
EXPLAINABLE AI (XAI): IMPROVING AT-RISK STUDENT PREDICTION WITH

THEORY-GUIDED DATA SCIENCE, K-MEANS CLASSIFICATION, AND

GENETIC PROGRAMMING

A Dissertation

Presented to

The Faculty of the Department of Library Science and Technology

Sam Houston State University

In Partial Fulfillment

of the Requirements for the Degree of

Doctor of Education

by

Ngoc Van P. Bui

August 2022

EXPLAINABLE AI (XAI): IMPROVING AT-RISK STUDENT PREDICTION WITH

THEORY-GUIDED DATA SCIENCE, K-MEANS CLASSIFICATION, AND

GENETIC PROGRAMMING

by

Ngoc Van P. Bui

APPROVED:

Donggil Song, PhD

Committee Chair

William Angrove, EdD

Committee Member

Sheng-Lun Cheng, PhD

Committee Member

Stacey L. Edmonson, EdD

Dean, College of Education

iii

ABSTRACT

Bui, Ngoc Van P., Explainable AI (XAI): Improving at-risk student prediction with

theory-guided data science, K-Means classification, and genetic programming. Doctor of

Education (Instructional Systems Design and Technology), August 2022, Sam Houston

State University, Huntsville, Texas.

This research explores the use of eXplainable Artificial Intelligence (XAI) in

Educational Data Mining (EDM) to improve the performance and explainability of

artificial intelligence (AI) and machine learning (ML) models predicting at-risk students.

Explainable predictions provide students and educators with more insight into at-risk

indicators and causes, which facilitates instructional intervention guidance.

Historically, low student retention has been prevalent across the globe as nations

have implemented a wide range of interventions (e.g., policies, funding, and academic

strategies) with only minimal improvements in recent years (Stolk et al., 2007). In the

US, recent attrition rates indicate two out of five first-time freshman students will not

graduate from the same four-year institution within six years (NCES, 2020). In response,

emerging AI research leveraging recent advancements in Deep Learning has

demonstrated high predictive accuracy for identifying at-risk students, which is useful for

planning instructional interventions.

However, research suggested a general trade-off between performance and

explainability of predictive models (Arrieta et al., 2020; Gunning et al., 2019). Those that

outperform, such as deep neural networks (DNN), are highly complex and considered

black boxes (i.e., systems that are difficult to explain, interpret, and understand). The lack

of model transparency/explainability results in shallow predictions with limited feedback

prohibiting useful intervention guidance. Furthermore, concerns for trust and ethical use

iv

are raised for decision-making applications that involve humans, such as health, safety,

and education.

To address low student retention and the lack of interpretable models, this

research explored the use of eXplainable Artificial Intelligence (XAI) in Educational

Data Mining (EDM) to improve instruction and learning. More specifically, XAI has the

potential to enhance the performance and explainability of AI/ML models predicting at-

risk students. The scope of this study includes a hybrid research design comprising: (1) a

systematic literature review of XAI and EDM applications in education; (2) the

development of a theory-guided feature selection (TGFS) conceptual learning model; and

(3) an EDM study exploring the efficacy of a TGFS XAI model.

The EDM study implemented K-Means Classification for explorative

(unsupervised) and predictive (supervised) analysis in addition to assessing Genetic

Programming (GP), a type of XAI model, predictive performance, and explainability

against common AI/ML models. Online student activity and performance data were

collected from a learning management system (LMS) from a four-year higher education

institution. Student data was anonymized and protected to ensure data privacy and

security. Data was aggregated at weekly intervals to compute and assess the predictive

performance (sensitivity, recall, and f-1 score) over time. Mean differences and effect

sizes are reported at the .05 significance level. Reliability and validity are improved by

implementing research best practices (J. Cohen, 1988; Field, 2018; He et al., 2016).

KEYWORDS: Explainable artificial intelligence; XAI; Genetic programming; Machine

learning; Educational data mining; Learner analytics; At-risk student prediction; Student

retention

v

ACKNOWLEDGEMENTS

I would like to express my utmost gratitude to those who have provided support,

patience, care, and friendship during my journey here at SHSU. Without you, this work

would not have been possible.

Thank you, Dr. Donggil Song, for guiding me from the start. It was your work,

dedication, guidance, support, and mentorship that have helped me succeed in more ways

than you would ever know.

Thank you, Dr. Sheng-Lun Cheng, for your mindfulness, dedication to student

learning, critical feedback, and shared insights that have helped me continue to learn,

grow, and improve.

Thank you, Dr. William Angrove, for your suggestions and encouragement on

distance learning. You have inspired me to discover how instructional technology can

positively impact learning in a connected society.

Thank you, to my family and friends, for your care, love, and patience throughout

my academic pursuits.

vi

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS .. v

TABLE OF CONTENTS ... vi

LIST OF TABLES ... ix

LIST OF FIGURES .. x

CHAPTER I: INTRODUCTION ... 1

Statement of the Problem ... 2

Purpose of the Study .. 5

Research Questions .. 5

Significance of the Study ... 6

Implications to the Field of ISDT .. 7

Limitations ... 8

Delimitations .. 10

Assumptions .. 11

Chapter Summary .. 12

CHAPTER II: LITERATURE REVIEW .. 13

Introduction .. 13

Methods ... 13

The Problem of Student Retention and the need for XAI.. 14

Why XAI? .. 19

Educational Data Mining and Learner Analytics .. 28

vii

Theoretical Supports .. 40

Chapter Summary .. 54

CHAPTER III: METHODS .. 55

Introduction .. 55

Research Questions .. 56

Population, Setting, and Demographics ... 56

EDM Process ... 59

Feature Selection Process .. 61

Analysis Methods .. 65

Chapter Summary .. 77

CHAPTER IV: RESULTS .. 78

Introduction .. 78

EDM Process Results .. 78

Descriptive Statistics ... 81

Feature Selection Results ... 81

Analysis Results ... 85

Chapter Summary .. 137

CHAPTER V: VALIDITY AND RELIABILITY ... 141

Introduction .. 141

Literature and Theoretical Supports .. 142

Sample Size ... 142

Power Analysis .. 142

Generalizability .. 143

viii

Missing Data .. 143

Inconsistent Performance Assessment Data .. 144

Chapter Summary .. 145

CHAPTER VI: FUTURE WORK ... 146

Introduction .. 146

Performance Features .. 147

Intrinsic Features ... 148

Chapter Summary .. 148

REFERENCES ... 150

APPENDIX ... 167

VITA ... 228

ix

LIST OF TABLES

Table Page

1 Target Study Types .. 29

2 Target Study Outcomes ... 30

3 Target Predictor Variables ... 31

4 Feature Categories ... 32

5 Study Findings ... 33

6 Studies with Theory-Grounded Models ... 64

7 Training Split Methods .. 73

8 Confusion Matrix ... 76

9 Descriptive Statistics of Raw Data Before Feature Selection 81

10 Exploratory Group Labeling and Characterization .. 95

11 Descriptive Statistics ... 100

12 Calculated Z-scores for Skew and Kurtosis ... 101

13 Test of Homogeneity of Variances .. 101

14 Independent-Samples Kruskal-Wallis Test Summary 103

15 Final Grade Pairwise Comparisons of At-Risk Groups 104

16 Exploratory Group Labeling and Characterization .. 109

17 Stack-Based GP (M4GP) Solutions ... 118

x

LIST OF FIGURES

Figure Page

1 US Postsecondary Institution 150% Completion Time Graduation Rate 15

2 Attrition Timing and Academic Standing of Students .. 16

3 Chart Showing Publication Trends for XAI .. 20

4 Chart Showing Google Search Trends for AI, ML, and XAI 20

5 Chart of Explainability Related Publications .. 21

6 Chart of XAI Open Publications .. 21

7 Chart Presenting Rationales for XAI Based on Target Audience 23

8 Binary Decision Tree ... 26

9 Chart Illustrating the Tradeoff between Model Accuracy and Model

Interpretability ... 28

10 Activity Theory .. 43

11 Fink’s Taxonomy of Significant Learning .. 44

12 Theory Guided Feature Selection (TGFS) Model ... 48

13 Theoretical Framework for Student Prediction Model .. 50

14 Example of a GP Decision Tree .. 52

15 150% Graduation Rate for All Full-time/First-Time Students (Fall 2015) 57

16 Student Proportions of Race/Ethnicity (Spring 2021) ... 58

17 Student Proportions of Race/Ethnicity (Spring 2021) ... 59

18 Planned EDM/LA Research Methods Process .. 61

19 Exemplar Inertia Graph for Implementing the Elbow Method............................ 70

20 Stratified K-Fold Cross-Validation Training Split .. 74

xi

21 Data Collection and Processing Results Flow Chart ... 80

22 Conceptual Model of Learning Support Dimensions .. 84

23 Screenshot of SQL Keyword Search Frequency Results..................................... 85

24 Correlation (Pearson’s R) Matrix .. 86

25 P-Value Matrix (Pearson’s R) ... 87

26 Final Grade Distribution Histogram .. 89

27 Feature Distribution Histogram ... 90

28 Correlation Matrix (Pearson’s R) After Sample Exclusion 92

29 P-Value Matrix (Pearson’s R) After Sample Exclusion 92

30 K-Means SSE (Exploratory) .. 93

31 K-Means Cluster Matrix (Exploratory) ... 94

32 K-Means Cluster Summary (Exploratory) ... 95

33 Naives Bayes Preliminary Classification Results .. 96

34 Naives Bayes Preliminary Classification Results (Excluding Cluster 0) 98

35 Proportions of Random-Sampled Data Set .. 99

36 Distribution Comparison ... 102

37 At-Risk Group Final Grades Boxplots .. 104

38 K-Means SSE (Classification) ... 106

39 K-Means Cluster Matrix (Classification) .. 107

40 K-Means Cluster Summary (Classification) .. 108

41 K-Means SSE (Cumulative Weeks 1-15) .. 110

42 Predictive Performance Over Time (F1-Score) ... 111

43 Predictive Performance Over Time (Precision) ... 112

xii

44 Predictive Performance Over Time (Recall) ... 112

45 Mean Predictive Performance Scores .. 113

46 GPLearn Binary Classifier Performance Results Over Time 114

47 Binary Classifier f1-Scores .. 115

48 Overall Binary Classifier Performance Results ... 116

49 Tree-Based Genetic Programming Binary Classifier .. 120

50 Sigmoid Function ... 123

51 Binary-Class Decision Tree ... 124

52 Binary-Class Decision Tree (Max Depth of 3) .. 126

53 Multi-Class Decision Tree Classifier ... 129

54 Multi-Class Decision Tree Classifier (Max Depth = 3)..................................... 130

55 Chart Illustrating the XAI System Architecture Design 146

1

CHAPTER I

Introduction

The research contributes to the field of Instructional Systems Design and

Technology (ISDT) by designing, developing, and evaluating an at-risk student predictive

model using Educational Data Mining (EDM) process grounded in instructional theory

and evidence-based practices. To prepare for a fast-evolving and technology-driven

society, this work leverages emerging computational techniques to support and inform

instructional practice. This work explored how improving the explainability of AI models

can help identify interaction characteristics of at-risk students as well as improve the

prediction performance of existing systems.

Recent advancements in AI such as Deep Neural Networks (DNN) have

demonstrated unprecedented performance in pattern recognition, automation, and

prediction (Adadi & Berrada, 2018). As a result, there has been widespread research and

adoption of AI across diverse fields and applications (Arrieta et al., 2020). In education,

AI models have been used in EDM to predict at-risk students and enable timely

interventions for impro student performance (Chitti et al., 2020), which are associated

with higher student retention (Baldelovar, 2016; McCoy & Byrne, 2017). Research

advancing at-risk student predictions can help address the poor state of student retention,

which has been slow and stagnant over the past two decades (Beer & Lawson, 2017;

NCES, 2022; Tinto, 2006).

Although current AI implementations have demonstrated high accuracies for

predicting at-risk students, emerging research suggests a general trade-off between

predictive performance and explainability (Gunning & Aha, 2019). AI models that

2

outperform, such as deep neural networks (DNN), are highly complex, inherently

unexplainable, and are considered black boxes, which are systems that are too difficult

for humans to explain, interpret, and understand (Knight, 2017). The lack of

transparency in at-risk student predictions is evident in educational data mining (EDM)

research, which prompted the need for more interpretable models (Chitti et al., 2020).

In response to the lack of transparent AI, the field of Explainable AI (XAI)

emerged with goals to improve model informativeness, trustworthiness, causality,

transferability, confidence, fairness, accessibility, interactivity, and privacy (Arrieta et al.,

2020). This research contributes to XAI by exploring selected explainable techniques and

explainable models for improving at-risk student predictions. More specifically, this

study evaluates the performance and explainability of K-Means Classification, an

explainable technique, and Genetic Programming (GP), and explainable model, using a

developed Theory-Guided Feature Selection (TGFS) model that incorporates relevant

theories such as Activity Theory, Significant Learning Model, and Social Learning

Theory.

Statement of the Problem

This research addresses two primary problems: (1) the need to improve the poor

state of student retention in higher education; and (2), the need to use Explainable

Artificial Intelligence (XAI) to improve the performance and explainability of at-risk

student predictions. The ability to improve the accuracy and explainability of at-risk

predictions can lead to better feedback for instruction interventions and lower student

attrition attributed to poor performance outcomes. Furthermore, model explainability

3

helps improve user trust and adoption in practice. The proceeding paragraphs will give a

brief review of the problems as well as the benefits that XAI offers.

First, the problem of student retention is evident in the low and stagnant

graduation rates (averaging 56% and 33% for four-year and two-year institutions

respectively from 1996 to 2016) of higher education in the US over the past two decades

(Beer & Lawson, 2017; NCES, 2022; Tinto, 2006). Compared to the Organization for

Economic Co-operation and Development (OECD) (78%) and European countries (79%)

(2020), the US national averages are substantially lower. The lack of progress highlights

the significant waste of financial, time, and labor investments from students, institutions,

and governments and the need for more effective interventions.

In addition, student attrition statistics from Wellman et al. (2012) show that

students leave due to both academic and non-academic factors. McCoy and Byrne’s

(2017) literature review identified contributing factors such as diversity, culture, socio-

economic background, academic performance, financial aid, social support, national

policies, and standards. The wide array of contributing factors presents the need for

diverse research and intervention improvements with considerations for student,

institution, and government contexts. The scope of this research focuses on improving

student retention from an academic performance perspective by improving at-risk student

predictions using state-of-the-art XAI techniques and models.

Second, the need to use XAI can be explained by first understanding the

importance and current state of using AI in education. The recent advancements in

artificial intelligence (AI), machine learning (ML), availability of large datasets, and

distributive computing have enabled unprecedented performance in pattern recognition,

4

automation, and prediction (Adadi & Berrada, 2018; Gunning et al., 2019; Khare et al.,

2018; Ramalingam et al., 2018; Samek & Müller, 2019). However, emerging works

indicate a trade-off between prediction performance and model interpretability or

explainability (i.e., how easy it is for humans to understand a model) (Arrieta et al., 2020;

Gunning et al., 2019). High-performing models are typically too complex and hard to

interpret or explain, which raises concerns about trust, ethical use, safety, and technology

adoption (Adadi & Berrada, 2018; Arrieta et al., 2020; Crowe & LaPierre, 2018; Samek

et al., 2021; Samek & Müller, 2019; Sun & Medaglia, 2019; Zhai et al., 2021).

Unfortunately, these challenges are evident in existing early warning systems as their

predictions lack meaningful insight or informative feedback for intervention guidance

(Cano & Leonard, 2019).

This research addresses these concerns by exploring eXplainable AI (XAI)

research to improve its trust, reliability, transparency, performance, adoption, and

acceptance. In addition to improving educational outcomes, this study addresses the lack

of XAI literature for educational applications (Abdul et al., 2018; Adadi & Berrada,

2018; Arrieta et al., 2020; Gilpin et al., 2019; Gunning et al., 2019; Gunning & Aha,

2019; Samek et al., 2021; Samek & Müller, 2019; Vilone & Longo, 2020). Building upon

the limited and emerging works in XAI, this research responds to the prompt for adopting

Theory-Guided Data Science (TGDS) to enhance predictive performance and explainable

results in higher education (Pillay, 2020; Xing et al., 2015). Implementing TGDS has the

potential to improve prediction performance as well as address the lack of theoretical

grounding in EDM and Learner Analytics research (Clow, 2013; Conijn et al., 2017).

