevier

Gezondheidszorg.

https://doi.org/10.1109/cvpr.2014.81
https://doi.org/10.2326/osj.9.3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1363130/
https://doi.org/10.1109/oceanse.2017.8084645
https://doi.org/10.1109/ijcnn.2019.8851907

75

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep

convolutional neural networks. Communications of the ACM, 60(6), 84–90.

https://doi.org/10.1145/3065386

Krohn, J., Beyleveld, G., & Bassens, A. (2020). Deep learning illustrated: A visual,

interactive guide to artificial intelligence (Addison-Wesley Data & Analytics

Series) (1st ed.). Addison-Wesley Professional.

Landers, J. L., Van Lear, D. H., & Boyer, W. D. (1995). The longleaf pine forests of the

southeast: requiem or renaissance? | Treesearch. Journal of Forestry.

https://www.fs.usda.gov/treesearch/pubs/980

Lawrence, B. (2022). Classifying forest structure of Red-Cockaded Woodpecker habitat

using structure from motion elevation data derived from sUAS imagery. Drones,

6(1), 26. https://doi.org/10.3390/drones6010026

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–

444. https://doi.org/10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

https://doi.org/10.1109/5.726791

Leonard, D. L., & DeLotelle, R. S. (2003). [Review of The Red-Cockaded Woodpecker:

Surviving in a fire-maintained ecosystem, by Richard N. Conner D. Craig

Rudolph Jeffery R. Walters]. The Auk, 120(4), 1201–1205.

https://doi.org/10.2307/4090293

https://doi.org/10.1145/3065386
https://www.fs.usda.gov/treesearch/pubs/980
https://doi.org/10.3390/drones6010026
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.2307/4090293

76

Mellit, A., Massi Pavan, A., Ogliari, E., Leva, S., & Lughi, V. (2020). Advanced methods

for photovoltaic output power forecasting: A review. Applied Sciences, 10(2),

487. https://doi.org/10.3390/app10020487

Miao, Z., Gaynor, K. M., Wang, J., Liu, Z., Muellerklein, O., Norouzzadeh, M. S.,

McInturff, A., Bowie, R. C. K., Nathan, R., Yu, S. X., & Getz, W. M. (2019).

Insights and approaches using deep learning to classify wildlife. Scientific

Reports, 9(1). https://doi.org/10.1038/s41598-019-44565-w

Mihajlovic, I. (2022, March 29). Everything you ever wanted to know about computer

vision. Medium. https://towardsdatascience.com/everything-you-ever-wanted-to-

know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e

Neate-Clegg, M. H., Horns, J. J., Adler, F. R., Kemahlı Aytekin, M. I., & Şekercioğlu, A.

H. (2020). Monitoring the world’s bird populations with community science data.

Biological Conservation, 248, 108653.

https://doi.org/10.1016/j.biocon.2020.108653

Pimm, S. L., Alibhai, S., Bergl, R., Dehgan, A., Giri, C., Jewell, Z., Joppa, L., Kays, R.,

& Loarie, S. (2015). Emerging technologies to conserve biodiversity. Trends in

Ecology & Evolution, 30(11), 685–696. https://doi.org/10.1016/j.tree.2015.08.008

Pitts, W., & McCulloch, W. S. (1947). How we know universals the perception of

auditory and visual forms. The Bulletin of Mathematical Biophysics, 9(3), 127–

147. https://doi.org/10.1007/bf02478291

Red-cockaded Woodpecker Identification, All about birds, Cornell Lab of Ornithology.

(2019). Cornell Labs. https://www.allaboutbirds.org/guide/Red-

https://doi.org/10.3390/app10020487
https://doi.org/10.1038/s41598-019-44565-w
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://towardsdatascience.com/everything-you-ever-wanted-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e
https://doi.org/10.1016/j.biocon.2020.108653
https://doi.org/10.1016/j.tree.2015.08.008
https://doi.org/10.1007/bf02478291
https://www.allaboutbirds.org/guide/Red-cockaded_Woodpecker/id%23:~:text=Measurements&text=Despite%20their%20name%2C%20they%20are,horizontal%20black-and-white%20bars

77

cockaded_Woodpecker/id#:%7E:text=Measurements&text=Despite%20their%20

name%2C%20they%20are,horizontal%20black%2Dand%2Dwhite%20bars

Red-cockaded Woodpecker Survey Protocol. (2018). Environmental Analysis Unit.

https://www.fws.gov/sites/default/files/documents/RCW_Survey_protocol.pdf

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once:

Unified, real-time object detection. 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr.2016.91

Redmon, J., & Farhadi, A. (2017). YOLO9000: Better, faster, stronger. 2017 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR).

https://doi.org/10.1109/cvpr.2017.690

Redmon, J. (2018, April 8). YOLOv3: An incremental improvement. arXiv.Org.

https://arxiv.org/abs/1804.02767

Redmon, J [@pjreddie]. (2020, February 20). Twitter.

https://twitter.com/pjreddie/status/1230524770350817280?ref_src=twsrc%5Etfw

%7Ctwcamp%5Etweetembed%7Ctwterm%5E1230524770350817280%7Ctwgr%

5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsyncedreview.com%2F2020%

2F02%2F24%2Fyolo-creator-says-he-stopped-cv-research-due-to-ethical-

concerns%2F

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by

back-propagating errors. Nature, 323(6088), 533–536.

