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Abstract

Background: Because of its important effects, as an epigenetic factor, on gene expression and disease 
development, DNA methylation has drawn much attention from researchers. Detecting differentially methylated loci 
is an important but challenging step in studying the regulatory roles of DNA methylation in a broad range of 
biological processes and diseases. Several statistical approaches have been proposed to detect significant 
methylated loci; however, most of them were designed specifically for case-control studies.
Results: Noticing that the age is associated with methylation level and the methylation data are not normally 
distributed, in this paper, we propose a nonparametric method to detect differentially methylated loci under 
multiple conditions with trend for Illumina Array Methylation data. The nonparametric method, Cuzick test is used 
to detect the differences among treatment groups with trend for each age group; then an overall p-value is 
calculated based on the method of combining those independent p-values each from one age group.
Conclusions: We compare the new approach with other methods using simulated and real data. Our study shows 
that the proposed method outperforms other methods considered in this paper in term of power: it detected more 
biological meaningful differentially methylated loci than others.

Keywords: Cuzick test, Nonparametric test, Trend test

Background
DNA methylation is an epigenetic mark that has important 
effects on transcriptional regulation, chromosomal stability, 
genomic imprinting, and X-inactivation, [1,2]. In addition, 
it is associated with many human diseases, including 
various types of cancer [3-10].

Due to the recent advances of BeadArray technology, 
high-throughput genome-wide methylation data can be 
routinely generated by Infinium Methylation Assays. This 
provides good opportunities for researchers to simultan­
eously study hundreds of thousands of DNA methylation 
loci. However, it also requires sophisticated and advanced 
statistical methods to analyze this kind of data.

The raw data generated from BeadArray are fluores­
cent intensities for each locus; they need appropriate
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where the weight wg = nN, and ng (g = 1,2,...,G) is the 
number of total subjects of the K treatments within the 
gth age group. The validity of (6) is easily seen: under 
the null hypothesis cg and therefore wgcg has an asymp­
totic standard normal distribution; a two-sided p-value 
then can be obtained through (6).

Simulation settings
To assess the performance of the proposed method, we 
use simulated data to compare the proposed test with 
current methods in terms of controlling type I error rate 
and power. We assume there are three different treat­
ments (i..e, K = 3) and six age groups (i.e., G = 6). For 
each treatment we assume the p-value has the same 
following distributions over the six age groups: (i) uni­
form U(a,b) where 0 ≤ a < b ≤ 1, (ii) truncated normal 

TN (^, o2,0,1) (or simply TN (^, o2), and (iii) Beta distribu­
tion Beta (c,d) with various parameters. We consider rela­
tively small sample sizes in our simulation study. To reflect 
practical situations, we either choose 20 samples for each of 
the three treatments (sample size = (20, 20, 20)), or set the 
sample sizes as 15, 20, and 25 (sample size = (15, 20, 25)), 
respectively, for the three treatments. Since the proposed 
test is designed to detect differentially methylated loci when 
there is a monotonic trend over the treatments, we simu­
late ß-values with increasing or decreasing mean values 
over the three treatments for the alternative hypotheses. 
For example, in simulation, we first generate 20 ß-values 
(sample size = (20, 20, 20)) from three uniform distributions 
(denoted by a = (0,0,0.25), b = (1,1,1)), U(0,1), U(0,1), and 
U(0.25, 1) for each of the three treatment groups. The sig­
nificance level is set to be 0.05 in simulation study. The 
type I error rate and power are estimated by the propor­
tions of rejection with 104 replicates.

A real data set
The real methylation data set of the United Kingdom 
Ovarian Cancer Population Study (UKOPS) [16], which is 
one of the largest available Illumina methylation data sets, 
will be used for real data application. This data set originally 
includes 274 healthy controls, 131 pre-treatment cases, 
and 135 post treatment cases. If the DNA methylation of 
a locus is positively associated with the disease, we 
would expect that the methylation rates are increasing 
from control to post-treatment then to pre-treatment. 
On the other hand, if the association is negative, there 
would be a decreasing trend over the three conditions: 
control, post-treatment, and pre-treatment. In either 
of the two situations, we can use the proposed test.

