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ABSTRACT 

de Lemmus, Emerson Albert.  Detection of red-cockaded woodpecker habitats using 

YOLO algorithms. Master of Science (Computing and Data Science), August, 2022, Sam 

Houston State University, Huntsville, Texas. 

 

Habitat and population monitoring are crucial for the preservation of endangered 

species. However, gathering habitat data may be a hazardous and laborious task. As a 

result, wildlife ecologists increasingly turn to remote sensing and automation to collect 

large-scale ecological data on a given species. Particularly, the red-cockaded woodpecker 

(RCW) is a species endemic to the southeastern United States. Endangered since 1973, 

wildlife biologists have performed pedestrian surveys to assess the status of the species. 

Through close interdisciplinary collaboration with ecologists, this work conducts 

a pilot study that automatically detects potential habitats of RCW. The dataset of 978 

images was collected by a team of wildlife ecologists from Raven Environmental Inc. 

using unmanned aerial vehicles (UAVs). RCW habitat imagery is quite unique and is not 

available in the public domain, thus it is considered novel image data. The primary goal 

of this research is to assess the RCW habitat detection performance by You Only Look 

Once (YOLO) object detection algorithms. As for the demanding computing 

requirements of YOLO algorithms, only two small models, YOLOv4-tiny and 

YOLOv5n, are employed and assessed for this study. Specifically, the best 

hyperparameter values are identified per each model that maximize the precision 

performance for the training data. YOLOv4-tiny reached a training mAP (minimum 

Average Precision) of 0.96 (i.e., 96%) and a testing accuracy of 0.85 (i.e., 85%), while 

YOLOv5n achieved a training mAP of 0.78 (i.e., 78%) and a testing accuracy of 0.82 
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(82%). Overall, combining the inference results of both models achieved a 100% 

detection of de facto habitats.  

This study realizes a real-time platform that integrates computer vision with 

domain knowledge and identifies potential habitats from large-scale image data. 

Therefore, the deployment of the study on wildlife ecosystems will significantly assist 

wildlife biologists in saving personnel hours through real-time detection of potential 

habitats and accelerating proactive field validating for the preservation of RCW.   

 

KEY WORDS:  Red-Cockaded woodpecker, Wildlife management, Remote sensing, 

Unmanned aerial vehicle, Object detection, YOLO algorithm 
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CHAPTER I 

Introduction 

Problem Context 

Monitoring the habitats and populations of endangered species is critical to the 

conservation and measuring conservation programs' efficacy. Birds, in particular, have a 

wide distribution, excellent mobility, and high sensitivity to environmental changes; 

therefore, they have become significant groups for monitoring (Gregory & van Strien, 

2010). However, surveying a species across its geographic range can be complex and 

resource-intensive (Neate-Clegg, Horns, Aytekin, & Şekercioğlu, 2020). To reduce 

economic cost, labor, and logistics, conservation efforts are increasingly automating the 

sampling of natural environments (Pimm, Alibhai, Dehgan, & Giri, 2015). Collecting 

habitat data with unmanned aerial vehicles (UAVs) provides a minimally invasive 

approach to obtaining relative habitat densities and estimating population trends over 

time. These devices can survey large, forested areas that humans cannot easily access or 

stay in for long periods of time. 

Additionally, captured imagery can be stored in convenient formats for analysis. 

By analyzing the habitat elements in these images, conservationists can accurately record 

nesting locations and cluster patterns (Carrascal, Galván, Sánchez-Oliver, & Rey 

Benayas, 2013). Although UAVs are increasingly common devices and help collect 

large-scale data, the ability to process and analyze huge amounts of images remains 

challenging when turning data into information on animal presence, nesting patterns, and 

behavior (Weinstein, 2017). To address challenges in large dataset analysis for the 

preservation of species, ecologists are frequently turning to automation for accurate and 
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efficient processing of large image datasets. This work aims to propose, describe, and 

implement an experimental system using the latest advances in computing capability to 

analyze large UAV-generated datasets to identify red-cockaded woodpecker habitats. 

Red-Cockaded Woodpecker 

Current Status 

The primary subject of this study is the red-cockaded woodpecker (RCW). RCWs 

are a species endemic across the southeastern United States (U.S. Fish and Wildlife 

Service, 2003). RCWs were listed as endangered in 1970 and received federal protection 

with the passage of the Endangered Species Act in 1973 (U.S. Fish and Wildlife Service, 

2003). However, by the time of its endangered classification, RCWs had declined to 

fewer than 10,000 individuals in scattered and isolated habitats and this figure represents 

less than 3 percent estimated abundance at the time of European colonialization (Jackson, 

1971). 

Habitat Description 

According to the U.S. Fish and Wildlife Service, the staggering decline was 

caused by an almost complete loss of habitats. Southern longleaf pine once dominated the 

southeastern United States and may have totaled over 800 million hectares during pre-

European colonialization; however, today, less than 1.2 million hectares remains (Conner 

et al. 2001, Landers et al. 1995). Figure 1 visualizes the historical distribution of longleaf 

pine and the historical and present-day distribution of red-cockaded woodpeckers (Butler, 

2001).  
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Figure 1 

Historic Red-cockaded Woodpecker Habitat Distribution 

 

Note. Historical distribution of longleaf pine and historical and current distribution of red-

cockaded woodpecker (Butler, 2001). Courtesy of Dr. Mathew J. Butler.  

 

The original pine ecosystem was lost due to intense logging during the 19th – 20th 

century, exploitation of pine resins, and grazing done by livestock and free-ranging hogs 

(U.S. Fish and Wildlife Service, 2003). RCWs are habitat specialists, strongly tied to old-

growth pine forests that burn frequently (Cornell Labs, 2019). RCWs exploit the ability 

of live pines to produce large amounts of pine resin by creating cavity wounds known as 

resin wells (U.S. Fish and Wildlife Service, 2003). Resin is a natural, effective barrier 

against climbing snakes and is best created by old-growth longleaf pine. Regrowth of 



 

 

4 

these habitats has been severely restricted since the pre-colonial era due to free-ranging 

hogs and fire suppression (U.S. Fish and Wildlife Service, 2003).  

Threats 

The primary threat to RCW viability is a lack of suitable habitat. On public and 

private lands, the quantity and quality of RCW habitats are affected by past and present 

policies on fire suppression and silvicultural practices. These policies and procedures 

have led to an insufficient number of cavities, net loss of suitable cavity trees, habitat 

fragmentation leading to isolation and genetic issues, lack of suitable foraging habitats, 

and risk of extinction through genetic, environmental, and catastrophic events. For these 

reasons, RCWs are now among the most endangered species on earth (Simberloff 1993, 

Ware et al. 1993). RCW population monitoring is a critical component of their 

conservation and recovery. Traditional RCW surveying is done by personnel experienced 

in managing and monitoring the species. Potential nesting habitat is identified and 

surveyed by visually inspecting all medium-size and large pine trees for cavity 

excavation evidence (Environmental Analysis Unit, 2018). If cavities are located, more 

intense land surveying is performed within 457 meters of each cavity (Environmental 

Analysis Unit, 2018). This type of land surveying is costly, inefficient, and dangerous to 

personnel.  

Document Outline 

The rest of the thesis is organized as follows. In Chapter II, the related work of 

various interdisciplinary studies is reviewed. Chapter III is an in-depth discussion and 

review of object recognition, including traditional and modern computer vision 

approaches, and You Only Look Once (YOLO) is introduced. In Chapter IV, the 
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proposed method is discussed, where a detailed rationale of available techniques is 

provided, and the available dataset and tools are thoroughly described. In Chapter V, the 

experimental results are detailed, along with optimal settings and configurations. Finally, 

Chapter VI concludes with summaries and suggestions for possible improvements.  
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CHAPTER II 

Related Research 

Computer Vision and Ecology 

Computer vision (CV) is a subset field of machine learning, as summarized in 

Figure 2, that is focused on mimicking the natural way human and animal visual systems 

work (Krohn, Beyleveld, & Bassens, 2019). Computer vision was dominated by 

traditional machine learning algorithms before the advent of deep learning (DL) 

innovations and is now considered a unique DL area of study that uses pixel values to 

infer image content (LeCun, Bengio, & Hinton, 2015). This allows computing systems to 

process and identify objects in images and videos faster and more accurately than humans 

can (Mahajlovic, 2019). Using this cutting-edge technology, CV can assist conservation 

efforts by increasing the scope, duration, and repeatability of image-based ecological 

studies through automated image analysis (Weinstein, 2017).   

Figure 2 

Relationship among Subfields in Artificial Intellence 

  
Note. Figure 2 visualizes the relationship among artificial intelligence, machine learning, deep 

learning and computer vision. Redrawn from (Mellit et al., 2020). 
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Particularly, ecologists choose CV algorithms as content analysis methodologies 

due to the explosive volume of data generated by deployed UAVs rapidly surpasses the 

capacity of human video viewers, making video analysis prohibitively expensive 

(Konovalov et al., 2019). Humans may be good at inferring objects in an image by 

manual visual inspection or have excellent knowledge on identifying habitats; however, 

when confronted with thousands of data points, it is difficult to find the time, 

organization, and concentration to validate each image manually (Berg et al., 2014).  

Computer vision has been highly developed and frequently updated with new 

models. Therefore, CV methodologies have been successfully adapted for numerous 

ecological applications, including species identification, detection, and enumeration of 

animals within an image and description of animal coloration, patterns, and relative sizes 

(Weinstein, 2017). However, to date, CV has never been applied to the detection of RCW 

habitats; thus, no direct references to the subject are available. Furthermore, no 

benchmark image datasets on RCW habitats are available in the public domain. 

Accordingly, this project addresses the need to collect a benchmark image dataset on 

RCW habitats and offers a timely opportunity to create a CV application to detect RCW 

habitats.  

Ecologists often concentrate on three common tasks for ecological computer 

vision:  physical description of species such as coloration, patterns, background 

relationships, and relative sizes, enumeration of animals in a target area, and 

identification of species (Weinstein, 2017). Figure 3 demonstrates the typical CV tasks 

related to ecology.  
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Figure 3 

Illustrating the Four Typical Computer Vision Tasks 

  

Note. From left: Image Classification (i.e., is there a fish in this image, or what type of fish is in 

the image?), Object Detection/Localization (i.e., where are the fish in the image located, if at 

all?), Semantic Segmentation (i.e., what is the relationship between the fish and their 

surroundings?), Instance Segmentation (i.e., how many instances of fish are in this image?). From 

(Saleh, Sheaves, & Azghadi, 2022). 

 

For example, to correctly outline a flying bird, computer vision algorithms often 

search for important pixels within images. (Atanbori, Duan, Murray, Appiah, & 

Dickinson, 2016) was successfully able to detect distant birds in flight by looking at 

pixels where wings intersect in the sky with an average accuracy of 0.89 using a modified 

SVM classifier. Beyond detecting animals in a specific environment, (Mahndahar et al., 

2018) demonstrated the ability to classify potential coastal habitats for both marine and 

terrestrial animals in satellite imagery using AlexNet with an average accuracy of .95. 