https://doi.org/10.1038/323533a0

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large

https://www.allaboutbirds.org/guide/Red-cockaded_Woodpecker/id%23:~:text=Measurements&text=Despite%20their%20name%2C%20they%20are,horizontal%20black-and-white%20bars
https://www.allaboutbirds.org/guide/Red-cockaded_Woodpecker/id%23:~:text=Measurements&text=Despite%20their%20name%2C%20they%20are,horizontal%20black-and-white%20bars
https://www.fws.gov/sites/default/files/documents/RCW_Survey_protocol.pdf
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1109/cvpr.2017.690
https://arxiv.org/abs/1804.02767
https://twitter.com/pjreddie/status/1230524770350817280?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1230524770350817280%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsyncedreview.com%2F2020%2F02%2F24%2Fyolo-creator-says-he-stopped-cv-research-due-to-ethical-concerns%2F
https://twitter.com/pjreddie/status/1230524770350817280?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1230524770350817280%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsyncedreview.com%2F2020%2F02%2F24%2Fyolo-creator-says-he-stopped-cv-research-due-to-ethical-concerns%2F
https://twitter.com/pjreddie/status/1230524770350817280?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1230524770350817280%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsyncedreview.com%2F2020%2F02%2F24%2Fyolo-creator-says-he-stopped-cv-research-due-to-ethical-concerns%2F
https://twitter.com/pjreddie/status/1230524770350817280?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1230524770350817280%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsyncedreview.com%2F2020%2F02%2F24%2Fyolo-creator-says-he-stopped-cv-research-due-to-ethical-concerns%2F
https://twitter.com/pjreddie/status/1230524770350817280?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1230524770350817280%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=https%3A%2F%2Fsyncedreview.com%2F2020%2F02%2F24%2Fyolo-creator-says-he-stopped-cv-research-due-to-ethical-concerns%2F
https://doi.org/10.1038/323533a0

78

scale visual recognition challenge. International Journal of Computer Vision,

115(3), 211–252. https://doi.org/10.1007/s11263-015-0816-y

Saleh, A., Sheaves, M., & Rahimi Azghadi, M. (2022). Computer vision and deep

learning for fish classification in underwater habitats: A survey. Fish and

Fisheries, 23(4), 977–999. https://doi.org/10.1111/faf.12666

Sharma, A. (2022, July 14). Introduction to the YOLO family. PyImageSearch.

https://pyimagesearch.com/2022/04/04/introduction-to-the-yolo-family/

Simberloff, D. (1993). Species-area and fragmentation effects on old growth forests:

prospects for longleaf pine communities. Proceedings of the Tall Timbers Fire

Ecology Conference, 18. Tall Timbers Research Station, Tallahassee, FL.

http://talltimbers.org/wp-content/uploads/2014/03/Simberloff1993_op.pdf

Solawetz, J. (2022, May 11). What are Anchor Boxes in object detection? Roboflow

Blog. https://blog.roboflow.com/what-is-an-anchor-

box/#:%7E:text=In%20order%20to%20predict%20and,prior%2C%20and%20adj

ust%20from%20there.

Tamou, A. B., Benzinou, A., Nasreddine, K., & Ballihi, L. (2018). Underwater live fish

recognition by deep learning. Lecture Notes in Computer Science, 275–283.

https://doi.org/10.1007/978-3-319-94211-7_30

Tyagi, M. (2022, January 6). HOG (Histogram of Oriented Gradients): An overview -

Towards data science. Medium. https://towardsdatascience.com/hog-histogram-

of-oriented-gradients-67ecd887675f

Ultralytics. (2020). U. (2020). GitHub - ultralytics/yolov5: YOLOv5 in PyTorch >

ONNX > CoreML > TFLite. GitHub. https://github.com/ultralytics/yolov5

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1111/faf.12666
https://pyimagesearch.com/2022/04/04/introduction-to-the-yolo-family/
http://talltimbers.org/wp-content/uploads/2014/03/Simberloff1993_op.pdf
https://blog.roboflow.com/what-is-an-anchor-box/%23:~:text=In%20order%20to%20predict%20and,prior%2C%20and%20adjust%20from%20there.
https://blog.roboflow.com/what-is-an-anchor-box/%23:~:text=In%20order%20to%20predict%20and,prior%2C%20and%20adjust%20from%20there.
https://blog.roboflow.com/what-is-an-anchor-box/%23:~:text=In%20order%20to%20predict%20and,prior%2C%20and%20adjust%20from%20there.
https://doi.org/10.1007/978-3-319-94211-7_30
https://towardsdatascience.com/hog-histogram-of-oriented-gradients-67ecd887675f
https://towardsdatascience.com/hog-histogram-of-oriented-gradients-67ecd887675f
https://github.com/ultralytics/yolov5

79

University of Central Florida. (2016). Computer vision. Lecture 21-Deformable Part

Model (DPM).

https://www.cs.ucf.edu/~bagci/teaching/computervision16/Lec21.pdf

Wang, C., Yeh, I., & Liao, H. (2021, May 10). You only learn one representation:

Unified network for multiple tasks. arXiv.Org. https://arxiv.org/abs/2105.04206

Ware, S., Frost C., & Doerr, P. D. (1993). Southern mixed hardwood forest: the former

longleaf pine forest. Biodiversity of the southeastern United States: Lowland

terrestrial communities. New York, J. Wiley, p. 447-493.

