

Abstract—Steganography is the art of hiding secret message

in innocent digital data files. Steganalysis aims to expose the
existence of steganograms. While internet applications and
social media has grown tremendously in recent years, the use of
social media is increasingly being used by cybercriminals as well
as terrorists as a means of command and control communication
including taking advantage of steganography for covert
communication. In this paper, we investigate open source
steganography/steganalysis software and test StegExpose for
steganalysis. Our experimental results show that the capability
of stegExpose is very limited.

Index Terms—Steganography, steganalysis, stegexpose,
openstego, virtual steganographic library.

I. INTRODUCTION
Steganography is the practice of concealing a file, message,

image, or video within another file, message, image, or video.
The word steganography combines the Greek words steganos
(στεγανός), meaning "covered, concealed, or protected", and
graphein (γράφειν) meaning "writing". The first recorded
use of the term was in 1499 by Johannes Trithemius in his
Steganographia, a treatise on cryptography and
steganography, disguised as a book on magic. The advantage
of steganography over cryptography is that the intended secret
message does not attract attention to itself as an object of
scrutiny. Plainly visible encrypted messages, no matter how
unbreakable, arouse interest and may in themselves be
incriminating in countries where encryption is illegal.
Therefore, whereas cryptography is the practice of protecting
the contents of a message alone, steganography is concerned
with concealing the fact that a secret message is being sent, as
well as concealing the contents of the message.
Steganography includes the concealment of information
within computer files. In digital steganography, electronic
communications may include steganographic coding inside of
a transport layer, such as a document file, image file, program
or protocol. Media files are ideal for steganographic
transmission because of their large size.

Our focus will be on freely available applications including
VSL: Virtual Steganographic Laboratory [1] and StegExpose
[2]. VSL is free image steganography and steganalysis
software in the form of a graphical block diagramming tool. It
can be used for complex testing and adjusting different
steganographic techniques and provides a simple GUI and a

modular, plug-in architecture. StegExpose is a steganalysis
tool specialized in detecting LSB (least significant bit)
steganography in lossless images such as PNG and BMP. It
has a command line interface and is designed to analyze
images in bulk while providing reporting capabilities. We
have found little research conducted on VSL and StegExpose.
These two open source tools will be used as our test
applications.

We also used another graphical based steganography
program OpenStego [3] to create steganography libraries for
our tests since it can handle inputs of entire folders of images.
This application is written in Java and has been tested on
Windows and Linux. Openstego only allows for output to a
PNG formatted steganography file. There are many other
steganography software programs available and some we
thought of including were:

Hide & Reveal [4] is an open-source steganography
software and a java library distributed under the GNU GPL.
It is written in Java and is multithreaded. It can perform
encoding and decoding of BMP, PNG and TIF images.

StegSecret [5] is a java-based multiplatform steganalysis
tool that allows the detection of hidden information by using
the most known steganographic methods. It claims to detect
EOF, LSB, DCTs and other techniques. It is distributed under
the (GNU/GPL) license. Ben-4D Steganalysis Software [6] is
written in Java and claims to apply a generalisation of the
basic principles of Benford’s Law distribution is applied on
the suspicious file in order to decide whether the file is a
stego-carrier.

Steghide [7] is a widely used steganography software and
has been considered standard in many of the papers we have
researched. However, it has not been updated since 2003
according to the website. Qtech Hide & View [8] is an
experimental application created by the KIT Steganography
Research Group. This application is based on Bit-Plane
Complexity Segmentation Steganography a new
steganographic technique invented by Eiji Kawaguchi and
Richard O. Eason in 1997. BPCS-Steganography is patented
in USA (No. 6,473,516). This application is not open source,
however it is available for limited use. OpenPuff [9] is an
amazingly flexible program but included too many settings to
choose from and did not easily create steganography images
in batch production. Below we briefly discuss image
steganography.

