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AbStrAct

Granular computing is an emerging field of study that attempts to formalize and explore methods and 
heuristics of human problem solving with multiple levels of granularity and abstraction. A fundamental 
issue of granular computing is the representation and utilization of granular structures. The main objective 
of this article is to examine a logic approach to address this issue. Following the classical interpretation 
of a concept as a pair of intension and extension, we interpret a granule as a pair of a set of objects and a 
logic formula describing the granule. The building blocks of granular structures are basic granules rep-
resenting an elementary concept or a piece of knowledge. They are treated as atomic formulas of a logic 
language. Different types of granular structures can be constructed by using logic connectives. Within 
this logic framework, we show that rough set analysis (RSA) and formal concept analysis (FCA) can be 
interpreted uniformly. The two theories use multilevel granular structures but differ in their choices of 
definable granules and granular structures.

Keywords: formal concept analysis; knowledge structure; granular computing; rough set analysis

INtrODUctION
Cognitive science (Simon & Kaplan, 1989) and 
cognitive informatics (Wang, 2003a, 2003b) 
study information and knowledge processing in 
the abstract, in the brain, and in machines. Some 
of the salient features of human intelligence and 
problem solving are the conceptualization of a 
problem at multiple levels of abstraction, the 
representation of information and knowledge 
with different-sized granules, the choice of a 
suitable level of granularity, and the switch-
ing of views and granularity in response to 
changes in environments. An emerging field 

of study known as granular computing aims 
at formalizing and exploring these features 
(Bargiela & Pedrycz, 2002; Yao, 2004c, 2006b, 
2007a; Zadeh, 1997). The results from granular 
computing may shed new light on the study of 
cognitive informatics (Wang, 2003a, 2003b, 
2007a, 2007b; Yao, 2006a). 

A central notion of granular computing 
is multilevel granular structures consisting of 
a family of interrelated and interacting gran-
ules. Granular computing can be considered 
an umbrella term covering topics that concern 
granularity and has been studied either implic-
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itly or explicitly in many fields. It focuses on 
problem solving by describing and representing 
a problem and its solution in various levels of 
granularity so that one can focus on things that 
serve a specific interest and ignore unimport-
ant and irrelevant details. Granular computing 
makes use of knowledge structures and hence 
has a significant impact on the study of hu-
man intelligence and the design of intelligent 
systems.

Granular computing can be studied based 
on a conceptual triarchic model consisting 
of the philosophy of structured thinking, the 
methodology of structured problem solving, 
and the computation of structured information 
processing (Yao, 2001b, 2004d, 2006b, 2007a). 
Many concrete models of granular computing 
have been proposed and studied. The main 
objective of the article is to make further con-
tribution along this line by investigating a logic 
approach to granular computing.

We introduce a logic language L to study 
granular computing in a logic setting. The 
language is an extension of the decision logic 
language used in rough set theory (Pawlak, 
1991). Instead of expressing atomic formulas 
by a particular concrete type of conditions, we 
treat them as abstract notions to be interpreted 
in different applications. This flexibility enables 
us to describe granules in different applications. 
The language is interpreted in the Tarski’s style 
through the notion of a model and satisfiabil-
ity (Demri & Orlowska, 1997; Pawlak, 1991; 
Pawlak & Skowron, 2007; Yao, 2001b; Yao 
& Liau, 2002). The model is defined as a pair 
consisting of a domain and knowledge about the 
domain. The meaning of a formula is given by 
a set of objects satisfying the formula. Like the 
representation of a concept by a pair of intension 
and extension, a granule is interpreted as a pair 
of a set of objects of the domain and a formula 
of the language L. Thus, we can study granular 
structures in both a set-theoretic setting and a 
logic setting. The basic granules are represented 
by atomic formulas. An individual satisfies a 
formula if the individual has the properties as 
specified by the formula. 

Rough set analysis and formal concept 
analysis are two concrete models of granular 
computing for knowledge representation and 
data analysis (Nguyen, Skowron & Stepaniuk, 
2001; Pawlak, 1991; Pawlak & Skowron, 2007; 
Wille, 1982, 1992; Yao, 2004a). Rough set 
analysis studies the object-attribute relation-
ships in an information table and formal concept 
analysis studies these relationships in single-
valued and many-valued formal contexts. With 
the introduced language, the two theories can 
be interpreted in a unified way. On one hand, 
the two theories share high-level similarities in 
their treatments of granular structures. On the 
other hand, they use different atomic formulas, 
definable granules, and granular structures 
formed by definable granules.

The rest of the article is organized as fol-
lows. The Logic Language section introduces 
the formulation of the language L. The Over-
view of Granular Computing section introduces 
two examples of granular structures and their 
properties. In the Rough Set Analysis and For-
mal Concept Analysis sections, we consider the 
interpretations of the language L in both rough 
set analysis and formal concept analysis. The 
last section gives concluding remarks.

tHE LOGIc LANGUAGE L
In this section, we introduce a logic language L 
of granular computing by adopting and modify-
ing the decision logic language used in rough set 
theory (Pawlak, 1991; Yao & Liau, 2002).

Instead of defining an atomic formula 
specifically as a (attribute, value) pair (Pawlak, 
1991) or an (attribute, relation, value) triplet 
(Yao & Liau, 2002), we postpone the definition 
of atomic formulas to particular applications. 
That is, we build the language based on a set 
of atomic formulas without giving a concrete 
physical meaning of them. This allows us to 
apply the language to study a much wider class 
of granular computing models.