This research implemented an EDM protocol to analyze learner LMS data of a dual-mode

5

(i.e., traditional and online) higher education institution to develop, assess, and analyze

explainable techniques and explainable models for predicting at-risk learners.

Purpose of the Study

The purpose of this study is to explore the efficacy of XAI to improve the

performance and explainability of at-risk student predictions. More specifically, this

study will implement Theory-Guided Data Science (TGDS), K-Means Clustering, and

Genetic Programming (GP), all of which have been demonstrated in early works to

enhance predictive performance and explainable results in higher education (Pillay, 2020;

Xing et al., 2015). This study proposes a novel theory-guided feature selection (TGFS)

conceptual learning model, which aims to improve model explainability as well as

addresses the lack of theoretical grounding in Educational Data Mining (EDM) and

Learner Analytics research (Clow, 2013; Conijn et al., 2017). EDM protocols from the

literature are leveraged to provide a robust and reliable data collection, research, and

analysis process within an online Learning Management System (LMS) of a dual-mode

higher education institution.

Research Questions

The following are the XAI EDM study research questions to be investigated:

• RQ1: What are the associations between activity factors and student final grades?

• RQ2: What are characteristics of at-risk students that can be identified using K-

Means Cluster Analysis?

• RQ3: What are characteristics of at-risk students that can be predicted using XAI

techniques and models?

6

• RQ4: How do explainable models compare to complex models when LMS

student activities are used as features to predict at-risk students?

Significance of the Study

This study addresses concerns, challenges, and gaps in the current literature by

contributing innovative research in the field of XAI research with a specific focus on

improving educational outcomes. First, this study contributes to the critical need to

improve student retention in higher education to address the historically low and stagnant

progress (NCES, 2020; Tinto, 2006). Although emerging AI technologies such as Deep

Neural Networks are highly effective at predicting at-risk students, they are considered

black-box systems, which lack explainability, are difficult to understand, and may raise

concerns for trust, fairness, safety, ethics, regulatory compliance, and technology

acceptance (Arrieta et al., 2020). Second, this study contributes to the gap in XAI

research in the educational domain, is which evident by the scarce number of works cited

in recent explainable systematic literature reviews (Adadi & Berrada, 2018; Anjomshoae

et al., 2019; Arrieta et al., 2020; Vilone & Longo, 2020). And third, this study focuses on

online learning environments, which enable EDM for XAI implementation while

promoting technological sustainability and educational equity thanks to the widespread

accessibility of distance learning. This research has broader implications as XAI research

contributes to fields beyond education, such as those in the medical, government, and

commercial industries.

7

Implications to the Field of ISDT

What are the implications of XAI and EDM research to online learning and more

specifically to the field of Instructional Systems Design and Technology (ISDT)? this

question can be answered by first framing the definition of the field. According to Reiser

and Ely (1997), the Association of Education Communication and Technology (AECT)

defined Instructional Technology as “the theory and practice of design, development,

utilization, management, and evaluation of processes and resources for learning” (p. 69).

This research aligns well with this definition in two ways to advance research and

practice in the field.

First, this research implemented a theory-guided feature selection model (TGFS)

that integrates learning theories such as Activity Theory, Bruner’s Social Learning

Theory, and Fink’s Significant Learning Theory. By leveraging theory, at-risk predictions

and the explainability of those predictions can be improved (Xing et al., 2015).

Furthermore, theory-guided models address shortcomings in data-centric approaches,

such as EDM (Karpatne et al., 2017). TGDS also improves the chance of implementing

influential factors with causal relationships that are grounded in sound instructional

principles. When incorporated into future at-risk student detection and prediction

systems, TGFS can provide targeted explanations that map back to theory to provide

intervention guidance.

Second, this research evaluates the predictive performance and explainability of

theory-grounded XAI models. Evaluative research provides preliminary evidence that can

alleviate the cost of implementing and testing in practice. In addition, when implemented

as an early warning system, XAI models can provide more formative feedback to both

8

instructors and students. For example, early warning at-risk indications can provide

teachers and faculty with valuable information about students that may most likely fail,

and therefore, need additional special attention and intervention. It allows educators to

focus their resources to improve the overall success of most students.

In summary, this research aligns with the field of ISDT by integrating theory with

the design, development, and evaluation of XAI models to improve learning and

instruction within online learning environments. Leveraging EDM research and processes

ensures an effective, efficient, and comprehensive approach to training and predicting

learning outcomes based on student LMS interaction data.

Limitations

This section identifies the limitations of the study, which are “factors that may

affect the study but which are out of the control of the researcher” (Ostler, n.d., p. 6).

Limitations in this study are acknowledged for transparency and mitigated, when

possible, to enhance validity, reliability, and robustness.

First, samples collected from the target population for the XAI EDM study were

limited to student activity and performance parameters and did not include demographic

or prior performance parameters. As such, sampling demographic could not be directly

computed. To address this limitation, the central limit theorem was leveraged by

obtaining large random samples (greater than 30) of the population, which allows for the

assumption that the sampling distribution is normal with the mean equal to the population

mean (Field, 2018). This in effect allows us to approximate the sampling statistics using

inferential statistics (Kwak & Kim, 2017). Therefore, the population demographic, which

was retrieved from NCES (2021), is reported instead of the sampling statistics.

9

Second, there were limitations in computing hardware such as time, memory, and

processing constraints due to the large size of the LMS activity logs retrieved. To address

this, data was extracted from the LMS database in smaller weekly segments and bounded

to LMS activity logged during the spring semester of 2021. The data was also imported

into a local LMS database that allowed for the processing and analysis of data that

eliminated the restriction of working memory.

Third, unbalanced data sets were observed during the clusters obtained during k-

Means clustering, which have negative implications on model accuracy and post-hoc

statistical analysis (Banerjee et al., 2018; Field, 2018). Consequently, Banerjee et al.

(2018) found that “sampling methods can have a major influence on reducing the gap

between sensitivity and specificity of a model” (p. 362). For asymmetric class

distribution, the specificity and sensitivity of the minority class could be adversely

impacted and result in a high number of false negatives and false positives (Banerjee et

al., 2018). To address this, stratified k-fold cross-validation was selected during

supervised learning, which prevents overfitting and creates “an unbiased estimate of the

population proportion” (Berrar, 2018, p. 4).

To address post-hoc analysis impacts, random under-sampling will be used to

obtain balanced data set for mean difference analysis. For large samples (greater than 30),

the sampling distribution will be normally distributed according to the central limit

theorem regardless of the underlying population distribution characteristic (Field, 2018).

This allows for the use of parametric tests for statistical analysis.

10

Delimitations

This section identifies the delimitations of the study, which are “factors that may

affect the study over which the researcher has control… [to] …set boundaries or limits”

for feasibility and scope (Ostler, n.d., p. 6).

First, as part of the EDM data tuning and normalizing process, a substantial

number of samples were removed from the population due to outliers, errors, missing

values, or inconsistent data. This may introduce sampling exclusion bias as the data set

will not be inclusive of all students.

Second, the study is limited to 15-week LMS data collected from a Doctoral

University of High Research Activity by The Carnegie Classification of Institutions of

Higher Education with a large online student population (25 percent of students study

exclusively online). This delimitation was necessary to keep the study feasible and within

scope while targeting online students, which is of particular interest for this study as it

facilitates EDM for predictive modeling. Limiting participants to a single institution will

also mitigate concerns of volunteer bias that is common in soliciting a wider internet

population (L. Cohen et al., 2018, p. 372).

Third, this study excluded performance-related metrics from the feature selection

due to inconsistent implementation of student assessment metrics (e.g., grade scores from

assignments and quizzes) across courses. As a result, features selected for at-risk student

prediction were isolated to student learning management system (LMS) logged activity

frequencies (e.g., access counts to pages, tools, and functions within the LMS

environment). Thus, this study is primarily focused on predicting at-risk students based

on activity-only related features.

11

Assumptions

As mentioned previously, random sampling of sufficient size will be obtained to

leverage the central limit theorem to assume that the demographic makeup of the

randomly selected samples (i.e., sample mean) is representative of the population

demographic (i.e., fits a normal distribution of the population sample means), which was

retrieved from NCES (2021). In addition, stratified k-fold cross-validation will be used

for training/test split sampling for classification. Random undersampling will be used for

post-hoc statistical analysis, such as association comparative analysis or hypothesis

testing.

For K-Means cluster analysis, outliers are removed to alleviate skewed effects and

feature frequency values normalized due to inconsistent variables scales with large

standardized deviations as recommended by Cohen et al. (2018). K-Means clustering

assumes that variables are continuous with spherical clustered shapes (Everitt et al.,

2011). Typically used as a post-hoc analysis technique to discover patterns, clustering can

be useful to the group and categorize data for subsequent analysis (L. Cohen et al., 2018).

For this study, the clusters and their characteristics define the at-risk groups’ ground

truths labels, which are used in the subsequent classification and comparative analysis.

To ensure the validity and reliability of analytic findings, an analysis of the

violation of assumptions will be performed for each respective statistical and/or analytic

technique. In quantitative research, assumptions to consider include statistical power,

normality, linearity, sample size, variance, homogeneity, skew, kurtosis, and outlier

effects (L. Cohen et al., 2018). Depending on the results of the assumption checks,

appropriate statistical tests will be selected and used. For statistical significance testing,

12

this study will adopt Cohen et al.’s (L. Cohen et al., 2018) recommendation for

“statistical power at 0.80, alpha at 0.05, and beta at 0.20” (p. 752). Statistical

significance is a measure of the probability (p-value) of a calculated effect due to chance.

Statistical significance is defined at the p<0.05 level (the probability of finding an effect

is 5% due to chance).

Chapter Summary

This chapter described the XAI EDM study, its guiding research questions,

research design, conceptual framework, reliability and validity considerations, and

implementation methods and procedures. The study implements an EDM approach that

leverages XAI techniques (e.g., TGDS and K-Means Cluster Analysis) and XAI models

(e.g., Genetic Programming) to improve at-risk student prediction and explanations. The

scope of the study includes an exploratory analysis to characterize learning groups and a

classification analysis to assess the prediction performance and explainability of a theory-

guided model. Finally, an emerging Genetic Programming model will be evaluated on

performance and explainability against other common leading AI/ML models.

The remaining chapters will present the relevant sections of the research, which

are organized as follows: Chapter 2 provides a literature review describing the problems

and background of XAI and EDM/Learner Analytics research; Chapter 3 gives provides

relevant theories and conceptual models; Chapter 4 presents the XAI EDM Study, which

includes the methods and discussion of results; Chapter 5 addresses reliability and

limitations of our study; and Chapter 6 concludes with directions for future research.

13

CHAPTER II

Literature Review

Introduction

This chapter presents a literature review of the problem space revolving around

student retention and the need for improving current at-risk student prediction systems

using Explainable Artificial Intelligence (XAI) models in Educational Data Mining

(EDM) research. The findings reported include (1) the demand, motivations, progress,

and challenges of XAI; and (2) the common study types, target outcomes, and feature

categories implemented in EDM research. The results of this literature review provided

guidance and direction for this research.

Methods

This study adopted Xiao and Watson's (2019) systematic literature review process

to enhance reliability, rigor, quality, and repeatability. A systematic literature review

follows a rigorous process of identifying, screening, inclusion/exclusion, data extraction,

and analysis of relevant past and current research. Initial sources were first identified by

conducting relevant keyword searches (i.e., using search strings “XAI AND ‘explainable

artificial intelligence’ AND predict AND ‘at-risk’ AND student AND performance AND

outcome AND learning” or “‘educational data mining’ AND ‘Learner Analytics’”) in the

Google Scholar and EBSCO databases. Selected works were then screened to remove

duplicates based on the title name. Abstracts are reviewed to filter items based on the

inclusion criteria of being XAI and/or EDM relevant studies. A full-text review was then

performed to extract, codify, and categorized common themes, key findings, and

limitations of XAI and EDM research.

14

In total, 16 sources (Abe, 2019; Al Breiki et al., 2019; Al-Omar, 2018; R. S. J. D.

Baker et al., 2011; Berens et al., 2019; Bienkowski et al., 2012; Chamizo-Gonzalez et al.,

2015, p.; Conijn et al., 2017; Imran et al., 2019; Ndou et al., 2020; Pillay, 2020; Raju et

al., 2020; Song et al., 2019; Xing et al., 2015; Yang et al., 2021; Zheng, 2020) were

selected, reviewed, codified, and summarized. The objective was not exhaustive, but

precursory to analyze, coded, categorized, and triangulate common research aims,

predictor variables, features selected, analysis techniques, and study limitations, all of

which helped guide and support the research.

The Problem of Student Retention and the need for XAI

The Need to Address the Low and Stagnant Student Retention

Improving student retention has been an ongoing challenge, both in the US and

the world according to the National Center for Educational Statistics (2022) and Beer and

Lawson (2017). This is evident in the historically low student retention rate and stagnant

progress (Tinto, 2006), which can be observed from 1996 to 2010 with only marginal

improvements thereafter (see Figure 1). On average, only 56% graduate within six years

from a four-year institution, and, worse, 33% graduate within three years from a two-year

institution. When compared to other nations, the US graduation rate (60%) in 2018 was

substantially lower than the Organization for Economic Co-operation and Development

(OECD) (78%) and European countries (79%) (OECD, 2020). In addition to increasing

student burdens, attrition costs are significant and widespread for higher education

institutions across the globe (2017).

15

Figure 1

US Postsecondary Institution 150% Completion Time Graduation Rate

Note. Data from the National Center for Education Statistics (NCES) Trend Generator (NCES,

2022). In the public domain.

These statistics highlight the critical need to improve student retention in the US

not only for national and institutional progress but more importantly, student success.

Addressing student attrition is important as it reflects (Long et al., 2006): the waste of

institutional cost and government-funded expenditures in producing an outcome; the

student financial and emotional burden; a critical measure of university quality and

educational support services; educational equity; and waste of potential talent.

The Need for Explainable AI (XAI) in Education

Implementing effective learning interventions requires a grasp of the underlying

causes of student attrition, the effectiveness of implementations in practice, and the

current state of research. Prior research has identified a wide range of root causes

stemming from the socio-economic background, financial aid support, family

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

G
ra

d
u

at
e

R
at

e

Cohort year

US Postsecondary Institution 150% Completion Time Graduation Rate

2-Yr

4-Yr

16

background, race, culture, work status, personal choices, class size, and academic

preparation/performance (Beer & Lawson, 2017; Stolk et al., 2007; Wills et al., 2018). To

address this, many nations, states, and local governments have implemented various

interventions such as student support policies, financial aid, and academic support

programs with mixed results (Stolk et al., 2007). Stolk et al. (2007) found that

determining consistent factors and interventions was difficult due to the varying nature of

countries, institutions, cultures, and demographic backgrounds. Nevertheless, a common

and robust measure of student attrition commonly referenced by the authors was

academic performance. Concerning academic performance, Wellman et al. (2012)

characterized two groups of student attrition: (1) those in good standing that leave early

(48%) or late (33%); and those not in good standing that leave early (15%) or late (5%)

(see Figure 2). It is the latter group (i.e., 20% of students not in good standing or at-risk)

that is the target of this research.

Figure 2

Attrition Timing and Academic Standing of Students

Note. Chart showing the percentage of student attrition for time and academic standing. Reprinted

from Measuring (and Managing) the Invisible Costs of Postsecondary Attrition (p. 6), by J.

17

Wellman, N. Johnson, and P. Steele, 2012, American Institute for Research

(https://files.eric.ed.gov/fulltext/ED536120.pdf).

A common strategy in addressing student retention involves the use of early

warning systems that collects and monitors student activity/performance to analyze and

provide real-time indications of at-risk students. Researchers have explored how

educational data mining (EDM) and learning analytics can be used to design, model, and

predict student outcomes for guiding instructional interventions (Alshammari et al., 2013;

Du et al., 2020; Şahi̇n & Yurdugül, 2020). An area of promise in predicting at-risk

students includes the use of artificial intelligence (AI) and machine learning (ML). The

advancements in deep learning, availability of large datasets, and distributed parallel

computing have enabled AI/ML to achieve unprecedented performance and accuracy in

pattern recognition, automation, and prediction (Adadi & Berrada, 2018; Gunning et al.,

2019; Khare et al., 2018; Ramalingam et al., 2018; Samek & Müller, 2019). This is

evident and popularized by recent AI breakthroughs.