JPEG image steganography [10] techniques utilize the
structure of this file type to develop various exploits. The
JPEG is the most common image formant used on photo-
sharing sites as well as on social media sites such as Twitter
and Facebook and Google+. The encoding process consist of
steps: applying lossy compression, division of the image into
blocks, applying the Discrete Cosine Transform on each
block and the quantization of the DCT coefficients. A greater

A Comparison Study Using StegExpose for Steganalysis

Eric Olson, Larry Carter, and Qingzhong Liu

International Journal of Knowledge Engineering, Vol. 3, No. 1, June 2017

8doi: 10.18178/ijke.2017.3.1.079

Manuscript received February 10, 2016; revised June 7, 2016. This work

was supported in part by the Sam Houston State University (SHSU) Office of

Research and Sponsored Programs, the SHSU College of Sciences and the

SHSU Department of Computer Science.

The authors are with the SHSU Department of Computer Science,

Huntsville, Texas 77341 USA (e-mail: ero003@shsu.edu, lec024@shsu.edu,

liu@shsu.edu).

International Journal of Knowledge Engineering, Vol. 3, No. 1, June 2017

9

discussion of jpeg encoding and decoding can be found in

[11].

Structure-based steganography exploits usually optional

markers of the jpeg format. Examples include using the

Exchangeable Image File or the Comments marker.

Spatial domain techniques typically modify the least

significant bit (LSB) of the individual pixel values to embed

the secrete data [12]. These methods exploit the fact that

human perception is not sensitive to subtle changes in pixel

values. This technique is not very reliable.

Frequency domain based methods-replace the least

significant bits in the quantized discrete cosine transform

coefficients. The DCT coefficients with a zero value are not

used to avoid visual distortion of the cover image. [13]

There has been a multitude of research regarding

steganalysis and steganography over the years and

steganography has been used since ancient times. However,

we did not find much research regarding software

applications mentioned of VSL and StegExpose. Stegexpose

was introduced in [2] and as well as a brief overview of the

capabilities of the software for steganalysis. VSL was only

mentioned in [14] as a tool to use for steganalysis and also

cited in [15] but we were unable to access this paper.

Articles and papers [16]-[18] as well as other research has

discussed how terrorists and cyber criminals have used

steganography in videos, images, etc. to hide messages.

Research in [19] explored the various social media platforms,

analyzed prior research and found that some social media

platforms supported steganographic images while others did

not. According to [19] “At first glance, we see that most of

the tools (except YASS) fail on Facebook and Flickr but

succeed on Google+ and Twitter. Google+ is the most

generous platform and accommodates all the steganography

tools. Twitter is the next best; GhostHost fails on Twitter but

the other tools are able to successfully exchange hidden

content. Facebook and Flickr show the least compatibility

with steganography in that all the tools except YASS (with

high redundancy) fail in successfully exchanging secret

content.”

In this paper, we investigate open source

steganography/steganalysis software and seek the possible

application in the steganalysis of open source social media

and online data. Our image library is described in section II

experiments are presented in section III, followed by

discussion in section IV and conclusions in section V.

II. STEGANOGRAPHY IMAGE LIBRARY

A library of 5150 raw color images in bmp format that have

never been compressed [20]-[22] were used in our study.

These images were converted to jpg and png files using

XNview/Convert [23]. We created a small txt file of

approximately 30 bytes named hidden_test.txt and inside this

file stated “This is a hidden message......”. We also used an

approximately 14kb jpg screen capture (Capture.jpg) to use as

another message file after using the txt file first. We than

began the creation of our steganography image library by

using Openstego on the original bmp images and batch

processed the images. We chose OpenStego to use for the

encoding process due to its ability to do batch processing. We

encoded all of the raw images with the text file included with

the image library download using the least significant bit

technique (LSB) which is used by OpenStego. We also used

VSL to create another image library of various formats to test

additional detection capabilities. This library will then be

used to test the steganalysis abilities of our chosen

applications.