The language L is in fact a 0-order, propo-
sitional language. Its syntax can be formally 
defined based on the standard propositional 
language. In general, one may consider first-
order language. For the discussion of this article, 



Int’l Journal of Cognitive Informatics and Natural Intelligence, 2(2), ��-�9, April-June 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

a propositional language is sufficient. Atomic 
formulas are the building blocks of the language 
L, denoted by A= {p, q...}. Each atomic formula 
may be interpreted as representing one piece of 
basic knowledge. We assume that they are the 
elementary units that one uses to represent and 
understand a real-world problem. The physical 
meaning of atomic formulas becomes clearer in 
a particular application. In general, an atomic 
formula corresponds to one particular property 
of an individual under discussion. The construc-
tion of atomic formulas is an essential step of 
knowledge representation. The set of atomic 
formulas provides a basis on which more com-
plex knowledge can be represented. Compound 
formulas can be built recursively from atomic 
formulas by using logic connectives. If φ and 
ψ are formulas, then so are (¬φ), (φ ∧ ψ), (φ ∨ 
ψ), (φ → ψ), and (φ ↔ ψ).

The semantics of the language L is given 
in the Tarski’s style by using the notions of a 
model and satisfiability. The model is defined as 
a pair M= (D, K), where D is a nonempty set of 
individuals called the domain of L, denoted by 
D = {x, y...}, and K is available knowledge about 
individuals of D. For example, in the decision 
logic used in rough set theory, the knowledge K 
is a set of finite attributes used to describe the 
set of individuals of D. The satisfiability of an 
atomic formula by individuals of D is viewed 
as the basic knowledge describable by the 
language . In general, an individual satisfies 
a formula if the individual has the properties as 
specified by the formula. For an atomic formula 
p, we assume that the available knowledge K 
enables us to decide that an individual x ∈ 
D either satisfies p, written as x |= p, or does 
not satisfy p, written as x  p. Let φ and ψ be 
two formulas, the satisfiability of compound 
formulas is defined as follows:

 
1. x |= ¬φ             iff x  φ,
2. x |= φ ∧ ψ       iff x |= φ and x |= ψ,
3. x |= φ ∨ ψ       iff x |= φ or   x |= ψ,
4. x |= φ → ψ       iff x |= ¬φ ∨ ψ,
5. x |= φ ↔ ψ       iff x |= φ → ψ and  x 

|= ψ → φ. 

To emphasize the roles played by the set of 
individuals D and the set of atomic formulas A, 
we also rewrite the language as  L(A, D). 

A fundamental difference between the lan-
guage L and other decision logic languages is 
the treatment of the set of atomic formulas. In 
early works, atomic formulas are defined using 
specific forms. For example, atomic formulas 
can be defined in an information table based 
on the values of attributes (Pawlak, 1991; Yao 
& Liau, 2002). In this study, we treat atomic 
formulas as abstract notions that need to be 
made concrete in different applications. Many 
concrete examples of the language can be ob-
tained by various definitions of atomic formulas. 
The construction of the set of atomic formulas 
and the model M depends on a particular ap-
plication. For modeling different problems, we 
may choose different sets of atomic formulas 
and models. When a model is switched from 
one to another, the structures of language L 
remain the same. The flexibility in semantics 
interpretation enables us to describe a variety 
of problems.

The model M describes the meaning of 
formulas in D. If formulas are interpreted in the 
model, then each formula becomes meaningful 
and describes properties of some individuals 
(Pawlak, 1991). The meaning of the formula is 
the set of all individuals having the properties 
described by the formula. If φ is a formula of 
L, the meaning of φ in the model M is the set 
of individuals defined by:

m(φ) = {x ∈ D | x |= φ}.
     (1)

That is, m(φ) is the set of individuals 
satisfying the formula φ. This establishes a 
correspondence between logic connectives and 
set-theoretic operators. The following properties 
hold (Pawlak, 1991):

C1.  m(¬φ)  = − m(φ),
C2.  m(φ ∧ ψ) = m(φ) ∩ m(ψ),
C3.  m(φ ∨ ψ)  = m(φ) m(ψ),
C4.  m(φ → ψ) = − m(φ)  m(ψ),
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C5.  m(φ ↔ ψ) = (m(φ) ∩ m(ψ))    (−m(φ) 
∩ −m(ψ)),

where − m(φ)= D − m(φ) denotes the set comple-
ment of m(φ).

In the study of concepts (Van et al., 1993; 
Smith, 1989; Sowa, 1984), many interpreta-
tions have been proposed and examined. The 
classical view regards a concept as a unit of 
thoughts consisting of two parts, namely, the 
intension and extension of the concept (Demri 
& Orlowska, 1997; Van et al., 1993; Wille, 
1992; Yao, 2004a). By using the language L, we 
obtain a simple and precise representation of a 
concept in terms of its intension and extension. 
That is, a concept is defined by a pair (m(φ), φ). 
The formula φ is the description of properties 
shared by individuals in m(φ), and m(φ) is the 
set of individuals satisfying φ. A concept is thus 
described jointly by its intension and extension. 
This formulation enables us to study concepts 
in a logic setting in terms of intensions and in 
a set-theoretic setting in terms of extensions. 
Following the classical view of concept, we 
also treat a granule as a pair (m(φ), φ) of a set 
of individuals m(φ) ⊆ D and a logic formula φ. 
Thus, we obtain both a set-theoretic description 
and a logic description of granules. In subse-
quent discussion, we use the two descriptions 
interchangeably. However, it should be noted 
that for the same set of individuals X ⊆ D, one 
may find more than one formula in the language 
such that m(φ)= X.

