Earlier we defined a **vector field** as a function:

$$F: \mathbb{R}^2 \to \mathbb{R}^2 \qquad \text{or } F: \mathbb{R}^3 \to \mathbb{R}^3$$

We defined a vector field F to be **conservative** if there is a function f so that $F = \nabla f$, and we call f the **potential function** for the conservative vector field F.

We also defined the work of a force field $F = \langle M, N, P \rangle$ along a curve C parameterized by $\overrightarrow{r}(t)$, $a \leq t \leq b$ to be

$$W = \int_C F \cdot \overrightarrow{T} \, ds = \int_a^b F \cdot \overrightarrow{r'} \, dt$$

- 1. Suppose $F = \langle M, N, P \rangle$ is a *conservative* vector field and C is a curve parameterized by $\overrightarrow{r}(t) = \langle x(t), y(t), z(t) \rangle$ for $a \leq t \leq b$.
 - (a) Since F is conservative, there is....
 - (b) We know that the work done by this conservative vector field along the curve C can be found to be:

$$W = \int_{C} F \cdot \overrightarrow{T} \, ds$$

$$= \int_{a}^{b} F \cdot \overrightarrow{r'} \, dt$$

$$= \int_{a}^{b} \langle \quad , \quad , \quad \rangle \cdot \langle \quad , \quad , \quad \rangle \, dt$$

$$= \int_{a}^{b} \langle \quad , \quad , \quad \rangle \cdot \langle \quad , \quad , \quad \rangle \, dt \quad \text{[because } F \text{ is conservative]}$$

$$= \int_{a}^{b} \frac{d}{dt} [\qquad] \, dt$$

[because of the Fundamental Theorem of Calculus]

(c) The Fundamental Theorem of Line Integrals:

=

If F is a conservative vector field with potential function f, and C is a curve parameterized by $\overrightarrow{r}(t)$ for $a \leq t \leq b$ then the work done by F along the curve C may be found by

$$W = \int_C F \cdot \overrightarrow{T} \, ds = \int_a^b F \cdot \overrightarrow{r'} \, dt =$$

2. Verify that F is conservative and find its potential function. Then compute the work done by F along the curve parameterized by $\overrightarrow{r}(t)$.

$$F = \langle ye^z, xe^z, xye^z \rangle$$
 $\overrightarrow{r'}(t) = \langle t^2, t^3, t-1 \rangle, 1 \le t \le 2$

3. Suppose C is some curve from the point P = (1, 2, 3) to Q = (0, 6, 2). What can you say about the work done by the vector field $F = \langle y, x, z^3 \rangle$ along this unknown curve C?

4. Suppose F is some conservative vector field with potential function f. Also suppose C_1 and C_2 are two different curves which both start at the same point P and end at the same point Q. What can you say about the work done by F along these two different curves?

5. Complete the following sentence. (It's a first *corollary* to the Fundamental Theorem of Line Integrals.)

If F is a conservative vector field, then the work done by F from point P to point Q ...

6. Suppose that C is a special curve we will call *closed*. That is, C is parameterized by $\overrightarrow{r}(t)$ for $a \leq t \leq b$ but we know $\overrightarrow{r}(a) = \overrightarrow{r}(b)$. What can you say about the work done by a conservative vector field F along a *closed* curve C?

7. Complete the following sentence. (It's another *corollary* to the Fundamental Theorem of Line Integrals.)

If F is conservative vector field, then the work done by F around a closed curve C is \ldots

- 8. Suppose $F = \langle 2xyz^{-1}, z + x^2z^{-1}, y x^2yz^{-2} \rangle$. Compute the work done by F along each of the curves below.
 - (a) The ellipse $3y^2 + 7z^2 = 10$, starting at (0, 1, 1), going around three times.

(b) The ellipse $3y^2 + 7z^2 = 10$, from (1, 1) to (0, 1, -1)