The original files were batch processed in OpenStego as

described below:

 Original BMP files were processed as cover file and the

small txt file was input as the message file with no

password

 Original BMP files were processed as cover file and the

small txt file was input as the message file with the

password “test”

 Original BMP files were processed as cover file and the

small jpg screen capture file was input as the message

file with no password

 Original BMP files were processed as cover file and the

small jpg screen capture file was input as the message

file with password “test”

We chose random files within each folder and extracted the

hidden information to verify that each file had embedded

separately with the hidden message. OpenStego turns any files

input into the cover and message files into .png formatted

steganography output files.

We then used VSL to create another library of

steganography images based on the encoding process used

within VSL. VSL contains LSB, KLT and F5 algorithms for

encoding files but the LSB option does not allow for a

password to be input. After several attempts we were only

able to make use of the LSB and F5 options within VSL as the

KLT option continuously failed. We will only use the LSB

option as the F5 option is not available in OpenStego.

VSL has the capability to input and output various file

formats which makes it an excellent steganography image

library builder. The original files were batch processed in

VSL as described below:

 Original BMP files were processed as cover file and the

small txt file was input as the message file with no

password as no password is allowed. Steganography

files were stored in jpg, bmp and png formats.

 Original BMP files were processed as cover file and the

small jpg screen capture file was input as the message

file with no password. Steganography files were stored

in jpg, bmp and png formats.

III. EXPERIMENTS ON STEGANOGRAPHY IMAGE LIBRARY

A. Experiments with VSL

After several attempts to analyze files using VSL we

quickly learned that it was unable to conduct steganalysis on

files not created within VSL. The original files were all

shown to have the following type of output from VSL

"Estimated message size [B]:2338.3630853430477","no

message". The OpenStego files were shown to have the

following type of output from VSL "Estimated message size

[B]:2374.347070592665","no message". This quickly

became a problem when attempting to analyze any files that
were not created within VSL. However, VSL was efficient at
analyzing files created by it as shown by the following output
"Estimated message size [B]:2320.691095311599","30". As
seen in the last output from VSL it recognized the byte size of
the small txt file (30 bytes) that was input as the hidden
message. VSL also recognized the byte size of the
Capture.jpg file (14kb) that was input as the hidden message,
"Estimated message size [B]:5473.31172102455","14101".
VSL was found to have a 100% detection rate of
steganography files created in VSL but had 0% detection of
steganography files created within OpenStego. We were also
unable to use the BSM-SVM option within VSL as it
continuously failed when attempting to analyze files and only
the LSB-RS analysis option could be used.

B. StegExpose Analysis of Untouched Files
We used StegExpose for the final steganalysis test results

due to the earlier limitations described when using VSL.
StegExpose uses the command line and is run using the
following format “java -jar StegExpose.jar testFolder default
default steganalysisOfTestFolder” [2]. The default settings
included are “speed” which is either at default or fast as and
the other default option includes “threshold” which can be a
floating point number between 0 and 1 analyzed the original
raw images within StegExpose at default (0.2), .15, .25
and .50 threshold both in the .bmp format as well as in the
converted .jpg and .png formats. According to [2], “The
default value here is 0.2 (for both speed modes) and
determines the level at which files are considered to be hiding
data or not. A floating point value between 0 and 1 can be
used here to update the threshold. If keeping false positives at
bay is of priority, set the threshold slightly higher ~0.25. If
reducing false negatives is more important, set the threshold
slightly lower ~0.15.” Although this library of 5150 images
have no any hidden data, a number of them were shown as
suspicious and we see these as false positives. The results of
the initial analysis on the original files without steganography
are shown below in Fig. 1.

Fig. 1. Detection results by applying StegExpose to untouched files.

Each process above was run on the different sets of files

including .jpg, .png and .bmp files without steganography
under different thresholds. The lower the threshold in
StegExpose the more files will be detected as suspicious. As
we can see from the results the original .bmp files and
converted .png files obtained the same results when analyzed
in StegExpose while the converted .jpg files were detected at
a higher rate. False positive percentages are shown in Fig. 2.