For example, headline news in 2016 of Google’s AlphaGo beating the world’s

leading professional, Lee Se Dol, in the game of Go highlighted a pivotal case where

machines exceeded human cognitive performance (Moyer, 2016; Silver et al., 2017).

Kwon (2020) later performed a probability distribution analysis of AlphaGo’s game

reading and decision-making ability against that of professional go players and found that

it had statistically “surpassed human abilities” (p. 1). This is just one of many examples

in which AI has demonstrated task superiority over humans, among others in “complex

visual tasks” (Samek & Müller, 2019, p. 1) such as in medical imaging pattern

recognition (Subbiah et al., 2020). As a disruptive technology, AI has the potential to

https://files.eric.ed.gov/fulltext/ED536120.pdf
https://files.eric.ed.gov/fulltext/ED536120.pdf

18

advance knowledge work automation tasks, which may supplement or even replace large

market sectors involving human cognitive abilities (Manyika et al., 2013).

However, the high performance of AI models typically comes at the cost of

explainability, which is the interpretability or understandability of a system or model

(Arrieta et al., 2020; Gunning et al., 2019). Due to their highly complex nature, most AI

models lack explainability. This raises concerns for trust, ethical use, and safety that can

inhibit technology adoption in applications involving humans, such as transportation,

healthcare, legal, military, finance, and engineering (Adadi & Berrada, 2018; Crowe &

LaPierre, 2018; Samek et al., 2021; Samek & Müller, 2019; Sun & Medaglia, 2019; Zhai

et al., 2021). For decision-making applications in education, the lack of explainability can

negatively impact trust, fairness, educational equity, and technology acceptance. Non-

explainable models result in shallow feedback that limits meaningful insight needed for

effective learning intervention guidance.

This research addresses the limited transparency of complex black box systems by

exploring the effectiveness of eXplainable artificial intelligence (XAI) for improving the

performance and explainability of at-risk student predictions. As an emerging technology,

XAI can be integrated into an early warning system (EWS) to provide at-risk student

predictions with real-time feedback and intervention guidance for improving student

learning and retention (Veerasamy, 2020). XAI encompasses explainable models and/or

explainable techniques to help humans better understand, interpret, and trust machine

learning (Gunning & Aha, 2019) as well as addressing model causality, transferability,

fairness, and confidence (Arrieta et al., 2020).

19

Although XAI has been widely researched, there is limited literature addressing

educational applications (Abdul et al., 2018; Adadi & Berrada, 2018; Arrieta et al., 2020;

Gilpin et al., 2019; Gunning et al., 2019; Gunning & Aha, 2019; Samek et al., 2021;

Samek & Müller, 2019; Vilone & Longo, 2020). When used to support teaching and

learning, XAI can help teachers and students better understand the reasons and logic

behind at-risk alerts to provide the meaningful insight needed for effective decision-

making, intervention planning, or self-regulated learning.

Why XAI?

The Emerging Demand for Explainability

The rapid development and spread of AI have created the need to control where

decision-making applications involve humans or human safety. The potential risks of

negative consequences have motivated academic and government entities to increase

awareness and research in developing more explainable systems, which later became

known as the field of Explainable AI, or XAI (Duval, 2019). The increased interest is

evident in the sharp rise in relevant publications (Figure 3) and online Google search

trends (Figure 4). Arrieta et al. (2020) also found a similar trend in increasing

explainability publications (XAI and Explainable Artificial Intelligence) since 2017

(Figure 5). This trend is also evident in the open-research community based on similar

XAI keyword search terms from Knoth and Zdrahal’s (2012) CORE open publication

database (CORE, n.d.), as illustrated in Figure 6. As the field of AI and ML continues to

grow and evolve, so will the field of XAI to address its challenges and barriers to

trustworthiness, safety, ease of use, and adoption.

20

Figure 3

Chart Showing Publication Trends for XAI

Note. Chart retrieved from (Google Trends, n.d.) using the search string "Explainable AI" filtered

for years ranging from 1940 to 2019. In the public domain.

Figure 4

Chart Showing Google Search Trends for AI, ML, and XAI

Note. Chart adapted with data retrieved from (Google Trends, n.d.). In the public domain.

https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH

21

Figure 5

Chart of Explainability Related Publications

Note. The chart shows the rising trend in private research databases. Reprinted from (Arrieta et

al., 2020, p. 3). From “Explainable Artificial Intelligence (XAI): Concepts, taxonomies,

opportunities, and challenges toward responsible AI,” by Arrieta, A. B. et al., 2020, Information
Fusion, 58, 82–115 (https://doi.org/10.1016/j.inffus.2019.12.012). Copyright 2020 by Elsevier

B.V.

Figure 6

Chart of XAI Open Publications

Note. This chart shows the number of XAI open publications based on XAI keyword search terms
queried from the CORE database. Adapted from CORE API, by Petr Knoth and Zdenek Zdrahal,

2021 (https://core.ac.uk/services/api). In the public domain.

https://doi.org/10.1016/j.inffus.2019.12.012
https://core.ac.uk/services/api
https://doi.org/10.1016/j.inffus.2019.12.012
https://core.ac.uk/services/api

22

Although the interest in XAI has increased, the field is still in its infancy (evident

by the low percentage of XAI publications compared to that of AI and ML in Figure 4

and Figure 5) and lacks a common definition (Arrieta et al., 2020). For this study, the

following definition of XAI is adopted to take into account human understanding and

target audience (both of which are critical and relevant within the educational context):

"Given an audience, an explainable Artificial Intelligence… produces details or reasons

to make its functioning clear or easy to understand" (Arrieta et al., 2020, p. 6).

Motivations for XAI

The motivation for this research stems from the increasing demand for human and

AI interaction in multiple applications and domains, which requires XAI to address

concerns for transparency, fairness, ethics, trust, and regulatory compliance. Arrieta et. al.

(2020) also provide rationales for XAI based on the target audience (see Figure 7). Target

audiences include domain experts, regulatory entities, managers, executive members,

scientists, developers, and affected users. The benefits of XAI include gaining trust,

scientific knowledge, regulatory compliance, operational efficiency, research, and

increased explainability. However, there is a lack of emphasis on educators and learners,

whose primary interest is to improve educational outcomes and student retention. XAI

systems can help improve the learning and instruction of students and educators by

providing more detailed and informative indicators of at-risk performance. An easy-to-

understand, interpretable, and explainable system ultimately results in higher confidence

and trust from educational users (Gunning & Aha, 2019; Shin, 2021).

23

Figure 7

Chart Presenting Rationales for XAI Based on Target Audience

Note. From “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities, and

challenges toward responsible AI,” by Arrieta, A. B. et al., 2020, Information Fusion, 58, 82–115

(https://doi.org/10.1016/j.inffus.2019.12.012). Copyright 2020 by Elsevier B.V.A preliminary

search of the current literature also identified the following benefits of XAI:

● Supports effective decision-making:

○ In Educational Science, the need for explainability is required to improve

and support effective decision-making, such as in e-Learning

environments where human and AI system interaction is prevalent

(Alonso & Casalino, 2019).

● Aligns with major organizational interest:

○ In 2016, the US Defense Advanced Research Project Agency (DARPA)

launched the XAI program to fund research for "new or modified machine

learning techniques that produce explainable models that, when combined

with effective explanation techniques, enable end-users to understand,

appropriately trust, and effectively manage the emerging generation of

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012

24

Artificial Intelligence (AI) systems" (Broad Agency Announcement:

Explainable Artificial Intelligence (XAI) DARPA-BAA-16-53, 2016, p. 5).

● Supports learning and instruction:

○ XAI systems not only have the potential to assist educators in designing

courses but also provide students with explanations about their learning

activities, which is expected to improve student perceptions and learning

outcomes (Alonso & Casalino, 2019).

● Increases trust and safety:

○ “Entrusting important decisions to a system that cannot explain itself

presents obvious dangers” (Adadi & Berrada, 2018, p. 52138). The lack of

transparency in AI systems presents concerns of trust, especially in critical

decision-making applications, such as medical diagnosis, criminal

judgment, and auto-pilot vehicle systems (Adadi & Berrada, 2018; Crowe

et al., 2017; Sun & Medaglia, 2019).

● Promotes technology acceptance:

○ In education, the lack of trust in black box AI raises concerns for fairness

and educational equity, which become barriers to technology acceptance.

XAI can provide solutions and explainability techniques to increase trust

and promote technology acceptance of AI (Arrieta et al., 2020).

● Addresses regulatory compliance, fairness, and trust:

○ “AI needs to provide justifications to comply with legislation, for instance,

the ‘‘right to explanation’’, which is a regulation included in the General

25

Data Protection Regulation (GDPR) that comes into effect across the EU

on May 25, 2018” (Adadi & Berrada, 2018, p. 52143).

○ “XAI systems are expected to be beneficial to society through fairness,

transparency and explainability, regarding not only technical but also

ethical and legal issues.” (Alonso & Casalino, 2019, pp. 2–3).

○ “For commercial benefits, for ethics concerns or regulatory considerations,

XAI is essential if users are to understand, appropriately trust, and

effectively manage AI results” (Adadi & Berrada, 2018, p. 52142).

Although XAI can offer many benefits, this research focuses on improving

educational outcomes. More specifically, this research will investigate the efficacy of

XAI techniques and XAI models for enhancing and augmenting instruction by providing

early at-risk student prediction and formative explainable feedback.

An Explainable Example

In the current literature, there are a limited number of studies exploring the use of

unsupervised learning for XAI research as most focus on the interpretation of supervised

techniques (Frost et al., 2020). The limitation of only using supervised techniques is that

they only provide accurate predictions of at-risk students, Of the limited unsupervised

implementations, Frost et al. (2020) investigate an expanding k-Means Clustering

(ExKMC) methodology implementing binary threshold trees for feature characterization

(see Figure 8). When kept small, binary threshold tress (i.e., a type of decision tree) are

by nature easy to understand, highly interpretable (Arrieta et al., 2020; Awaji, 2018), and

flexible as it supports both categorical and numerical data types without sacrificing

accuracy (Song, 2021a). From Figure 8, we can see that k-Means Clustering provides

26

adequate pattern recognition of similar groups while the binary decision tree provides an

explainable logical structure facilitating meaningful insight based on input parameter

values.

Figure 8

Binary Decision Tree

Note. Figure showing a binary decision tree (bottom) representation of a k-Means Cluster (top)

classification. Adapted from “ExKMC: Expanding Explainable k-Means Clustering,” by N. Frost,

M. Moshkovitz, and C. Rashtchian, 2020, arXiv.org, p. 2 (https://arxiv.org/abs/2006.02399v2).

The Forefront and Challenges of XAI

The works of Arrieta et al. (2020) provide a comprehensive literature review of

recent XAI research spanning 400 studies, which categorizes these models into three

types: (1) transparent models (e.g. Linear/Logistic Regression, Decision Trees, K-Nearest

Neighbors, Rule-based Learning, General Additive Models, and Bayesian Models); (2)

shallow models (e.g. Tree Ensembles, Random Forests, Multiple Classifier Systems,

Support Vector Machines); and (3) Deep Learning models (e.g. Multi-layer Neural

Networks, Convolutional Neural Networks, Recurrent Neural Networks, and Hybrid

Transparent Models). Transparent models have varying levels of understandability by

https://arxiv.org/abs/2006.02399v2
https://arxiv.org/abs/2006.02399v2

27

design while shallow and Deep Learning models are considered complex and difficult to

interpret black box systems.

The goal of XAI research is to further develop and increase the explainability of

existing models while preserving or improving predictive performance and accuracy. In

Figure 9, Arrieta et al. (2020) depict the horizon of XAI research within the green band,

which represents studies implementing various methods to increase the explainability of

both ML and Deep Learning models. Figure 9 also illustrates Gunning et al.'s (2019)

finding that there is a general tradeoff between accuracy and explainability based on the

model implemented. Explainability techniques used include implementing hybrid models

and post-hoc techniques to increase the accuracy of more explainable systems while

improving the interpretability of accurate models (Arrieta et al., 2020). Although XAI

research spans various industries and domains, this research specifically focuses on

implementing XAI for educational at-risk predictive systems while leveraging

instructional theory to enhance explainability and improve educational outcomes.

28

Figure 9

Chart Illustrating the Tradeoff between Model Accuracy and Model Interpretability

Note. From “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and

challenges toward responsible AI,” by Arrieta, A. B. et al., 2020, Information Fusion, 58, 82–115

(https://doi.org/10.1016/j.inffus.2019.12.012). Copyright 2020 by Elsevier B.V.

Educational Data Mining and Learner Analytics

Common Study Types

Most of the literature reviewed implemented EDM and/or Learning Analytics to

collect student LMS data, analyze and classify patterns, and build predictive models to

provide early detection of at-risk students and intervention guidance in hopes to improve

educational outcomes and student retention. From Table 1, study types found include

predictive (13), analysis (3), correlation (2), comparative (1), and frequency analysis (1).

We also included literature reviews (3) to provide additional insight that may have been

missed from the limited number of studies selected. Most studies (13) focused on

predicting student learning outcomes, such as final grade or pass/fail result, which is

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012

29

consistent with (Conijn et al., 2017). Note that some works had multiple studies, which we

counted as separate experimental implementations.

Table 1

Target Study Types

Study Types Sources Studies

Predictive

(Abe, 2019; Al Breiki et al., 2019; R. S. J. D. Baker et al., 2011;

Berens et al., 2019; Conijn et al., 2017; Imran et al., 2019; Ndou

et al., 2020; Xing et al., 2015; Zheng, 2020)

13

Literature Review (Bienkowski et al., 2012; Pillay, 2020; Raju et al., 2020) 3

Analysis (Al-Omar, 2018; Song et al., 2019; Yang et al., 2021) 3

Correlation (Abe, 2019; Chamizo-Gonzalez et al., 2015) 2

Comparative (Al Breiki et al., 2019) 1

Frequency Analysis (Al Breiki et al., 2019) 1

Grand Total 23

Common Target Outcomes

Table 2 gives a frequency summary of the target study outcomes of the

experimental studies reviewed (excluding three literature reviews) categorized by category

predicted or analyzed, which includes student achievement (credits earned), behavior

(personality traits), perceived usability (sentiment), performance (activity, final exam, final

grade, and pass/fail result), preparations for learning (PFL test score), and retention

(dropout). Note that student performance had the highest research interest with a primary

focus on predicting final grades.

30

Table 2

Target Study Outcomes

Outcome Categories Outcome Variables Studies

Achievement Credits Earned (Abe, 2019) 1

Behavior Student Personality Traits (Zheng, 2020) 1

Perceived Usability Sentiment (Al-Omar, 2018) 1

Performance

Activity (Xing et al., 2015) 1

Final Exam (Yang et al., 2021) 1

Final Grade: 4 studies from (Al Breiki et al., 2019); and

(Chamizo-Gonzalez et al., 2015; Conijn et al., 2017; Ndou

et al., 2020; Song et al., 2019)

8

Pass/Fail (Abe, 2019; Imran et al., 2019) 2

Preparations for

Future Learning

(PFL)

PFL Test Score (R. S. J. D. Baker et al., 2011) 1

Retention Dropout (Berens et al., 2019) 4

Grand Total 20

Table 3 gives the study distribution of the predicted target outcome variables

(excluding three literature reviews) sorted by studies implemented. Predicted categories

found include performance (activity, final exam, final grade, and pass/fail result), student

achievement (credits earned), behavior (personality traits), perceived usability

(sentiment), and preparations for learning (PFL test score), and retention (dropout). The

performance category had the highest research implementations with a primary focus on

predicting final grades. This study will investigate factors impacting final grade, as it is

the most common target outcome to predict.

31

Table 3

Target Predictor Variables

Predicted Categories Variables Studies Implemented

Performance

Final Grade

(Al Breiki et al., 2019; Chamizo-Gonzalez et

al., 2015; Conijn et al., 2017; Ndou et al., 2020;

Song et al., 2019)

Pass/Fail (Abe, 2019; Imran et al., 2019)

Activity (Xing et al., 2015)

Final Exam (Yang et al., 2021)

Retention Dropout (Abe, 2019; Berens et al., 2019)

Achievement Credits Earned (Abe, 2019)

Behavior Student Personality Traits (Zheng, 2020)

Perceived Usability Sentiment (Al-Omar, 2018)

PFL PFL Test Score (R. S. J. D. Baker et al., 2011)

Common Feature Categories

Table 4 summarizes the feature selection categories sorted by studies

implemented. The categories of features (i.e., predictor variables) include student

activity, context, performance, learner characteristics, time, achievement, learner

perception, concurrent courses, course content, participation, and SafeAssign Score.