(Wilber et al., 2013) implemented a variety of computer vision models and modified 

SVMs to classify seven desert species given a large image. Table 1 lists previous relevant 

research with applications of computer vision to animal ecology.  
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Table 1 

Existing Works Combining Computer Vision and Ecology 

Reference Technique Model 
Training 

Images 
Habitat Taxa Species AP% 

Wilber et al., 

2013 

Traditional 

ML 
V1-like 5,362 Desert 

Mammals, 

Reptiles 
7 76.4 

Yu et al., 2013 

Traditional 

ML 
SVM 22,533 

Tropical 

Rainforest, 

Temperate 

Forest 

Mammals 18 83.8 

Atanbori et al., 

2016 Traditional 

ML 

Normal 

Bayes 

Classifier, 

SVM 

- - Birds 7 89.0 

Feng et al., 

2016 
Traditional 

ML 

Semantic 

Related 

Visual 

4,530 - Moths 50 53.12 

Jin & Liang, 

2017 
DL 

Custom 

CNN 
27,000 Tropical Fish 23 96.27 

Mahndahar et 

al., 2018 
DL AlexNet 4096 Coastal - - 95.12 

Tamou et al., 

2018 
DL AlexNet 27,000 Tropical Fish 23 99.45 

 Miao et al., 

2019 
DL 

VGG19, 

ResNet-50 
111,467 Savannah Varied 21 87.5 

Iqbal et al., 

2021 DL 
AlexNet 

derived 

13,200 + 

20 

videos 

Tropical Fish 6 90.48 

 

Note. Table 1 summarizes a collection of existing works combining computer vision and ecology. 

An important difference to notice between traditional ML and DL techniques is the improved 

performance, average precision (AP), with DL techniques. Adapted and expanded from 

Weinstein, 2017. 
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CHAPTER III 

Object Recognition 

Object recognition is a broad term to describe a collection of methodologies that 

involve identifying objects within digital images. Object recognition can be split into two 

distinct branches: image classification and object localization. Image classification 

predicts a class given a single input image with a single object within the image, see 

Figure 5. Object localization is the methodology used to locate the pixel presence of an 

object(s) in an image and denote the object's location with a drawn bounding box. Object 

localization can be further decomposed into object detection, where objects are drawn 

with bounding boxes and labels, and object segmentation, where instances are 

highlighted and separated from their background, see Figure 4. According to (Zhao et al., 

2019), object recognition can be traced back to the 1940s, when (Pitts & McCulloch, 

1947) first described an artificial neural mechanism that solved simple, general learning 

problems. (Hinton et al., 1986, Zhao et al., 2019) renewed interest in neural structures 

and has remained consistently popular since 2006. The emergence of large-scale 

annotated image datasets like ImageNet, the broader availability of high-performance 

computing, and significant improvements in neural network structure designs such as 

AlexNet, GoogLeNet, VGG, ResNet, and YOLO have attributed to huge impacts in 

object recognition.  
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Figure 4 

Classification of Object Recognition Tasks  

 

 

Note. Object recognition is often mistaken for object detection. However, object recognition 

broadly encompasses image classification and object detection (Russakovsky et al., 2015). This 

work focuses on object localization and object detection. Adapted from (Brownlee, 2019).  

 

 

 

 



12 

 

 

Figure 5 

The Elementary Process of an Image Classifier 

  
Note. Adapted from (Redmond et al., 2016).   

 

Traditional Computer Vision 

The research community achieves a new state-of-the-art benchmark in object 

recognition every year. These immense achievements would not be possible without 

seminal historical works and the evolution of Deep Neural Networks and NVIDIA GPUs. 

The history of modern object detection can be split into two distinct eras. Traditional 

machine learning relied heavily on extracting handcrafted features (Krohn, Beyleveld, & 

Bassens, 2020). Edges, corners, gradients, and object components were all manually 

identified, such as the Deformable Parts Model (University of Central Florida, 2016). 

Viola-Jones created the first real-time face detector commercially applied to Kodak 

cameras (Krohn, Beyleveld, & Bassens, 2020); however, it struggled to detect faces 

sideways or upside down due to the nature of these angles not being considered (Sharma, 

2022). Similar to traditional machine learning, these early detectors relied heavily on 

feature-engineered modifications on training data and less time modeling data through a 

detector (Krohn, Beyleveld, & Bassens, 2020). Figure 6 provides a timeline for seminal 

traditional computer vision methodologies.  
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Historically, traditional computer vision is derived from how natural neurons are 

arranged in the visual systems of animals. Hierarchical processing of vision was first 

discovered by (Hubel & Weisel, 1959). Images are first detected by visual receptors and 

processed by simple neurons that feed more complex neurons that can process more 

complex shapes, colors, and features of an object (Krohn, Beyleveld, & Bassens, 2020). 

Early versions of neural networks are referred to as Artificial Neural Networks (ANNs) 

or Multi-Layer Perceptrons (MLPs). At first, they were a shallow collection of neurons 

that were stacked on top of each other with weight connections as illustrated in Figure 7 

(Elgendy, 2020). Traditional MLP architecture consists of an input layer, one or more 

hidden layers, and an output layer and its input layer only takes one-dimensional vectors; 

thus,  for the process of complex imagery, two-dimensional images must be transformed 

into a one-dimensional vector. This required transformation is a process called image 

flattening demonstrated in Figure 8.  

 



 

 

 

Figure 6 

Traditional Computer Vision Approaches 
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Figure 7 

Multi-layer Perceptron Standard Architecture 

 
Note. MLP architecture consists of layers of neurons connected by weights. Input layer may 

contain one or more neurons that take an input and forward-feed it to one or more layers of 

hidden neurons. Denoted by this graphic, hidden layers are often considered a "black-box" that 

observers do not access. These layers perform feature extraction of an image and then connect to 

the output layer that classifies an input. Adapted from (Elgendy, 2022).     
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Figure 8 

Flattening of a 2D Image to a 1D Input Vector 

 

Note. This figure visualizes the necessary conversion from a 2D image (top) to a 1D input vector 

(bottom). This is called image flattening and is required for MLP processing. In this example, a 

pixelated letter 'C' is converted from a two-dimensional image into a 'flattened' one-dimensional 

vector. Adapted from (Elgendy, 2022).     

 

Modern Computer Vision 

In 2012, a new era of neural networks began with the advent of convolutional 

neural networks (CNN), as summarized in Figure 9. Alex Krizhevsky and Illya Sutskever 

created a CNN called AlexNet and presented it at the 2012 ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC), and it beat long-standing traditional machine learning 

techniques by a massive margin (Krohn, Beyleveld, & Bassens, 2020). Modern-era CNN 

models eliminated the long-standing method of handcrafted feature engineering and 

focused more on neural network architecture optimization. Feature engineering is now 
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mainly done by a neural network (Krohn, Beyleveld, & Bassens, 2020). CNNs achieve 

automatic feature extraction by expanding on traditional MLP architectures. Three main 

layers are prevalent in almost every CNN: convolutional layer, pooling layer, and fully 

connected layer (Elgendy, 2020). As shown in Figure 10, the fully connected layer 

borrows heavily from traditional MLP architectures. Modern CNNs expand previous 

generations of neural networks by focusing heavily on automatic feature extraction. Most 

CNNs share this formula; however, they all differ in the feature extraction layers. These 

advancements lead to the creation of single-stage object detectors (SSD) that treat object 

detection as a simple regression problem (Sharma, 2022). Treating object detection as a 

regression problem allows a much simpler network structure that accepts a variable-sized 

input image and, without prior feature engineering, is processed directly by the neural 

network. The output of this process is the class probability, along with bounding box 

coordinates (Sharma, 2022). In addition, SSDs can skip the region proposal stage and 

automatically detect areas of an image that could contain an object, as shown in Figure 11 

(Sharma, 2022). This ability to skip a second stage allows SSDs like You Only Look 

Once (YOLO) to achieve much faster real-time detection speeds, albeit with an accuracy 

penalty.  

 

 

 

 

 



 

 

 

Figure 9 

Modern Computer Vision Approaches 
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Figure 10 

Basic Component of Convolutional Networks 

 

1
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Figure 11 

Difference between single-stage detectors and two-stage detectors 

 

 

Note. Single-stage detectors skip the Region Proposal Network and this skip allows for much 

faster image processing than two-stage detectors. Albeit at a loss of accuracy penalty. Adapted 

from (Sharma, 2022).   
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You Only Look Once 

The computer vision work featured in this thesis is over a popular single-stage 

detector family of object recognition models known as You Only Look Once (YOLO), 

developed by (Redmond et al., 2016). While other object recognition models such as 

ResNet, R-CNN, or Faster R-CNN may be more accurate, YOLO models are much faster 

in achieving real-time object recognition. Like many previous classifiers, YOLO takes an 

image input, breaks it into a grid, processes it through network layers, and directly 

predicts bounding boxes and class labels. For example, see Figures 12 and 13. 

Figure 12 

A Simplified View of You Only Look Once Model Processing  

 

Note. Adapted from (Redmond et al., 2016).   

 

 

The YOLO family is an end-to-end deep learning model that was one of the first 

attempts to successfully build a fast real-time object detector (Elgendy, 2020). It predicts 

over a limited number of probability areas by splitting an input image into a grid of cells, 

as summarized in Figure 13. Processing an image as a grid result in many potential 

bounding boxes consolidated into a final prediction using non-maximum suppression 

(Elgendy, 2020).  
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Figure 13 
 

Summary of the Detection Process Used by YOLO 

 

Note. An input image is broken up into a grid, and each cell is processed for potential bounding 

boxes using learned image features. As seen in the upper-central image, this generates many 

possible bounding boxes. To reduce all possible bounding boxes, YOLO implements non-

maximum suppression to consolidate probabilities into a final detection (Elgendy, 2020). Taken 

from You Only Look Once: Unified, Real-Time Object Detection (Redmond et al., 2016).   

 

YOLO is a breakthrough and seminal work in object recognition because it 

treated object detection with an SSD approach and as a regression problem. As a result, 

you only look once was chosen as an appropriate name because the detection layer only 

looked at an image once to predict the objects' location and class labels (Redmond et al., 

2016). Over the years, YOLO has significantly improved through various releases and 

continues to be a premier real-time detection neural network available, as summarized in 

Figure 14. Table 2 details mainline YOLO models.  
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Figure 14 

History of the YOLO Model Family 
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Table 2 

Condensed model summary of YOLO 

Reference Model Train Set 
Conv. 

Layers 

Total Layers 

(Conv + Filters) 
Input size 

mAP 

(%) 
FPS 

Redmon et 

al., 2016 
YOLO ImageNet 24 26 448x448 63.4 45 

Redmon et 

al., 2016 
Fast YOLO ImageNet 9 11 448x448 52.7 155 

Redmond 

& Farhadi, 

2017 

YOLO9000 

Darknet-19 

ImageNet & 

MS COCO 
19 26 416x416 16.0 - 

Redmond 

& Farhadi, 

2017 

YOLOv2 

Darknet-19 

VOC 2007 

& MS 

COCO 

19 26 288x288 69.0 91 

Redmond 

& Farhadi, 

2017 

YOLOv2 

Darknet-19 

VOC 2007 

& MS 

COCO 

19 26 352x352 73.7 81 

Redmond 

& Farhadi, 

2017 

YOLOv2 

Darknet-19 

VOC 2007 

& MS 

COCO 

19 26 416x416 76.8 67 

Redmond 

& Farhadi, 

2017 

YOLOv2 

Darknet-19 

VOC 2007 

& MS 

COCO 

19 26 480x480 77.8 59 

Redmond 

& Farhadi, 

2017 

YOLOv2 

Darknet-19 

VOC 2007 

& MS 

COCO 

19 26 544x544 78.6 40 

Redmond 

& Farhadi, 

2018 

YOLOv3 

Darknet-53 

Darknet 

Framework 
53 106 320x320 51.5 45 

Redmond 

& Farhadi, 

2018 

YOLOv3 

Darknet-53 

Darknet 

Framework 
53 106 416x416 55.3 35 

Redmond 

& Farhadi, 

2018 

YOLOv3 

Darknet-53 

Darknet 

Framework 
53 106 608x608 57.9 20 

Bochkovsk

iy, Wang, 

& Liao, 

2020 

YOLOv4 

Darknet-53 
MS COCO 53 162 416x416 41.7 92 

(continued) 
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Reference Model Train Set 
Conv. 

