International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

“Meta Cloud Discovery” Model: An Approach to Integrity
Monitoring for Cloud-Based Disaster Recovery Planning

Brittany M. Wilbert and Qingzhong Liu

Abstract—A structure is required to prevent the malicious
code from leaking onto the system. The use of sandboxes has
become more advance, allowing for investigators to access
malicious code while minimizing the risk of infecting their own
machine. This technology is also used to prevent malicious code
from compromising vulnerable machines. The use of sandbox
technology and techniques can potentially be extended to cloud
infrastructures to prevent malicious content from
compromising specialized infrastructure such as backups that
are used for disaster recovery and business continuity planning.
This paper will discuss existing algorithms related to current
sandbox technology, and extend the work into the “Meta Cloud
Discovery” model, a sandbox integrity-monitoring proposal for
disaster recovery. Finally, implementation examples will be
discussed as well as future research that would need to be
performed to improve the model.

Index Terms—Cloud infrastructure,
integrity monitoring technique, sandbox.

disaster recovery,

I. INTRODUCTION

As the Internet environment has changed, there has been a
constant rise in malicious code and software, with a focus of
compromising available machines. This network is now
“inhabited by a much larger and more diverse group that
includes pranksters, crackers, and business competitors™ [1].
As these attacks become more and more sophisticated, the
need for reliable technology to limit the impact of these
attacks is based on the concept that “an application can do
little harm if its access to the underlying operating system is
appropriately restricted” [1].

As a result, sandbox technology has been developed to
address these concerns. By minimizing the access that is
available for applications to operate, other applications on the
operating system are protected from potential compromise.
Examples of uses of sandboxes is web browser
improvements, isolation of exploits to the kernel and the use
of honeypots to covertly capture the activity of attackers
while allowing the attacker to not realize that their attempts at
compromising the system have been minimized. However,
the discussion of sandboxing public cloud instances used for
disaster recovery is in its development stages.

Many cloud instances use existing policies and controls
that are set depending on the implementation of the cloud
instance. Although this is a good way to prevent intrusions
into the system, it has not been discussed how this data can be
audited to ensure that data has not been leaked from these

Manuscript received May 20, 2013; revised June 26, 2013.

The authors are with the Department of Computer Science at Sam
Houston State University, Huntsville, TX 77056 USA (e-mail:
bmw005@shsu.edu, qxl005@shsu.edu).

DOI: 10.7763/1JTET.2013.V3.328

systems, or the integrity of the cloud instance has remained.
As a result, there is a potential risk of compromise that may
not be located until much later.

To address this concern, an initial framework called “Meta
Cloud Discovery” (MCD) has been formulated. MCD is a
model framework that is aimed to provide both integrity
modeling and assurance that backup data that is sent to a
cloud has integrity and non-repudiation throughout its use.
This model combines the use of techniques similar to file
integrity monitoring and log monitoring to access the state of
a disaster recovery instance.

This paper first describes the need for this type of
technology by discussing a number of examples of existing
sandboxing algorithms and their positives and negatives in
relation to the MCD model. Next the model is described
which provides the different mechanisms that have been
formulated in order to provide both security and functionality
to the model. After that, a description of two different
implementations of this model, with a public cloud instance
and a private cloud instance, is articulated to discuss the
benefits and drawbacks this initial model may have on these
infrastructures.

II. BACKGROUND

The deployment of cloud deployments either as private
instances or through the use of public clouds (such as
Amazon Web Services) has allowed business to scale down
large physical instances to smaller systems while allowing
for the extension of their businesses. However, as the result
of the use of the cloud other types of fundamental business
requirements need to evolve to meet the needs of these new
types of infrastructure requirements. An instance of this is
the discussion of disaster recovery and what processes are
required in order to have an effective and efficient program
has been discussed in detail.

File integrity monitoring is one of the solutions that must
be implemented in order to provide security to an
environment. Monitoring changes to the state of the different
software that has been deployed within an environment by
using a data ‘fingerprint’ file is absolutely necessary to
provide visibility into potential compromises that have
occurred within the environment. However, as a result of the
difficult that can emerge as a result of putting into place a file
integrity solution, many small businesses forgo this process,
and may as a result lose one way to determine when a
compromise has occurred and how the system was
compromised.