The language L provides a formal method 
for describing and interpreting rules in data min-
ing and machine learning (Yao & Zhou, 2007; 
Yao, Zhou & Chen, 2007). In many situations, 
one is only interested in certain types of rules. 
For example, rules contain only the logical 
connective ∧. This requires us to consider a 
restriction of the language L to certain logical 
connectives. In this study, we consider two sub-
languages of L. One uses only the conjunctive 
connective ∧, written as L∧(A, D, ∧), and the 
other uses only the disjunctive connective ∨, 
written as L∨(A, D, ∨). 

OVErVIEW OF GrANULAr 
cOMPUtING
Granular computing is a new area of research. 
Its main purpose is to model, state, and solve 
real world problems at multiple levels of granu-
larity (Bargiela & Pedrycz, 2002; Lin, Yao, & 
Zadeh, 2002; Yao, 2007a). The fundamental 
issues, principles and methodologies of granular 
computing can be studied based on granular 
structures from different perspectives (Yao, 
2001a, 2004a, 2004d, 2006b, 2007a).

Granular Structures
A granular structure provides structured de-
scription of a system or an application under 
consideration.

Basic granules are the building blocks to 
form a granular to form a granular structure. 
They represent the basic human observations 
of a problem in the real world. The connec-
tions of different granules form different levels 
of a granular structure that reflect structured 
knowledge. A granular structure at least con-
tains three basic components (Yao, 2004c, 
2006b, 2007a):

• internal structure of a granule;
• collective structure of a family of gran-

ules;
• hierarchical structure of a web of gran-

ules.

The introduction of the language L enables 
us to study such structures in logic terms.

In the set-theoretic settings, all possible 
granules form a structure known as the power 
set of the domain D, written as 2D. For a con-
crete granular computing model, one is only 
interested in a subset of 2D which is considered 
“meaningful” in that model, called a subsystem 
G ⊆ 2D. The choice of G relies on the domain 
knowledge. For example, in rough set analysis 
(Pawlak, 1991; Pawlak & Skowron, 2007), the 
granules of G are granules that are definable 
by a set of attributes, and they are the unions 
of some equivalence classes. In formal con-
cept analysis (Ganter & Wille, 1999; Wille, 
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1982), granules of G are the extensions of 
formal concepts. In knowledge spaces theory 
(Falmagne et al., 1990), granules of G are the 
feasible knowledge statements. With respect 
to the language L, a granule is definable if we 
can find a formula whose meaning set is that 
granule (Yao, 2007b).

 The internal structure of a granule rep-
resents the characterization of the granule. 
Analyzing the internal structure of a granule 
helps us to understand why individuals are 
draw together. In terms of the language L, basic 
granules correspond to atomic formulas, and 
composite granules correspond to compound 
formulas. Granules in the same level are formed 
with respect to a certain level of abstraction and 
collectively show a certain structure. The col-
lective structures are related to granules in other 
levels. We can classify granules by the number 
of atomic formulas in their intensions. In the 
sublanguage L∧(A, D, ∧), a granule involving 
k atomic formulas is called a k-conjunction. A 
k-conjunction granule is more general than its 
(k + 1)-conjunctions, and more specific than 
its (k − 1)-conjunctions. In the sublanguage 
L∨(A, D, ∨), a granule involving k atomic 
formulas is called a k-disjunction. In this case, 
a k-disjunction granule is more general than its 
(k − 1)-disjunctions, and more specific than its 
(k + 1)-disjunctions. 

      Granules in different levels are linked by 
the order relations, interpreted as “more general 
than” or “more specific than.” Granules can be 
ordered based on their generalities or sizes. For 
example, in the set-theoretic setting, the size 
of a granule can be defined by its cardinality. 
One can define operations on granules so that 
smaller granules can form larger granules, and 
larger granules can be decomposed into smaller 
granules. Recall that basic granules are defined 
by atomic formulas of the language L. Smaller 
granules may be defined by formulas where 
atomic formulas are connected by the conjunc-
tive connective ∧, and larger granules may be 
defined by formulas where atomic formulas 
are connected by the disjunctive connective ∨. 
Granules in a higher level can be decomposed 
into many smaller granules with more details 

in a lower level, and conversely granules in 
a lower level can form more abstract larger 
granules in a higher level. The connections of 
different levels form a multilevel hierarchical 
structure. The graph representation of a granular 
structure is a lattice-like line diagram.

To sum up, granular structures are the 
results of a structured understanding, interpreta-
tion, and representation of a real-world problem. 
Each granular structure represents a particular 
point of view of the problem with multiple levels 
of granularity. A complete understanding of the 
problem requires a series of granular structures 
that should reflect multiple views with multiple 
levels (Chen & Yao, 2007; Yao, 2007a).

the triarchic Model of Granular 
computing
There are three different perspectives of granular 
computing, namely, the philosophy, the method-
ology and the computation perspective. These 
three perspectives together form a triarchic 
model (Yao, 2001b, 2004d, 2006b, 2007a).

From the philosophy perspective, granular 
computing is a way of structured thinking that 
focuses on modeling human perception of the 
reality and cognitive process. It unifies two 
complementary philosophical views about the 
complexity of real-world problems, namely, the 
reductionist thinking and the systems thinking. 
Granular computing stresses the importance 
of conscious effects in thinking in terms of 
hierarchical structures.

The methodology perspective focuses on 
methods and strategies for finding structured 
solutions. As an effective method of structured 
problem solving, granular computing promotes 
systematic approaches and practical strategies 
that have been used effectively by humans for 
solving real-world problems. An important issue 
is the exploration of granular structures. This 
involves three basic tasks: constructing granular 
structures, working within a particular level of 
the structure, and switching between levels. The 
methodology of granular computing is inspired 
by human problem solving.