Layers 

Total Layers 

(Conv + Filters) 
Input size 

mAP 

(%) 
FPS 

Bochkovsk

iy, Wang, 

& Liao, 

2020 

YOLOv4 MS COCO 53 162 512x512 43.0 87 

Bochkovsk

iy, Wang, 

& Liao, 

2020 

YOLOv4 MS COCO 53 162 608x608 44.0 68 

ultralytics, 

2020 
YOLOv5n MS COCO 53 

Darknet-

53+PANet+Yolov

3 

640x640 45.7 - 

ultralytics, 

2020 
YOLOv5s MS COCO 53 

Darknet-

53+PANet+Yolov

3 

640x640 56.8 - 

ultralytics, 

2020 
YOLOv5m MS COCO 53 

Darknet-

53+PANet+Yolov

3 

640x640 64.1 - 

ultralytics, 

2020 
YOLOv5l MS COCO 53 

Darknet-

53+PANet+Yolov

3 

640x640 67.3 - 

ultralytics, 

2020 
YOLOv5x MS COCO 53 

Darknet-

53+PANet+Yolov

3 

640x640 68.9 - 

Long et al., 

2020 
PP-YOLO MS COCO 50 ResNet50-vd-dcn 320x320 39.3 132 

Long et al., 

2020 
PP-YOLO MS COCO 50 ResNet50-vd-dcn 416x416 42.2 109 

Long et al., 

2020 
PP-YOLO MS COCO 50 ResNet50-vd-dcn 512x512 44.4 90 

Long et al., 

2020 
PP-YOLO MS COCO 50 ResNet50-vd-dcn 608x608 45.2 73 

Zheng, et 

al., 2021 

YOLOX-

Nano 
MS COCO - - 416x416 28.5 - 

Zheng, et 

al., 2021 

YOLOX-

Tiny 
MS COCO - - 416x416 32.8 - 

Zheng, et 

al., 2021 
YOLOX-S MS COCO - - 640x640 40.5 - 

(continued) 
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Reference Model Train Set 
Conv. 

Layers 

Total Layers 

(Conv + Filters) 
Input size 

mAP 

(%) 
FPS 

Zheng, et 

al., 2021 

YOLOX-

DarkNet53 
MS COCO 53 

Darknet-

53+Yolov3 
640x640 47.7 - 

Zheng, et 

al., 2021 
YOLOX-L MS COCO - - 640x640 50.0 - 

Wang et 

al., 2021 
YOLOR-P6 MS COCO - YOLOv4-CSP 

1280x12

80 
54.1 76 

Wang et 

al., 2021 
YOLOR-W6 MS COCO - YOLOv4-CSP 

1280x12

80 
55.5 66 

Wang et 

al., 2021 
YOLOR-E6 MS COCO - YOLOv4-CSP 

1280x12

80 
56.4 45 

 
Note. Table 2 is compiled with information provided by Sharma, 2022, and each respective model 

reference. The models above are the ones listed upon release in their respective works. Nearly all 

models have updated versions, such as Scaled-YOLOv4 (Chien et al., 202), PP-YOLOE (Xu et 

al., 2022), or YOLOv5 ver. 6 (ultralytics, 2022). Listing all possible variations and configurations 

is irrelevant to this work, and not all updated versions are accompanied by peer-reviewed work. A 

vast majority of these models are based on Darknet-19 or Darknet-53 architectures. This means a 

model has 19 or 53 convolutional layers. Commonly, 19-layer or 53-layer notations do not 

include the varying filter, drop-out, or classification layers featured in Figure 10. Notably, the 

YOLOX family uses a primary baseline model, YOLOX-Darknet53, which uses the Darknet53 

framework. However, its derived models, such as YOLOX-Nano or YOLOX-L, use a 

modification of the baseline architecture (Sharma, 2022). These modifications are not directly 

stated in the work by (Zheng et al. 2021). YOLOR, for instance, uses YOLOv4-CSP as a baseline 

model and Scaled-YOLOv4 training parameters along with the YOLOv5 training data directory 

structure. Table 2 summarizes the characteristics of each model in terms of model architecture 

size, input image size, and frames-per-second. The deeper the architecture and the larger the input 

image size, the greater mean average precision (mAP) that can be achieved, which usually comes 

at the cost of lower frames-per-second. 
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CHAPTER IV 

Proposed Approach 

The ultimate goal of this project is to lay down a foundation that will allow UAV-

mounted real-time object detection of RCW habitats. Achieving this goal means 

considering the small memory availability on a UAV system. Considering this constraint, 

the proposed approach will use the smallest versions of YOLOv4 and YOLOv5. The 

benefit of using two models is to validate results real-time when performing testing 

inferencing. The smallest models, YOLOv4-tiny and YOLOv5n, are trained using the 

identical training data. However, due to the two models technically belonging to different 

families, their architectures and parameters are slightly different. These differences are 

reconciled and explained later. As shown in Table 2, models with fewer layers achieve 

faster object recognition times, and this is a benefit when flying a drone in real-time. 

Another justification, when choosing the two models, is on graphical processing unit 

(GPU) memory limitations. Despite achieving better mean average precision (mAP) 

results, larger versions of YOLOv4 and YOLOv5 are more memory intensive and have a 

slower identification time.  

The GPU memory constraint is a universal issue in object recognition training, 

particularly with images. For example, given a relatively small input image of 416×416 

pixel dimensions and using YOLOv4-tiny, it would take around 2 hours of training for an 

NVIDIA RTX 2080 GPU system to complete the standard 10,000 training iterations. In 

contrast, it may take an 8-core 3.40 GHz central processing unit (CPU) based system 

around six days to achieve the same result (ccoderun, 2018). Updated models such as 

YOLOv5 ver. 6 and Scaled-YOLOv4 require an image input dimension of 1280×1280. 
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i.e. the larger the image input dimension, the larger the GPU memory requirements. The 

maximum input size possible before running out of GPU memory is 738×738 pixels on 

the hardware available for this project. In essence, memory limitations severely hamper 

the number of possible models that can be trained. Cloud computing services such as 

Google's Google Colab, Amazon Web Services, Google Cloud Platform Deep Learning 

VM, Roboflow, or Kaggle are possible replacements for direct hardware training. 

However, these services require payment, credit limitations, or purchasing an upgrade tier 

to receive faster computing speeds, and are still not as fast as training on a local 

computer. 

Dataset Description 

The entire dataset used in this study was created by wildlife biologists, Brett 

Lawrence and Jesse Exum, at Raven Environmental Services, Inc. All images were 

photographed at Cook's Branch Conservancy (CBC) and various parts of the greater Sam 

Houston National Forest (SHNF) located in Montgomery County, Texas, as illustrated in 

Figures 15 and 16. The dataset was collected between March 2020 and March 2021 and 

split into two batches. The imagery was captured with a DJI Mavic Pro Platinum and a 

DJI Mavic Pro in the red-green-blue color bands with approximate flight times of 4-5 

hours (Lawrence, 2022). See Table 6 for more details on drone hardware. The spring 

season is the best time to capture imagery as it is the dormant season when deciduous 

trees are in a leaf-off state (Lawrence, 2022). Less foliage allows for more direct 

discrimination between hardwood and pine species and easier detection of red-cockaded 

woodpecker resin markers that leaves may obscure. This dataset is publicly available at 
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Roboflow.com courtesy of Raven Environmental Services, the Mitchell Foundation, the 

U.S. Fish and Wildlife Service, and the U.S. Forest Service.  

Geographic Location 

As shown in Figure 16, the image data for this project was captured in the Sam 

Houston National Forest (SHNF) and Cook's Branch Conservancy (CBC), located in 

Montgomery County, Texas.  

Figure 15 

Montgomery County, Texas 

Note. Highlighted in red is Montgomery County, Texas. This study focuses on this region of East 

Texas. Adapted from nationalatlas.gov.  



 

 

 

Figure 16 

 

Map Detailing all Locations where the Dataset was Gathered 
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Dataset (1) 

Brett Lawrence and Jesse Exum collected the first part of the dataset. The dataset 

collection occurred in the SHNF and CBC during the spring 2022 season. UAVs were 

utilized for data collection, and the dataset is further described in Table 3 with a featured 

annotation heatmap in Figure 17. 

Table 3 

534 Images Taken at 76m Elevation 

Total 

Images 
Class Train Valid Test 

Total 

Annotations 

Null 

Images 

Average 

Annotation 

per Image 

Average 

Image 

Size 

Average 

Image 

Ratio 

534 1 428 53 53 765 94 1.4 16.84mp 5472×3078 

 

Note. The total image count is split 80% training, 10% validation, and 10% test. This split is 

standard practice; however other divisions can be possible, such as 80% training and validation 

and 20% test. No test images contained annotations.  
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Figure 17  

Annotation Heatmap of 534 Images Taken at 76m Elevation 

 
Note. Figure 17 represents 765 annotations across the first batch of images. The image 

demonstrates the distribution of all annotation locations. Note the wide distribution of annotation 

box locations and annotation box size. Black annotation boxes denote the area does not overlap 

with other annotation boxes. White annotation regions indicate a high density of annotation 

overlapping. Generated with Roboflow. 
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Dataset (2) 

Brett Lawrence and Jesse Exum also created the second dataset to provide a 

diverse approach. It was taken during the same period, spring 2022; however, forest 

imagery was captured at 46m altitude. This elevation difference is visualized in Figure 

19. This batch of data contains 90 fewer images than the first batch. The dataset is further 

described in Table 4 with a featured annotation heatmap in Figure 18. 

Table 4 

444 Images Taken at 46m Elevation 

Total 

Images 
Class Train Valid Test 

Total 

Annotations 

Average 

Annotation 

per Image 

Null 

Images 

Average 

Image 

Size 

Average 

Image 

Ratio 

444 1 307 87 50 678 1.5 27 9.00mp 4000×2250 

 

Note. The total image count is split 80% training, 10% validation, and 10% test. This dataset was 

taken at a much lower 46m elevation. Note that the average image ratio decreased by over 1,000 

pixels in height and width compared to the first batch. This dataset batch introduces a closer look 

at the forest and provides more angle diversity when observing RCW sap signs.  
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Figure 18 

The Annotation Heatmap of 444 images Taken at 46m Elevation 

 
Note. The image above represents 678 annotations across the second batch of images. This 

dataset displayed a different distribution of annotations compared to Figure 15. Generated with 

Roboflow.  
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Figure 19 

Sample Images Demonstrating Altitude Differences 

 
 
Note. Altitude matters when surveying tracts of forest. The top image was taken at 76m altitude, 

and the bottom image was at 46m altitude. Note the difference in forest coverage and potential 

nesting locations. 
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Hardware Tools 

Hardware tools used for this study include both computational hardware and 

UAVs. Computational hardware is detailed in Table 5, and UAV hardware is detailed in 

Table 6. Raven Eviornmental Inc owns all UAV hardware used for this study. 