Among these, student activity, context, and performance were the most prominent

predictors used. For this study, student LMS activity will be selected as potential features

for prediction.

32

Table 4

Feature Categories

Features Categories Studies Implemented

Student activity

(R. S. J. D. Baker et al., 2011; Bienkowski et al., 2012; Chamizo-Gonzalez et

al., 2015; Conijn et al., 2017; Song et al., 2019; Xing et al., 2015; Yang et al.,

2021; Zheng, 2020)

Context
(Abe, 2019; Berens et al., 2019; Bienkowski et al., 2012; Imran et al., 2019;

Ndou et al., 2020; Zheng, 2020)

Performance
(Abe, 2019; Al Breiki et al., 2019; Berens et al., 2019; Conijn et al., 2017;

Imran et al., 2019)

Learner

Characteristics
(Bienkowski et al., 2012; Ndou et al., 2020; Zheng, 2020)

Time (Bienkowski et al., 2012; Ndou et al., 2020; Song et al., 2019)

Achievement (Abe, 2019; Berens et al., 2019)

Learner Perception (Al-Omar, 2018; Bienkowski et al., 2012)

Concurrent Courses (Berens et al., 2019)

Course Content (Bienkowski et al., 2012)

Participation (Abe, 2019)

SafeAssign Score (Zheng, 2020)

Summary of Literature Findings

This section provides a summary of literature review findings related to EDM

research using logged student activity as features for predicting students’ outcomes.

Table 5 highlights the selected literature and its results.

33

Table 5

Study Findings

Outcome

Variable

Features Findings Reference

Activity Logged interaction frequency data

based on activity theory: subject

(initiated activity, received activity),

community (chat activity), division

of labor (content activity), object

(module activity, group activity).

Investigated a Theory-guided GP

model, which outperformed other

models in prediction accuracy and

interpretability.

Predicted student performance

(represented by several activities

completed) with higher accuracy:

fitness (80.2%), sensitivity (80.3%),

and specificity (80.3%).

Outperformed other models (except

for Naïve Bayes) in predicting at-

risk (low number of activities

completed) students:

(fitness=89.5%; sensitivity=85%;

and specificity=94.4%).

As a white box model, GP is

preferred over Naive Bayes as it

offers explainable results useful for

intervention guidance.

(Xing et

al., 2015)

Credits

Earned

Attendance Rate Demonstrated a strong correlation

between attendance and academic

achievement (units acquired) for

regular, postponed, and dropout

groups.

(Abe,

2019)

(continued)

34

Outcome

Variable

Features Findings Reference

Dropout Age, Gender, Location, Nationality,

Immigration Background, Health

Insurance, Educational Background,

Prior Courses Completed, Number

of Concurrent Courses Enrolled,

Employment Status, Relevant Exam

Score, Other Exam Score, GPA,

Failed Exams per Semester, Exams

Not Participated per Semester,

Number of No-Show Exams per

Semester

Three types of tests were analyzed:

based on dropout rate, average

dropout rate, and performance data

only.

AdaBoost predictive accuracy is

strong (67 - 95% from enrollment to

the fourth semester) and improves

with increasing semesters.

Demographic prediction is low at

enrollment (67% and 50% for state

and private universities

respectively).

Accuracy is high in the fourth

semester (up to 83% for private).

Demographic data is only useful

during enrollment and the first

semester as it does not substantially

improve accuracy after performance

data is available. Performance data is

better than demographic data at

predicting dropouts.

(Berens et

al., 2019)

Average Attendance Rate Poor classification performance at

the beginning of the first semester.

There was a good predictive

performance in the 6th week (all

methods had precision and recall >

72%) and at the end of the semester

(neural network method had about

85% accuracy) for poor and good

performers, but poor predictive

power (precision and recall < 65%)

for medium performers.

Predictive performance was higher

at the end of the first and second

semesters.

(Abe,

2019)

Entrance Exam Type, Entrance

Exam Scores, Unit Acquisition Rate,

Average Attendance Rate, Semester

GPA

Prediction accuracy increases over

time using the Naives Bayes

method. At the end of the first year,

prediction accuracy ranged from

.797 to .814 for all methods.

(Abe,

2019)

(continued)

35

Outcome

Variable

Features Findings Reference

Unit Acquisition Rate, Attendance

Rate

For students with low acquisition

(rate < 37) and low attendance (<

79%), 96% (24 of 25 students) drop

out of school or postpone

graduation.

(Abe,

2019)

Final

Exam

Student behavioral: content

interaction in the form of backtrack

reading rate (BRR), reading time

(RT), adding annotations (AN), and

deleting annotations (D-AN).

Classified three groups:

Comprehensive learning group

(CLG), Reflective learning group

(RLG), and Selective learning group

(SLG).

Median learning outcome scores for

the three groups were 84, 83, and 76,

respectively.

CLG had the highest RT, AN, and

D-AN. RLG had the highest BRR

and next highest RT, AN, and D-

AN. CLG had the lowest all (BRR,

RT, AN, and D-AN).

High interaction (CLG) can be

compensated with less interaction

but more reflective (BRR)

behaviors.

Low interaction in all categories will

likely lead to lower performance.

(Yang et

al., 2021)

Final

Grade

Biographical (grade 12 scores, year

started, age, and others) and

enrollment observations

(socioeconomic, psycho-social, pre-

and intra-collect scores, and

individual attributes).

All six analysis techniques resulted

in high predictive accuracy ranging

from 83% up to 95% for 1st, 2nd,

and final year outcomes. Random

forest was most accurate.

(Ndou et

al., 2020)

Influential Course GPA The smaller subset can offer

accurate prediction (96.4%), but

slightly slower than using the full

course seethe highest test accuracy

was obtained with Random Forest.

(Al Breiki

et al.,

2019)

(continued)

36

Outcome

Variable

Features Findings Reference

LMS log data (clicks, online

sessions, total time online, number

of course page views, irregularity of

study time/interval, the largest

period of inactivity, time until first

activity, average time per session,

number of resources viewed, number

of links viewed, number of content

page views, number of discussion

post views, the total number of

discussion posts, number of quizzes

started, number of attempts per quiz,

number of quizzes passed, number

of quiz views, number assignments

submitted, assign. (submission)

views, number of wiki edits, number

of wiki views, average assessment

grade

Although there were statistically

significant correlations for most of

the predictor variables, the authors

found that there was low predictive

power and low portability across

courses.

A larger percentage of the explained

variance is attributed to the student,

rather than the course level.

Overall, the authors found mixed

effects for predictors in both size and

direction when predicting final exam

scores.

LMS log data alone is limited.

For early intervention, other

variables are needed to improve

predictive power. Recommended

variables include learning

dispositions, personality

characteristics, self-disclosure data

about dispositions, entry test results,

learning styles, motivation, and

engagement; all of which have been

previously shown with a significant

correlation with the final grade.

The authors also stress the need for

theoretical grounding. The

portability of LMS predictors still

needs more research.

(Conijn et

al., 2017)

Course, Model Selection Frequency Used various classification

algorithms to identify courses

influencing final GPA. Frequency

analysis was performed to identify

the most influential courses.

Findings revealed some courses

were more influential than others.

(Al Breiki

et al.,

2019)

Naive Bayes and SVM-based SMO

algorithms were the most accurate

(84.83%) classification methods.

Higher accuracy was also achieved

for processed data (replaced missing

values) versus unaltered data.

(Al Breiki

et al.,

2019)

(continued)

37

Outcome

Variable

Features Findings Reference

SMOReg (SVM) performed the best

concerning correlation coefficient

(.9698) between predicted and actual

GPA scores.

(Al Breiki

et al.,

2019)

Student active and passive

participation from LMS data mining.

Active activities include assignment

upload, forum add a post, forum

update post, and forum view

discussion. Passive activities include

content (assignment, blog, course,

forum, resource) view interactions

11 variables were found significantly

correlated to positive learning

outcomes for at least one of the four

courses analyzed. Found that learner

activity can influence learning where

the type of activity may depend on

the course type. The final regression

model included active assignment

upload, active forum posts, and

passive resource view as influential

factors (p < .001) contributing to

positive learning outcomes. The

model explains 84% of the variance

in learning outcomes.

(Chamizo-

Gonzalez

et al.,

2015)

System Access, Session Time,

Discussion Length, Discussion

Quality, Conversation Length,

Conversation Quality

The final grade is correlated with

system access, time spent,

discussion length, discussion quality,

and conversation quality.

No correlation was found for

conversation length. System access

was correlated with time spent and

discussion length. There is a strong

correlation between discussion

quality and conversation quality.

Two factors were identified

comprising learner

participant/interaction in online

courses. Factor 1 was labeled

Interaction quality based on high

loadings from discussion quality and

conversation quality. Factor 2 was

labeled LMS-oriented Interaction

based on high loadings from system

access, time spent, and discussion

length.

(Song et

al., 2019)

Pass/Fail 33 Features including Student

Grades, Demographics, Social

Related Features, and School-

Related Features. Of the 33, 12 were

selected using a filter method using

an information gain-based selection

algorithm

J48 achieved the highest accuracy

(95.78%) for predicting student

performance.

(Imran et

al., 2019)

(continued)

38

Outcome

Variable

Features Findings Reference

GPA, Units, Attendance Rate,

Related Subject Grades, Cumulative

Units

Predictive performance for various

subjects can be effective (accuracy

of 68 - 95%). Accuracy can be

improved using related subject

grades. However, accuracy

performance varies depending on the

subject and features used; causality

is not yet clear and requires further

study.

(Abe,

2019)

PFL Test

Score

Student LMS Interaction Behavior

Each feature is the proportion of

time a specific student behavior

occurs in the LMS log file. Features

include: "help avoidance"; "long

pauses after error messages"; "long

pauses after reading on-demand hint

messages"; "long pauses after

reading an on-demand hint message

and getting the current action right";

"off-task behavior"; "long pauses on

skills assessed as known"; "gaming

the system"; "contextual

slip/carelessness"; and "the presence

of spikes during learning the

moment-by-moment learning

model".

Cross-validation correlation was

better than Bayesian Knowledge

Tracing at predicting student

performance on preparations for

future learning (PFL) tests. It can

predict with decent accuracy and

achieves most of its predictive

power in around 20% of the

Cognitive Tutor activities for

College Genetics, which highlights

the potential for early warning at-

risk learner detection.

Features related to helping such as

help avoidance or long pauses after

on-demand hints, under certain

conditions, can help predict student

performance.

(R. S. J.

D. Baker

et al.,

2011)

Sentiment Student Usability Sentiment,

Instructor Usability Sentiment

Three clusters were identified for

each program type (distance

students, external students, e-

Learning students, and instructors).

Concluded that Blackboard is

reliable and well-designed but

violates basic usability guidelines.

Distance education students suffer

the most, followed by external

students. Overall, the usability of

LMS is low for all user types.

(Al-Omar,

2018)

(continued)

39

Outcome

Variable

Features Findings Reference

Student

Personality

Traits

Demographic features (age, gender,

nationality, and marital status from

survey data.

Learning behaviors (late submission,

number of attempts, and SafeAssign

score) mined from Blackboard LMS.

Personality traits were obtained from

Big5 Framework and Ten-Item

Personality Inventory (TIPI)

questionnaire.

When treated as categorical

variables, personality traits are best

classified by neural networks.

As numerical variables, support

vector regression is best.

Classification accuracy was low

(roughly 20-45%) for all personality

traits (openness, conscientiousness,

extraversion, agreeableness, and

neuroticism).

(Zheng,

2020)

The following provides a summary of the literature findings:

o Most EDM approaches target predictive models with student performance

outcomes (grades, pass/fail, dropout) as labels. Common features include

activity/behavioral data from LMS/EDM and/or performance data (grades,

pass/fail status, and course types). Some include demographics or pre-assessments

as well.

o Interaction is typically correlated with higher learning outcomes, but not always.

Predictive accuracy increases over time. Prediction is most accurate with

performance outcomes. However, activity data or demographic/pre-assessment

data may be useful for early at-risk prediction when performance data is not yet

available. When performance data is available, activity data adds marginal

improvements in prediction accuracy.

o Incorporate, if possible, demographic, pre-course performance data,

activity/behavioral data, and performance data as potential features. Data

collection will be limited based on what is available within the LMS.

40

o To provide early at-risk prediction, predict at weekly intervals rather than at the

end of the course. Predictive models should include past data to enhance

prediction accuracy.

o Explainable models such as decision trees or Genetic Programming are preferred

to be able to offer insightful intervention guidance thanks to improved

transparency.

o There is a lack of XAI studies in education as well as a lack of EDM studies

incorporating theory.

These findings provide valuable support, insight, triangulation, and guidance for

this study, such as feature selection, model selection, and analytic methods.

Theoretical Supports

Introduction

This section gives a review of the theoretical supports leveraged by the XAI EDM

study, such as Theory-Guided Data Science (TGDS) and its use for improving model

performance and explainability; Activity Theory and its use to model human-computer

interaction; Fink’s Significant Learning Theory to model interactions between human,

knowledge, and learning; and Social Learning Theory to consider the importance of self-

efficacy in learning as well as incorporate elements of human to human interaction. Using

these theoretical constructions, a novel Theory-Guided Feature Selection (TGFS)

Conceptual Learning Model is proposed and described.

Theory-Guided Data Science

This study adopts Karpatne et al.’s (2017) theory-guided framework, which

couples theory with predictive data science. TGDS (Karpatne et al., 2017) provides two

41

primary benefits: (a) enhances explainability by providing scientific consistency from

theory-based models; and (b) promotes scientific discovery by providing novel predictive

insight from data science. Leveraging both technology and theory ensures an informed

approach to embracing innovation that is sound in learning principles and instructional

methods.

TGDS aims to address the limitations of a data-science-only or theory-only

approach. This provides new insights into the flexibility and innovative nature of data

science while improving the reliability and explainability of predictive models correlated

to theory (Karpatne et al., 2017). As such, the predictive model, feature selection, and

post-study explainability analysis will be supported by Activity Theory, Fink’s

Significant Learning model, and Bandura’s Social Learning Theory.

This study extends Xing et al.’s (Xing et al., 2015) work by investigating the

effectiveness of using LMS activity data for predicting at-risk students. To supplement

this, we incorporated Fink’s (2003) Holistic View of Active Learning, which comprises:

(1) student access to information and ideas (i.e., content); (2) student experiences (e.g.,

doing, observing, actual, simulated, or authentic settings, etc.); and (3) leaner reflection

activities (e.g., essays, discussions, etc.). Using both models, we can obtain an initial

comprehensive list of educational data mining parameters for feature selection.

Activity Theory

This study adopts Xing et al.’s (Xing et al., 2015) interpretation and

implementation of Engeström activity theory, which posits learning as a contribution of

interacting elements within a complex system. The interactions are described as tools,

subjects, rules, community, and division of labor as illustrated in Figure 10. Observe that

42

Xing et al.’s implementation is an adaptation, in which the object represents the primary

interaction of tools, rules, community, and division of labor. Note that subject represents

the student and is a secondary factor that interacts with other parameters, but not the

object (i.e., learning tasks) directly. Under this model, learning is assumed to be directly

supported by the learning tasks implemented. Using activity theory as a guide, we

propose the following interpretations concerning feature selection:

• The subject represents the student. Subject information such as student behaviors,

demographics, skills, and knowledge can also serve as potential features.

• The tools are supporting applications and functions within the LMS that subjects

directly interact with for learning support, such as helpful resources, plugins, and

applications.

• The rules are constraints placed by the system, such as the LMS functions,

instructors, or students themselves. For example, rubrics are constraints placed by

instructors for controlling the quality of subject tasks.

• The community represents the contribution of social learning and can be measured

by student interactions with communicating elements of the LMS (e.g., email,

discussion forums, or social learning apps).

• The division of labor represents the individual contribution of the subject to

overall learning improvement and can be measured by their interaction with the

course content, such as learning modules.

43

Figure 10

Activity Theory

Note. Image reprinted from (Xing et al., 2015).

Fink’s Significant Learning Theory

Although activity theory presents a holistic perspective of learning based on

student interaction, there is a lack of emphasis on other learner-centric factors such as

self-regulation, motivation, autonomy, and self-efficacy. To add focus on learner needs,

we analyzed Fink’s (Fink, 2003) Significant Learning theory as shown in Figure 11 for

identifying possible features for student at-risk prediction.