A. Client-Side: Web Browser
Some of the first technologies which sandboxing was

516


mailto:bmw005@shsu.edu
mailto:qxl005@shsu.edu

International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

developed for were on the web browser itself. An example of
this is the use of sandboxing of JavaScript. Agten ef al.
described an example of this in their paper [2]. JSand, their
sandboxing framework, uses wrappers, which “consults the
security policy to determine whether or not the corresponding
operation is permitted” [2]. If a policy is not matched, JSand
prevents the activity from activating. This is done while not
modifying the browser itself. These policies use a Proxy API
‘membrane’ to confine JavaScript code from executing
outside of the designated Sandbox location, therefore
preventing malicious code from activating. Also, this type of
implementation, which is independent of the web browser,
allows for better portability and backwards compatibility of
the software. Its implementation allows for it to be used in
multiple products, such as “Google Analytics, Google Maps,
and the jQuery library” [2]. This type of detection provides
portability of the technology across multiple types of web
content, however the independence of this framework may
potentially cause vulnerabilities if a web content type does
not lend to compatibility to JSand. Although three examples
were discussed a further analysis of other web technology
would be useful.

Cao et al. describe another example of limiting JavaScript
activity through the use of a Virtual Browser technology [3]
[4]. Aninitial implementation of this technology by the group
was created in 2008. This framework uses virtualization to
provide isolation of JavaScript for security. Unlike earlier
JavaScript isolation models that used iframes to isolate
JavaScript activity, the Virtual Browser adapted strings of
JavaScript codes to attach the activity to ‘flows’ to do
evaluations. If trusted code is found, it is allowed to operate
in the browser, otherwise the browser uses a set of ‘lows to
isolate and analyze the activity allowing for the JavaScript
code to be avoided or redirected [3].

The later version of Virtual Browser discussed in 2012 was
expanded to include the new functions that JavaScript
allowed (the 2008 framework only worked for JavaScipt that
was currently accepted. This architecture lays on top of the
web browser, and not independent of it like JSand. This
design still allows for execution of JavaScript code within its
sandbox that is then evaluated [3]. Both the 2008 and 2012
versions also included parsing algorithms for HTML and
CSS code that is viewed in the web browser [3][4]. The 2008
and extended 20012 versions of the Virtual Browser allow for
greater connectivity between the web browser and the Virtual
Browser itself by using virtualization technology. Since the
virtual browser lies over the web browser it becomes the first
line of defense for malicious code. However, from the papers
themselves it appears to have difficult handling types of web
content, such as Web Sandbox which do not have
compatibility with current JavaScript functions [3]. As a
result each Virtual Browser version would need to be adapted
to allow for communication between unique sandbox and
browser environments.

B. Client-Side: Native Client

Another example of browser-based sandbox technology is
Native Client. This framework of this client is to isolate x86
native code, which can be run by web browser extensions
such as “ActiveX7 and Netscape Plugin Application
Programming Interface (NPAPI) allowing native code to be
loaded and run as part of a Web application” [5]. As a result,

an attacker can compromise a non-sandboxed web browser.
Native Client (NaCl) is designed with a collection of
components (trusted and untrusted), which are given their
own private address space [5]. Communication of the NaCl
modules with the browser is done with two different options
that are designed to reduce overhead for high volume and
frequency communications [5]. Each NaCl module is treated
as untrusted code that is then isolated and evaluated. This
technology does allow for the ability to detect native code
that is very important. However the performance tests that
were performed by the authors [5] suggests that additional
challenges would need to be overcome in order to continue to
decrease the overhead of untrusted native execution on the
system. This implementation also doesn’t support languages
such as Java that are more abundance on the Internet.

C. Server-Side (Website) Protection

Besides securing from the client-side that was discussed in
the previous two sections, protection on the server can be just
as important. ForceHTTPS allows for the server to enforce
strong security policies on the client, in particular asking “the
browser to treat HTTPS errors as attacks, not as simple
configuration mistakes™ [6]. This technique is done in three
ways [6]:

1) “Non-HTTPS connections to the site are redirected to
HTTPS, preventing contact to the site without TLS.”

2) All TLS errors, including self-signed certificates and
common-name mismatches, terminate the TLS session.”

3) Attempts to embed insecure (non-HTTPS) content into
the site fail with network errors.”

This methodology is used to address “passive network
attackers, active network attackers, and imperfect web
developers™ by increasing the detecting of unusual activity on
the website as well as preventing client-side activity which
may result for mishandling improperly written or malicious
code. This model also prevents trusted website from leaking
data that was resulted from suspicious code from other
websites. ForceHTTPS allows for site-controlled defenses
that allow for security administrators to conform the policies
that are placed.

This framework also allows for rewrite rules to be
implemented for client-side permissions to be put in place to
prevent unsecure activity such as HTTP and SWF files from
compromising secure content [6]. This technology allows for
better protection server-side to potential attacks by requesting
for strong policies on the client. However implementation of
this stronger security model would need to rely on multiple
websites to implement ForceHTTPs or another similar
framework. Although they do have an alternate solution with
a client-side ForceHTTPS structure, implementing either the
client or server side versions require “Power” or technically
sound users, which can be a barrier for the average user.