Table 5 

Computer Hardware Tools 

GPU GPU Memory CPU RAM 

NVIDIA GeForce RTX 2080 

Super Max Q (Notebook) 
8 GB 

Intel Core i9-

10980HK @ 2.40 

GHz x 16 

32 GB 

NVIDIA GeForce RTX 3080 

(Notebook) 
12 GB 

AMD Ryzen 9 

5900HK 
32 GB 

 

Table 6 

UAVs Deployed 

Model DJI Mavic Pro Platinum DJI Mavic Pro 2 

Weight 734 g 907 g 

Flight time 30 m 31 m 

Sensor 1/2.3" (CMOS) 1" (CMOS) 

Pixels 12.35 million 20 million 

Lens 
FOV 78.8°, 26mm (35mm format 

equivalent), aperture f/2.2, shooting 

range from 0.5 m to ∞ 

FOV about 77°, 28mm (35mm format 

equivalent), aperture f/2.8-f/11, shooting 

range from 1 m to ∞ 

ISO Range 100-1600 100-3200 (auto), 100-12800 (manual) 

Electronic 

Shutter Speed 

8-1/8000 s 8-1/8000 s 

Size 4000x3000 5472x3648 

 
Note. Information provided by Brett Lawrence at Raven Environmental Inc. 
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Software Tools 

The software tools used for YOLOv4 and YOLOv5 are detailed in Tables 7 and 8, 

respectively. 

Table 7 

Software Tools for YOLOv4  

Software Version 

Operating System Ubuntu 20.04.4 LTS 64 Bit 

Python >=3.8 

Github Package github.com/AlexeyAB/darknet.git 

CMake 3.18 

CUDA 11.6 

cuDNN 8.3 

Darknet AlexeyAB version 

DarkHelp darkhelp-1.1.18-3 

DarkMark darkmark-1.6.28-1 

YOLO Model yolov4-tiny.cfg (Bochovskiy, 2020) 

 
Note. All necessary tools are outlined by (Bochkovskiy, 2020) and (Charette, 2020). Installation 

of the aforementioned software tools requires careful instruction, and environments such as 

Anaconda are recommended but not required. All the software listed is freely available to use as 

of this writing.  
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Table 8 

Software Tools used for YOLOv5 

Software Version 

Operating System 
Microsoft Windows 10 Pro 10.0.19044 Build 

19044 

Python >=3.8 

Github Package github.com/ultralytics/yolov5.git 

Microsoft Visual Studio 2022 17.2 

CMake C++ CMake tools for Windows 

CUDA 11.6 

cuDNN 8.3 

Darknet - 

DarkHelp - 

DarkMark - 

OpenCV 7.1.2 

PyTorch 1.8.1 

Tensorboard 2.4.1 

Torchvision 0.8.1 

Torch 1.7.0 

YOLO Model YOLOv5n (ultralytics, 2020) 

 
Note. All necessary tools are outlined by (ultralytics, 2020). Installation of the software 

mentioned above tools requires careful instruction, and environments such as Anaconda are 

recommended but not required. All the software listed is freely available to use as of this writing. 

YOLOv5 is the most accessible model as it is compatible with cloud-based services like Google 

Colab, Kaggle, Docker, Amazon Web Services, and Google Cloud Deep Learning V.M. 

(ultralytics, 2020).  
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CHAPTER V 

Experimental Study 

Discussion 

           The experimental study to detect RCW habitats was performed with YOLOv4 tiny 

and YOLOv5n. The two YOLO models are chosen to verify each other's results in the 

form of a majority vote. Like ensemble modeling, two or more similar or diverse models 

are trained to predict or verify an outcome (Kotu & Deshpande, 2015). Ensembling 

aggregates each model's prediction and presents a result in one final prediction. Manual 

verification of ensembling can be used to compare two or more model output predictions 

and compare them to validate a result. Essentially, if more than one model produces a 

positive response for output, there is a higher likelihood of it being an accurate positive 

result. Due to the aforementioned hardware constraints, YOLOv4-tiny and YOLOv5n are 

the two appropriate YOLO models with the small layer configuration and the small input 

size requirement. YOLOv4-tiny is optimized at 416×416 pixel input, while YOLOv5n is 

optimized at 640x640 pixel input. Technically speaking, images larger than 736×736 

image dimensions on an NVIDIA GeForce RTX 2080 Super Max Q notebook variant 

and images larger than 1,280×1,280 on an NVIDIA GeForce RTX 2080 notebook variant 

exceed the memory requirements. Therefore, more expensive hardware capacity is 

required for deep models and larger input image sizes. For instance, the famous 

repository created by (Bochkovskiy, 2020), popularly known as AlexeyAB, benchmarked 

YOLOv4 using a very high capacity, albeit expensive NVIDIA Tesla V100 GPU.  
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Training 

The challenging aspect of training with red-cockaded woodpecker (RCW) 

habitats is the wide diversity of potential habitat signs, as shown in Figure 19. RCWs 

prefer nesting on the upper-third of old-growth pine trees (Lawrence, 2022) and keep 

pine resins constantly flowing by creating tree cavities. Therefore, pine resin is a highly 

visible and effective sign that denotes RCW presence. Due to camera angle, tree growth 

orientation, image quality, and extremely small object area, as shown in Figure 20, the 

resin signs are challenging to detect even with an expert’s visual inspection. Furthermore, 

the signs are only partially consistent in their creamy white color that fades over time. 

Figure 21 also creates a perspective on the challenging training task. In addition, most 

object recognition models are trained on datasets such as MS COCO or ImageNet, where 

training data only contains highly defined objects with little ambiguity to their shape, 

color, or size. Therefore, strangely shaped objects such as the RCW pine resin signs 

require large amounts of training data to account for their diverse shape. 

Initial training attempts on Roboflow yielded disastrous results due to a poor 

understanding of image augmentation techniques and image auto-resizing done by a 

neural network to fit its input dimension shape. Later attempts were made using 

DarkHelp and Darknet with much more successful results. Although Roboflow is very 

user-friendly, DarkHelp provides better technical control over data augmentation, data 

preparation, and configuration file generation on both Windows and Linux operating 

systems.  
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Figure 20 

Sample Red-cockaded Woodpecker Habitat Signs 

 

Note. These are sample bounding boxes from the training set for YOLOv4-tiny and YOLOv5n. 

To isolate the object of interest, bounding boxes are manually drawn using annotation software 

such as DarkMark, LabelImg, or Roboflow. The neural network model will then learn to identify 

the object of interest. Note the significant variance in image quality, angle, shape, and color. 

Screenshots were taken using DarkMark (ccoderun, 2018).  
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Figure 21 

Illustration of a Small-size RCW Pine Resin Sign Compared to the Entire Image 

 

Note. Pine resin is often no more than a smudgy, low-resolution object on average ~12,000 times 

smaller than its parent image. This significant difference leads to many challenges when detecting 

a successful nesting location.  

 

YOLOv4-tiny requires an input size of 416×416 pixels, and YOLOv5n requires 

an input size of 640×640 pixels. As input sizes are variable, any multiple of 32 pixels is 

allowed; however, these models are optimized to work on these pre-defined dimensions. 

As known, increasing the image input size leads to more GPU memory requirements, and 

decreasing the image input size may lead to a loss in image quality due to compression. 

For example, taking an image of ~5,000×3,000 pixels and allowing YOLO to compress it 

down to 416×416 pixels to match its designed input size automatically leads to a 

significant loss of image quality, which makes the detection of any small object 

impossible. Table 9 demonstrates the average pixel sizes of all the annotations featured in 

the combined datasets. Note the sizes are in terms of pixels. See Figure 22 for an example 

of YOLOv4-tiny input dimension compression.  
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Table 9 

Annotation Box Statistics  

Class ID Class Name Images Min Size Avg Size Max Size 

0 cavity tree 612 15×36 36.24×115.80 149×342 

1 empty image 167 4000×2250 5137.05×2950.85 5472×3648 

 
Note. All dimensions are in terms of pixels.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 22 

Yolo Rescaling of an Image to Match Specified Input 
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Image Tiling 

Image tiling is a technique that prevents data loss when an image must match a 

neural network input dimension. Using high-resolution images assists in small object 

detection; however, it requires enormous GPU memory. Division of a large image into 

multiple small tiles guarantees no image quality is lost, as illustrated in Figure 23. If a 

training image approximately matches the network dimensions, then a user does not need 

to change anything. However, if an image exceeds 1.5 times the input dimensions and the 

object of interest is very small, then image tiling is necessary (Charette, 2020). For 

example, RCW pine resin is on average ~12,000× smaller than its parent image, and the 

object of interest only occupies approximately ~0.008% of the original image area. 

However, if we incorporate image tiling at 416×416 pixels, the object of interest 

occupies on average ~0.789% of the new image area. This noticeable increase in the 

apparent object-to-image ratio is beneficial when detecting smaller objects.  

 

 



 

 

 

Figure 23 

Image Tiling in Practice 
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Results 

YOLOv4-tiny  

YOLOv4 has the most significant amount of usage and online documentation to 

date. Unfortunately, YOLOv5 has no associated formal research paper, and it is difficult 

to reference a specific version due to constant Github updates. Thus, many of the 

experimental optimization for this novel object was done with YOLOv4-tiny using 

Darknet. Each complete run of 100,000 iterations took an average of 35 hours, and some 

experimental trials were cut short due to initial negative training results and the length of 

time required for completion. Once the dataset was slowly corrected and optimal 

parameters were found for a particular object, YOLOv5n was trained with very few 

scenarios.  

Scenario 1 

The first training scenario began with the first batch of 534 images and YOLOv4-

tiny. 'Cavity' was the class name assigned to our object of interest. Any image with no 

cavities was deemed 'null'. To gain benchmark training mAP and preserve the original 

dataset provided, only 416×416 image tiling was applied to each training and validation 

image. No modifications to the original bounding boxes were applied. Darknet, by 

default, performs the following image augmentations 90-degree rotation, 15% zoom, and 

horizontal flipping. The total amount of images resulting from the default image 

augmentations was 146,040, of which 116,832 (i.e., 80%) images served as training data, 

and 29,208 (i.e., 20%) images served as validation data.  
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YOLOv4 requires a specific directory format that must be specified in its training 

path. Therefore, each image file must have a corresponding annotation text file matching 

the same name.  

If this format is violated, training will not be executed. Test images are not 

necessary to start the training process. To avoid the risk of potentially exposing the model 

at learning step to unseen testing images, test data is stored in a separate directory and 

only to be used for inferencing. The following directory structure is required for 

YOLOv4 training. 