Weinstein, B. G. (2017). A computer vision for animal ecology. Journal of Animal

Ecology, 87(3), 533–545. https://doi.org/10.1111/1365-2656.12780

Wilber, M. J., Scheirer, W. J., Leitner, P., Heflin, B., Zott, J., Reinke, D., Delaney, D. K.,

& Boult, T. E. (2013). Animal recognition in the Mojave Desert: Vision tools for

field biologists. 2013 IEEE Workshop on Applications of Computer Vision

(WACV). https://doi.org/10.1109/wacv.2013.6475020

U.S. Fish and Wildlife Service. (2003). Recovery plan for the Red-Cockaded

Woodpecker (Picoides borealis): Second revision. U.S. Fish and Wildlife Service.

Atlanta, GA, USA. https://www.nrc.gov/docs/ML1119/ML111920406.pdf

Xiang, L., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S.,

Ding, E., & Wen, S. (2020, July 23). PP-YOLO: An effective and efficient

implementation of object detector. arXiv.Org. https://arxiv.org/abs/2007.12099

Xin, H., Wang, X., Lv, W., Bai, X., Long, X., et al., & Yoshie, O. (2021, April 21). PP-

YOLOv2: A practical object detector. arXiv.Org. https://arxiv.org/abs/2104.10419

https://www.cs.ucf.edu/~bagci/teaching/computervision16/Lec21.pdf
https://arxiv.org/abs/2105.04206
https://doi.org/10.1111/1365-2656.12780
https://doi.org/10.1109/wacv.2013.6475020
https://www.nrc.gov/docs/ML1119/ML111920406.pdf
https://arxiv.org/abs/2007.12099
https://arxiv.org/abs/2104.10419

80

Xu, S., Wang, X., Lv, W., Chang, Q., Ciu, C., et al., & Lai, B. (2022). PP-YOLOE: An

evolved version of YOLO. arXiv.Org. https://arxiv.org/pdf/2203.16250v2.pdf

Zhao, Z. (2018, July 15). Object detection with deep learning: A review. arXiv.Org.

https://arxiv.org/abs/1807.05511

Zheng, G., Liu, S., Wang, F., Li, Zeming., & Sun, J. (2021, July 18). YOLOX: Exceeding

YOLO Series in 2021. arXiv.Org. https://arxiv.org/abs/2107.08430

Zou, Z., Shi, Z., Guo, Y., & Ye, J. (2019, May 13). Object detection in 20 years: A

survey. arXiv.Org. https://arxiv.org/abs/1905.05055

https://arxiv.org/pdf/2203.16250v2.pdf
https://arxiv.org/abs/1807.05511
https://arxiv.org/abs/2107.08430
https://arxiv.org/abs/1905.05055

81

APPENDIX

YOLOv4-tiny.cfg

DarkMark v1.6.21-1 output for Darknet

Project /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4

Config

/home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4/YoloV4.cfg

Template ... /home/emkun/src/darknet/cfg/yolov4-tiny.cfg

Username ... emkun@emkun-ROG-Zephyrus-GX550LXS-GX550LXS

Timestamp .. Wed 2022-06-29 23:18:24 CDT

WARNING: If you re-generate the darknet files for this project you'll

lose any customizations you are about to make in this file!

[net]

Testing

#batch=1

#subdivisions=1

Training

batch=1

subdivisions=1

width=416

height=416

82

channels=3

momentum=0.9

decay=0.0005

angle=0

saturation=1.500000

exposure=1.500000

hue=0.100000

learning_rate=0.002610

burn_in=1000

max_batches=100000

policy=steps

steps=80000,90000

scales=.1,.1

#weights_reject_freq=1001

#ema_alpha=0.9998

#equidistant_point=1000

#num_sigmas_reject_badlabels=3

#badlabels_rejection_percentage=0.2

cutmix=0

83

flip=1

max_chart_loss=4.000000

mixup=0

mosaic=0

use_cuda_graph=0

[convolutional]

batch_normalize=1

filters=32

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=64

size=3

stride=2

pad=1

activation=leaky

84

[convolutional]

batch_normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[route]

layers=-1

groups=2

group_id=1

[convolutional]

batch_normalize=1

filters=32

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

85

filters=32

size=3

stride=1

pad=1

activation=leaky

[route]

layers = -1,-2

[convolutional]

batch_normalize=1

filters=64

size=1

stride=1

pad=1

activation=leaky

[route]

layers = -6,-1

[maxpool]

size=2

stride=2

86

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[route]

layers=-1

groups=2

group_id=1

[convolutional]

batch_normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[convolutional]

87

batch_normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[route]

layers = -1,-2

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[route]

layers = -6,-1

[maxpool]

size=2

88

stride=2

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[route]

layers=-1

groups=2

group_id=1

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

89

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[route]

layers = -1,-2

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[route]

layers = -6,-1

[maxpool]

90

size=2

stride=2

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

##################################

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

91

filters=512

size=3

stride=1

pad=1

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=18

activation=linear

[yolo]

mask = 3,4,5

anchors=5, 14, 10, 32, 27, 45, 26, 113, 51, 74, 60, 182

classes=1

num=6

jitter=.3

scale_x_y = 1.05

cls_normalizer=1.0

92

iou_normalizer=0.07

iou_loss=ciou

ignore_thresh = .7

truth_thresh = 1

random=0

resize=1.5

nms_kind=greedynms

beta_nms=0.6

#new_coords=1

#scale_x_y = 2.0

[route]

layers = -4

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[upsample]