The above mentioned methylation data were generated 
by the Illumina Infinium Human Methylation27 BeadChip 
and can be downloaded from the NCBI Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo) with the acces­
sion number GSE19711. For this data set, there are 27578 
loci. After a data quality control process, we removed 60 
subjects with BS values less than 4000 or the coverage rates 
less than 95%. All of the subjects are separated into 6 age 
groups (50-55, 55-60, 60-65, 65-70, 70-75, and 75 and over). 
Table 1 lists the resulting numbers of subjects in each 
age by treatment group. For each locus, we apply the 
proposed test and other methods.

Results
Simulation results
For the new method and the combined ANOVA and 
KW tests, we only report the results u sing Fisher 
method to combine independent p-values, as the re­
sults using Z-test are very similar. Table 2 reports the 
empirical type I error rates for the proposed method, 
the combined ANOVA test and the combined KW test,
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Table 1 Number of samples in age by treatment group 
used in the paper after data quality control step
Age group Control Pre-treat Post-treat Total

50_55 14 15 16 45

55_60 61 17 25 103

60_65 64 17 22 103

65_70 35 17 21 73

70_75 63 24 22 109

75_over 20 18 9 47

Total 257 108 115 480

from the simulation study. It is clearly shown that even if 
the sample size is relatively small and the underlying dis­
tribution is not normal, all the methods, including the 
ANOVA based test, control type I error rate quite well.

Table 3 lists the empirical power values for the three 
methods under various situations. As expected, the pro­
posed test always has higher power values than those of 
the combined ANOVA and KW tests. This demonstrates 
that the proposed test which uses the trend information 
can improve the detecting power. It should point out that 
in the simulation study, we assign scores 1, 2, and 3 to the 

three treatments. However, the effect sizes between treat­
ments 1 and 2 and that between treatments 2 and 3 are 
not set to be 1 to 2, respectively, which makes the scores 
(1,2,3) optimal; therefore, the proposed test have the best 
power. In words, we don’t use the optimal scores for the 
Cuzick test to reflect the real situations when the optimal 
scores are unknown. This can be seen from the powers of 
the new test with different scores (e.g., (1,1,2), and (1,3,2)) 
in the last two columns of Table 3. For many situations 
considered in Table 3, the scores (1,1,2) are closer to the 
optimal scores, which are determined by the effect sizes of 
treatments 2 vs. 1, and treatments 3 vs. 1, than the default 
ones, (1,2,3); therefore, it is not surprising that the new 
test with scores (1,1,2) has larger power values than those 
from the one with scores (1,2,3). However, for most of the 
situations, the scores (1,3,2) do not use the trend correctly 
and hence has lower power compared with the other two.

Results from the real data application
The proposed test and the combined ANOVA and KW 
tests are applied to the real data mentioned above. Due to 
the multiple comparison issue and the correlation among 
loci, it is desirable but difficult to obtain a meaningful cut­
off p-value to determine differentially methylated loci. We

Simulation setting (3 treatments)

Distribution Sample size Parameters

Combined ANOVA Combined K-W New

Table 2 Empirical size for each method at significance level 0.05 with 104 replicates from the simulation study

Uniform U(a,b) (20,20,20) a = (0,0,0), b = (1,1,1) 0.051 0.045 0.047

a = (0,0,0), b = (0.5,0.5,0.5) 0.051 0.045 0.045

a = (0.5,0.5,0.5), b = (1,1,1) 0.055 0.046 0.047

(15,20,25) a = (0,0,0), b = (1,1,1) 0.052 0.043 0.046

a = (0,0,0), b = (0.5,0.5,0.5) 0.052 0.044 0.050

a = (0.5,0.5,0.5), b = (1,1,1) 0.049 0.040 0.043

Truncated NormalTN (p ,02) (20,20,20) p = (0.5,0.5,0.5), o = (1,1,1)/5 0.050 0.043 0.048

