\qquad

Earlier we defined a vector field as a function:

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad \text { or } F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

We defined a vector field F to be conservative if there is a function f so that $F=\nabla f$, and we call f the potential function for the conservative vector field F.

We also defined the work of a force field $F=\langle M, N, P\rangle$ along a curve C parameterized by $\vec{r}(t), a \leq$ $t \leq b$ to be

$$
W=\int_{C} F \cdot \vec{T} d s=\int_{a}^{b} F \cdot \overrightarrow{r^{\prime}} d t
$$

1. Suppose $F=\langle M, N, P\rangle$ is a conservative vector field and C is a curve parameterized by $\vec{r}(t)=$ $\langle x(t), y(t), z(t)\rangle$ for $a \leq t \leq b$.
(a) Since F is conservative, there is....
(b) We know that the work done by this conservative vector field along the curve C can be found to be:

$$
\begin{aligned}
W & =\int_{C} F \cdot \vec{T} d s \\
& =\int_{a}^{b} F \cdot \overrightarrow{r^{\prime}} d t \\
& =\int_{a}^{b}\langle, \quad\rangle \cdot\langle, \quad\rangle d t \\
& =\int_{a}^{b}\langle, \quad, \quad\rangle \cdot\langle\quad, \quad\rangle d t \quad \text { [because } F \text { is conservative] } \\
& =\int_{a}^{b} \frac{d}{d t}[\quad] d t
\end{aligned}
$$

$$
=\quad \text { [because of the Fundamental Theorem of Calculus] }
$$

(c) The Fundamental Theorem of Line Integrals:

If F is a conservative vector field with potential function f, and C is a curve parameterized by $\vec{r}(t)$ for $a \leq t \leq b$ then the work done by F along the curve C may be found by

$$
W=\int_{C} F \cdot \vec{T} d s=\int_{a}^{b} F \cdot \overrightarrow{r^{\prime}} d t=
$$

2. Verify that F is conservative and find its potential function. Then compute the work done by F along the curve parameterized by $\vec{r}(t)$.

$$
F=\left\langle y e^{z}, x e^{z}, x y e^{z}\right\rangle \quad \vec{r}(t)=\left\langle t^{2}, t^{3}, t-1\right\rangle, 1 \leq t \leq 2
$$

3. Suppose C is some curve from the point $P=(1,2,3)$ to $Q=(0,6,2)$. What can you say about the work done by the vector field $F=\left\langle y, x, z^{3}\right\rangle$ along this unknown curve C ?
4. Suppose F is some conservative vector field with potential function f. Also suppose C_{1} and C_{2} are two different curves which both start at the same point P and end at the same point Q. What can you say about the work done by F along these two different curves?
5. Complete the following sentence. (It's a first corollary to the Fundamental Theorem of Line Integrals.)

If F is a conservative vector field, then the work done by F from point P to point $Q \ldots$
6. Suppose that C is a special curve we will call closed. That is, C is parameterized by $\vec{r}(t)$ for $a \leq t \leq b$ but we know $\vec{r}(a)=\vec{r}(b)$. What can you say about the work done by a conservative vector field F along a closed curve C ?
7. Complete the following sentence. (It's another corollary to the Fundamental Theorem of Line Integrals.)

If F is conservative vector field, then the work done by F around a closed curve C is \ldots.
8. Suppose $F=\left\langle 2 x y z^{-1}, z+x^{2} z^{-1}, y-x^{2} y z^{-2}\right\rangle$. Compute the work done by F along each of the curves below.
(a) The ellipse $3 y^{2}+7 z^{2}=10$, starting at $(0,1,1)$, going around three times.
(b) The ellipse $3 y^{2}+7 z^{2}=10$, from $(1,1)$ to $(0,1,-1)$