93

stride=2

[route]

layers = -1, 23

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=18

activation=linear

[yolo]

mask = 0,1,2

anchors=5, 14, 10, 32, 27, 45, 26, 113, 51, 74, 60, 182

94

classes=1

num=6

jitter=.3

scale_x_y = 1.05

cls_normalizer=1.0

iou_normalizer=0.07

iou_loss=ciou

ignore_thresh = .7

truth_thresh = 1

random=0

resize=1.5

nms_kind=greedynms

beta_nms=0.6

#new_coords=1

#scale_x_y = 2.0

95

YOLOv4.data

classes = 1

train = /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4/YoloV4_train.txt

valid = /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4/YoloV4_valid.txt

names = /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4/YoloV4.names

backup = /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4

96

YOLOv4.names

Cavity tree

97

YOLOv5n train.py

YOLOv5 🚀 by Ultralytics, GPL-3.0 license

"""

Train a YOLOv5 model on a custom dataset.

Models and datasets download automatically from the latest YOLOv5 release.

Models: https://github.com/ultralytics/yolov5/tree/master/models

Datasets: https://github.com/ultralytics/yolov5/tree/master/data

Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data

Usage:

 $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640 # from

pretrained (RECOMMENDED)

 $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img

640 # from scratch

"""

import argparse

import math

import os

import random

import sys

98

import time

from copy import deepcopy

from datetime import datetime

from pathlib import Path

import numpy as np

import torch

import torch.distributed as dist

import torch.nn as nn

import yaml

from torch.cuda import amp

from torch.nn.parallel import DistributedDataParallel as DDP

from torch.optim import SGD, Adam, AdamW, lr_scheduler

from tqdm import tqdm

FILE = Path(__file__).resolve()

ROOT = FILE.parents[0] # YOLOv5 root directory

if str(ROOT) not in sys.path:

 sys.path.append(str(ROOT)) # add ROOT to PATH

ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative

import val # for end-of-epoch mAP

from models.experimental import attempt_load

99

from models.yolo import Model

from utils.autoanchor import check_anchors

from utils.autobatch import check_train_batch_size

from utils.callbacks import Callbacks

from utils.datasets import create_dataloader

from utils.downloads import attempt_download

from utils.general import (LOGGER, check_dataset, check_file, check_git_status,

check_img_size, check_requirements,

 check_suffix, check_yaml, colorstr, get_latest_run, increment_path,

init_seeds,

 intersect_dicts, labels_to_class_weights, labels_to_image_weights,

methods, one_cycle,

 print_args, print_mutation, strip_optimizer)

from utils.loggers import Loggers

from utils.loggers.wandb.wandb_utils import check_wandb_resume

from utils.loss import ComputeLoss

from utils.metrics import fitness

from utils.plots import plot_evolve, plot_labels

from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device,

torch_distributed_zero_first

LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) #

https://pytorch.org/docs/stable/elastic/run.html

100

RANK = int(os.getenv('RANK', -1))

WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))

def train(hyp, opt, device, callbacks): # hyp is path/to/hyp.yaml or hyp dictionary

 save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval,

nosave, workers, freeze = \

 Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls,

opt.evolve, opt.data, opt.cfg, \

 opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze

 # Directories

 w = save_dir / 'weights' # weights dir

 (w.parent if evolve else w).mkdir(parents=True, exist_ok=True) # make dir

 last, best = w / 'last.pt', w / 'best.pt'

 # Hyperparameters

 if isinstance(hyp, str):

 with open(hyp, errors='ignore') as f:

 hyp = yaml.safe_load(f) # load hyps dict

 LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in

hyp.items()))

101

 # Save run settings

 if not evolve:

 with open(save_dir / 'hyp.yaml', 'w') as f:

 yaml.safe_dump(hyp, f, sort_keys=False)

 with open(save_dir / 'opt.yaml', 'w') as f:

 yaml.safe_dump(vars(opt), f, sort_keys=False)

 # Loggers

 data_dict = None

 if RANK in [-1, 0]:

 loggers = Loggers(save_dir, weights, opt, hyp, LOGGER) # loggers instance

 if loggers.wandb:

 data_dict = loggers.wandb.data_dict

 if resume:

 weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp,

opt.batch_size

 # Register actions

 for k in methods(loggers):

 callbacks.register_action(k, callback=getattr(loggers, k))

 # Config

 plots = not evolve # create plots

102

 cuda = device.type != 'cpu'

 init_seeds(1 + RANK)

 with torch_distributed_zero_first(LOCAL_RANK):

 data_dict = data_dict or check_dataset(data) # check if None

 train_path, val_path = data_dict['train'], data_dict['val']

 nc = 1 if single_cls else int(data_dict['nc']) # number of classes

 names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names'] #

class names

 assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}' #

check

 is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt') # COCO

dataset

 # Model

 check_suffix(weights, '.pt') # check weights

 pretrained = weights.endswith('.pt')

 if pretrained:

 with torch_distributed_zero_first(LOCAL_RANK):

 weights = attempt_download(weights) # download if not found locally

 ckpt = torch.load(weights, map_location='cpu') # load checkpoint to CPU to avoid

CUDA memory leak

 model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc,

anchors=hyp.get('anchors')).to(device) # create

103

 exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else [] # exclude

keys

 csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32

 csd = intersect_dicts(csd, model.state_dict(), exclude=exclude) # intersect

 model.load_state_dict(csd, strict=False) # load

 LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from

{weights}') # report

 else:

 model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create

 # Freeze

 freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] #

layers to freeze

 for k, v in model.named_parameters():

 v.requires_grad = True # train all layers

 if any(x in k for x in freeze):