The computation perspective focuses on the 
implementation of computer based systems. As 



�8    Int’l Journal of Cognitive Informatics and Natural Intelligence, 2(2), ��-�9, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

a paradigm of structured information processing 
(Bargiela & Pedrycz, 2002), two related notions, 
namely, representations and processes (Marr, 
1982), need to be discussed. A representation 
is a formal description and specification of 
entities in information systems. A process can 
be interpreted as the computational actions oc-
curred in information processing. For example, 
information granulation and computation with 
granules are two basic processes of granular 
computing.

two Examples of Granular 
Structures
Based on the order relations between granules, 
there are at least two ways to construct a granu-
lar structure. As examples, we briefly discuss 
two granular structures called ∩-closure and 
-closure (Yao & Zhou, 2007).

Let GS∩(L∧) denote the ∩-closure granular 
structure. We can formally defined it by the 
sublanguage  L∧(A, D, ∧), written as:

GS∩( L∧) = (Def(L∧(A, D, ∧)), ∩),

where Def(L∧(A, D, ∧)) is the family of 
granules defined by the sublanguage L∧(A, 
D, ∧).      

The process of constructing an ∩-closure 
granular structure is a top-down process, which 
involves dividing a larger granule into smaller 
and lower level granules. Each granule is labeled 
by the formulas of the language L∧(A, D, ∧). 
At the top level, the most general granule is 
labeled by the formula T, which is satisfied 
by every individual; that is, m(T) = D. The 
next level is the elementary granules labeled 
by atomic formulas. The intersections of two 
elementary granules produce the next level 
of granules labeled by the conjunction of the 
two atomic formulas, and so on. Finally, at 
the bottom level, we close the structure by the 
most specific granule labeled by the formula ⊥, 
which is not satisfied by any object of the formal 
context, that is, m(⊥) = ∅. In the set-theoretic 
setting, the ∩-closure granular structure is in 
fact a closure system that contains D and is 
closed under set intersections.

Let GS


(L∨) denote the -closure granu-
lar structure. We can formally define it by the 
sublanguage L∨(A, D, ∨), written as:

GS


(L∨)  = (Def(L∨(A, D, ∨)), ),

where Def(L∨(A, D, ∨)) is the family of 
granules defined by the sublanguage L∨(A, 
D, ∨). 

The process of constructing a -closure 
granular structure is a bottom-up process, which 
involves the process of forming a larger and 
higher level granule with smaller and lower 
level granules. At the bottom level, the most 
specific granule is labeled by the formula ⊥, 
which is not satisfied by any individual. The 
upper level is the elementary granules labeled by 
atomic formulas. The unions of two elementary 
granules produce the upper level of granules 
labeled by the disjunction of the two atomic 
formulas, and so on. Finally, at the top level, we 
close the structure by the most general granule 
labeled by the formula T.

rOUGH SEt ANALYSIS
Rough set analysis (Pawlak, 1991; Pawlak & 
Skowron, 2007) studies relationships between 
objects and their attribute values in an informa-
tion table. We use rough set analysis as a concrete 
granular computing model to show the useful-
ness and the flexibility of the language L. 

Information tables
An information table provides a convenient way 
to describe a finite set of objects by a finite set 
of attributes. Formally, an information table 
can be expressed as:

S = (U, At, {Va | a ∈ At}, {{Ra} | a ∈ At}, {Ia 
| a ∈ At}),

where 

U   is a finite nonempty set of objects,
At  is a finite nonempty set of attributes,
Va  is a nonempty set of values for a ∈ At,
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{Ra} is a family of binary relations on Va,
Ia: U → Va  is an information function.

Each information function Ia maps an object 
in U to a value of Va for an attribute a ∈ At.

The above definition of an information table 
considers more knowledge and information 
about relationships between values of attributes. 
Each relation Ra can represent similarity, dis-
similarity, or ordering of values in Va (Demri 
& Orlowska, 1997). The equality relation = is 
only a special case of Ra. The standard rough 
set theory uses the trivial equality relation on 
attribute values (Pawlak, 1991).

Pawlak and Skowron (2007) consider a 
more generalized notion of an information table. 
For each attribute a ∈ At, a relational structure 
Ra over Va is introduced. A language can be 
defined based on the relational structures. A 
binary relation is a special case of relational 
structures.

Granules in rough Set Analysis
The indiscernibility relation is a fundamental 
notion in rough set theory. It indicates why 
objects are draw together to form granules. By 
using the language L, we can formally define an 
indiscernibility relation in an information table. 
For a subset A0⊆A, two individuals x, y ∈ U 
are indistinguishable if no formula in A0 can 
distinguish them, so they can be put into the 
same granule. Let us define a mapping from U 
to A as follows:

m’(x) = {p ∈A | x |= p}.

That is, m’(x) is the set of atomic formulas 
satisfied by x. For a subset A0⊆A, the indis-
cernibility relation can be defined by:

X ~A0 y   iff   m’(x) ∩ A0  = m’(y) ∩ A0  

The definition of indiscernibility relation is 
slightly different from the conventional defini-
tion (Pawlak, 1991). One can easily show that 
the conventional definition is a special case 
with a properly chosen A0 .

Based on the indiscernibility relation, we 
can construct the language L by using an in-
formation table as the model M. There are at 
least two types of granules that can be formally 
defined. They represent two different types of 
knowledge that one can derive from an informa-
tion table (Yao, Zhou & Chen, 2007).