44

Figure 11

Fink’s Taxonomy of Significant Learning

Note. Image reprinted from (Fink, 2003).

According to Fink, learning is a complex interactive process between the six

domains of foundational knowledge, application, integration, human dimension, caring,

and learning how to learn. Concerning LMS activities, the following factors are

applicable and considered for feature selection:

• The human dimension can be analogous to activity theory’s community factor as

both leverages the social interaction dimension. LMS activities applicable to this

45

dimension include email, chat, forum discussions, and social media

communication. The human dimension is also closely related to integration,

which requires communication to connect ideas, people, and realms of life.

• Foundational Knowledge represents the information and ideas that are

independently gained (e.g., interaction with content and resources) or indirectly

gained (e.g., social, and interactive communication).

• Learning How to Learn measures a learner's self-regulated learning capability or

autonomy, drive, and volition. These can be measured by their independent and

self-driven actions to acquire knowledge and skills, such as accessing LMS

resources and tools.

Unfortunately, logging limitations of LMS activity prevent us from using intrinsic

learning dimensions such as caring, which requires measures such as student feedback.

Application, on the other hand, can be measured indirectly by performance outcomes,

such as assignment grades, quizzes, projects, or exams. Direct measures will require in-

depth content analysis to assess the level of application quality. Depending on the nature

of the performance activities, specific application metrics can be retrieved. However, the

scope of this study does not include using performance measures as we discovered a large

variance in performance outcome implementation that could not be generalized across

large data sets.

Social Learning Theory

Bandura's (1977b) Social Learning Theory and Vygotsky's (1985) Zone of

Proximal Development can help provide a comprehensive framework for understanding

the social aspects of human learning.

46

In Bandura's (1977b) social learning theory, "vicarious, symbolic, and self-

regulatory processes [are prominent roles] in psychological functioning" (p. vii). Social

learning theory posits a "continuous reciprocal interaction between cognitive, behavioral,

and environmental determinants" in which human development is impacted by both their

independent capabilities as well as external influences (p. vii). Social learning theory

posits that the role of self-efficacy is to not only influence behaviors and environments

but also be influenced by them (Bandura, 1977a, 1977b; Schunk & Pajares, 2009).

"Assuming requisite skills and positive values and outcome expectations, self-efficacy is

a key determinant of individuals’ motivation, learning, self-regulation, and achievement"

(Schunk & Pajares, 2009, p. 37).

In Vygotsky's (1985) Zone of Proximal Development (ZPD) theory, learning is

supported by external influences, which provide knowledge and experiences beyond what

any single learner can achieve alone. In ZPD, learning lags development, which

corresponds to a state of mastery where the learner can demonstrate knowledge and skills

independent of external support (e.g., the ability to solve a complex math problem

without the help of a peer, coach, or teacher) (Vygotsky, 1985). Beyond development,

there will be slightly harder problems that the learner will be unable to complete alone

but likely successful with external support. This slightly higher difficulty level is ZPD

and can serve as a predictor of future learning that can be facilitated by social support.

Thus, learning can be promoted by social learning aspects of human interaction.

For continuous monitoring and evaluation of social learning, formative

assessments can be implemented in conjunction with collaborative social activities, such

as using rubrics with discussion boards, e-portfolios, reflective journaling, and wikis

47

(Perera-Diltz & Moe, 2014). Therefore, a student’s interaction with assessment-relevant

material within the LMS can promote the learning process.

Theory-Guided Feature Selection (TGFS) Model

Synthesizing relevant elements of the theoretical constructs described previously

(i.e., Activity, Fink’s Significant Learning, and Social Learning Theory), a novel Theory-

Guided Feature Selection (TGFS) conceptual learning model that promotes student-

centric social learning is developed and shown in Figure 12. Note that this model is

neither comprehensive nor complete, as it was designed as a guide to identify and select

relevant theory-guided features for the XAI EDM study. Theoretical elements such as

intrinsic value or self-efficacy were excluded as those features are not readily available

from LMS data collection. Future studies could incorporate these measures by

administering additional data collection instruments such as interviews or surveys.

48

Figure 12

Theory Guided Feature Selection (TGFS) Model

The TGFS Conceptual Learning Model can help identify and categorize viable

features when inspecting and analyzing potential logged data of institutional learning

management systems. The Venn diagram identifies the three primary theoretical learning

constructs: social learning, knowledge/content, autonomy, and self-regulation. Features

that fall in overlapping areas can boost learning by leveraging the benefits of multiple

scaffolds. The supporting adjacent components represent Significant Learning and

Activity Theory supports that provide further justification and support for the respective

theoretical learning construct. When used as a guide, data analysts can quickly identify

49

variables of interest, theoretical support, and learning scaffolding potential. As a post-

analysis tool, the TGFS model can help provide explanations to model predictions as well

as guide learning interventions.

Conceptual Framework

Conceptually, this study frames around Karpatne et al.’s (2017) theory-guided

data science (TGDS), which couples theory with predictive data science. TGDS

(Karpatne et al., 2017) provides two primary benefits: (a) enhances explainability by

providing scientific consistency from theory-based models; and (b) promotes scientific

discovery by providing novel predictive insight from data science. Leveraging both

technology and theory ensures an informed approach to embracing innovation that is

sound in learning principles and instructional methods.

The conceptual design of this study extends Xing et al.’s (Xing et al., 2015)

genetic programming (GP) prediction model guided by Activity Theory, which describes

a learner’s social and technology-mediated interactions with the learning environment.

To supplement this, we incorporated Fink’s (2003) Holistic View of Active Learning,

which comprises: (1) learner access to information and ideas (i.e., content); (2) learner

experiences (e.g., doing, observing, actual, simulated, or authentic settings, etc.); and (3)

leaner reflection activities (e.g., essays, discussions, etc.). Finally, social learning and

self-regulation theory is adopted from Bandura’s Social Learning Theory (Bandura,

1977b) and Vygotsky's (1985) Zone of Proximal Development.

Synthesizing these theoretical frameworks, a novel Theory-Guided Feature

Selection (TGFS) Conceptual Learning Model is developed and proposed (see Figure

12). Using this model, an initial comprehensive list of educational data mining

50

parameters for data collection can be identified, categorized, and used for guiding

instructional interventions.

Conceptual Model

The conceptual model for this study leverages Xing et al.'s (2015) theoretical

framework for the student prediction model (see Figure 13) as it incorporates the various

elements of our study, such as theory, learning analytics, educational data mining (EDM),

and application (i.e. the XAI performance, explainability, and statistical evaluation).

Figure 13

Theoretical Framework for Student Prediction Model

Note. Chart reprinted from Xing et al. (2015).

https://www.zotero.org/google-docs/?kX4tVX
https://www.zotero.org/google-docs/?kX4tVX

51

Unlike prior research, which has focused on individual components for target

studies, Xing et al.’s (2015) framework provide a system view identifying “links between

theory and computation, and optimization and interpretation… to develop an easily

interpreted and applied prediction model for real-life learning environments” (p. 179).

This view shows how learning analytics is supported by theory to provide relevant

context for explainability and interpretations while EDM is supported by computation

theory (e.g., AI and ML) to improve the accuracy and prediction of outcomes. When

combined, a high-performing explainable model can be developed for learning

applications, such as predicting at-risk students and/or providing explainable learning

interventions.

Genetic Programming

Genetic Programming (GP) is an evolutionary technique that builds models based

on parent/offspring selection, mutation, and evolution. Some are subsets of Decision

Trees but have the additional ability to evolve to optimize performance, accuracy, and

efficiency. This is achieved by iteratively training a predefined decision tree until the

desired accuracy is achieved. The visual design of the trees, conditional expressions used,

and numerical weights are transparent to the user and therefore provide explainability for

analyzing why a particular path was undertaken (see Figure 9).

52

Figure 14

Example of a GP Decision Tree

Note. Chart reprinted from Xing et al. (2015).

Following a genetic tree is intuitive and easy to interpret, which makes it useful

for not only predicting (e.g., at-risk indication of drop-out) but also providing

explanations (e.g., formative feedback for at-risk indicators). GP models have been

shown accurate and effective in many studies and serve as an ideal implementation for

predicting at-risk students (Kalles & Pierrakeas, 2006; Xing et al., 2015).

Emerging works in genetic programming also include stack-based classifiers that

have demonstrated comparable performance to state-of-the-art models in a variety of

applications (La Cava et al., 2017, 2019). Consistent with this, Perkis (1994) notes that

https://www.zotero.org/google-docs/?M0B6Zk
https://www.zotero.org/google-docs/?M0B6Zk

53

stack-based genetic programming is “a promising technique… worthy of further

consideration” (p. 152) as it provides “efficiency and simplicity of implementation” that

are “comparable or superior to current methods” for certain problem sets.

This study integrates and advances the emerging works of Xing et al. (2015) and

La Cava et al.’s (Cava, 2017; 2019) Ellyn-GP model by exploring theory-guided feature

selection, k-Means clustering, and stack-based genetic programming multi-classifier to

understand and predict at-risk student groups. Tree-based GP models from the Ski-Kit

Learn, such as GP Learn binary classifier, are also explored.

Section Summary

This section introduced the theoretical underpinnings of the study, such as the use

of Theory-Guided Data Science to improve model validity and reliability through the

incorporation of sound instructional theories and principles. Applicable theories

identified and described include Activity Theory, Fink’s Significant Learning Theory,

and Social Learning Theory. Synthesizing these theoretical constructs, a novel Theory-

Guided Feature Selection (TGFS) Conceptual Learning Model was developed and

proposed. The conceptual model will be used in the EDM study to analyze and guide the

feature selection process. The TGFS model also provides a framework for model

explanation and intervention planning. Finally, Xing et al.’s (2015) conceptual model was

referenced and described to capture the overall research approach that leverages theory,

learning analytics, and EDM toward at-risk student prediction applications.

54

Chapter Summary

This chapter provided a relevant literature review concerning the target research

problem of student retention and the need for XAI at-risk student predictive systems.

Early works were identified to provide support for the emerging demand for

explainability, motivations for XAI, as well as prompt future research. Extensive studies

were systematically synthesized to identify the current state of EDM research, as well as

common features and outcome variables studied. A summary of literature findings

revealed promising works leveraging theory-guided data science (TGDS) and genetic

programming. Finally, relevant theoretical frameworks were presented, which provided

support for a theory-guided feature selection model. A brief description of genetic

programming and its benefits was summarized.

55

CHAPTER III

Methods

Introduction

The objective of this research is to explore the performance and efficacy of

theory-grounded explainable artificial intelligence (XAI) to predict and explain at-risk

students in an online learning management system (LMS). To achieve this, quantitative

research methodologies in educational data mining (EDM) and learning analytics (LA)

were adopted, both of which offer data-centric techniques to improve and understand

online learning in higher education.

Educational data mining (EDM) is employed to collect student performance,

logged interaction activity, and learning outcomes from a higher institution LMS system.

Data will be anonymized and protected to ensure data privacy and security. Interaction

frequency was computed at weekly intervals to explore the model’s predictive

performance over time using common measures of AI/ML accuracy (f1-score, recall, and

precision). Efficacy will be determined by analyzing the predictive performance and

interpretability of the GP-TGDS model against other known AI/ML models (e.g., student

retention and learning outcomes). Mean differences and effect sizes are reported at the

.05 significance level.

In the following sections, detailed methods and procedures are described to

identify the process of feature selection, data collection, processing, analysis, and

performance evaluation.

56

Research Questions

We investigated the following research questions (RQs):

• RQ1: What are the associations between activity factors and student final grades?

• RQ2: What are the characteristics of at-risk students that can be identified?

• RQ3: What are characteristics of at-risk students that can be predicted using XAI

techniques and models?

• RQ4: How do explainable models compare to complex models when LMS

student activities are used as features to predict at-risk students?

Population, Setting, and Demographics

The target population selected for this study is a large four-year higher education

institution that offers distance learning and has average student retention near or below

the US national average six-year graduation rate to capture a representative population

for studying at-risk students. Offering distance learning is required as these study targets

institutions delivering online learning using a learning management system to enable the

collection of existing student activity logged data for educational data mining.

Figure 15 gives the six-year graduation rate for the US national average and the

selected institution for comparison (NCES, 2021). As shown, the selected institution has

historically underperformed concerning the national average for cohorts 2004 to 2014. In

addition, 14% enrolled in distance-only classes, 44% enrolled in some distance classes,

and 42% are not enrolled in any distance classes (NCES, 2021). Of all graduates, 55% are

enrolled in distance-only classes, 13% are enrolled in some distance classes, and 32% are

not enrolled in any distance education. Note that graduates comprise only 14.7% of all

57

students. Thus, the institution meets the inclusion retention and distance learning

inclusion criteria.

Figure 15

150% Graduation Rate for All Full-time/First-Time Students (Fall 2015)

Note. Data adapted from NCES and Texas University System websites (NCES, 2021; The Texas

State University System, 2022). In the public domain.

Raw student activity logs and performance data were collected from a Blackboard

Learning Management System (LMS) database spanning 15 weeks in the Spring semester

of 2021. According to the Texas University System (TSUS) enrollment database (The

Texas State University System, 2022), the 2021 Spring semester had a total enrollment

size of 19,753 students who pursued undergraduate (85.3%), master's (12.3%), doctoral

research (1.7%), or post-baccalaureate (0.7%) degrees. Two-thirds (64.1%) were females

and most (69.7%) were enrolled in full-time status. The race/ethnicity was primarily

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

2-Yr 32 33 33 33 32 31 31 32 33 34 33 32 31 32 33 34 35 35 36

4-Yr 54 54 55 56 56 56 56 56 55 55 56 55 54 54 55 56 59 60 60

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

G
ra

d
u

at
e

R
at

e

Cohort year

Six-Year Graduation Rate

58

White (48.7%), Hispanic/Latino (25.8%), and Black or African American (18.1%) (see

Figure 16 for additional details).

Figure 16

Student Proportions of Race/Ethnicity (Spring 2021)

• Most graduates (74%) work part-time.

Note. Image reprinted from The Texas University System (2022). In the public domain.

Most students were in-state (98.7%) and between the ages of 18 and 24 (78.1%;

see Figure 17). Using EDM processes, the data was analyzed, cleaned, and tune for

follow-on statistical, exploratory, classification, prediction, and explainability analysis to

investigate the study’s research questions. It is important to note that according to the

institution’s leadership, the school used the Blackboard LMS to track both traditional and

online grades. Since the majority of students were enrolled in traditional classroom

environments, there was a large number of students with a lack of LMS interaction

activity that was excluded to prevent skewing of results.

59

Figure 17

Student Proportions of Race/Ethnicity (Spring 2021)

EDM Process

This section provides a brief background on EDM and describes the process

adopted to collect, process, and analyze data for this study. According to Aliaga and

Gunderson (2002), quantitative research is “explaining phenomena by collecting

numerical data that are analyzed using mathematically based methods (in particular

statistics)” (as cited in Muijs, 2004, p. 1). Both EDM and LA fall into this definition as

they “share a common interest in data-intensive approaches to education research, and

share the goal of enhancing educational practice” (R. Baker & Inventado, 2014, p. 62).

In contrast, Siemens and Baker (2012) identify some differences between the respective

field definitions:

60

• The International Educational Data Mining Society defines EDM as “developing

methods for exploring the unique types of data that come from educational

settings, and using those methods to better understand students, and the settings

which they learn in” (pp. 252).

• The Society for Learning Analytics Research defines LA as “the measurement,

collection, analysis, and reporting of data about learners and their contexts, for

purposes of understanding and optimizing learning and the environments in which

it occurs” (pp. 252-253).

Furthermore, EDM emphasizes automated discovery techniques to inform

learners and educators (such as an at-risk indication system), whereas LA takes a step

further to provide human judgment and analysis of that data to “empower instructors and

learners” (e.g., providing informative feedback and suggestions for intervention

guidance) (Siemens & Baker, 2012, p. 253).

Thus, while EDM provides a methodology and process for collecting, reducing,

and developing predictive models, LA adds a layer of interpretation and explainability by

including human interpretations (i.e., using visualizations or theory) of automated results.

This provides a comprehensive and holistic framework for developing XAI models that

not only predicts at-risk students but also enhance the explainability of at-risk indicators

by providing informative feedback.

Figure 18 illustrates the planned EDM/LA research methodology adapted from

Yang et al. (2021) and Imran et al. (2019). To improve the reliability of the study, this

process includes a post-hoc statistical analysis for determining the statistical significance

and explaining the variance of influential factors.