../datasets/train/img1.jpg  # image 

../datasets/train/img1.txt  # label 

../datasets/valid/img1.jpg  # image 

../datasets/valid/img1.txt  # label 
 

The following command-line tool argument started the training process for 18,000 

iterations.  

./darknet detector -map -dont_show train /home/usr/NeuralNets/YOLO/Yolov4-RCW.data 
/home/usr/NeuralNets/YOLO/Yolov4-RCW.cfg  

 

The following training scenarios are separated into individual sections. Figures 24 

to 27 display training performance on individual parts of the dataset i.e., dataset (1) and 

dataset (2) separately, while Figures 30 and 32 display training performance on the 

merged dataset. 
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Figure 24 

Scenario 1 using 534 Images taken at 76m Elevation  

 

Note. The initial mAP, 0.51, was relatively poor and unsatisfying. The learning curve was far 

from smooth, and the training loss could be improved further. This result was due to a number of 

reasons, including relatively small training time, poor annotation box drawing, poor image 

quality, and small dataset size of 534 images with a large variance in object appearance. 
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Scenario 2 

Figure 25 

Scenario 2 using 534 Images taken at 76m Elevation  

 

Note. To improve the results of scenario one, 23 relatively bad samples from the dataset were 

removed to enhance the mAP. The training parameters did not change for the second iteration. 

Removing bad examples worked to some extent, as it raised mAP by 14%. However, 'cherry-

picking' is an inappropriate practice and should not be done. Diversity in object appearance is 

crucial to training a robust model.  
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Scenario 3 

Figure 26 

Scenario 3 using 534 Images taken at 76m Elevation  

 

Note. Since removing bad quality samples is not a reasonable practice, they were put back in the 

pool annotated cavities. Another way to improve mAP is to increase the iteration number from 

18,000 to 50,000 iterations. Most YOLOv4 training samples found by (Bochkovskiy, 2020) 

showed a standard iteration size of 10,000. Due to the nature of this object, training 

length reached 5× the normal range.  
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Scenario 4 

The previous three scenarios demonstrated that all samples should be included in 

a training run, and better results were starting to appear at 100,000 iterations. The fourth 

scenario of training used only the second batch of 444 images taken at 46m altitude data. 

This scenario is designed to assess how altitude change affects accuracy performance. 

With a much lower altitude, better results were logically expected.  

Figure 27 

Scenario 4 using 444 Images taken at 46m Elevation 
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Annotation Technique 

Contrary to our belief, as shown in Figure 27, the second batch of 46m altitude 

images performed worse than the first batch of 76m altitude images. This was caused by 

inefficient bounding box annotation and attempting to include objects that were not resin 

samples. Figure 28 displays the proper annotation technique, and Figure 29 displays the 

improper annotation technique. 

Figure 28 

Proper Annotation to Capture Pine Resin Cavity Markers 

 

Note. Above is an example of a proper annotation. Annotation boxes should be drawn with the 

tightest borders possible. Including too much background and irrelevant features will cause a 

model to learn unnecessary features and will skew its learning process. Note that Open Images 

Dataset V6 demonstrates more excellent examples of properly drawn annotation boxes.  
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Figure 29 

Improper Annotation Featuring Incorrectly Labeled Objects 

 
Note. These are ambiguous images that do not clearly illustrate what a pine resin cavity should 

look like. The bounding boxes do not tightly define the object of interest, and too many irrelevant 

features are present in these images for a model to fully learn. Bounding boxes like these were 

removed from the dataset altogether.  
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Merging Datasets 

After observing the combined results of each iteration, the next step is to merge 

both datasets. Merging both datasets resulted in 978 images used for train and test. Figure 

30 displays the training performance with the merged dataset. 

Figure 30 

Scenario 5 Iteration Merging Batch 1 and Batch 2 Datasets 

Note. Merging both datasets resulted in a classic example of overfitting. Plenty of abnormal 

outliers skew the training results. This image demonstrates why calculating of custom anchors is 

beneficial. The model is recorded as having the 'best' mAP of 0.90, however this is an outlier. 



56 

 

 

 

Final Optimal Scenario 

The previous scenarios slowly updated the configuration file to find an optimal 

setting. Network input dimensions, batch size, subdivision, limiting validation images, 

recalculating bounding box anchors, and various miscellaneous data augmentations were 

performed and eventually led to finding the best results out of 100,000 iterations using 

the yolov4-tiny configuration.  

A few important things to highlight with YOLOv4, batch size and subdivision 

size, require careful implementation. Ideally, batch size should be a multiple of 

subdivision size and should be slowly incremented to avoid GPU memory issues. With a 

small dataset size, i.e., under a few thousand samples, training with all images should be 

toggled on with a default 80% train, 20% validation split. Most importantly, when 

training with a novel object such as pine resin, recalculating yolo anchors must be 

enabled; this allows the model to adjust and fine-tune boundary boxes during training. 

The default anchor values will be used without recalculating these anchors, which are 

trained on MS COCO or ImageNet data. Data augmentation should be tested differently 

with each data set as there is no standard rule for using it. For this dataset, a vertical flip 

was most helpful as pine resin has some degree of vertical symmetry. Using the 

configuration settings shown in  Figure 31, the best mAP of .95 was achieved; the final 

result is displayed in Figure 32.  
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Figure 31 

Optimal Settings after Trial and Error 

 
Note. Important things to note with this configuration. Recalculation of YOLO anchors was 

imperative to enable, either manually or through DarkMark, the software running this 

configuration, as it impacted training performance the most (Solawetz, 2020). Due to the small 

size of this dataset, training with all images and not limiting validation image augmentation was 

essential.  
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Figure 32 

Optimal Performance using YOLOv4-tiny with the Merged Dataset 

 
Note. The irregular object appearance of pine resin makes certain outliers inevitable. However, 

the training curve is relatively smooth compared to previous scenarios.  
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Test Results 

The final optimal scenario of 0.95 training mAP produced the best model. Hence, 

this version of the trained model was used to inference test data. There are many 

techniques, commands, and software packages for inferencing test data. This particular 

model used DarknetServer API with 416x416 tiles. Figure 33 displays the confusion 

matrix created from this process. 

Figure 33 

Confusion Matrix of YOLOv4-tiny 
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Note. This result is recorded using 103 testing images. The test images are all unique and unseen 

at the training step. The high false-positive cases (i.e., 37) can be explained by a relatively low 

threshold of 0.30. This is done to have the most bounding box predictions possible. In this 

particular problem, false positives are preferred because wildlife biologists would rather have 

more possible identifications instead of missing cased (i.e., false negatives). 

 

 

      Table 10 summarizes the performance of YOLOv4-tiny, and Figures 34 and 35 

demonstrate the performance on 76m and 46m test data.   
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Table 10 

 

Detailed Performance of YOLOv4-tiny 

Metric Definition Equation Result 

TP Positive values predicted 

positive 

- 130 

FP Negative values predicted 

positive 

- 37 

FN Positive values predicted 

negative 

- 8 

T.N. Negative values predicted 

negative 

- 0 

Accuracy Proportion of correct 

predictions out of all 

predictions made 

(TP + TN) / (P + N) 0.7429 

Precision Proportion of correct 

predictions out of all 

positive predictions 

(TP) / (TP+FP) 0.7784 

Recall 

(Sensitivity 

or TPR) 

Proportion of correct 

predictions out of all 

positive classes 

(TP) / (TP + FN) 0.942 

F1-Score Test accuracy, weighted 

average of precision and 

recall. 1 best, 0 worst. 

2*(Precision*Recall) / (Precision +Recall) 0.8525 

Specificity 

(TNR) 

Probability that a negative 

prediction will be true 

(TN) / (TN+FP) 0 

False 

Negative 

Rate 

(FNR) 

Probability of labeling a 

negative class as positive 

(FN) / (FN + TP) 0.05797 

False 

Positive 

Rate (FPR) 

Probability of labeling a 

positive class as negative 

(FP) / (FP + TN) 1.00 

False 

Discovery 

Rate 

(FDR) 

Ratio of FP to total 

number of positive 

predictions 

(FP) / (FP + TP) 0.2216 
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Figure 34 

Sample Inference with 76m Altitude Test Data 

 
Note. These inference results were performed with YOLOv4-tiny.weights realized with the final 

training scenario. To inference this, the following command was run: DarkHelp –keep –tiles on –

autohide off – YOLOv4-tiny {.cfg, .names, best.weights} test_dir. Nearly all of the cavities in 

this image were detected with very high accuracy. Variance is normal as shown in the bottom 

right cavity with 66% confidence, which is expected with many single-shot detectors.  
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Figure 35 

Sample Inferencing with 46m Altitude Test Data 

 
Note. These inference results are gathered in the same fashion as Figure 34. Note two cavities on 

the right side were too small or obscured by foliage to be identified with large confidence. The 

detection threshold was set relatively low at 0.30 as there is a functional preference to consider 

false positives for potential cavities. These low-confidence cases can by unidentified by setting 

the threshold to be 0.50, which is the standard default detection threshold.
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YOLOv5n 

YOLOv5n is the second model of choice for this study. Due to technical 

constraints, this model did not perform as well as YOLOv4-tiny. All parameters for 

training YOLOv5n were the same as YOLOv4-tiny except for network input dimension. 

YOLOv5n requires a recommended input dimension of 640×640 pixels, which reduces 

the average annotation box apparent size to ~0.333% of the tiled from ~0.789% as 

featured in YOLOv4-tiny. Training for 300 epochs, YOLOv5n reached a training mAP of 

78%, which is much lower than YOLOv4-tiny. Figure 36 suggests that the increased 

epoch size might achieve better mAP values. However, this 300 epoch run took 6 days 

and 13 hours to complete; thus, increasing the epoch length to 1,000 would be unfeasible 

and unreliable to keep a workstation online without interruption. Figure 37 visualizes the 

class distribution and the overall imprint of the average annotation box label. 

The YOLOv5 family formats training inputs are slightly different compared to 

previous models. The expected format is as follows. 

../datasets/train/images/img1.jpg  # image 

../datasets/train/labels/img1.txt  # label 

../datasets/valid/images/img1.jpg  # image 

../datasets/valid/labels/img1.txt  # label 
 
 

The corresponding training command was used to start the training process for 

300 epochs in an Anaconda environment as follows. 

python3 C:/yolov5-gpu/yolov5-master/train.py --img 640 --batch 3 --epochs 300 --data 
C:/yolov5-gpu/yolov5-master/data/RCW_custom.yaml --weights yolov5n.pt --device 0 
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Figure 36 

Performance of YOLOv5n with Batch 1 Data (Top) and Batch 2 Data (Bottom) 

Note. YOLOv5 uses Results are generated in WandB.ai; the service YOLOv5 uses to 

automatically store results online. mAP_0.5 was 0.78.  
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Figure 37 

Distribution of Class Instances in YOLOv5 Output Result 
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YOLOv5 automatically deploys its auto-anchoring during training. In addition, 

AutoAnchor enables the fine-tuning of the expected anchor box values.  Figure 38 

demonstrates the test confusion matrix recorded by YOLOv5, and Table 11 further 

defines the performance metrics. 