p = (0.5,0.5,0.5), o = (1,2,3)/5 0.058 0.050 0.045

p = (0.2,0.2,0.2), o = (1,1,1)/5 0.049 0.050 0.043

p = (0.8, 0.8, 0.8), o = (1,1,1)/5 0.046 0.043 0.048

(15,20,25) p = (0.5,0.5,0.5), o = (1,1,1)/5 0.050 0.046 0.045

p = (0.5,0.5,0.5), o = (1,1.2,1.3)/5 0.053 0.041 0.033

p = (0.2,0.2,0.2), o = (1,1,1)/5 0.050 0.046 0.051

p = (0.8, 0.8, 0.8), o = (1,1,1)/5 0.049 0.044 0.048

Beta (c,d) (20,20,20) c = (1,1,1), d = (1,1,1) 0.050 0.044 0.049

c = (1,1,1), d = (5,5,5) 0.046 0.045 0.043

c = (5,5,5), d = (1,1,1) 0.048 0.044 0.045

c = (5,5,5), d = (5,5,5) 0.049 0.041 0.044

(15,20,25) c = (1,1,1), d = (1,1,1) 0.049 0.044 0.046

c = (1,1,1), d = (5,5,5) 0.045 0.042 0.047

c = (5,5,5), d = (1,1,1) 0.049 0.049 0.048

c = (5,5,5), d = (5,5,5) 0.052 0.044 0.052

http://www.biomedcentral.com/1471-2105/15/142


Chen et al. BMC Bioinformatics 2014, 15:142
http://www.biomedcentral.com/1471-2105/15/142

Page 5 of 7

Table 3 Empirical power for each method at significance level 0.05 with 104 replicates from the simulation study
Simulation setting (3 treatments) Combined 

ANOVA
Combined 
K-W

New1 New2 New3

Distribution Sample size Parameters

Uniform U(a,b) (20,20,20) a = (0,0,0.25), b = (1,1,1) 0.699 0.607 0.877 0.962 0.069

a = (0,0.1,0.1), b = (0.5,0.5,0.5) 0.450 0.339 0.724 0.830 0.726

a = (0.6,0.6,0.5), b = (1,1,1) 0.460 0.338 0.695 0.821 0.027

(15,20,25) a = (0,0,0.25), b = (1,1,1) 0.809 0.692 0.926 0.980 0.957

a = (0,0.1,0.1), b = (0.5,0.5,0.5) 0.433 0.319 0.618 0.758 0.218

a = (0.6,0.6,0.5), b = (1,1,1) 0.482 0.380 0.754 0.854 0.860

Truncated NormalTN (p, o2) (20,20,20) p = (0.1,0.1,0.2), o = (1,1,1)/5 0.451 0.394 0.743 0.862 0.052

p = (0.1,0.1,0.2), o = (1,1.2,1.3)/5 0.773 0.642 0.962 0.954 0.200

p = (0.5,0.5,0.4), o = (1,1,1)/5 0.691 0.656 0.918 0.976 0.054

p = (0.5,0.5,0.4), o = (1,1.2,1.3)/5 0.402 0.374 0.696 0.820 0.032

(15,20,25) p = (0.1,0.1,0.2), o = (1,1,1)/5 0.464 0.428 0.786 0.886 0.948

p = (0.1,0.1,0.2), o = (1,1.2,1.3)/5 0.735 0.643 0.959 0.952 0.713

p = (0.5,0.5,0.4), o = (1,1,1)/5 0.775 0.738 0.949 0.981 0.827

p = (0.5,0.5,0.4), o = (1,1.2,1.3)/5 0.382 0.364 0.756 0.838 0.852

Beta (c,d) (20,20,20) c = (1,1,1), d = (30,40,50) 0.596 0.442 0.889 0.723 0.432

c = (1,1.2,1.5), d = (40,40,40) 0.490 0.609 0.962 0.920 0.329

c = (30,40,50), d = (1,1,1) 0.578 0.450 0.899 0.745 0.420

c = (40,40,40), d = (1,1.2,1.5) 0.488 0.620 0.972 0.924 0.369

(15,20,25) c = (1,1,1), d = (30,40,50) 0.608 0.405 0.861 0.727 0.998

c = (1,1.2,1.5), d = (40,40,40) 0.426 0.602 0.952 0.912 0.559

c = (30,40,50), d = (1,1,1) 0.618 0.409 0.888 0.752 0.458

c = (40,40,40), d = (1,1.2,1.5) 0.450 0.606 0.958 0.919 0.995

Note: 1the prosed test with scores (1,2,3), 2the prosed test with scores (1,1,2), 3the prosed test with scores (1,3,2).

therefore report the numbers of loci with p-values less test detected 479, 551, and 1283 loci, respectively, when 
than a given cutoff value from each method. We choose Fisher method was used to combine p-values. Out of 
different cutoff values: 10-3, 10-4, 10-5, 10-6, 10-7, and the 479 loci detected by the combined ANOVA test, 471 
10-8. The results are reported in Table 4. For each of were also detected by the new test; out of the 551 loci
the given cutoff p-values, the proposed test always de- detected by the combined KW test, only 7 were not de­
tects more loci than the other methods. In addition, tected by the proposed test.
most of the loci detected by the combined ANOVA and This indicates that the proposed test is more power-
KW tests were also detected by the proposed test. For ful than other methods that are compared in this 
example, when the cutoff p-value is 10-5, the combined study. It is noticeable that the methods of combining 
ANOVA test , the combined KW test, and the proposed independent p-values (i.e., Fisher test and Z-test) have