61

Figure 18

Planned EDM/LA Research Methods Process

Feature Selection Process

The selection of student activity features was guided by a combination of

literature review, data inspection/analysis, and theoretical support, which are discussed in

the proceeding subsections.

Data Collection

Data Processing and Analysis

Feature Selection based on TGFS

Conceptual Learning Model

Unsupervised Learning

Supervised Learning

GP

Model

Cluster

Analysis

Performance

Comparative

Analysis

Explainability

Comparative

Analysis

Other Models

Statistical Analysis

(Correlation/Regression,

Factor Analysis, etc.)

SQL DB

LMS DB

Data

At-Risk Group Labels

Data

Cleaning

Labeled

Data

Cleaned

Data

62

Literature Support

Preliminary literature research results identified student activity as the most used

feature for predicting at-risk students (see Table 4). The following summarizes the

finding concerning predicting student outcomes:

• Using correlation and logistic regression, Chamizo-Gonzalez et al. (2015)

found a positive correlation between student activity (e.g., assignment

uploads, discussion forum posts, discussion forum views, assignment

views, blog views, course views, and resource views) and learning

outcomes.

• Using Cross-Validated Correlation and Bayesian Knowledge Tracing,

Baker et al. (2011) were able to predict student performance, with the

former method demonstrating superior accuracy.

• Bienkowski et al.’s (2012) literature review found that LMS logged data

such as student responses coupled with prior skills, knowledge,

performance, course content, time, and demographics demonstrated

prediction accuracy up to 81% for those who failed. They concluded that,

in general, EDM can help build models to explore factors influencing

student learning (Bienkowski et al., 2012).

• In a correlation study analyzing the relationship between learner

interaction with an LMS and virtual agent, Song et al. (2019) found high

loadings from system access, time spent, and discussion length.

• Using various correlation and regression methods, Conijn et al. (2017)

found statistically significant correlations for the majority of predictor

63

variables (e.g., various student activity, interaction time, and performance

metrics). However, there was low predictive power and low portability

across courses.

• Finally, using EDM, activity theory-guided feature selection, Genetic

Programming, and student activity features, Xing et al. (2015)

demonstrated superior at-risk prediction performance when compared to

other common models, except for Naives Bayes. They concluded that the

additional explainability of Genetic Programming made it a preferable

choice.

Most findings demonstrated positive results and support for using student LMS

activity as potential features for at-risk prediction.

Data Inspection/Analysis Support

After performing a detailed analysis of the Blackboard LMS database schema and

underlying logged data, student activity metrics were identified as the most abundant and

consistent across all courses. The logged activities were also available during the early

weeks of instruction, which is an advantageous time to detect and respond to early signs

of at-risk behaviors. Performance metrics such as quizzes, assignments, or pre-course

grades were excluded due to the lack of sample size and inconsistent implementations

across courses and weekly implementation. The data inspection/analysis activities were

an iterative process that spans the entire study from initial data collection and literature

review through statistical, clustering, and predictive analysis where additional cleaning,

tuning, and outliers were addressed.

64

Theoretical Support

From the literature review (Table 6), a major limitation observed was that most

studies lacked theoretical support. Only Xing et al.’s (2015) Genetic Programming

leveraging activity as a basis for feature selection demonstrated the most promise with

superior results when compared to other models. Their work provided inspiration and

guidance for extending EDM theory-guided data science to improve prediction

performance and explainability. Continuing their work, this study develops and explores

a theory-guided feature selection model incorporating learning theories such as Activity

Theory, Fink’s Significant Learning Theory, and Social Learning Theory. Refer to

section Theory-Guided Feature Selection (TGFS) Model, Figure 12, and Figure 22 for a

description of the model, visual representation, and initial feature selection results

respectively.

Table 6

Studies with Theory-Grounded Models

Study Type Literature Reference Theory-Grounded

Analysis (Al-Omar, 2018; Song et al., 2019; Yang et al., 2021)

No

Comparative (Al Breiki et al., 2019)

No

Correlation (Abe, 2019; Chamizo-Gonzalez et al., 2015)

No

Frequency Analysis (Al Breiki et al., 2019)

No

Predictive (Abe, 2019; Al Breiki et al., 2019; R. S. J. D. Baker et

al., 2011; Berens et al., 2019; Conijn et al., 2017;

Imran et al., 2019; Ndou et al., 2020; Zheng, 2020)

No

(Xing et al., 2015) Yes

65

Analysis Methods

This section identifies and describes the analysis methods performed, such as

statistical analysis (descriptive and inferential), power analysis, feature analysis,

exploratory cluster analysis, classification analysis, prediction performance analysis, and

explainability analysis.

Statistical Analysis

Descriptive statistics were performed to summarize, describe, and identify

associations within the collected data using measures of central tendency, variation,

range, confidence interval, distribution shape, and association/correlation (L. Cohen et

al., 2018). Descriptive statistics also help check for violations of normality, which may

drive the type of hypothesis tests used (e.g., parametric or non-parametric) to ensure

reliability and validity of results (L. Cohen et al., 2018). Descriptive statistics were used

in analyzing both the population and sampled datasets used for inferential statistics.

Inferential statistics were performed to identify statistically significant mean

differences within the data parameters (independent and dependent variables). The

selection of test type will depend on a variable of factors, such as (McCrum-Gardner,

2008): measurement scale (nominal, ordinal, interval); independent vs. paired (pre/post)

groups; parametric vs. non-parametric assumptions (normal vs. non-normal); and

independent or paired groups. Since this research explored multiple independent and

dependent variables, comparisons between and within groups were conducted using the

MANOVA with IBM SPSS.

66

Power Analysis

To effectively detect significant differences, McCrum-Gardner (2008)

recommends conducting a power analysis to identify the minimum sample size required.

Field (2018) identifies power as the probability of finding an effect assuming one exists,

which is mathematically represented as (1-𝛽), where 𝛽 is the probability of not finding an

effect when one exists (i.e. Type II statistical error). Cohen (1988) recommends using a

power of 0.80 (𝛽 = 0.2) in conjunction with 𝛼 = 0.05 as a guide for sufficient

power. Using G*Power (2021) as recommended by Field (2018), the applicable sample

size for applicable tests with inputs set to two-tail, 𝛼 = .05, 1-𝛽 = .80, N1 = N2, and

Cohen’s d = 0.5 (medium effect) are as follows:

Independent t-tests: N1 = N2 = 64

Wilcoxon-Mann-Whitney test: N1 = N2 = 67

Paired Sample t-test: N = 34

Wilcoxon Signed Rank test: N = 35

Correlation (Point biserial model): N = 64

Observe that the Wilcoxon-Mann-Whitney test requires the largest sample size

and thus is the determining factor. To detect a medium effect (d = 0.5), the minimum

sample size required for each group is 67 (134 total) in case a normal distribution cannot

be assumed. If we wanted to be able to detect a small effect (d = 0.3), then we would

need an individual group sample size of 184, or a total study sample size of 368. Thus, a

sample size of 368 places the minimum limit that enables sufficient power to detect a

small effect.

67

Feature Analysis (RQ1)

Feature analysis is an iterative process of selecting features to reduce noise and

redundancy while improving model performance and explainability (Layton, 2017). In

this study, feature analysis is performed at various stages, such as during database feature

identification, data collection and pre-processing, and clustering/classification analysis.

The initial potential features are identified in the previous “Initial Database Features

Identification.” However, final feature determination will be dependent on further

analysis, which may be excluded when addressing high correlation and collinearity

during K-Means Clustering analysis. Python packages and libraries such as Pandas

(Pandas, 2010/2021), SciPy (SciPy.Org — SciPy.Org, n.d.), SciKit-Learn (Scikit-Learn:

Machine Learning in Python — Scikit-Learn 0.24.2 Documentation, n.d.), Seaborn

(Michael, 2021), and matplotlib (Matplotlib: Python Plotting — Matplotlib 3.4.3

Documentation, n.d.) was used for computational analysis and data visualizations.

To address RQ1, a correlation analysis was performed to identify significant

features (p < .05) correlated to final grades. Feature pairs with high correlations (above

0.6) were reduced by excluding the feature with the lowest number of samples to mitigate

problems associated with high collinearity between independent variables (Abdulhafedh,

2021; Field, 2018; Kondo et al., 2017), which introduces redundant factors that could

reduce model prediction accuracy (Layton, 2017). Features with insignificant correlations

(p > .05) to final grade and a higher percentage of missing values are excluded to reduce

noise from irrelevant factors.

68

Exploratory Cluster Analysis (Process Overview)

Before classification (i.e., supervised learning and prediction) can be performed,

the dataset must be grouped and labeled into classes that can be predicted based on

feature patterns. This process is known as clustering, which is an unsupervised learning

technique (e.g., K-Means Clustering, Hierarchal Clustering, Spectral Clustering, etc.)

used to split datasets into subsets based on similarities (Song, 2021b, 2021c). For this

study, K-Means Clustering will be used as the clustering method.

K-Means Clustering is a specific type of unsupervised machine learning analysis

method used to explore patterns and groups based on similarities or differences in the

underlying dataset parameters (Layton, 2017; Song, 2021d). The technique is especially

useful when either no class exists for prediction (Song, 2021c) or when the data set is too

large and impractical for manual classification assignment (Song, 2021d); both of which

apply to this study. Other advantages include “simple mathematical ideas, fast

convergence, and easy implementation” (Yuan & Yang, 2019, p. 226). However, Yuan

and Yang (2019) note that K-Means algorithms become a challenge with dealing with

analyzing “massive data sets” (p. 226).

In brief, the K-Means Clustering algorithm employs an iterative process of

finding representative “centroids” or means of cluster samples given a pre-determined

number of groups (i.e., K) (Layton, 2017, p. 231). The centroids will change slightly after

each iteration of the assignment (i.e., selecting a data point closest to the previously

calculated centroid) and update (i.e., computing the next centroid based on the new data

point) (Song, 2021c, p. 5) and stop either after a pre-determined number of iterations or

when the centroid updates converge and stabilize (Layton, 2017).

69

One of the key goals of K-Means cluster analysis is finding the optimal number of

clusters (i.e., K) representative of the patterns that exist assuming we have no additional

insight besides the dataset given. Although any number can be used as a pre-determined

input to the K-Means Cluster Analysis, Yuan and Yang (2019) note that “in practice, the

K value is generally difficult to define” (p. 228), especially to find meaningful groups. In

a comparative study, Yuan and Yang (2019) investigated the performance of four

alternate methods, namely, the Elbow Method, Gap Statistic, Silhouette Coefficient, and

Canopy. Their results are summarized as follows:

• The Elbow Method involves graphing a sum of squared error (SSE) metric versus

K and then finding the point of inflection (Yuan & Yang, 2019, p. 233).

• Gap Statistic is a complex algorithm iterating values of K to find a maximum

“Gap” value based on Monte Carlo sampling and “reference

measurements”(Yuan & Yang, 2019, p. 229).

• The Silhouette Coefficient algorithm involves calculating and determining a

maximum “S(i)” metric representing the “cohesion” (i.e., similarity) of clusters

for different K values (Yuan & Yang, 2019, pp. 230–231).

• The Canopy algorithm involves divided data sets, overlapping subsets, distance

comparisons (given a pre-determined range), and iterative aggregation and

deletion (Yuan & Yang, 2019).

In summary, Yuan and Yang (2019) found that all four methods were feasible

when using small data, with the Elbow Method and Canopy algorithms computationally

more efficient than the Gap Statistic and Silhouette Coefficient methods. For simplicity

and ease of implementation, this study uses a Python Kneed Package to automate the

70

process of finding K and the Elbow Method for visual verification. Figure 19 gives an

example scenario from Yuan and Yang (2019) where the “elbow” point was identified at

K = 3.

Figure 19

Exemplar Inertia Graph for Implementing the Elbow Method

Note. Image adapted from “Research on K-Value selection method of K-Means Clustering

algorithm,” by C. Yuan and H. Yang, 2019, J, 2(2), p. 229 (https://www.mdpi.com/2571-

8800/2/2/16).

Exploratory Cluster Analysis (RQ2)

After post-processing and the final selection of features, K-Means clustering

analysis was performed to explore and identify clusters for prediction. The optimal

number of clusters, K, was determined using the Python kneed package (Arvai, 2020;

Satopaa et al., 2011), which detects the “knee” point based on where the “curve becomes

more ‘flat’” (p. 3). This was visually verified using the elbow method to confirm

correctness and consistency (Yuan & Yang, 2019). The cluster activity frequency was

Inflection/Elbow Point

https://www.mdpi.com/2571-8800/2/2/16
https://www.mdpi.com/2571-8800/2/2/16
https://www.mdpi.com/2571-8800/2/2/16
https://www.mdpi.com/2571-8800/2/2/16

71

then plotted with the outcome variable (mean final grades) for pattern analysis.

Meaningful labels and descriptions of each cluster are given to identify and characterize

at-risk activity behavior patterns to investigate and answer RQ2.

As an unsupervised learning method, both activity features and final grade

outcomes were used as input variables, which has positive and negative implications. As

a benefit, using final grades as an input feature helps to discriminate clusters concerning

at-risk outcomes. However, in practice, final grades are not available and cannot be used

as a feature for prediction. Although at-risk groups can easily be identified and labeled

during unsupervised learning, prediction of those labels will be limited without the

underlying assumption of final grades as an input predictor variable. This was later

confirmed by evaluating the performance of variable models against the unsupervised K-

Means model.

Classification Analysis (RQ3)

To address the predictive limitations of the unsupervised k-Means cluster model,

a new k-Means cluster analysis was conducted to develop a model based on activity as

input features (i.e., final grades are not included as a feature). This results in natural

groups for student activity behaviors. The mean final grades are then computed and

graphed against each cluster’s activity features for post-hoc analysis, classification (i.e.,

creating outcome labels to be predicted), and characterization of at-risk student groups.

Mean final grades define the level at-risk while the features (i.e., interaction frequency)

identify associated group behaviors. The final labels are then used as ground truths (i.e.,

accepted as true for grouping outcomes). This process is known as a “cluster-then-label”

process, which has been shown effective and accurate in labeling big data, especially

72

when it is cost-prohibitive and resource-intensive (Beil & Theissler, 2020; Peikari et al.,

2018). This approach investigates the predictability of at-risk characteristics to address

RQ3.

The process of classification and prediction involves the training and testing of

sampled datasets (i.e., training and testing re-sampled datasets) obtained from a

population sample (i.e., the dataset collected for this study). The sampling method used to

select the training and testing sets is of critical importance as it could impact model

performance (Banerjee et al., 2018; Berrar, 2018). For example, a common problem

when training a model is that of “overfitting”, which is when a model is “perfectly

adapted to the data set at hand but then unable to generalize well to new, unseen data”

(Berrar, 2018, p. 1). To address this, various sampling methods have been devised. The

following list gives a summary of common methods highlighted by Berrar (2018).

73

Table 7

Training Split Methods

Training Split

Method
Description

Single hold-out

random

sampling

Random sampling is performed on the data set until a percentage of the training set

is reached (e.g., 10-30% for testing and the remaining for training).

K-Fold random

subsampling

Single hold-out random is performed K times, where each training + testing group

sample size equals the dataset size divided by K. Performance is average over K

sets. Could result in overlapping sets.

K-fold cross-

validation

Similar to K-Fold random subsampling but ensures there is no overlap in each

training/test set. This alleviates overfitting and overtraining from training/testing

the same samples multiple times.

Stratified K-fold

cross-validation

K-fold cross-validation with stratified random is performed to ensure class

proportions of each individual set are reflects that of the population sample. This

provides an “unbiased estimate of the population proportion” (2018, p. 4).

Leave-one-out

cross-validation

(LOOCV)

This is a special case of K-fold cross-validation where each training set is excluded

in the validation set (i.e., the validation set contains k-n sets at each iteration).

Although this provides an “unbiased estimate of true prediction error,” there is a

tradeoff of higher variance and computational load.

Jackknife Like LOOCV but focused on estimating the bias or variance of a statistic rather
than the generalization ability of a predictive model.

Based on Table 7, stratified 10-fold cross-validation (see Figure 20 for an

example illustration) was selected for training set splitting to help alleviate overfitting

and disproportionate sampling due to unbalanced data sets (Berrar, 2018; Visualizing

Cross-Validation Behavior in Scikit-Learn — Scikit-Learn 0.24.2 Documentation, n.d.).