Fig. 2. False positive by applying StegExpose to untouched files.

We used StegExpose to analyze the library of

steganography files created with OpenStego and the results
for the embedded text file are shown below in Fig. 3.

Fig. 3. Detection by applying StegExpose to stego-files (text hiding).

We can see in the chart above (Fig. 3) that there was little

difference of detection by StegExpose when analyzing the
OpenStego created files with a password or without. We also
used the default threshold and ran one series of tests with the
“fast” option in StegExpose and saw a reduction in detection
from the default settings. Comparing the results of the text
embedded files with the original files and we can see that
there really isn’t much of a change in the detection rate.

Further analysis of the files created using OpenStego and
embedding the .jpg image file into the files shows a much
different result of detection than the embedded text file as
shown in Fig. 4.

Fig. 4. Detection by applying StegExpose to stego-files (image hiding).

As we can see above in Fig. 5 there is a drastic increase in

detection by StegExpose of the files created by OpenStego
embedded with the approximately 14kb .jpg format image file.
However, again the detection rate was relatively unchanged

International Journal of Knowledge Engineering, Vol. 3, No. 1, June 2017

10

C. StegExpose Analysis of OpenStego Stego-Files

when including or not including a password with the
embedded image. As shown in the above charts the Fast mode
in StegExpose had a slightly lower detection rate than the
slower default mode. However, according to [2] “A 460x460
pixel image will take 1.20 seconds to process in the default
mode and 0.34 seconds in fast mode. However, the fast mode
should be even faster in a real world environment, where there
are a lot less stego files, allowing StegExpose to skip
expensive detectors more frequently”

VSL was able to output to a variety of formats using the

LSB technique. We output the steganography files
to .jpg, .png and .bmp files after embedding the .txt or .jpg
message files. The results for the .bmp and .png files
appeared to match the StegExpose results for the OpenStego
files but the .jpg output files were much different as seen
below in Fig. 5.

Fig. 5. StegExpose analysis of VSL stego-files.

The detection rates of StegExpose for the .png and .bmp

files created in VSL have values close to the range detected by
StegExpose on OpenStego created files. However, when
embedding the .jpg file and outputting a .jpg file VSL appears
to have an issue with the output. We ran this scenario a few
different times to confirm the results and obtained the same
results each time. We attempted to decode and analyze the
files using VSL but it was unable to decode or analyze the .jpg
files created by it after embedding the .jpg message file. VSL
would output an error message when attempting to decode
the .jpg files. This appears to be an issue with the VSL
program again and not an issue with StegExpose. However,
as stated before the .png files output by VSL appear to have
similar detection rates as the OpenStego files output as .png
files as shown below in Fig. 6.

Fig. 6. Comparison of the detection on OpenStego and VSL.

IV. DISCUSSIONS AND CONCLUSIONS
StegExpose was used for steganalysis of the images using

steganography we created as well as images downloaded from

social media websites. We noticed, however that it produced
a high percentage of false positives in its analysis of images
that have not had steganography applied. The false positive
rate ranged from 10-32% while the default settings were
found to be 22-26%. The detection rates of StegExpose in
regards to small embedded text files was minimal and not a
significant change beyond the false positive percentages.
However, the detection rates significantly increased when
image files were embedded as the message file.

If we exclude the StegExpose threshold of .50 that we used
for analysis we get a clearer picture of detection percentages
for the threshold settings of .15, default and .25. StegExpose
clearly excels at detecting LSB files embedded with images
and the detection rate of images embedded with small text
messages does not show any higher detection than a false
positive as shown below in Table I (B).