 LOGGER.info(f'freezing {k}')

 v.requires_grad = False

 # Image size

 gs = max(int(model.stride.max()), 32) # grid size (max stride)

 imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2) # verify imgsz is gs-multiple

104

 # Batch size

 if RANK == -1 and batch_size == -1: # single-GPU only, estimate best batch size

 batch_size = check_train_batch_size(model, imgsz)

 loggers.on_params_update({"batch_size": batch_size})

 # Optimizer

 nbs = 64 # nominal batch size

 accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing

 hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay

 LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

 g0, g1, g2 = [], [], [] # optimizer parameter groups

 for v in model.modules():

 if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter): # bias

 g2.append(v.bias)

 if isinstance(v, nn.BatchNorm2d): # weight (no decay)

 g0.append(v.weight)

 elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter): # weight (with

decay)

 g1.append(v.weight)

 if opt.optimizer == 'Adam':

105

 optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1

to momentum

 elif opt.optimizer == 'AdamW':

 optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust

beta1 to momentum

 else:

 optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

 optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']}) #

add g1 with weight_decay

 optimizer.add_param_group({'params': g2}) # add g2 (biases)

 LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter

groups "

 f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias")

 del g0, g1, g2

 # Scheduler

 if opt.cos_lr:

 lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']

 else:

 lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear

 scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf) #

plot_lr_scheduler(optimizer, scheduler, epochs)

106

 # EMA

 ema = ModelEMA(model) if RANK in [-1, 0] else None

 # Resume

 start_epoch, best_fitness = 0, 0.0

 if pretrained:

 # Optimizer

 if ckpt['optimizer'] is not None:

 optimizer.load_state_dict(ckpt['optimizer'])

 best_fitness = ckpt['best_fitness']

 # EMA

 if ema and ckpt.get('ema'):

 ema.ema.load_state_dict(ckpt['ema'].float().state_dict())

 ema.updates = ckpt['updates']

 # Epochs

 start_epoch = ckpt['epoch'] + 1

 if resume:

 assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished,

nothing to resume.'

 if epochs < start_epoch:

107

 LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-

tuning for {epochs} more epochs.")

 epochs += ckpt['epoch'] # finetune additional epochs

 del ckpt, csd

 # DP mode

 if cuda and RANK == -1 and torch.cuda.device_count() > 1:

 LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for

best DDP Multi-GPU results.\n'

 'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475

to get started.')

 model = torch.nn.DataParallel(model)

 # SyncBatchNorm

 if opt.sync_bn and cuda and RANK != -1:

 model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)

 LOGGER.info('Using SyncBatchNorm()')

 # Trainloader

 train_loader, dataset = create_dataloader(train_path,

 imgsz,

 batch_size // WORLD_SIZE,

108

 gs,

 single_cls,

 hyp=hyp,

 augment=True,

 cache=None if opt.cache == 'val' else opt.cache,

 rect=opt.rect,

 rank=LOCAL_RANK,

 workers=workers,

 image_weights=opt.image_weights,

 quad=opt.quad,

 prefix=colorstr('train: '),

 shuffle=True)

 mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max()) # max label class

 nb = len(train_loader) # number of batches

 assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels

are 0-{nc - 1}'

 # Process 0

 if RANK in [-1, 0]:

 val_loader = create_dataloader(val_path,

 imgsz,

 batch_size // WORLD_SIZE * 2,

 gs,

109

 single_cls,

 hyp=hyp,

 cache=None if noval else opt.cache,

 rect=True,

 rank=-1,

 workers=workers * 2,

 pad=0.5,

 prefix=colorstr('val: '))[0]

 if not resume:

 labels = np.concatenate(dataset.labels, 0)

 # c = torch.tensor(labels[:, 0]) # classes

 # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency

 # model._initialize_biases(cf.to(device))

 if plots:

 plot_labels(labels, names, save_dir)

 # Anchors

 if not opt.noautoanchor:

 check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)

 model.half().float() # pre-reduce anchor precision

 callbacks.run('on_pretrain_routine_end')

110

 # DDP mode

 if cuda and RANK != -1:

 model = DDP(model, device_ids=[LOCAL_RANK],

output_device=LOCAL_RANK)

 # Model attributes

 nl = de_parallel(model).model[-1].nl # number of detection layers (to scale hyps)

 hyp['box'] *= 3 / nl # scale to layers

 hyp['cls'] *= nc / 80 * 3 / nl # scale to classes and layers

 hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl # scale to image size and layers

 hyp['label_smoothing'] = opt.label_smoothing

 model.nc = nc # attach number of classes to model

 model.hyp = hyp # attach hyperparameters to model

 model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc #

attach class weights

 model.names = names

 # Start training

 t0 = time.time()

 nw = max(round(hyp['warmup_epochs'] * nb), 100) # number of warmup iterations,

max(3 epochs, 100 iterations)

 # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training

111

 last_opt_step = -1

 maps = np.zeros(nc) # mAP per class

 results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)

 scheduler.last_epoch = start_epoch - 1 # do not move

 scaler = amp.GradScaler(enabled=cuda)

 stopper = EarlyStopping(patience=opt.patience)

 compute_loss = ComputeLoss(model) # init loss class

 LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'

 f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'

 f"Logging results to {colorstr('bold', save_dir)}\n"

 f'Starting training for {epochs} epochs...')