Furthermore, 10-fold cross-validation was found to have a small bias and accuracy, as

long as the data sets were sufficiently large (Berrar, 2018). Finally, due to its widespread

use, stratified k-fold cross-validation is natively supported by the SciKit-Learn API,

which makes it readily accessible for this study.

74

Figure 20

Stratified K-Fold Cross-Validation Training Split

Note. Image reprinted from (Visualizing Cross-Validation Behavior in Scikit-Learn — Scikit-

Learn 0.24.2 Documentation, n.d.)

Performance measures (i.e., precision, recall, and f1-score) are averaged across K

sets, reported, and analyzed to identify the prediction performance, which is described in

the following section.

Prediction Performance Analysis (RQ4)

Using the classification model and training split methodology described in the

previous section, a performance evaluation was conducted to compare the prediction

performance of various AI/ML models with varying levels of explainability and

complexity. Measures of precision, recall, and f1-score were computed at weekly

intervals of cumulative data to analyze prediction performance over time, which allows

for assessing early warning potential.

According to Arrieta et al. findings (Arrieta et al., 2020, p. 30), there is a

“common trade-off between model interpretability and performance”. This work

75

contributes to the XAI goals of improving the performance of explainable models and

explainability of complex models by integrated theory-guided implementations of

AI/ML. As will be demonstrated, when models are designed with theory in mind,

explainable model performance can improve without further modification. This study

will demonstrate that explainable models can be comparable, if not better in specific

cases, than complex black-box models.

Depending on the nature of the data and field of study, different predictive

performance measures are used. For balanced data sets, accuracy, as given in equation

(1), might be sufficient (Sokolova et al., 2006). However, when data sets are unbalanced,

overall accuracy is biased and is a poor measure of model performance. For this study,

unbalanced datasets are expected as there will be disproportions in the number of at-risk

students compared to other groups. As such, traditional accuracy may be a poor measure

and will not be used.

 accuracy = (TP+TN)/(TP+FP+TN+FN) (1)

Where,

TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

To address unbalanced data sets, alternative measures such as the confusion

matrix (Table 8), precision, recall, and f1-score will be used to assess model

performance. Precision, recall, and f1-score are defined by equations (2), (3), and (4)

76

respectively (Scikit-Learn: Machine Learning in Python — Scikit-Learn 0.24.2

Documentation, n.d.) for the confusion matrix parameters (i.e., TP, TN, FP, and FN).

Table 8

Confusion Matrix

Predicted

Positive Negative

A
ct

u
a

l

P
o
si

ti
v
e

True Positive (TP) False Negative (FN)

N
eg

a
ti

v
e

False Positive (FP) True Negative (TN)

 precision = TP/(TP+FP) (2)

 recall = TP/(TP+FN) (3)

 f1-score = 2∙(precision ∙ recall)/(precision+recall) (4)

Intuitively, the three metrics are interpreted as follows (Scikit-Learn: Machine

Learning in Python — Scikit-Learn 0.24.2 Documentation, n.d.):

• Precision measures the “ability of the classifier not to label as positive a sample

that is negative.”

• Recall measures the “ability of the classifier to find all the positive samples.”

• f1-score is the weighted average of precision and recall.

Both precision and recall are important for at-risk student detection. When

precision is low, a classifier may identify students who are not at-risk as at-risk and result

in unnecessary interventions for those who do not need it. On the other hand, when the

77

recall is low, the classifier will not be able to detect at-risk students, which is the primary

objective of educational data mining. Thus, recall is a more critical measure for

predicting at-risk students.

Explainability Analysis (RQ4)

Explainability analysis was performed to explore the explainability of

implemented XAI models, such as the decision tree, stack-based genetic programming

multi-classifier, and tree-based genetic programming binary classifier. Visual models are

explored, compared, and contrasted.

Chapter Summary

This chapter introduced the XAI EDM Study and associated target research

questions as well as the theoretical and conceptual framework. The underlying

demographics of the dataset were also discussed to characterize the generalizability of the

study. A detailed description of the methods and procedures was provided to identify the

EDM process and analysis methods. In the next section, the XAI EDM Study Results will

be reported and discussed.

78

CHAPTER IV

Results

Introduction

This chapter provides the results of the XAI EDM study, which comprises the

results of the EDM process, theory-guided feature selection, feature analysis, exploratory

clustering analysis, classification analysis, prediction performance comparative analysis,

and explainability analysis.

EDM Process Results

The following list summarizes the data collection and processing steps performed

to prepare the LMS log data for analysis.

1. Data Collection

1.1. Export LMS data to CSV files

1.2. Analyze/develop python processing scripts

1.3. Process/import data into working MySQL database

2. Extract initial features and outcome variables into new tables

2.1. Activity data is aggregated as frequency counts

2.2. Datasets are grouped weekly

2.3. Compute the normalized final grade scores (score/total possible)

3. SQL Inclusion/Exclusion Pre-processing

3.1. Excluded records with missing final grades

3.2. Exclude records with final grades > 1.0

4. Export features and outcome variable table to CSV file

4.1. The first column is the course ID

79

4.2. The second column is the student ID

4.3. Third through (Nth – 1) column are features

4.4. The nth column is final_grade (target outcome variable)

4.5. Two types of datasets are extracted:

4.5.1.Weekly aggregate data of activity frequency (15 files for weeks 1 to 15).

4.5.2.Cumulative aggregate data of activity frequency (15 files for weeks 1 to 15).

5. Python Pre-processing

5.1. Import CSV file into Python Jupiter Notebook

5.2. Exclude statistically insignificant features (p > .01)

5.3. Exclude highly correlated features (r > .7)

5.4. Exclude outliers beyond 2 standard deviations

5.5. Transform/Scale Data to normalize activity frequency between 0 and 1

(MinMaxScaler)

The Python pre-processing step includes feature exclusions to reduce collinearity

effects, which could negatively impact model performance and accuracy (Abdulhafedh,

2021; Field, 2018; Kondo et al., 2017; Layton, 2017). Figure 21 illustrates the actual data

collection and processing steps performed with associated sample sizes identified at each

stage. The dataset comprised comma-separated value (CSV) files representing selected

data tables extracted from the LMS database. Personal identifiable information was

excluded to ensure the privacy and confidentiality of user data. Data was also securely

stored and processed on a password-protected computer implementing multi-factor

authentication and volume encryption.

80

Figure 21

Data Collection and Processing Results Flow Chart

Parse Data

SQL

Processing

LMS

Database

Local

Database

Export Data

CSVs

Data Tuning,

Pre-processing

&

Correlation

Analysis

Unsupervised

k-Means Cluster

Analysis

Supervised

Classification

Analysis

Activity
Course

Grades
Types 243.1M

Rows
13.4M

Rows
15.1M

Rows
12.3M

Rows

Data Range: Jan 13, 2021 through May 11, 2021

Import Data into

MySQL Tables

Aggregate Activity

Keyword Filter

Build Output Files

Export to CSV

Files

Weekly Cumulative

Activity Frequency and

Final Grades

Exclude Features:

• Redundant

• Insignificant

• Outliers

•

15 Datasets:

𝑁ഥ = 56.3𝑘 ± 3.0𝑘𝑆𝐷

Week 15 Cumulative

𝑁 = 45,368

Week 15 Cumulative

𝑁ഥ = 5,855

Week 1-15 Cumulative

𝑁ഥ = 3,637 ± 1546𝑆𝐷

Extract

Predictive
Performance

Analysis

N = 58,9224
3,043 Courses
23,862 Students

Explainability

Analysis

81

Descriptive Statistics

Table 9

Descriptive Statistics of Raw Data Before Feature Selection

 N Minimum Maximum Mean Std. Deviation

disc_cnt 45295 1.0 349327.0 514.521 3506.8233

mod_cnt 24538 1.0 64860.0 227.692 649.6914

email_cnt 13055 1.0 15100.0 27.105 221.1084

mobile_cnt 16130 1.0 35425.0 338.426 690.1081

res_cnt 21327 1.0 748155.0 2702.885 17587.5283

grade_cnt 42492 1.0 11295.0 89.271 204.8992

quizexam_cnt 25573 1.0 167918.0 383.805 2311.3193

rubric_cnt 5754 1.0 7880.0 64.218 355.1623

announce_cnt 28967 1.0 5705.0 90.929 203.5616

tools_cnt 3204 1.0 6581.0 124.147 493.2645

final_grade 45365 .00 1.00 .8378 .20456

Feature Selection Results

A preliminary feature selection analysis was performed by reviewing the LMS

database schema to identify relevant tables to extract. With a specific interest in student

activity and performance outcomes, the activity and grades table were selected for

extraction. The course and grade type tables were also included as they provided cross-

reference keys (i.e., user and course primary keys) that linked the various tables together.

Following the import of data into a local MySQL database, feature selection

analysis was performed to identify relevant and available student-logged activity data.

This involved relevant keyword searches on student activity types supported by the

literature research and theoretical background. This highlights an important point that

activity features are limited by the existing data. As a result, the following 10 keywords

were identified:

82

1. “discussion”

2. “module”

3. “email”

4. “mobile”

5. “resource”

6. “grade”

7. “quiz” OR “exam”

8. “rubric”

9. “announcement”

10. “tools”

These keywords represent potential and relevant features selected based on LMS

logged data that occurred the most often and are selected to ensure sufficient data

collection and sample size. The features are then compared against the theoretical

framework identified in Figure 22. Features that can be categorized into the areas of

Social Learning, Knowledge/Content, and Autonomy/Self-regulation are therefore

supported by the underlying theoretical supports and can serve as preliminary influential

learning factors. The Venn model also identifies how each activity is related to one or

more learning dimensions that may provide scaffolding effects. In theory, a greater

number of overlapping dimensions for any activity would result in greater learning

potential. However, there may be a point of diminishing returns due to task or cognitive

overload.

83

We can observe that some features can impact different aspects of the learning

process. Tools, discussion, and mobile are similar in that they provide collaborative

functions enabling the learning of content while requiring some level of student

autonomy and self-regulation. Email is typically a learner-learner or learner-instructor

interaction that facilitates clarification of understanding. The resource component

represents supplementary material that aids the learning process but is not typically

required. Students who access resources are more self-driven and are eager to learn how

to learn. Student activity access to grades, quizzes/exams, and rubric pages are related to

self-assessment, which can promote learning through self-regulation in response to gaps.

Finally, autonomous, and self-regulated learners are more likely to check announcements

to ensure learning tasks are completed on time or instructor notifications are addressed.

The learning model shown provides a relevant framework for effective initial feature

selection.

84

Figure 22

Conceptual Model of Learning Support Dimensions

Using structured query language (SQL), the frequency count of relevant keywords

was obtained from the activity log table. Figure 23 gives an example of keyword search

results identifying the top sorted frequency count of relevant log text containing the

keyword “tool”. This process was repeated for relevant keywords identified by either

visually inspecting the data or purposefully selecting from theory.

85

Figure 23

Screenshot of SQL Keyword Search Frequency Results

Analysis Results

Feature Analysis (RQ1)

This section presents the results of the feature analysis, which uses correlation to

and RQ1 (i.e., determine the associations between activity factors and student final

grades). Statistical significance is determined at the .05 level and effect size is interpreted

using Cohen et al.’s (2018) recommendation for weak (±0.1), modest (±0.3), moderate

(±0.5), strong (±0.8), and very strong (≥ 0.8) values of Pearson’s r respectively. For

initial correlation analysis, the 15th-week cumulative data set (N=45365) was used to

account for all samples collected. Figure 24 and Figure 25 give the Pearson’s correlation

coefficient (r) and p-value matrix, respectively.

86

Figure 24

Correlation (Pearson’s R) Matrix

87

Figure 25

P-Value Matrix (Pearson’s R)

Overall, the Pearson’s correlation results show that final grades have a statistically

significant and weak positive correlation (r < .1, p < .001) to student interaction

frequency with discussions forums (disc_cnt), module content (mod_cnt), mobile access

(mobile_cnt), grade pages (grade_cnt), and announcement notifications (announce_cnt).

All other activities (email, resource, quiz/exam, rubric, and tools access frequency) were

not statistically significant (p > .05).

88

The lack of significant correlations may be attributed to the fact that the

correlation analysis was based on the initial population dataset (45,365 samples covering

2,908 courses and 22,953 students), which included both online and traditional in-

classroom courses. As mentioned previously, only a small number of undergraduate and

graduate students are enrolled online, which averages around 25% of total enrolled

students according to the institution’s leadership. As such, the majority of students

enrolled in courses that required little to no student activity. This explanation is supported

by Chamizo-Gonzalez et al.’s (2015) findings that correlation varies not only by activity

type but also by course type. When all courses were included in the correlation analysis,

correlations were significantly lower than the maximum of individual correlations

between final grade and student activity frequency. In their study of 4,989 students,

Chimizo-Gonzalez found the following correlations with respect to final grade: resources

views (r = .13, p < .001; r ranged between 0 to .4), content page views (r = .17, p < .001;

r ranged between .01 and .4), discussion post views (r = .04, p < .01; r ranged between

.01 and .24), and quiz page views (r = .14, p < .001; r ranged .02 and .39). In short,

general predictive power is low, but may be high concerning sub-groups such as course

types.

To address these problems, additional sample exclusions were performed to

remove insignificant features, pairs with strong correlations, and outliers. The features

email, resources, quiz/exam, rubric, and tools (email_cnt, res_cnt, quiz_cnt, exam_cnt,

rubric_cnt, and tools_cnt respectively) were excluded as they have statistically

insignificant (p > .05) correlations to final grade due to a lack of associative and

predictive power. Features with strong correlations (Pearson’s r > 0.6) were also checked

89

and removed to mitigate collinearity concerns (L. Cohen et al., 2018). Reducing

collinearity by feature exclusion can help improve statistical significance (Shrestha,

2020) as well as model effectiveness. For the notable correlated pair, the feature with a

higher number of missing values was excluded to mitigate data loss.

Finally, the dataset was analyzed to identify and remove outliers beyond 1.5 the

Interquartile Range. Only a single iteration was performed to alleviate data loss. After

removing outliers, a total sample size of 5,855 remained. Afterward, a Minmax scaler

was performed to normalize all activity features to the ratio range between 0 and 1, which

allows for a relative comparison between activity frequency and final grade. Figure 26

and Figure 27 give the given sample distribution histograms for the final grade and

features, respectively. Observe that the final grade distribution has a non-normal, left-

skew, and leptokurtic shape whereas the feature distributions have a non-normal, right-

skew, and leptokurtic shape. This data sample served as the dataset for the proceeding

exploratory clustering analysis.

Figure 26

Final Grade Distribution Histogram

90

Figure 27

Feature Distribution Histogram

The results of the exploratory cluster analysis, which is described in the next

section, revealed a confounding cluster characterized by a high mean final grade and low

activity frequency across all features. This group can be explained as students who did

not interact with the LMS for most of their learning, such as those who prefer to use

external resources, or students who belong to traditional in-classroom courses. They may

use the LMS to obtain course materials, but not actively participate in discussion posts or

module content access as these were not implemented for traditional courses. Given the

fact that this group represented the largest cluster size (34.4%), it is more likely that this

91

group contained traditional learners as discussion posts and module access are required

components of online courses requiring frequent participation. Samples from traditional

courses not only underestimate student activity in online courses but also skew the

correlation results due to significant group size. As such, this group was excluded from

the data set and a correlation analysis was recomputed to obtain a more reliable

assessment.

Figure 28 and Figure 29 give the correlation results after excluding the

confounding group, which corrects for traditional learning effects. Observe that the

correlation results have improved as discussion, module, and grade access frequencies

had modest positive and statistically significant correlations (r = .22, .21, and .17

respectively with p < .001) to the final grade. In addition, announcement page access

frequency had a weak positive and statistically significant correlation (r .096, p < .001)

with the final grade. The updated correlations after sampling exclusion demonstrated a

significant improvement compared to previous results (r = .02, .05, .03, and .05 for

discussion, module, grade, and announcement activity respectively).

The results indicate that discussion, module, and grade access frequency have a

modest positive association with learning outcomes while announcement access

frequency has a weak association. These results are comparable to Chimizo-Gonzalez's

findings for specific courses (2015). This highlights the importance of detecting and

removing bias from traditional students, which negatively impacted features associated

with content (disc_cnt, mod_cnt), social interactions (disc_cnt), and motivation/self-

regulatory activities (grade_cnt and announce_cnt).