First, we consider individuals of the domain 
D as objects in the universe U. The set of atomic 
formulas are constructed from attribute-value 
pair. With respect to an attribute a ∈ At and an 
attribute value v ∈ Va, an atomic formula of the 
language L is denoted by (a, Ra, v). An object 
x ∈ U satisfies an atomic formula by (a, Ra, v) 
if the value of x on attribute a is Ra -related to 
the value v, that is Ia(x) Ra v, we write:

x |= (a, Ra, v)  iff   Ia(x) Ra v.

We rewrite the language as L ({(a, Ra, v)}, 
U). The granule corresponding to the atomic 
formula (a, Ra, v), namely, its meaning set, is 
defined as: 

m(a, Ra, v) = {x ∈U | Ia(x) Ra v }.

Granules corresponding to the atomic for-
mulas are elementary granules in an information 
table. Granules corresponding to the compound 
formulas can be formally defined according to 
Equation 1.

A subset or a granule X ⊆ U is definable in 
an information table if and only if there exits a 
formula φ in the language L({(a, Ra, v)}, U ), 
such that X = m(φ).

Otherwise, it is undefinable. Accordingly, 
the family of granules is defined as:

Def(L({(a, Ra, v)}, U )) = { m(φ) | φ ∈ L({(a, 
Ra, v)}, U )}.

     (2)

In this way, the language L only enables us 
to define certain subsets of U. For an arbitrary 
subset of U, we may not be able to construct a 
formula for it. In other words, depending on the 
set of atomic formulas, the language L can only 
describe a restricted family of subsets of U.
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Second, we consider individuals of the 
domain D as object pairs in U×U. With respect 
to an attribute a ∈ At, an atomic formula of 
the language L is denoted by (a, Ra). A pair 
of objects (x, y) ∈ U × U satisfies an atomic 
formula (a, Ra) if the value of x is Ra-related 
to the value of y on the attribute a, that is, Ia(x) 
Ra Ia(y). We write:

(x,y) |= (a, Ra) iff   Ia(x) Ra Ia(y).

We rewrite the language as L ({(a, Ra)}, 
U×U). The granule corresponding to the 
atomic formula (a, Ra); i.e., the meaning set, 
is defined as:

m(a, Ra) = {(x,y)∈U | Ia(x) Ra Ia(y)}.

Accordingly, the granules corresponding to 
the compound formulas of the language L ({(a, 
Ra)}, U×U) can be defined by Equation (1), and 
the family of all definable sets or granules is 
defined by Equation 2.

For granules that are undefinable, it is 
impossible to construct a formula with the set 
as its meaning set. In order to characterize an 
undefinable set, one may approximate it from 
below and above by two definable sets, called 
lower and upper approximations in rough set 
theory.

Granular Structures in rough Set 
Analysis
The indiscernibility relation used in the standard 
rough set analysis is an equivalence relation on 
the set of objects (Nguyen, Skowron & Stepa-
niuk, 2001; Pawlak, 1991; Pawlak & Skowron, 
2007). Let E denote an equivalence relation 
that partitions the universe into disjoint subsets 
known as equivalence classes and is denoted 
by U/E. Equivalence classes are basic granules 
of the universe which can be interpreted using 
atomic formulas of the language L with the 
equality relation =. That is, we consider a lan-
guage L ({(a, =, v)}, U) with atomic formulas 
of the form of (a, =, v). 

An object x∈U satisfies an atomic formula 
(a, =, v) if the value of x on attribute a is v, that 
is, Ia(x)= v. We write:

x |= (a, =, v)  iff   Ia(x) =  v.

The granule corresponding to the atomic 
formula (a, =, v) is:

m(a, =, v) = {x ∈U | Ia(x) =  v }.

The granule m(a, =, v) is also referred to as 
the block defined by the attribute-value pair (a, 
v) (Grzymala-Busse, 2005). The granules cor-
responding to the compound formulas of the L 
({(a, =, v)}, U) can be defined by Equation (1). 
Equivalence classes construct a subsystem of 2U 
by taking set intersections, unions and comple-
ments of equivalence classes. This subsystem is 
in fact an σ-algebra of subsets of the universe, 
written as σ(U/E). That is, it contains the empty 
set ∅, the entire set U, equivalence classes 
and is closed under set intersection, union and 
complement. The partition U/E is a base of 
σ(U/E). The family of granules is exactly the 
σ-algebra σ(U/E) (Yao, 2007b). That is:

Def(L({(a, =, v)}, U )) = σ(U/E).

For a set that is undefinable in the universe 
U, one can approximate it by the lower and 
upper approximations. For a subset of objects 
X ⊆ U, we define a pair of lower and upper 
approximation as (Yao, 2007b):

apr(X) ={Y | Y∈ Def(L({(a, =, v)}, U )), 
Y∈X},

apr(X) =∩{Y | Y∈Def(L({(a, =, v)}, U )), 
X∈Y}.

This is, apr(X) is the largest definable 
set contained in X, and apr(X) is the smallest 
definable set containing X. 

We can construct the ∩-closure and -clo-
sure granular structures in an information table 
by using granules in σ(U/E). Formally, we can 
rewrite the ∩-closure granular structure as:
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GS∩( L∧) = (Def(L∧((a, =, v), U, ∧)), ∩),

Similarly, we can rewrite the -closure 
granular structure as:

GS


( L∨) = (Def(L∨ ((a, =, v), U, ∨)), ).

Example 1. Table 1 is an information table 
taken from Quinlan (1983). Each object is de-
scribed by four attributes. The column labeled 
by “Class” denotes an expert’s classification 
of the objects. The possible values for three 
attributes {Height, Hair, Eyes} are:

VHeight    =    {short, tall},
VHair         =    {blond, dark, red},
VEyes        =    {blue, brown}.