(A) Thresholds. 15 - 50
Process (TH of .15 - .50) StegExpose Detection %
Baseline – No Stego 10% – 32%
OpenStego – Embed txt file 10% - 28%
OpenStego – Embed jpg file 14% - 99%

(B) Thresholds. 15 - 25

Process (TH of .15 - .25) StegExpose Detect %
Baseline – No Stego 18% – 32%
OpenStego – Embed txt file 18% - 28%
OpenStego – Embed jpg file 78% - 99%

We were disappointed with the results VSL: virtual

steganography library. It has an easy to use GUI and we really
liked the modular programming that offered ease of use and
many options. However, its ability to analyze images we
found to be poor at best. It was able to process large inputs
and encode images in LSB or F5 with ease. We chose not to
use the F5 outputs and analyze due to the results we were
obtaining in the LSB outputs. OpenStego was also only able
to output using LSB. StegExpose showed promising
detection percentages when embedding images as the
message file. However, it seemed to fail in detecting images
embedded with small text files. The batch processing
capabilities of all three pieces of software used shows that
these tools can easily create large steganographic libraries.
We used the clean image library from [22] as it was easy to
obtain and download the images.

This leads to another issue we noticed when attempting to
locate clean and steganography images is that there were
various databases used by researchers. Many of these
databases of images were unavailable or went to online links
that were no longer working. A larger database of images
could be used that have been processed with various
steganography software to compare steganalysis results.

Much of the free or open source software available online
tends to be outdated and several years old with little
maintenance. However, StegExpose, OpenStego, and VSL
have all been updated within the past five years. We believe
further research is needed to evaluate the various open source
and freely available steganalysis software available. These
results could also be compared to steganalysis results from
pay for software such as StegAlyzer [24] or StegoHunt [25].
We attempted to obtain a trial use of StegAlyzer as other

International Journal of Knowledge Engineering, Vol. 3, No. 1, June 2017

11

D. StegExpose Analysis of VSL Stego-Files

TABLE I: STEGEXPOSE DETECTION RATE

researchers have used this in their paper. However, we were
advised that the product is no longer supported or sold at this
time. After our results were obtained we also attempted to
analyze the images with a freely available program called
StegSecret [5], but StegSecret had a zero percent detection
rate with our library of steganography images. In other words,
the capability of stegExpose is very limited in practical
steganography detection.

REFERENCES
[1] M. Węgrzyn. (2015). VSL: Free steganography and steganalysis tool,

Vsl.sourceforge.net. [Online]. Available: http://vsl.sourceforge.net/
[2] B. Boehm. (2015). StegExpose. GitHub. [Online]. Available:

https://github.com/b3dk7/StegExpose
[3] S. Vaidya. (2015). OpenStego–Home. Openstego.com. [Online].

Available: http://www.openstego.com/
[4] N. Cottin. (2015). Hide & Reveal. Hidereveal.ncottin.net. [Online].

Available: http://hidereveal.ncottin.net/
[5] A. Munoz. (2015). StegSecret. A simple steganalysis tool.

Stegsecret.sourceforge.net. [Online]. Available:
http://stegsecret.sourceforge.net/

[6] (2013). Ben-4D Steganalysis Software. SourceForge. [Online].
Available: http://sourceforge.net/projects/ben4dstegdetect/

[7] S. Hetzl. (2015). Steghide.sourceforge.net. [Online]. Available:
http://steghide.sourceforge.net/

[8] (2015). Datahide.org. Qtech Hide & View. [Online]. Available:
http://datahide.org/BPCSe/QtechHV-program-e.html

[9] (2015). Embeddedsw.net. OpenPuff - Steganography & Watermarking.
[Online]. Available:
http://embeddedsw.net/OpenPuff_Steganography_Home.html

[10] S. Suri, H. Joshi, V. Mincoha, and A. Tyagi, “Comparative analysis of
steganography for coloured images,” JCSE International Journal of
Computer Sciences and Engineering, vol. 2, no. 4, pp. 180-184, 2014.

[11] The JPEG committee home page. [Online]. Available:
http://www.jpeg.org/.