Test Results 

Figure 38 

YOLOv5n Confusion Matrix 
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Note. The same test images used by YOLOv4-tiny were also used for YOLOv5. The test images 

are all unique and unseen at the training step. This model displayed more false-negative 

identification and much fewer false positives.  
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Table 11 

 

YOLOv5n Confusion Matrix Results 

Metric Definition Equation Result 

TP Positive values predicted 

positive 

- 92 

FP Negative values predicted 

positive 

- 2 

FN Positive values predicted 

negative 

- 39 

TN Negative values predicted 

negative 

- 0 

Accuracy Proportion of correct 

predictions out of all 

predictions made 

(TP + TN) / (P + N) 0.6917 

Precision Proportion of correct 

predictions out of all 

positive predictions 

(TP) / (TP+FP) 0.7023 

Recall 

(Sensitivity 

or TPR) 

Proportion of correct 

predictions out of all 

positive classes 

(TP) / (TP + FN) 0.9787 

F1-Score Test accuracy, weighted 

average of precision and 

recall. 1 best, 0 worst. 

2*(Precision*Recall) / (Precision +Recall) 0.8178 

Specificity 

(TNR) 

Probability that a negative 

prediction will be true 

(TN) / (TN+FP) 0 

False 

Negative 

Rate 

(FNR) 

Probability of labeling a 

negative class as positive 

(FN) / (FN + TP) 0.0212 

False 

Positive 

Rate (FPR) 

Probability of labeling a 

positive class as negative 

(FP) / (FP + TN) 1.00 

False 

Discovery 

Rate 

(FDR) 

Ratio of FP to total 

number of positive 

predictions 

(FP) / (FP + TP) 0.2977 
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Comparison between YOLOv4-tiny and YOLOv5n 

The F1-scores are used to assess a model's testing accuracy. Both models tiled 

images. The input image size is 416×416 for YOLOv4-tiny and 640×640 for YOLOv5n. 

YOLOv4-tiny ran inferencing using Darknet Detector, while YOLOv5n used Sliced 

Aided Hyper Inferencing (SAHI) created by (Akyon, 2021). Running both models at a 

threshold of 0.30. The F1-score for test data is 0.8525 for YOLOv4-tiny and 0.8178 for 

YOLOv5n. They are quite comparable in terms of overall performance. However, 

training mAP was quite different. YOLOv4-tiny achieved an mAP of 0.96, and 

YOLOv5n achieved an mAP of 0.78 for training data. A visual comparison is provided in 

Figure 39. 

Numerically, YOLOv5n made 46 better predictions compared to YOLOv4-tiny. 

On the other hand, YOLOv4-tiny made 37 better predictions compared to YOLOv5n. 

However, test results showed that both models complemented each other. Various RCW 

markers that one model missed were detected by the other. Using both models for 

inferencing and combining their results, the cavity detection 1.0 (i.e., 100%) on the 

testing data was achieved. Not a single cavity was overlooked or missed. In practice, this 

is a massive benefit for wildlife ecologists to ensure a robust detection system. Below are 

a few samples that compare YOLOv4-tiny and YOLOv5n.  
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Figure 39 

Sample YOLOv4-tiny Testing Inference Compared with YOLOv5n 

 
Note. This figure clearly shows an example of difference in detecting RCW habitats between 

YOLOv4-tiny (left) and YOLOv5n (right). Using SAHI, which is only available for YOLOv5 

and newer models, detections are made with any desired tiling size. Overall, YOLOv5n found 46 

more cavity instances than YOLOv4-tiny. 
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CHAPTER VI 

Conclusion and Future Work 

For the preservation of red-cockaded woodpecker (RCW), this work implemented 

two computer vision models and performed a comparison to find the best solution to 

assist in automating the RCW habitat detection process. This process saves thousands of 

personnel hours and reduces dangers associated with pedestrian surveying in remote 

locations. Computer vision, a machine learning subfield, promises to expand the scope of 

many ecological conservation projects. YOLOv4-tiny reached a mean average precision 

(mAP) of 0.95 and test accuracy of 0.85, and YOLOv5n achieved a mAP of 0.78 and test 

accuracy of 0.82 using low fidelity data. Although the result is respectable, more can be 

done to improve testing performance and deploy a real-time detection system. 

Data 

The data set featured in this work is small in quantity, contains too much 

variation, and is not robust. The dataset needs to be increased by a few orders of 

magnitude to have better effects on model training. Simple models trained on large data 

sets generally perform better than complex models trained on small data sets. When 

expanding the dataset, care should be taken to include different kinds of pine resin 

appearances, seasonal variation, time of day, and increased geographic distribution. The 

current dataset suffers from a lack of reliability. A reliable RCW dataset should consider 

proper annotation technique, deletion of all duplicate, low-resolution images should be 

omitted, and creation of a multi-class structure if ecologists wish to classifiy other types 

of RCW habitats, i.e. non-sap. 
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Demanding Computing Hardware  

The hardware used for this project had limitations. The maximum training image 

size was 736×736 pixels before running out of GPU memory. Increasing memory 

availability alleviates this problem however, GPUs are often costly and out of reach for 

most practitioners. An alternative to buying local hardware is using GPU cloud services 

that offer free training capabilities. However, they are often paywalled and are very slow 

compared to local hardware.  

With more excellent hardware capabilities, larger models that promise better mAP 

values can be trained and tested. Unfortunately, YOLOR, YOLOX, YOLOv5, and 

YOLOv4 all have large or extra-large model configurations that require enormous 

memory requirements. 

Model Ensembling 

This work set out to perform model ensembling using the YOLO family. Using 

various models, working together helps validate the results. Model ensembling for real-

time detection may be tricky but not impossible. In an ideal use case, the extra-large 

models that promise a higher mAP value should be used to infer one data point 

simultaneously.  

The work featured in this study can be implemented in other ecological projects. 

Large and small animal species identification, animal population counting, habitat 

detection, territory segmentation, forest categorization, tree health measurements, etc. 

Implementing computer vision is becoming much more accessible in recent years due to 

artificial intelligence democratization and the streamlined approach model developers 

take when releasing the latest innovations.   
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APPENDIX  

YOLOv4-tiny.cfg 

# DarkMark v1.6.21-1 output for Darknet 

# Project .... /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4 

# Config ..... 

/home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4/YoloV4.cfg 

# Template ... /home/emkun/src/darknet/cfg/yolov4-tiny.cfg 

# Username ... emkun@emkun-ROG-Zephyrus-GX550LXS-GX550LXS 

# Timestamp .. Wed 2022-06-29 23:18:24 CDT 

# 

# WARNING:  If you re-generate the darknet files for this project you'll 

#  lose any customizations you are about to make in this file! 

 

 

[net] 

# Testing 

#batch=1 

#subdivisions=1 

# Training 

batch=1 

subdivisions=1 

width=416 

height=416 
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channels=3 

momentum=0.9 

decay=0.0005 

angle=0 

saturation=1.500000 

exposure=1.500000 

hue=0.100000 

 

learning_rate=0.002610 

burn_in=1000 

 

max_batches=100000 

policy=steps 

steps=80000,90000 

scales=.1,.1 

 

 

#weights_reject_freq=1001 

#ema_alpha=0.9998 

#equidistant_point=1000 

#num_sigmas_reject_badlabels=3 

#badlabels_rejection_percentage=0.2 

cutmix=0 
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flip=1 

max_chart_loss=4.000000 

mixup=0 

mosaic=0 

use_cuda_graph=0 

 

 

[convolutional] 

batch_normalize=1 

filters=32 

size=3 

stride=2 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=3 

stride=2 

pad=1 

activation=leaky 
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[convolutional] 

batch_normalize=1 

filters=64 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers=-1 

groups=2 

group_id=1 

 

[convolutional] 

batch_normalize=1 

filters=32 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 
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filters=32 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers = -1,-2 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers = -6,-1 

 

[maxpool] 

size=2 

stride=2 
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[convolutional] 

batch_normalize=1 

filters=128 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers=-1 

groups=2 

group_id=1 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 
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batch_normalize=1 

filters=64 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers = -1,-2 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers = -6,-1 

 

[maxpool] 

size=2 
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stride=2 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers=-1 

groups=2 

group_id=1 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=3 

stride=1 

pad=1 

activation=leaky 
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[convolutional] 

batch_normalize=1 

filters=128 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers = -1,-2 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[route] 

layers = -6,-1 

 

[maxpool] 
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size=2 

stride=2 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

################################## 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 
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filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

size=1 

stride=1 

pad=1 

filters=18 

activation=linear 

 

 

 

[yolo] 

mask = 3,4,5 

anchors=5, 14, 10, 32, 27, 45, 26, 113, 51, 74, 60, 182 

classes=1 

num=6 

jitter=.3 

scale_x_y = 1.05 

cls_normalizer=1.0 
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iou_normalizer=0.07 

iou_loss=ciou 

ignore_thresh = .7 

truth_thresh = 1 

random=0 

resize=1.5 

nms_kind=greedynms 

beta_nms=0.6 

#new_coords=1 

#scale_x_y = 2.0 

 

[route] 

layers = -4 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[upsample] 
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stride=2 

 

[route] 

layers = -1, 23 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

size=1 

stride=1 

pad=1 

filters=18 

activation=linear 

 

[yolo] 

mask = 0,1,2 

anchors=5, 14, 10, 32, 27, 45, 26, 113, 51, 74, 60, 182 
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classes=1 

num=6 

jitter=.3 

scale_x_y = 1.05 

cls_normalizer=1.0 

iou_normalizer=0.07 

iou_loss=ciou 

ignore_thresh = .7 

truth_thresh = 1 

random=0 

resize=1.5 

nms_kind=greedynms 

beta_nms=0.6 

#new_coords=1 

#scale_x_y = 2.0 
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YOLOv4.data 

classes = 1 

train = /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4/YoloV4_train.txt 

valid = /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4/YoloV4_valid.txt 

names = /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4/YoloV4.names 

backup = /home/emkun/Downloads/855_FinalIteration_v4tiny/YoloV4 
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YOLOv4.names 

Cavity tree 
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YOLOv5n train.py 

 

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license 

""" 

Train a YOLOv5 model on a custom dataset. 

 

Models and datasets download automatically from the latest YOLOv5 release. 