If the attribute “Height” is chosen, we can 
partition the universe into the following equiva-
lence classes or elementary granules:

{O1, O2, O8}, {O3, O4, O5, O6, O7},

corresponding to atomic formulas (Height, =, 
short) and (Height, =, tall), respectively. Simi-
larly, the use of attribute “Hair” produces the 
following equivalence classes or elementary 
granules:

{O1, O2, O6, O8}, { O3}, { O4, O5, O7},

corresponding to atomic formulas (Hair, =, 
blond), (Hair, =, red), and (Hair, =, dark), re-
spectively. For the attribute “Eyes”, we have:

 
{O1, O3, O4, O5, O6}, {O2, O7, O8},

corresponding to atomic formulas (Eyes, =, 
blue) and (Eyes, =, brown), respectively.

Smaller granules are set intersections of 
elementary granules. For example, sets:

{O1, O2, O8} ∩ {O1, O2, O6, O8} = {O1, O2, 
O8}

{O3, O4, O5, O6, O7} ∩ {O4, O5, O7} ∩ {O2, 
O7, O8} = {O7},

are smaller granules with the corresponding 
compound formulas (Height, =, short)∧ (Hair, 
=, blond) and (Height, =, tall) ∧ (Hair, =, dark) 
∧ (Eyes, =, brown), respectively.

Figure 1 draws part of the ∩-closure 
granular structure for Table 1. In the figure, 
we assume that an attribute appears at most 
once in each formula of. An atomic formula is 
simply represented by the attribute value. For 
example, the atomic formula (Height, =, short) 
is simply written as short.

Larger granules are set unions of elemen-
tary granules. For example, sets:

{O1, O2, O8} {O4, O5, O7} = {O1, O2, O4, 
O5, O7, O8},

Object Height Hair Eyes Class

O1 short blond blue +

O2 short blond brown -

O3 tall red blue +

O4 tall dark blue -

O5 tall dark blue -

O6 tall blond blue +

O7 tall dark brown -

O8 short blond brown -

Table 1. An information table
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{O3, O4, O5, O6, O7}  {O3}  {O2, O7, O8} 
= {O2, O3, O4, O5, O6, O7, O8},

are larger granules for the corresponding com-
pound formulas (Height, =, short) ∨ (Hair, =, 
dark) and (Height, =, tall) ∨ (Hair, =, red) ∨ 
(Eyes, =, brown), respectively.

Figure 2 draws part of the -closure granu-
lar structure for Table 1.

FOrMAL cONcEPt ANALYSIS
Formal concept analysis (Ganter & Wille, 1999) 
studies relationships between objects and their 
attributes in a formal context. In this section, 
we use formal concept analysis as another 
concrete granular computing model to further 
demonstrate the usefulness and flexibility of 
the language L.

Formal contexts
A formal context is a triple (O, A, R) consist-
ing of two sets O and A and a binary relation 
R⊆ O × A between O and A. The elements of 
O are called the objects, and the elements of A 
are called the attributes that the objects might 
have. If (x, a)∈ R, we say that the object x has 
the attribute a; we also write it as xRa. A formal 

context is equivalent to a binary information 
table in rough set analysis. 

In many situations, attributes are not just 
properties which objects may or may not have. 
Attributes such as “Size,” “Prize,” and “Weight” 
have values. A formal context with many-val-
ued attributes can be defined as a many-valued 
context (O, A, V, R) consisting of sets O, A, V 
and a ternary relation R⊆ O × A ×V. The ele-
ments of A are many-valued attributes and the 
elements of V are their possible attribute values. 
A many-valued formal context satisfies the fol-
lowing condition:

(x, a, v1) ∈ R ∧ (x, a, v2) ∈ R ⇒ (v1= v2).

In the language of rough set analysis, one 
can define a partial map from O to V with respect 
to an attribute a of a many-valued context (O, 
A, V, R). If (x, a, v)∈ R, we write Ia(x) = v.

Thus, many-valued context can be repre-
sented by an information table, the rows of the 
table are the objects and columns are attributes. 
The entry in row x and column a represents the 
attribute value Ia(x). If the attribute a does not 
have a value for object x, then there is no entry. 
A many-valued formal context can be translated 
into a single-valued context through a process 

Figure 1. An example of ∩-closure granular structure

short tall blond red dark blue brown

 ...short ∧ brown  ...tall ∧ dark  ...blond ∧ blue  ...dark ∧ blue  ...dark ∧ brown

 ...short ∧ blond  ∧ brownshort ∧ blond  ∧ blue  ...tall ∧ dark  ∧ blue ...tall ∧ dark  ∧ brown
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called conceptual scaling which contains two 
essential steps.

In the first step, each attribute of a many-
valued context is interpreted into a scale. A scale 
for the attribute a of a many-valued context can 
be defined as a single-valued context Sa = (Oa, 
Aa, Ra). The objects of a scale are called scale 
values, and attributes are called scale attributes. 
There are different types of scales (Ganter & 
Wille, 1999). For better understanding, we 
explain three elementary scales in a simple 
example.  

Example 2. Table 2 is an example of a many-
valued context for some televisions. The scale 
contexts of three attributes, “Type,” “Clarity,” 
and “Price” are given in Table 2. 

The first type of scale is called nominal 
scale. It is used to scale attributes with the values 
that mutually exclude each other. The attribute 
“Type” with the values {CRT, LCD, Plasma} 
in Table 3 uses this kind of scale.

The second type of scale is called ordinal 
scale. It is used to scale attributes with the 
values that are ordered and each value implies 
the weak ones. The attribute “Clarity” with the 
values {clear, very clear, extremely clear} in 
Table 2 uses this kind of scale.