[12] A. Cheddad, J. Condell, K. Curran, and P. M. Kevitt, “Digital image
steganography: Survey and analysis of current methods,” Signal
Processing, vol. 90, no. 3, pp. 727-752, 2010.

[17] (2015). United nations publication describes terrorist use of
steganography-backbone security. [Online]. Available:
https://www.backbonesecurity.com/TerroristUseofSteganography.asp
x. [Accessed: 01- Dec- 2015]

[18] A. Bakier. (2015). The new issue of technical mujahid, a training
manual for jihadis. The Jamestown Foundation. [Online]. Available:
http://www.jamestown.org/programs/tm/single/?tx_ttnews[tt_news]=
1057&tx_ttnews[backPid]=182&no_cache=1#.Vl0R_OLw--Y

[19] J. Ning et al. Secret message sharing using online social media.
[Online]. Available:
http://spirit.cs.ucdavis.edu/pubs/conf/ning-cns14.pdf

[20] Q. Liu and Z. Chen, “Improved approaches with calibrated
neighboring joint density to steganalysis and seam-carved forgery
detection in JPEG images,” ACM Transactions on Intelligent Systems
and Technology, vol. 5, no. 4, 2014.

Larry E. Carter served in the United States Navy (1969-1973) as an
aviation electrician’s mate. Assigned to the squadron VF-121 at NAS
Miramar, San Diego, California USA. He worked on the
McDonnell-Douglas Phantom II aircraft. He was honored in serving in this
squadron that was the host of the navy’s first fighter weapons school later
becoming known as top gun. He has worked in many areas in the field of
electricity from construction to the maintenance and support of highly
automated processes in manufacturing and industry. He is currently
employed as an instructor of electrical technology for Trinity Valley
Community College, Athens, Texas USA. His current research interest is in
steganography/steganalysis.

Eric Olson graduated from the Department of Computer Science of Sam
Houston State University with a master's degree in digital forensics. His
research interests include digital forensics, cyber security and single board
computers such as the raspberry pi.

Qingzhong Liu is currently an associate professor at the Department of
Computer Science of the Sam Houston State University. His research
interests include multimedia forensics, information assurance, data mining,
bioinformatics, and intelligent computing applications.

International Journal of Knowledge Engineering, Vol. 3, No. 1, June 2017

12

[13] C. Chang, S. Chen, and Z. Chung, “A steganographic method based
upon JPEG and quantization table modification,” Information
Sciences, vol. 141, no. 1-2, pp. 123-138, 2002.

[14] R. Das, “An investigation on information hiding tools for
steganography,” International Journal of Information Security
Science, vol. 3, no. 3, pp. 200-208, 2014.

[15] H. Karaman and S. Sagiroglu, “An application based on
steganography,” presented at IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining, 2012.

[16] S. Gallagher. (2012). Steganography: How al-Qaeda hid secret
documents in a porn video. Ars Technica. [Online]. Available:
http://arstechnica.com/business/2012/05/steganography-how-al-qaeda
-hid-secret-documents-in-a-porn-video/

[21] Q. Liu, A. Sung, and M. Qiao, “Neighboring joint density-based JPEG
steganalysis,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 2, 2011.

[22] Q. Liu, A. Sung, Z. Chen, and J. Xu, “Feature mining and pattern
classification for steganalysis of LSB matching steganography in
grayscale images,” Pattern Recognition, vol. 41, no.1, pp. 56-66,
2007.

[23] (2015). Xnview software for reading, organizing and processing
images. [Online]. Available: http://www.xnview.com/en/

[24] (2015). SARC-Steganography Analysis and Research Center: Home.
[Online]. Available: https://www.sarc-wv.com/

[25] (2015). Wetstonetech.com, WetStone Technologies, Inc–Shopping.
Cart. [Online]. Available:
https://www.wetstonetech.com/product/stegohunt/