Models: https://github.com/ultralytics/yolov5/tree/master/models 

Datasets: https://github.com/ultralytics/yolov5/tree/master/data 

Tutorial: https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data 

 

Usage: 

    $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640  # from 

pretrained (RECOMMENDED) 

    $ python path/to/train.py --data coco128.yaml --weights '' --cfg yolov5s.yaml --img 

640  # from scratch 

""" 

 

import argparse 

import math 

import os 

import random 

import sys 
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import time 

from copy import deepcopy 

from datetime import datetime 

from pathlib import Path 

 

import numpy as np 

import torch 

import torch.distributed as dist 

import torch.nn as nn 

import yaml 

from torch.cuda import amp 

from torch.nn.parallel import DistributedDataParallel as DDP 

from torch.optim import SGD, Adam, AdamW, lr_scheduler 

from tqdm import tqdm 

 

FILE = Path(__file__).resolve() 

ROOT = FILE.parents[0]  # YOLOv5 root directory 

if str(ROOT) not in sys.path: 

    sys.path.append(str(ROOT))  # add ROOT to PATH 

ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative 

 

import val  # for end-of-epoch mAP 

from models.experimental import attempt_load 
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from models.yolo import Model 

from utils.autoanchor import check_anchors 

from utils.autobatch import check_train_batch_size 

from utils.callbacks import Callbacks 

from utils.datasets import create_dataloader 

from utils.downloads import attempt_download 

from utils.general import (LOGGER, check_dataset, check_file, check_git_status, 

check_img_size, check_requirements, 

                           check_suffix, check_yaml, colorstr, get_latest_run, increment_path, 

init_seeds, 

                           intersect_dicts, labels_to_class_weights, labels_to_image_weights, 

methods, one_cycle, 

                           print_args, print_mutation, strip_optimizer) 

from utils.loggers import Loggers 

from utils.loggers.wandb.wandb_utils import check_wandb_resume 

from utils.loss import ComputeLoss 

from utils.metrics import fitness 

from utils.plots import plot_evolve, plot_labels 

from utils.torch_utils import EarlyStopping, ModelEMA, de_parallel, select_device, 

torch_distributed_zero_first 

 

LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # 

https://pytorch.org/docs/stable/elastic/run.html 
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RANK = int(os.getenv('RANK', -1)) 

WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) 

 

 

def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary 

    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, 

nosave, workers, freeze = \ 

        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, 

opt.evolve, opt.data, opt.cfg, \ 

        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze 

 

    # Directories 

    w = save_dir / 'weights'  # weights dir 

    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir 

    last, best = w / 'last.pt', w / 'best.pt' 

 

    # Hyperparameters 

    if isinstance(hyp, str): 

        with open(hyp, errors='ignore') as f: 

            hyp = yaml.safe_load(f)  # load hyps dict 

    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in 

hyp.items())) 
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    # Save run settings 

    if not evolve: 

        with open(save_dir / 'hyp.yaml', 'w') as f: 

            yaml.safe_dump(hyp, f, sort_keys=False) 

        with open(save_dir / 'opt.yaml', 'w') as f: 

            yaml.safe_dump(vars(opt), f, sort_keys=False) 

 

    # Loggers 

    data_dict = None 

    if RANK in [-1, 0]: 

        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance 

        if loggers.wandb: 

            data_dict = loggers.wandb.data_dict 

            if resume: 

                weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, 

opt.batch_size 

 

        # Register actions 

        for k in methods(loggers): 

            callbacks.register_action(k, callback=getattr(loggers, k)) 

 

    # Config 

    plots = not evolve  # create plots 
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    cuda = device.type != 'cpu' 

    init_seeds(1 + RANK) 

    with torch_distributed_zero_first(LOCAL_RANK): 

        data_dict = data_dict or check_dataset(data)  # check if None 

    train_path, val_path = data_dict['train'], data_dict['val'] 

    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes 

    names = ['item'] if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # 

class names 

    assert len(names) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # 

check 

    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO 

dataset 

 

    # Model 

    check_suffix(weights, '.pt')  # check weights 

    pretrained = weights.endswith('.pt') 

    if pretrained: 

        with torch_distributed_zero_first(LOCAL_RANK): 

            weights = attempt_download(weights)  # download if not found locally 

        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid 

CUDA memory leak 

        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, 

anchors=hyp.get('anchors')).to(device)  # create 
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        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude 

keys 

        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32 

        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect 

        model.load_state_dict(csd, strict=False)  # load 

        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from 

{weights}')  # report 

    else: 

        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create 

 

    # Freeze 

    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # 

layers to freeze 

    for k, v in model.named_parameters(): 

        v.requires_grad = True  # train all layers 

        if any(x in k for x in freeze): 

            LOGGER.info(f'freezing {k}') 

            v.requires_grad = False 

 

    # Image size 

    gs = max(int(model.stride.max()), 32)  # grid size (max stride) 

    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple 
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    # Batch size 

    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size 

        batch_size = check_train_batch_size(model, imgsz) 

        loggers.on_params_update({"batch_size": batch_size}) 

 

    # Optimizer 

    nbs = 64  # nominal batch size 

    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing 

    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay 

    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") 

 

    g0, g1, g2 = [], [], []  # optimizer parameter groups 

    for v in model.modules(): 

        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias 

            g2.append(v.bias) 

        if isinstance(v, nn.BatchNorm2d):  # weight (no decay) 

            g0.append(v.weight) 

        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):  # weight (with 

decay) 

            g1.append(v.weight) 

 

    if opt.optimizer == 'Adam': 



105 

 

 

        optimizer = Adam(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 

to momentum 

    elif opt.optimizer == 'AdamW': 

        optimizer = AdamW(g0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust 

beta1 to momentum 

    else: 

        optimizer = SGD(g0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True) 

 

    optimizer.add_param_group({'params': g1, 'weight_decay': hyp['weight_decay']})  # 

add g1 with weight_decay 

    optimizer.add_param_group({'params': g2})  # add g2 (biases) 

    LOGGER.info(f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter 

groups " 

                f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias") 

    del g0, g1, g2 

 

    # Scheduler 

    if opt.cos_lr: 

        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf'] 

    else: 

        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear 

    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # 

plot_lr_scheduler(optimizer, scheduler, epochs) 
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    # EMA 

    ema = ModelEMA(model) if RANK in [-1, 0] else None 

 

    # Resume 

    start_epoch, best_fitness = 0, 0.0 

    if pretrained: 

        # Optimizer 

        if ckpt['optimizer'] is not None: 

            optimizer.load_state_dict(ckpt['optimizer']) 

            best_fitness = ckpt['best_fitness'] 

 

        # EMA 

        if ema and ckpt.get('ema'): 

            ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) 

            ema.updates = ckpt['updates'] 

 

        # Epochs 

        start_epoch = ckpt['epoch'] + 1 

        if resume: 

            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, 

nothing to resume.' 

        if epochs < start_epoch: 
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            LOGGER.info(f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-

tuning for {epochs} more epochs.") 

            epochs += ckpt['epoch']  # finetune additional epochs 

 

        del ckpt, csd 

 

    # DP mode 

    if cuda and RANK == -1 and torch.cuda.device_count() > 1: 

        LOGGER.warning('WARNING: DP not recommended, use torch.distributed.run for 

best DDP Multi-GPU results.\n' 

                       'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 

to get started.') 

        model = torch.nn.DataParallel(model) 

 

    # SyncBatchNorm 

    if opt.sync_bn and cuda and RANK != -1: 

        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) 

        LOGGER.info('Using SyncBatchNorm()') 

 

    # Trainloader 

    train_loader, dataset = create_dataloader(train_path, 

                                              imgsz, 

                                              batch_size // WORLD_SIZE, 
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                                              gs, 

                                              single_cls, 

                                              hyp=hyp, 

                                              augment=True, 

                                              cache=None if opt.cache == 'val' else opt.cache, 

                                              rect=opt.rect, 

                                              rank=LOCAL_RANK, 

                                              workers=workers, 

                                              image_weights=opt.image_weights, 

                                              quad=opt.quad, 

                                              prefix=colorstr('train: '), 

                                              shuffle=True) 

    mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class 

    nb = len(train_loader)  # number of batches 

    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels 

are 0-{nc - 1}' 

 

    # Process 0 

    if RANK in [-1, 0]: 

        val_loader = create_dataloader(val_path, 

                                       imgsz, 

                                       batch_size // WORLD_SIZE * 2, 

                                       gs, 
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                                       single_cls, 

                                       hyp=hyp, 

                                       cache=None if noval else opt.cache, 

                                       rect=True, 

                                       rank=-1, 

                                       workers=workers * 2, 

                                       pad=0.5, 

                                       prefix=colorstr('val: '))[0] 

 

        if not resume: 

            labels = np.concatenate(dataset.labels, 0) 

            # c = torch.tensor(labels[:, 0])  # classes 

            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency 

            # model._initialize_biases(cf.to(device)) 

            if plots: 

                plot_labels(labels, names, save_dir) 

 

            # Anchors 

            if not opt.noautoanchor: 

                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz) 

            model.half().float()  # pre-reduce anchor precision 

 

        callbacks.run('on_pretrain_routine_end') 
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    # DDP mode 

    if cuda and RANK != -1: 

        model = DDP(model, device_ids=[LOCAL_RANK], 

output_device=LOCAL_RANK) 

 

    # Model attributes 

    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps) 

    hyp['box'] *= 3 / nl  # scale to layers 

    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers 

    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers 

    hyp['label_smoothing'] = opt.label_smoothing 

    model.nc = nc  # attach number of classes to model 

    model.hyp = hyp  # attach hyperparameters to model 

    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # 

attach class weights 

    model.names = names 

 

    # Start training 

    t0 = time.time() 

    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, 

max(3 epochs, 100 iterations) 

    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training 
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    last_opt_step = -1 

    maps = np.zeros(nc)  # mAP per class 

    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls) 

    scheduler.last_epoch = start_epoch - 1  # do not move 

    scaler = amp.GradScaler(enabled=cuda) 

    stopper = EarlyStopping(patience=opt.patience) 

    compute_loss = ComputeLoss(model)  # init loss class 

    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' 

                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n' 

                f"Logging results to {colorstr('bold', save_dir)}\n" 

                f'Starting training for {epochs} epochs...') 

    for epoch in range(start_epoch, epochs):  # epoch --------------------------------------------

---------------------- 

        model.train() 

 

        # Update image weights (optional, single-GPU only) 

        if opt.image_weights: 

            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights 

            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image 

weights 

            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # 

rand weighted idx 

 



112 

 

 

        # Update mosaic border (optional) 

        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs) 

        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders 

 

        mloss = torch.zeros(3, device=device)  # mean losses 

        if RANK != -1: 

            train_loader.sampler.set_epoch(epoch) 

        pbar = enumerate(train_loader) 

        LOGGER.info(('\n' + '%10s' * 7) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 

'img_size')) 

        if RANK in [-1, 0]: 

            pbar = tqdm(pbar, total=nb, bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # 

progress bar 

        optimizer.zero_grad() 

        for i, (imgs, targets, paths, _) in pbar:  # batch ----------------------------------------------

--------------- 

            ni = i + nb * epoch  # number integrated batches (since train start) 

            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 

to 0.0-1.0 

 

            # Warmup 

            if ni <= nw: 

                xi = [0, nw]  # x interp 
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                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 

or iou) 

                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round()) 

                for j, x in enumerate(optimizer.param_groups): 

                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 

                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, 

x['initial_lr'] * lf(epoch)]) 

                    if 'momentum' in x: 

                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], 

hyp['momentum']]) 

 

            # Multi-scale 

            if opt.multi_scale: 

                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size 

                sf = sz / max(imgs.shape[2:])  # scale factor 

                if sf != 1: 

                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape 

(stretched to gs-multiple) 

                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', 

align_corners=False) 

 

            # Forward 

            with amp.autocast(enabled=cuda): 
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                pred = model(imgs)  # forward 

                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by 

batch_size 

                if RANK != -1: 

                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode 

                if opt.quad: 

                    loss *= 4. 