The third type of scale is called interordi-
nal scale. It is used to scale attributes with the 
values that have bipolar orderings. The attribute 
“Price” with the values {$0 ≤ Price < $1000, 
$1000 ≤ Price < $3000, $3000 ≤ Price < $4000} 
in Table 3 uses this kind of scale.

The second step of conceptual scaling is 
to join the scales together to make a single-
valued context. In the case of plain scaling, 
the object set O of the many-valued context 
remains unchanged, every many-valued at-
tribute a is replaced by the scale attributes 
of the scale (Oa, Aa, Ra). That is, the attribute 
set of the derived single-valued context is the 
disjoint union of scale attribute sets. We can 
rewrite the scale attribute set Aa to aA

• = {a} × 
Aa to ensure that those scale attribute sets are 
disjoint. Therefore, the derived single-valued 

Figure 2. An example of -closure granular structure

short tall blond red dark blue brown

 ...short ∨ brown  ...tall ∨ dark  ...blond ∨ blue  ...dark ∨ blue  ...dark ∨ brown

 ...short ∨ blond  ∨ brownshort ∨ blond  ∨ blue  ...tall ∨ dark  ∨ blue  ...tall ∨ dark  ∨ brown

short ∨ blond

Object Type Clarity Price

tv1 CRT clear $1000

tv2 LCD very clear $2500

tv3 Plasma extremely clear $3500

tv4 LCD very clear $3900

Table 2. An example of a many-valued formal 
context
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formal context from many-valued context (O, 
A, V, R) with respect to plain scaling can be 
defined as (O, B, R’) with:

B  =  a ∈A aA
•

and

x R’( a,b) ⇔ Ia(x) = v ∧ v Ra b

That is, an object x∈O has the attribute 
value b ∈ B with respect to the attribute a ∈ 
A in the context (O, B, R’) if and only if x has 
the attribute value v with respect to attribute a 
in the many-valued context (Oa, Aa, Ra), and v 
is Ra related to b in the scale context Sa. Table 
4 shows the derived single-valued context by 
combining the many-valued context of Table 2 
and the scale contexts of Table 3. 

Granules in Formal concept 
Analysis
The processes of defining granules and granular 
structures are different in rough set analysis and 
formal concept analysis. They build granules 
and granular structures based on two different 
interpretations of the notion of definability. In 
rough set analysis, a definable granule is the 

union of some equivalence classes. In formal 
concept analysis, one is interested in granules of 
objects that are extensions of formal concepts. 
A concept derived from a formal context is a 
pair of a set of objects and a set of attributes, 
called the extension and intension of the con-
cept. Furthermore, the extension and intension 
are mutually definable; that is, the intension of 
the extension is the extension of the intension 
and vice versa.

For a many-valued formal context (O, A, V, 
R), one first needs to transfer this many-valued 
context into a single-valued context (O, B, R’). 
The formal concepts constructed from this de-
rived single-valued context are then interpreted 
as the formal concepts of the many-valued 
context.

Since a many-valued formal context (O, 
A, V, R) can be translated into a single-valued 
context (O, B, R’), it is sufficient to consider the 
construction process of formal concepts in (O, B, 
R’). We can construct the language L by using a 
single-valued formal context as the model M, O 
as the domain D, and the set of atomic formulas is 
given by A = {b | b ∈ B}. That is, atomic formula 
is denoted as the attribute value (b) or simply b. 
An object x ∈O satisfies an atomic formula b if 
the object has the attribute b, we write:

SType CRT LCD Plasma

CRT ×

LCD ×

Plasma ×

SClarity ≤ clear ≤ very clear ≤ extremely clear

clear × × ×

very clear × ×

extremely clear ×

SPrice cheap mid-range expensive

$0 ≤ Price < $1000 ×

$1000 ≤ Price < $3000 ×

$3000 ≤ Price < $4000 ×

Table 3. Examples of scale contexts
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x |= b    iff xR' b.

We rewrite the language as L({b}, O). In 
Table 2, examples of atomic formulas are (Type, 
CRT) and (Clarity, ≤very clear). For simplic-
ity, we also write them as “CRT” and “≤very 
clear.” respectively. 

By using the language L, we can formally 
define a formal concept in a formal context. For 
a set X ⊆ O of objects, we define a mapping 
O → A as:

m’(X) = {b ∈ A | x |= b   for all    x ∈ X};

that is, the set of atomic formulas satisfied by 
all the objects in X. Correspondingly, for a set 
P ⊆ A of atomic formulas, we define a map-
ping A → O as:

m(P) = {x ∈ O | x |= b   for all    b ∈ P}
 = { x ∈ O | x |=∧b ∈P b };

that is, the set of objects satisfies all the atomic 
formulas in P. With these two mappings being 
defined, a formal concepts can be defined as a 
pair satisfying the condition:

(X, P) = {X ⊆O, P ⊆A | X = m(P), P= m’(X) }.

The set of objects X = extent(X, P) is the 
extension and the set of atomic formulas P = 
intent(X, P) is the intension of the formal con-
cept. By using logic formulas, we can rewrite 
a formal concept as (X, ∧ b ∈P b).

For an atomic formula b ∈A, we can derive 
a formal concept (m({b}), m’(m({b}))). A subset 
or a granule X ⊆ O is definable in a formal con-
text if and only if there exits a subset of atomic 
formulas b ∈A  in the language L({b}, O) such 
that (X, P ) is a formal concept , that is, X = m(P) 
and P= m’ (X). Otherwise, it is undefinable. Let 
B (O, B, R’) or simply B denotes the set of all 
formal concepts of the context, the family of 
definable granules is given by:

Def(L({b}, O)) = {extent(X, P ) | (X, P ) ∈ 
B }.