Table 4 Number of significant differentially methylated loci detected by each method for each given cutoff p-value
Method 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

F Z F Z F Z F Z F Z F Z

T1 (Combined ANOVA) 981 1079 655 690 479 499 350 375 257 275 189 208

T2 (Combined KW) 1359 1340 823 859 551 590 381 401 261 277 172 185

T3 (New) 2915 3117 1855 1951 1283 1310 905 929 674 686 513 521

T1 and T2 926 980 615 656 442 474 306 338 221 235 152 167

T1 and T3 931 1018 639 670 471 491 346 367 252 269 187 206

T2 and T3 1294 1279 806 832 544 577 377 396 259 276 170 184

T1, T2, and T3 895 954 605 642 437 468 303 336 220 234 151 166
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similar performance here, although the Z-test usually 
gives a few more significant loci.

Discussion
We proposed a new statistical approach based on combing 
p-values and the Cuzick test, which is a nonparametric 
one-sided test. Through simulation study and real data 
application, we show that if there exists a monotonic 
(not necessarily linear) trend over the treatments, the 
proposed test is more powerful than other methods. 
Figure 1 plots the mean ß-value of each of the three 
treatments over the six age groups for loci with p-values less 
than 10-3 from the proposed test. From Figure 1, we can see 
there is a decreasing trend among the three treatments 
(i.e., for the p-value, pre-treatment < post-treatment < control) 
for all of the six age groups; while from for those loci with 
large p-values, such trend does not exist for any of the six 
age groups (see Additional file 2: Figure S1).

Although many methods can detect those loci which 
are strongly differentially methylated among different 
treatments, it is important to detect loci having small 
effects as they are biological meaningful and provide 
useful information for set-based analyses, such as gene, 
gene-set, and pathway analyses which use those detected 
differentially methylated loci as input [30].

To use the Cuzick test, we need to assign a score for each 
of the treatment. Here we assign 1, 2, and 3 to the control, 
post-treatment, and pre-treatment, respectively. In practice, 

if we have the information of the effects for each treatment, 
we can use this information to assign scores. For example, 
for the K-1 treatments 2, 3, ..., K, if the effect sizes are 
m2, ..., mK compared to treatment 1, we can assign scores 
0, m2, ..., mK to those treatments for the proposed test. 
However, if we only know that there is a monotonic trend, 
we can choose 1, 2, ..., K (equivalent to 0, 1, ..., K-1) as the 
scores. Although, the performance of the proposed test 
can be improved by assigning optimal scores, which are 
determined by the true effects, to the treatments; in 
general, it is impractical to obtain the optimal scores. In 
addition, the optimal scores for each locus may not be 
the same across age groups (see Figure 1).

Like other large scale data, such as microarray data 
and genome-wide association study data, the multiple 
comparison is an important but challenging issue. Al­
though some procedures have been proposed to con­
trol either family-wise error rate or false discovery rate, it 
remains an open topic in this area. One possible direction 
is to use the so-called “effective number” estimated from 
correlations among the loci [31].

Conclusions
We propose a new statistical approach to detecting 
methylated loci for high-throughput methylation data 
with multiple groups. This approach is based on the 
nonparametric Cuzick test, which is robust and powerful 
if there exists a trend over groups. Through simulated and 

age:50-55 age:55-60 age:60-65

age:65-70 age:70-05 age:75+

Figure 1 The mean ß-value of loci with p-value less than 10-3 from the proposed test over the three treatment groups by the age group.
For each age group, there is a trend among the three treatments: pre-treatment has smaller ß than the post-treatment group, which in turn has 
smaller ß-value than the control group.
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real data, we show that the proposed test outperforms 
existing methods.

Additional files

Additional file 1: R code.
Additional file 2: Figure S1 . The mean ß-value of loci with p-value 
greater than 10-3 from the proposed test over the three treatment groups 
by the age group. For each age group, there is no obvious trend over 
the three treatments for the ß-value.
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