 

            # Backward 

            scaler.scale(loss).backward() 

 

            # Optimize 

            if ni - last_opt_step >= accumulate: 

                scaler.step(optimizer)  # optimizer.step 

                scaler.update() 

                optimizer.zero_grad() 

                if ema: 

                    ema.update(model) 

                last_opt_step = ni 

 

            # Log 

            if RANK in [-1, 0]: 

                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses 
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                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 

0:.3g}G'  # (GB) 

                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) % 

                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], 

imgs.shape[-1])) 

                callbacks.run('on_train_batch_end', ni, model, imgs, targets, paths, plots, 

opt.sync_bn) 

                if callbacks.stop_training: 

                    return 

            # end batch ------------------------------------------------------------------------------------

------------ 

 

        # Scheduler 

        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers 

        scheduler.step() 

 

        if RANK in [-1, 0]: 

            # mAP 

            callbacks.run('on_train_epoch_end', epoch=epoch) 

            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 

'class_weights']) 

            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop 

            if not noval or final_epoch:  # Calculate mAP 
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                results, maps, _ = val.run(data_dict, 

                                           batch_size=batch_size // WORLD_SIZE * 2, 

                                           imgsz=imgsz, 

                                           model=ema.ema, 

                                           single_cls=single_cls, 

                                           dataloader=val_loader, 

                                           save_dir=save_dir, 

                                           plots=False, 

                                           callbacks=callbacks, 

                                           compute_loss=compute_loss) 

 

            # Update best mAP 

            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, 

mAP@.5, mAP@.5-.95] 

            if fi > best_fitness: 

                best_fitness = fi 

            log_vals = list(mloss) + list(results) + lr 

            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi) 

 

            # Save model 

            if (not nosave) or (final_epoch and not evolve):  # if save 

                ckpt = { 

                    'epoch': epoch, 
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                    'best_fitness': best_fitness, 

                    'model': deepcopy(de_parallel(model)).half(), 

                    'ema': deepcopy(ema.ema).half(), 

                    'updates': ema.updates, 

                    'optimizer': optimizer.state_dict(), 

                    'wandb_id': loggers.wandb.wandb_run.id if loggers.wandb else None, 

                    'date': datetime.now().isoformat()} 

 

                # Save last, best and delete 

                torch.save(ckpt, last) 

                if best_fitness == fi: 

                    torch.save(ckpt, best) 

                if (epoch > 0) and (opt.save_period > 0) and (epoch % opt.save_period == 0): 

                    torch.save(ckpt, w / f'epoch{epoch}.pt') 

                del ckpt 

                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi) 

 

            # Stop Single-GPU 

            if RANK == -1 and stopper(epoch=epoch, fitness=fi): 

                break 

 

            # Stop DDP TODO: known issues 

shttps://github.com/ultralytics/yolov5/pull/4576 
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            # stop = stopper(epoch=epoch, fitness=fi) 

            # if RANK == 0: 

            #    dist.broadcast_object_list([stop], 0)  # broadcast 'stop' to all ranks 

 

        # Stop DPP 

        # with torch_distributed_zero_first(RANK): 

        # if stop: 

        #    break  # must break all DDP ranks 

 

        # end epoch --------------------------------------------------------------------------------------

-------------- 

    # end training ---------------------------------------------------------------------------------------

-------------- 

    if RANK in [-1, 0]: 

        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) 

/ 3600:.3f} hours.') 

        for f in last, best: 

            if f.exists(): 

                strip_optimizer(f)  # strip optimizers 

                if f is best: 

                    LOGGER.info(f'\nValidating {f}...') 

                    results, _, _ = val.run( 

                        data_dict, 
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                        batch_size=batch_size // WORLD_SIZE * 2, 

                        imgsz=imgsz, 

                        model=attempt_load(f, device).half(), 

                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools results at 0.65 

                        single_cls=single_cls, 

                        dataloader=val_loader, 

                        save_dir=save_dir, 

                        save_json=is_coco, 

                        verbose=True, 

                        plots=True, 

                        callbacks=callbacks, 

                        compute_loss=compute_loss)  # val best model with plots 

                    if is_coco: 

                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, 

best_fitness, fi) 

 

        callbacks.run('on_train_end', last, best, plots, epoch, results) 

        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}") 

 

    torch.cuda.empty_cache() 

    return results 
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def parse_opt(known=False): 

    parser = argparse.ArgumentParser() 

    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial 

weights path') 

    parser.add_argument('--cfg', type=str, default='', help='model.yaml path') 

    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', 

help='dataset.yaml path') 

    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-

low.yaml', help='hyperparameters path') 

    parser.add_argument('--epochs', type=int, default=300) 

    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all 

GPUs, -1 for autobatch') 

    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, 

val image size (pixels)') 

    parser.add_argument('--rect', action='store_true', help='rectangular training') 

    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume 

most recent training') 

    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') 

    parser.add_argument('--noval', action='store_true', help='only validate final epoch') 

    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor') 

    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve 

hyperparameters for x generations') 

    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket') 
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    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in 

"ram" (default) or "disk"') 

    parser.add_argument('--image-weights', action='store_true', help='use weighted image 

selection for training') 

    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') 

    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 

50%%') 

    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as 

single-class') 

    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], 

default='SGD', help='optimizer') 

    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only 

available in DDP mode') 

    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers 

(per RANK in DDP mode)') 

    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to 

project/name') 

    parser.add_argument('--name', default='exp', help='save to project/name') 

    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, 

do not increment') 

    parser.add_argument('--quad', action='store_true', help='quad dataloader') 

    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler') 
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    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label 

smoothing epsilon') 

    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience 

(epochs without improvement)') 

    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: 

backbone=10, first3=0 1 2') 

    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every 

x epochs (disabled if < 1)') 

    parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not 

modify') 

 

    # Weights & Biases arguments 

    parser.add_argument('--entity', default=None, help='W&B: Entity') 

    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, 

help='W&B: Upload data, "val" option') 

    parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set 

bounding-box image logging interval') 

    parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version 

of dataset artifact to use') 

 

    opt = parser.parse_known_args()[0] if known else parser.parse_args() 

    return opt 
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def main(opt, callbacks=Callbacks()): 

    # Checks 

    if RANK in [-1, 0]: 

        print_args(vars(opt)) 

        check_git_status() 

        check_requirements(exclude=['thop']) 

 

    # Resume 

    if opt.resume and not check_wandb_resume(opt) and not opt.evolve:  # resume an 

interrupted run 

        ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run()  # specified or 

most recent path 

        assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist' 

        with open(Path(ckpt).parent.parent / 'opt.yaml', errors='ignore') as f: 

            opt = argparse.Namespace(**yaml.safe_load(f))  # replace 

        opt.cfg, opt.weights, opt.resume = '', ckpt, True  # reinstate 

        LOGGER.info(f'Resuming training from {ckpt}') 

    else: 

        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \ 

            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), 

str(opt.project)  # checks 

        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' 
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        if opt.evolve: 

            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to 

runs/evolve 

                opt.project = str(ROOT / 'runs/evolve') 

            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and 

disable resume 

        if opt.name == 'cfg': 

            opt.name = Path(opt.cfg).stem  # use model.yaml as name 

        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, 

exist_ok=opt.exist_ok)) 

 

    # DDP mode 

    device = select_device(opt.device, batch_size=opt.batch_size) 

    if LOCAL_RANK != -1: 

        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training' 

        assert not opt.image_weights, f'--image-weights {msg}' 

        assert not opt.evolve, f'--evolve {msg}' 

        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a 

valid --batch-size' 

        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must 

be multiple of WORLD_SIZE' 

        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for 

DDP command' 
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        torch.cuda.set_device(LOCAL_RANK) 

        device = torch.device('cuda', LOCAL_RANK) 

        dist.init_process_group(backend="nccl" if dist.is_nccl_available() else "gloo") 

 

    # Train 

    if not opt.evolve: 

        train(opt.hyp, opt, device, callbacks) 

        if WORLD_SIZE > 1 and RANK == 0: 

            LOGGER.info('Destroying process group... ') 

            dist.destroy_process_group() 

 

    # Evolve hyperparameters (optional) 

    else: 

        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit) 

        meta = { 

            'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3) 

            'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf) 

            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1 

            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay 

            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok) 

            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum 

            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr 

            'box': (1, 0.02, 0.2),  # box loss gain 
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            'cls': (1, 0.2, 4.0),  # cls loss gain 

            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight 

            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels) 

            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight 

            'iou_t': (0, 0.1, 0.7),  # IoU training threshold 

            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold 

            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore) 

            'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5) 

            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction) 

            'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction) 

            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction) 

            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg) 

            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction) 

            'scale': (1, 0.0, 0.9),  # image scale (+/- gain) 

            'shear': (1, 0.0, 10.0),  # image shear (+/- deg) 

            'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001 

            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability) 

            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability) 

            'mosaic': (1, 0.0, 1.0),  # image mixup (probability) 

            'mixup': (1, 0.0, 1.0),  # image mixup (probability) 

            'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability) 

 

        with open(opt.hyp, errors='ignore') as f: 
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            hyp = yaml.safe_load(f)  # load hyps dict 

            if 'anchors' not in hyp:  # anchors commented in hyp.yaml 

                hyp['anchors'] = 3 

        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save 

final epoch 

        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices 

        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv' 

        if opt.bucket: 

            os.system(f'gsutil cp gs://{opt.bucket}/evolve.csv {evolve_csv}')  # download 

evolve.csv if exists 

 

        for _ in range(opt.evolve):  # generations to evolve 

            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate 

                # Select parent(s) 

                parent = 'single'  # parent selection method: 'single' or 'weighted' 

                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1) 

                n = min(5, len(x))  # number of previous results to consider 

                x = x[np.argsort(-fitness(x))][:n]  # top n mutations 

                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0) 

                if parent == 'single' or len(x) == 1: 

                    # x = x[random.randint(0, n - 1)]  # random selection 

                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection 

                elif parent == 'weighted': 



128 

 

 

                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination 

 

                # Mutate 

                mp, s = 0.8, 0.2  # mutation probability, sigma 

                npr = np.random 

                npr.seed(int(time.time())) 

                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1 

                ng = len(meta) 

                v = np.ones(ng) 

                while all(v == 1):  # mutate until a change occurs (prevent duplicates) 

                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 

1).clip(0.3, 3.0) 

                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300) 

                    hyp[k] = float(x[i + 7] * v[i])  # mutate 

 

            # Constrain to limits 

            for k, v in meta.items(): 

                hyp[k] = max(hyp[k], v[1])  # lower limit 

                hyp[k] = min(hyp[k], v[2])  # upper limit 

                hyp[k] = round(hyp[k], 5)  # significant digits 

 

            # Train mutation 

            results = train(hyp.copy(), opt, device, callbacks) 
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            callbacks = Callbacks() 

            # Write mutation results 

            print_mutation(results, hyp.copy(), save_dir, opt.bucket) 

 

        # Plot results 

        plot_evolve(evolve_csv) 

        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n' 

                    f"Results saved to {colorstr('bold', save_dir)}\n" 

                    f'Usage example: $ python train.py --hyp {evolve_yaml}') 

 

 

def run(**kwargs): 

    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, 

weights='yolov5m.pt') 

    opt = parse_opt(True) 

    for k, v in kwargs.items(): 

        setattr(opt, k, v) 

    main(opt) 

    return opt 

 

if __name__ == "__main__": 

    opt = parse_opt() 

    main(opt)
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YoloV5n_data.yaml 

train: ../train/images 

val: ../valid/images 

test: ../test/images 

nc: 1 

names: ['cavity'] 
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