If a formal context (O, B, R’) is treated as a 
binary information table, one can easily observe 
a close relationship between rough set analysis 
and formal concept analysis. A definable set of 
objects in formal concept analysis is a definable 
set in rough set analysis, but the reverse in 
not true.

Granular Structures in Formal 
concept Analysis
The family of all formal concepts forms a 
complete lattice called a concept lattice through 
which the relationships between formal con-
cepts can be visualized (Ganter & Wille, 1999). 
The meet and join of the lattice are defined based 
on the set-theoretic operators of intersection (∩), 
union () and the mappings between object set 
O and atomic formula set A, written as:

Type Clarity Price

a b c d e f g h i

tv1 × × ×

tv2 × × × ×

tv3 × × × × ×

tv4 × × × ×

Table 4. Derived single-valued context

a: CRT; b: LCD; c: Plasma; d: •clear; e: •very clear;
f: •extremely clear; g: cheap; h: mid-range; i: expensive.
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(X1, P1) ∧ (X2, P2) = (X1∩ X2, m’(m(P1 
P2))),

(X1, P1) ∨ (X2, P2) = (m(m’(X1 X2)), P1∩ 
P2).

The order relation of the concept lattice 
can be defined as follows. For two formal 
concepts (X1, P1) and (X2, P2), if X1⊆X2 
(which is equivalent to P2⊆P1), then (X2, P2) 
is a superconcept of (X1, P1) and (X1, P1) is 
a subconcept of (X2, P2), written as (X1, P1) 
≤ (X2, P2).

      From the viewpoint of granular com-
puting, the extensions of superconcepts are 
larger granules which may be decomposed into 
smaller granules as extensions of subconcepts. 
We consider a concept lattice as an ∩-closure 
granular structure which only includes granules 
that are extensions of formal concepts. Each 
granule in a concept lattice can be labeled by 
formulas of the language L∧.

Example 3 The process of forming a con-
cept lattice from Table 4 can be illustrated as 
follows. If attribute “≤clear” is chosen, objects 
satisfied this attribute construct the most general 
granule which includes all the objects of this 
context, the corresponding formal concept is 
({tv1, tv2, tv3, tv4}, ≤clear), where “≤clear” is 
an atomic formula. The second level are the 
granules whose intensions only include the 
conjunction of two atomic formulas, the corre-

sponding formal concept is ({ tv2, tv3, tv4}, ≤clear 
∧ ≤very clear). The third level are the granules 
whose intensions only include the conjunction 
of three atomic formulas, the corresponding 
formal concept is ({tv1}, CRT ∧ ≤clear∧cheap), 
({tv2, tv4}, LCD ∧ ≤clear∧≤very clear) and ({tv3, 
tv4 }, ≤clear ∧ ≤very clear ∧expensive). The 
intersections of granules produce the smaller 
granules in the fourth level and so on. For 
example, the set,

{tv2, tv4} ∩ {tv3, tv4} = {tv4},

is a smaller granule corresponding to the 
formal concept ({tv4}, LCD∧≤clear∧≤very 
clear∧expensive). Finally, the most specific 
granule is the empty set ∅ corresponding to 
the conjunction of all atomic formulas as its 
intension.

      The line diagram in Figure 3 represents 
the concept lattice of Table 4, which includes 
nine formal concepts. The intensions of each 
formal concept are labeled by formulas of the 
language L∧.

cONcLUSION
Granular computing models human problem 
solving with different-sized grains of knowl-
edge. Basic granules are the elementary units of 
granular computing represent the basic pieces 

({0}, (a ∧ b ∧ c ∧ d ∧ e ∧ f ∧ g ∧ h ∧ i))/

({tv2}, (b  ∧ d ∧ e ∧ h ))

({tv3}, ( c ∧ d ∧ e ∧ f ∧ i))

({tv4}, (b ∧ d ∧ e ∧ i))

({tv2, tv4}, (b ∧ d ∧ e))({tv1}, (a ∧d ∧ g)) ({tv3, tv4}, (d ∧ e ∧ i))

({tv2, tv3, tv4}, (d ∧ e))

({tv1, tv2, tv3, tv4}, (d))

Figure 3. Concept lattice of Table 4



Int’l Journal of Cognitive Informatics and Natural Intelligence, 2(2), ��-�9, April-June 2008   ��

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global 
is prohibited.

of knowledge. In order to formally describe 
basic granules and the construction of granular 
structures, we introduce a logic language L. 
Atomic formulas correspond to basic granules. 
Other formulas of the language are recursively 
constructed from a set of atomic formulas. The 
meaning of formulas is defined in Tarski’s style 
by using the model M = (D, K). Based on the 
knowledge K of the model, it is assumed that 
an individual in the domain D either satisfies a 
formula or does not satisfy a formula. A granule 
is jointly described by a pair (m(φ), φ) consisting 
of a formula φ of the language L and a subset 
m(φ) of the domain of M.

Depending on particular applications, we 
can interpret the language by using different 
types of atomic formulas. We demonstrate the 
usefulness of the language L in two concrete 
granular computing models, namely, rough set 
analysis and formal concept analysis. The two 
theories explore different types of definability 
of a granule and consequently different granular 
structures. The notion of definability of rough 
set analysis is weaker than formal concept 
analysis.    

The logic based interpretation of rough 
set analysis and formal concept analysis show 
their differences and high-level similarities. 
The unified study of the two theories not only 
demonstrates the potential of the logic ap-
proach to granular computing, but also brings 
more insights into data analysis using the two 
theories.
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