 for epoch in range(start_epoch, epochs): # epoch --

 model.train()

 # Update image weights (optional, single-GPU only)

 if opt.image_weights:

 cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights

 iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image

weights

 dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) #

rand weighted idx

112

 # Update mosaic border (optional)

 # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)

 # dataset.mosaic_border = [b - imgsz, -b] # height, width borders

 mloss = torch.zeros(3, device=device) # mean losses

 if RANK != -1:

 train_loader.sampler.set_epoch(epoch)

 pbar = enumerate(train_loader)

 LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels',

'img_size'))

 if RANK in [-1, 0]:

 pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}') #

progress bar

 optimizer.zero_grad()

 for i, (imgs, targets, paths, _) in pbar: # batch --

 ni = i + nb * epoch # number integrated batches (since train start)

 imgs = imgs.to(device, non_blocking=True).float() / 255 # uint8 to float32, 0-255

to 0.0-1.0

 # Warmup

 if ni <= nw:

 xi = [0, nw] # x interp

113

 # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0

or iou)

 accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())

 for j, x in enumerate(optimizer.param_groups):

 # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0

 x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0,

x['initial_lr'] * lf(epoch)])

 if 'momentum' in x:

 x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'],

hyp['momentum']])

 # Multi-scale

 if opt.multi_scale:

 sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size

 sf = sz / max(imgs.shape[2:]) # scale factor

 if sf != 1:

 ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape

(stretched to gs-multiple)

 imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear',

align_corners=False)

 # Forward

 with amp.autocast(enabled=cuda):

114

 pred = model(imgs) # forward

 loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by

batch_size

 if RANK != -1:

 loss *= WORLD_SIZE # gradient averaged between devices in DDP mode

 if opt.quad:

 loss *= 4.

 # Backward

 scaler.scale(loss).backward()

 # Optimize

 if ni - last_opt_step >= accumulate:

 scaler.step(optimizer) # optimizer.step

 scaler.update()

 optimizer.zero_grad()

 if ema:

 ema.update(model)

 last_opt_step = ni

 # Log

 if RANK in [-1, 0]:

 mloss = (mloss * i + loss_items) / (i + 1) # update mean losses

115

 mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else

0:.3g}G' # (GB)

 pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %

 (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0],

imgs.shape[-1]))

 callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots,

opt.sync_bn)

 if callbacks.stop_training:

 return

 # end batch --

 # Scheduler

 lr = [x['lr'] for x in optimizer.param_groups] # for loggers

 scheduler.step()

 if RANK in [-1, 0]:

 # mAP

 callbacks.run('on_train_epoch_end', epoch=epoch)

 ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride',

'class_weights'])

 final_epoch = (epoch + 1 == epochs) or stopper.possible_stop

 if not noval or final_epoch: # Calculate mAP

116

 results, maps, _ = val.run(data_dict,

 batch_size=batch_size // WORLD_SIZE * 2,

 imgsz=imgsz,

 model=ema.ema,

 single_cls=single_cls,

 dataloader=val_loader,

 save_dir=save_dir,

 plots=False,

 callbacks=callbacks,

 compute_loss=compute_loss)

 # Update best mAP

 fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R,

mAP@.5, mAP@.5-.95]

 if fi > best_fitness:

 best_fitness = fi

 log_vals = list(mloss) + list(results) + lr

 callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

 # Save model

 if (not nosave) or (final_epoch and not evolve): # if save

 ckpt = {

 'epoch': epoch,

117

 'best_fitness': best_fitness,

 'model': deepcopy(de_parallel(model)).half(),

 'ema': deepcopy(ema.ema).half(),

 'updates': ema.updates,

 'optimizer': optimizer.state_dict(),

 'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None,

 'date': datetime.now().isoformat()}

 # Save last, best and delete

 torch.save(ckpt, last)

 if best_fitness == fi:

 torch.save(ckpt, best)

 if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0):

 torch.save(ckpt, w / f'epoch{epoch}.pt')

 del ckpt

 callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

 # Stop Single-GPU

 if RANK == -1 and stopper(epoch=epoch, fitness=fi):

 break

 # Stop DDP TODO: known issues

shttps://github.com/ultralytics/yolov5/pull/4576

118

 # stop = stopper(epoch=epoch, fitness=fi)

 # if RANK == 0:

 # dist.broadcast_object_list([stop], 0) # broadcast 'stop' to all ranks

 # Stop DPP

 # with torch_distributed_zero_first(RANK):

 # if stop:

 # break # must break all DDP ranks

 # end epoch --

 # end training ---

 if RANK in [-1, 0]:

 LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0)

/ 3600:.3f} hours.')

 for f in last, best:

 if f.exists():

 strip_optimizer(f) # strip optimizers

 if f is best:

 LOGGER.info(f'\nValidating {f}...')

 results, _, _ = val.run(

 data_dict,

119

 batch_size=batch_size // WORLD_SIZE * 2,

 imgsz=imgsz,

 model=attempt_load(f, device).half(),

 iou_thres=0.65 if is_coco else 0.60, # best pycocotools results at 0.65

 single_cls=single_cls,

 dataloader=val_loader,

 save_dir=save_dir,

 save_json=is_coco,

 verbose=True,

 plots=True,

 callbacks=callbacks,

 compute_loss=compute_loss) # val best model with plots

 if is_coco:

 callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch,

best_fitness, fi)

 callbacks.run('on_train_end', last, best, plots, epoch, results)

 LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")

 torch.cuda.empty_cache()

 return results

120

def parse_opt(known=False):

 parser = argparse.ArgumentParser()

 parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial

weights path')

 parser.add_argument('--cfg', type=str, default='', help='model.yaml path')

 parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml',

help='dataset.yaml path')

 parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-

low.yaml', help='hyperparameters path')

 parser.add_argument('--epochs', type=int, default=300)

 parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all

GPUs, -1 for autobatch')

 parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train,

val image size (pixels)')

 parser.add_argument('--rect', action='store_true', help='rectangular training')

 parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume

most recent training')

 parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')

 parser.add_argument('--noval', action='store_true', help='only validate final epoch')

 parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')

 parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve

hyperparameters for x generations')

 parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')

121

 parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in

"ram" (default) or "disk"')

 parser.add_argument('--image-weights', action='store_true', help='use weighted image

selection for training')

 parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

 parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/-

50%%')

 parser.add_argument('--single-cls', action='store_true', help='train multi-class data as

single-class')

 parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'],

default='SGD', help='optimizer')

 parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only

available in DDP mode')

 parser.add_argument('--workers', type=int, default=8, help='max dataloader workers

(per RANK in DDP mode)')

 parser.add_argument('--project', default=ROOT / 'runs/train', help='save to

project/name')

 parser.add_argument('--name', default='exp', help='save to project/name')

 parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok,

do not increment')

 parser.add_argument('--quad', action='store_true', help='quad dataloader')

 parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')

122

 parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label

smoothing epsilon')

 parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience

(epochs without improvement)')

 parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers:

backbone=10, first3=0 1 2')

 parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every

x epochs (disabled if < 1)')

 parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not

modify')

 # Weights & Biases arguments

 parser.add_argument('--entity', default=None, help='W&B: Entity')

 parser.add_argument('--upload_dataset', nargs='?', const=True, default=False,

help='W&B: Upload data, "val" option')

 parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set

bounding-box image logging interval')

 parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version

of dataset artifact to use')

 opt = parser.parse_known_args()[0] if known else parser.parse_args()

 return opt

123

def main(opt, callbacks=Callbacks()):

 # Checks

 if RANK in [-1, 0]:

 print_args(vars(opt))

 check_git_status()

 check_requirements(exclude=['thop'])

 # Resume

 if opt.resume and not check_wandb_resume(opt) and not opt.evolve: # resume an

interrupted run

 ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or

most recent path

 assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'

 with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f:

 opt = argparse.Namespace(**yaml.safe_load(f)) # replace

 opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate

 LOGGER.info(f'Resuming training from {ckpt}')

 else:

 opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \

 check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights),

str(opt.project) # checks

 assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'

124

 if opt.evolve:

 if opt.project == str(ROOT / 'runs/train'): # if default project name, rename to

runs/evolve

 opt.project = str(ROOT / 'runs/evolve')

 opt.exist_ok, opt.resume = opt.resume, False # pass resume to exist_ok and

disable resume

 if opt.name == 'cfg':

 opt.name = Path(opt.cfg).stem # use model.yaml as name

 opt.save_dir = str(increment_path(Path(opt.project) / opt.name,

exist_ok=opt.exist_ok))

 # DDP mode

 device = select_device(opt.device, batch_size=opt.batch_size)

 if LOCAL_RANK != -1:

 msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'

 assert not opt.image_weights, f'--image-weights {msg}'

 assert not opt.evolve, f'--evolve {msg}'

 assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a

valid --batch-size'

 assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must

be multiple of WORLD_SIZE'

 assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for

DDP command'

125

 torch.cuda.set_device(LOCAL_RANK)

 device = torch.device('cuda', LOCAL_RANK)

 dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo")

 # Train

 if not opt.evolve:

 train(opt.hyp, opt, device, callbacks)

 if WORLD_SIZE > 1 and RANK == 0:

 LOGGER.info('Destroying process group... ')

 dist.destroy_process_group()

 # Evolve hyperparameters (optional)

 else:

 # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)

 meta = {

 'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)

 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)

 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1

 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay

 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)

 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum

 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr

 'box': (1, 0.02, 0.2), # box loss gain

126

 'cls': (1, 0.2, 4.0), # cls loss gain

 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight

 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)

 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight

 'iou_t': (0, 0.1, 0.7), # IoU training threshold

 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold

 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)

 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)

 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)

 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)

 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)

 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)

 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)

 'scale': (1, 0.0, 0.9), # image scale (+/- gain)

 'shear': (1, 0.0, 10.0), # image shear (+/- deg)

 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001

 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)

 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)

 'mosaic': (1, 0.0, 1.0), # image mixup (probability)

 'mixup': (1, 0.0, 1.0), # image mixup (probability)

 'copy_paste': (1, 0.0, 1.0)} # segment copy-paste (probability)

 with open(opt.hyp, errors='ignore') as f:

127

 hyp = yaml.safe_load(f) # load hyps dict

 if 'anchors' not in hyp: # anchors commented in hyp.yaml

 hyp['anchors'] = 3

 opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir) # only val/save

final epoch

 # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices

 evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'

 if opt.bucket:

 os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}') # download

evolve.csv if exists

 for _ in range(opt.evolve): # generations to evolve

 if evolve_csv.exists(): # if evolve.csv exists: select best hyps and mutate

 # Select parent(s)

 parent = 'single' # parent selection method: 'single' or 'weighted'

 x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)

 n = min(5, len(x)) # number of previous results to consider

 x = x[np.argsort(-fitness(x))][:n] # top n mutations

 w = fitness(x) - fitness(x).min() + 1E-6 # weights (sum > 0)

 if parent == 'single' or len(x) == 1:

 # x = x[random.randint(0, n - 1)] # random selection

 x = x[random.choices(range(n), weights=w)[0]] # weighted selection

 elif parent == 'weighted':

128

 x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination

 # Mutate

 mp, s = 0.8, 0.2 # mutation probability, sigma

 npr = np.random

 npr.seed(int(time.time()))

 g = np.array([meta[k][0] for k in hyp.keys()]) # gains 0-1

 ng = len(meta)

 v = np.ones(ng)

 while all(v == 1): # mutate until a change occurs (prevent duplicates)

 v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s +

1).clip(0.3, 3.0)

 for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)

 hyp[k] = float(x[i + 7] * v[i]) # mutate

 # Constrain to limits

 for k, v in meta.items():

 hyp[k] = max(hyp[k], v[1]) # lower limit

 hyp[k] = min(hyp[k], v[2]) # upper limit

 hyp[k] = round(hyp[k], 5) # significant digits

 # Train mutation

 results = train(hyp.copy(), opt, device, callbacks)

129

 callbacks = Callbacks()

 # Write mutation results

 print_mutation(results, hyp.copy(), save_dir, opt.bucket)

 # Plot results

 plot_evolve(evolve_csv)

 LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'

 f"Results saved to {colorstr('bold', save_dir)}\n"

 f'Usage example: $ python train.py --hyp {evolve_yaml}')

def run(**kwargs):

 # Usage: import train; train.run(data='coco128.yaml', imgsz=320,

weights='yolov5m.pt')

 opt = parse_opt(True)

 for k, v in kwargs.items():

 setattr(opt, k, v)

 main(opt)

 return opt

if __name__ == "__main__":

 opt = parse_opt()

 main(opt)

130

YoloV5n_data.yaml

train: ../train/images

val: ../valid/images

test: ../test/images

nc: 1

names: ['cavity']

131

VITA

Emerson de Lemmus (He/Him/His)

EXPERIENCE

Machine Learning Engineer – Verity Integrated Systems/Lockheed Martin 2022 - Present

● Neural network creation and surrogate modeling optimization.

Graduate Assistant – Raven Environmental Services/U.S. Fish and Wildlife 2021 - 2022
Thesis: Detecting Endangered Red-cockaded Woodpecker Habitats using Computer Vision

● Enjoyed team collaboration with representatives from various government and local agencies to
identify endangered Red-Coackaded Woodpecker habitats using drone-mounted computer vision.

● My contribution increased workflow performance and saved hundreds of yearly work hours,
classifying habitats manually.

● Implemented real-time object recognition models.

Instructor – Department of Computer Science, Sam Houston State University 2020-2022

● Instructor for graduate-level Computer Science Core Topics. I successfully introduced CS concepts to
students of non-technical backgrounds.

● Instructor for undergraduate Programming Fundamentals. 87% approval rating from students.
● GA for the NSF-funded REU Genome Science and Computational Biology. Worked with a team of

faculty and students where my role was to represent the Department of Computer Science, coordinate
and plan meetings, and contribute independent research for publication.

SKILLS

Software: Java, C++, Python, SQL, Darknet (Proficient). CUDA, TensorFlow (Conversant).
Interests: CS Education, Wildlife Preservation, Machine Learning, Ethical AI, Hebrew/Ladino.
Languages: English (fluent), Spanish (fluent).

EDUCATION

Sam Houston State University
Master of Science in Computing and Data Science 2022
Bachelor of Science in Computing and Information Science 2019

AWARDS & SERVICE

Awards: U.S. Department of Defense Cyber Scholarship Program Recipient; I received a full-ride
scholarship for
 a Ph.D. in Cyber and Digital Forensics (2022).

 Enhancing Undergraduate Research Experiences and Creative Activities Recipient Winner for
studying
 vehicular ad hoc networks. (2018)

Service: Middle/ High School outreach for SHSU CS Department. (2020 - 2022)

 Association for Computing Machinery SHSU Student Chapter, Leadership (2018-2019)

	DEDICATION
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Problem Context
	Red-Cockaded Woodpecker
	Current Status
	Habitat Description
	Threats

	Document Outline

	Related Research
	Computer Vision and Ecology

	Object Recognition
	Traditional Computer Vision
	Modern Computer Vision
	You Only Look Once

	Proposed Approach
	Dataset Description
	Geographic Location
	Dataset (1)
	Dataset (2)

	Hardware Tools
	Software Tools

	Experimental Study
	Discussion
	Training
	Image Tiling

	Results
	YOLOv4-tiny
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Annotation Technique
	Merging Datasets
	Final Optimal Scenario
	Test Results

	YOLOv5n
	Test Results
	Comparison between YOLOv4-tiny and YOLOv5n

	Conclusion and Future Work
	Data
	Demanding Computing Hardware
	Model Ensembling

	REFERENCES
	APPENDIX
	VITA