D. Wireless

Another location which sandboxing can be used is through
wireless. Attackers can use nodes to “capture a node and
tamper the applications running, in order to perform different
types of attacks” [7]. The framework that is discussed by
Zaharis et al. uses live forensic monitoring, through
sandboxing to detect software tampering while alerting
owners of the network of a potential compromise attempt.

This sandbox framework provides a controlled set of

517









International Journal of Information and Education Technology, Vol. 3, No. 5, October 2013

user accounts to update important settings for the model. This
includes the following:

1) Block Size

2) Integrity check scheduling

3) Frequency of backups

4) Authorized users to the system

5) Settings for the sandbox

6) If company name metadata value will be incorporated
7) If server name metadata value will be incorporated.

By minimizing the number of administrative user accounts,
this limits the risk of unauthorized users gaining access to the
sandbox cloud instance. Since this layer would be set to only
allow authorized users to sct the permissions that are used by
the Integrity layer (and the sandbox itself) it is a point that can
be leveraged to limit the locations entry to the backup cloud
instances can be used from.

4) Reporting layer

A reporting layer is required to allow for the cloud sandbox
infrastructure to be monitored for unusual activity that could
occur. To do this, reporting could potentially be created for
the following criteria (although not limited to this selection):
1) Integrity checks
2) Monitoring results
3) Results of backups
4) Attempts to access the system with escalated privileges
5) Review of policies and configurations of the sandbox.

This layer would house reporting mechanisms that will
allow for reporting to be conducting while limiting the
number of users who are provided administrative privileges.

C. Example Implementations

To provide an example on how this model can be utilized,
different examples of cloud environments will be used,
including a private cloud environment, which is maintained
by the company requiring disaster recovery, and a public
cloud environment maintained by a third party provider.

1) Private cloud environment

In such an environment, private cloud instances are
maintained and monitored by a private company that has
established the need for a disaster recovery cloud
infrastructure. The model should include the following
considerations.

1) Should the company include the company name and/or
the server name in the metadata? Since only the
company should be storing their own data into the
instance, and depending on the size of the instance, these
settings may not be necessary in all situations (and
decrease storage size).

2) What additional storage requirements are needed?
Storage for backups would most likely need to be
increased by some amount to fit the additional
requirements for the model.

3) What block sizes should be used to create the block
sectors? Larger block sectors can increase the
computation requirements of the process, and increase
the amount of time to complete a backup.

4) What is the Service Level Agreement (SLA) agree to
with their customers? Many companies have SLA
requirements that need to be met that include the disaster
recovery process. A company must consider if this
model would significantly change how their SLA should
be worded.

520

Although these considerations have to be made, the
advantage of this model is that it can monitor when there are
changes to the backup and minimize the chance of the backup
being compromised when not in use. This can be leveraged
by companies in order to minimize the risk of a secondary
disaster occurring during their DR process because the
company did not realize that their cloud instance backup has
been compromised until too late.

2) Public cloud environment

In addition to the considerations discussed in the Private
Cloud Environment example, additional implementation
considerations would need to be made for Public Cloud
instances. These considerations are below:

1) Public Cloud instances have multiple customers’ data
within the system. As a result, there is the risk that
vulnerability from one customer data set can potentially
compromise another business’s data. For such an
important resource such as a backup instance, would the
company want to use a Public Cloud instance as a source
for their data?

2) Would the third party provider be able to add this model
to their infrastructure?

3) What other measures does the third party company to
prevent data leakages from occurring?

The positive of using the MCD model is that it can be used
as a remediation tactic to frequently monitor public cloud
instances.

V. FUTURE RESEARCH AND CONSIDERATIONS

Although some of the requirements for improved integrity
monitoring for cloud instances, there are future research
opportunities that can be done to improve this model. The
current model currently is not optimized for efficiently
convert the block sizes to include the metadata area.

Also, this type of design leans more to incremental
backups where organizations have a large data that is
infrequently changed. Is this a fixed point? Can additional,
larger data sets use this model? Further research in how this
may work for large database instances would determine if
this type of model could be implemented.

Since there are many types of cloud instances, unique
review of each cloud instance would need to be performed to
make sure that configuration and policies enabled on the
cloud instance can be converted to sandbox environment.
Potentially, the Reporting Layer of model or a mixture of
multiple methods to protect these assets can then monitor
this.

VI. CONCLUSION

Integrity monitoring of backups is extremely important to
protect potential compromises to these systems. However, as
industries transition to potentially using cloud infrastructure
to reduce the cost of creating disaster recovery backups for
their environments, the need for improved integrity
monitoring is even more relevant. Meta Cloud Discovery is
an initial model that has been created to attempt to provide a
model that may serve as a way to provide integrity
monitoring to these systems.

The use of metadata backend, with a security layer model