92

Figure 28

Correlation Matrix (Pearson’s R) After Sample Exclusion

Figure 29

P-Value Matrix (Pearson’s R) After Sample Exclusion

93

Exploratory Cluster Analysis (RQ2)

To answer RQ2 (i.e., What are characteristics of at-risk students that can be

identified using educational data mining?), a k-Means cluster exploratory analysis was

conducted on the 15th-week cumulative dataset. For exploratory analysis, the final grade

was included as a feature, which helped improve clustering results. However, using final

grade as a feature also has predictive power trade-offs, which will be discussed later. As

mentioned previously, outliers and missing values were excluded. The remaining dataset

was then normalized between 0 and 1 using the SciKit-Learn MinMaxScaler function to

alleviate unbalanced distributions among feature frequencies. Normalizing also enables

relative comparisons between feature frequency as a ratio of maximum LMS interaction.

K-Means clustering is comprised of: (1) finding the optimal cluster size K (see

Figure 30); and (2) obtaining/analyzing k-Means clustering results (Figure 31 and Figure

32) to identify characteristics of low (at-risk) and high (not-at-risk) performing students.

Figure 30

K-Means SSE (Exploratory)

94

Figure 31

K-Means Cluster Matrix (Exploratory)

In Figure 31, the diagonal charts represent the histograms for the associated

clusters concerning the associated feature of interest. Observe that there is significant

skewing with multiple peaks of different heights, all of which signify unbalanced

distributions. Concerning final grades, there is distinct clustering for all features. Figure

32 gives k-Means results as normalized mean activity (left axis) and final grade (right

axis) concerning each cluster (bottom axis). Analyzing this chart, student at-risk

95

characteristics were labeled and described based on activity frequency and its relationship

to mean final grade scores (see Table 10).

Figure 32

K-Means Cluster Summary (Exploratory)

Table 10

Exploratory Group Labeling and Characterization

K Label At-

Risk

LMS Activity

Characteristic

Mean Final

Grade

0 Inactive High

Performer (IHP)

No Lowest activity for all

features.

.88 ± .11SD

N = 2018 (34.4%)

1 Inactive Low

Performer (ILP)

Yes Very low activity for all

features.

.37 ± .18SD

N = 945 (16.1%)

2 Announcement-

Active Good

Performer (AAGP)

No High announcement activity;

all others very low.

.79 ± .19SD

N = 685 (11.7%)

3 Grade-Active Good

Performer (GAGP)

No High-grade access activity;

all others very low.

.79 ± .19SD

N = 794 (13.5%)

4 Discussion-Active

Good Performer

(DAGP)

No High discussion activity; all

others very low.

.84 ± .16SD

N = 623 (10.6%)

5 Module-Active

Good Performer

(MAGP)

No High content activity; all

others very low.

.83 ± .18SD

N = 790 (13.5%)

96

Table 10 identifies one at-risk group (Inactive Low Performer; cluster 1)

characterized by having very low relative activity among all features. Note that the

Inactive High Performer group also had similar characteristics, as it had the lowest

activity among all features with slightly lower activity than the at-risk Inactive Lower

Performer group. This confounding result is problematic as there are no obvious

discriminating factors between the two groups, which was found to limit predictability.

Figure 33 gives the results of conducting a Naives Bayes classification using 10-fold

cross-validation. Note that the final grade was removed as a feature during model training

as in practice, the final grade is not available until the end of the course. This has some

negative implications. Observe that, overall, there are high accuracies for clusters 2 – 3,

but lower accuracies for clusters 0 and 1, which are the high performers and at-risk

groups. This is expected as clusters 0 and 1 are very similar concerning activity

frequencies (both had the lowest) with no obvious differentiating factors distinguishing

them apart.

Figure 33

Naives Bayes Preliminary Classification Results

97

The lack of discriminating factors could be attributed to external factors or

features not measured. For example, the Inactive High Performer student could be the

type of learner who prefers to study or communicate outside of the LMS environment,

which results in lower LMS activity. Another explanation is that this group represented

students who were enrolled in traditional courses that were delivered in a classroom

environment and did not require online participation. The latter explanation is more likely

as the confounding group (cluster 0) had almost three times (N = 2018 or 34.4%) the

group size compared to other clusters (N = 623 – 945 or 10.6% - 16.1%). This is

consistent with the institution enrollment statistics where the majority of students were

enrolled in traditional in-classroom courses. Without a discriminating factor, the

predictive power of these classifications will be limited once the final grade is removed

from the feature set during supervised classification. To address this, clusters with low

activity (mean values less than 0.2) and high final grades (values greater than 0.8) were

excluded to remove traditional learners from the dataset. As a result, Figure 34 shows that

the Naïve Bayes prediction performance for the at-risk group (cluster 1) has been

significantly improved (61% improvement of f-score from 0.19 to 0.8).

98

Figure 34

Naives Bayes Preliminary Classification Results (Excluding Cluster 0)

Statistical Analysis of Mean Differences between Independent Groups

This section describes the statistical analysis performed to determine if mean

differences between final grade scores differ among the five at-risk groups (ILP, AAGP,

GAGP, DAGP, and MAGP) identified in Table 10 and Figure 34. First, a description of

the descriptive statistics and assumptions checks will be given followed by the test for

mean differences using the Kruskal-Wallis test.

Descriptive Statistics. After excluding the IHP group, the updated population

sample had a sample size of N = 3837. A 60% random sampling (N = 2299) was

performed on the population for statistical analysis. The associated descriptive statistics

are given in Table 11 and group size proportions are depicted in Figure 35, where the

groups ILP, AAGP, GAGP, DAGP, and MAGP have a sample size of 580 (25.2%), 417

(18.1%), 480 (20.9%), 367 (15.9%), and 455 (19.8%) respectively. This ensures that the

smallest sample size for each cluster is near or greater than 368, which was the group size

99

determined from prior power analysis with sufficient power to detect small effects at the

.05 level. Although the groups are not equal, they are comparable and sufficiently large.

Figure 35

Proportions of Random-Sampled Data Set

From Table 11, the overall mean final grade was 0.705 (±0.266SD) with the

following normalized mean frequencies: 0.268 (±.238SD) for discussion access; .286

(±.258SD) for module access; .295 (±.261SD) grade page access; and .242 (±.266SD) for

announcement page access.

100

Table 11

Descriptive Statistics

 N Minimum Maximum Mean Std. Deviation

disc_cnt 2299 0 0.922 0.268 0.238

mod_cnt 2299 0 0.922 0.286 0.258

grade_cnt 2299 0 1 0.295 0.261

announce_cnt 2299 0 1 0.242 0.266

final_grade 2299 0 1 0.705 0.266

Assumption Checks. Normality was assessed by analyzing the skewness and

kurtosis of each distribution using equations (5) and (6) to determine significance, where

Z = z-score, S = skewness value, K = kurtosis value, and SE = standard error (Field,

2018). Significance is determined when the absolute value of Z is greater than 1.96 (i.e.,

p < .05). The calculated Z-scores for skew and kurtosis are given in Table 12, which

shows there is a statistically significant presence of both skew and kurtosis (Zs > 1.96

and Zk > 1.96). Therefore, normality is violated.

 𝑍𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑆−0

𝑆𝐸𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠

(5)

 𝑍𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐾−0

𝑆𝐸𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠
 (6)

101

Table 12

Calculated Z-scores for Skew and Kurtosis

Skewness Kurtosis

Statistic SE Zs Statistic SE Zk

disc_cnt 1.027 0.051 20.13725 0.232 0.102 2.27451

mod_cnt 0.829 0.051 16.2549 -0.347 0.102 3.401961

grade_cnt 0.827 0.051 16.21569 -0.376 0.102 3.686275

announce_cnt 1.156 0.051 22.66667 0.228 0.102 2.235294

final_grade -0.76 0.051 14.90196 -0.381 0.102 3.735294

To check for violations in homogeneity, Levine’s test was conducted using SPSS

one-way ANOVA test and shown in Table 13. Levine’s test results rejected the null

hypothesis of equal variances for all independent and dependent variables (p < .05).

Therefore, homogeneity is violated.

Table 13

Test of Homogeneity of Variances

 Levine Statistic df1 df2 Sig.

disc_cnt Based on Mean 15.257 4 2294 .000

mod_cnt Based on Mean 11.840 4 2294 .000

grade_cnt Based on Mean 6.923 4 2294 .000

announce_cnt Based on Mean 7.443 4 2294 .000

final_grade Based on Mean 2.481 4 2294 .042

Since there were violations in both normality and homogeneity, the Kruskal-

Wallis test was selected for testing mean differences. The Kruskal-Wallis is a non-

parametric test that is commonly used for assessing mean differences between

independent samples when assumptions of normality or homogeneity are violated (L.

Cohen et al., 2018; Field, 2018). In addition, there are assumptions for randomly

generated samples, independent group samples, and similar underlying distributions (L.

102

Cohen et al., 2018). As previously noted, the data was randomly selected from the

population where each group represent independent samples. This meets the first two

assumptions. Figure 36 gives the distribution histograms of the activity frequencies, all of

which demonstrated a right-skewed distribution, which meets the last assumption

requiring similar distribution shapes.

Figure 36

Distribution Comparison

Kruskal-Wallis Mean Difference Test Results. A Kruskal-Wallis test was

conducted to evaluate differences in final grades among the five at-risk groups (ILP,

AAGP, GAGP, DAGP, and MAGP). The test, which was corrected for tied ranks, was

significant H(4) = 1078.807, p < .001 (see Table 14).

103

Table 14

Independent-Samples Kruskal-Wallis Test Summary

Total N 2299

Test Statistic 1078.807a

Degree Of Freedom 4

Asymptotic Sig.(2-sided test) .000

Note. a. The test statistic is adjusted for ties.

Follow-up tests were conducted to evaluate pairwise differences among the three

groups, controlling for Type I error across tests by using the Bonferroni approach. Effect

size is calculated as 𝑟 = 𝑍 √𝑁⁄ , where Z is the standard test statistic and N is the total

sample size of group comparisons (Field, 2018). The results of these tests are presented in

Figure 37 and Table 15. In summary, there was a significant difference in mean final

grades among at-risk groups, H(4) = 1078.807, p < .001. In summary, the pairwise

comparison with adjusted p-values indicated the following:

• ILP group had a significantly lower mean final grade than groups:

o GAGP, H(4) = -954, p < .001, r = -.72

o AAGP, H(4) = -976, p < .001, r = -.73

o MAGP, H(4) = -1102, p < .001, r = -.83

o DAGP, H(4) = -1120, p < .001, r = -.82

• GAGP group had significantly lower mean final grade than groups:

o MAGP, H(4) = -148, p = .006, r = -.11

o DAGP, H(4) = -166, p = .003, r = -.12

• AAGP group had significantly lower mean final grade than groups:

o MAGP, H(4) = -126, p = .051, r = -.09

104

o DAGP, H(4) = -143, p = .025, r = -.11

• There were no significant differences between:

o GAGP and AAGP, H(4) = 22.398, p = 1.0, r = .02

o MAGP and DAGP, H(4) = 17.45, p = 1.0, r = .01

Figure 37

At-Risk Group Final Grades Boxplots

Table 15

Final Grade Pairwise Comparisons of At-Risk Groups

Sample 1-Sample 2 Test Statistic Std. Error

Std. Test

Statistic Sig. Adj. Sig.a
N r

ILP-GAGP -953.940 40.854 -23.350 .000 .000 1060 -0.72

ILP-AAGP -976.338 42.509 -22.968 .000 .000 997 -0.73

ILP-MAGP -1102.148 41.463 -26.581 .000 .000 1035 -0.83

ILP-DAGP -1119.599 44.161 -25.352 .000 .000 947 -0.82

GAGP-AAGP 22.398 44.322 .505 .613 1.000 897 0.02

GAGP-MAGP -148.208 43.321 -3.421 .001 .006 935 -0.11

(continued)

105

Sample 1-Sample 2 Test Statistic Std. Error

Std. Test

Statistic Sig. Adj. Sig.a
N r

GAGP-DAGP -165.658 45.910 -3.608 .000 .003 847 -0.12

AAGP-MAGP -125.810 44.885 -2.803 .005 .051 872 -0.09

AAGP-DAGP -143.260 47.388 -3.023 .003 .025 784 -0.11

MAGP-DAGP 17.450 46.453 .376 .707 1.000 822 0.01

Note. Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same.

 Asymptotic significances (2-sided tests) are displayed. The significance level is .050.

a. Significance values have been adjusted by the Bonferroni correction for multiple tests.

Classification Analysis (RQ3)

In this section, the cluster analysis was re-performed based on activity-only

features, which would reveal naturally occurring clusters associated with their mean final

grades for interpretation and analysis. This method also is more representative of

implementation in practice (i.e., final grades are not available as a feature for early at-risk

prediction).

Using only activity as features, K-Means clustering was repeated for the 15th-

week cumulative data set. Figure 38 gives the SSE plot with the elbow point identified at

K = 5 using the Python Kneed package. We can verify that this point is credible due to

the sharp change in slope (elbow) at K=5. Overall, this indicates that there are 5 natural

clusters when considering only activity data as features.

106

Figure 38

K-Means SSE (Classification)

Using K=5, k-Means clustering was conducted to explore naturally occurring

patterns. The k-Means classification matrix is shown in Figure 39. Like the exploratory

clustering analysis, the diagonal plots show skewed distributions, which indicates the

presence of unbalanced data sets. Furthermore, the overall cluster separation is distinct

between feature-to-feature interactions. However, this is no obvious separation between

the final grade and each of the activity features (last row). In the last column of the contour

plot, there is significant overlap. To get a better measure of final grade cluster separation,

mean activity and scores were analyzed.

107

Figure 39

K-Means Cluster Matrix (Classification)

Figure 40 depicts the k-Means cluster summary, which plots the mean normalized

activity and final grade concerning each cluster. Like the exploratory analysis, there are

discriminating factors for groups 1 through 4 (disc_cnt, grade_cnt, mod_cnt, and

announce_cnt respectively). The final grade range is also narrow (76 – 81). Thus, the

differences in at-risk and not at-risk students are much more subtle with significant

overlap.

108

Figure 40

K-Means Cluster Summary (Classification)

Analyzing Figure 40, the at-risk groups were labeled and characterized in Table 16.

Observe that higher final grades were associated with higher discussion and module

activities (clusters 1 and 3) but not higher grade page nor announcement activity frequency

(clusters 2 and 4). Furthermore, low activities across all features resulted in lower final

grades. Finally, clustering based on activity-only features demonstrated a narrow range of

predictable at-risk final grade levels. The characterization found is partially consistent with

studies leveraging activity theory (Xing et al., 2015) and social learning theory (Nabavi,

2012) in that certain types of student interactions, such as discussion and module access

frequency, with the learning environment can influence performance outcomes.

109

Table 16

Exploratory Group Labeling and Characterization

K Label At-Risk LMS Activity Characteristic Mean Final

Grade

0 Inactive Low

Performer (ILP)

Yes Low activity across all features;

coupled with a lower final

grade.

0.76 ± .25SD

N = 2591

(44.2%)

1 Discussion-Active

High Performer

(DAHP)

No High discussion activity with a

low module, grade, and

announcement activity; coupled

with a higher final grade.

0.81 ± .21SD

N = 674 (11.5%)

2 Grade-Active Low

Performer (GALP)

Yes High-grade page access with

low discussion, module, and

announcement activity; coupled

with a lower final grade.

0.77 ± .22SD

N = 909 (15.5%)

3 Grade-Active Good

Performer (GAGP)

Marginal Higher module activity with a

lower grade, discussion, and

announcement activity; coupled

with a marginally higher grade.

0.79 ± .23SD

N = 904 (15.4%)

4 Announcement-Active

Low Performer

(AALP)

Yes Higher announcement activity

with the lower module, grade,

and announcement activity;

coupled with the lowest grade.

0.75 ± 24SD

N = 777 (13.3%)

Prediction Performance Analysis (RQ4)

Multi-classifier Performance. This section summarizes the predictive analysis

results, which compares the performance of a stack-based genetic programming XAI

model to that of other AI/ML models based on LMS student activity as feature inputs for

at-risk prediction. Supervised learning was performed by first training each model using

stratified 10-fold cross-validation to predict at-risk labeled ground truths obtained from

conducting k-Means classification for weekly cumulative datasets.

110

Using the Python kneed package, cluster size was automatically determined to be

K=5 for each week’s cumulative dataset, which was also visually verified using the

elbow method (Figure 41). Observe how SSE grows over time due to the larger amount

of data, which contributed to a higher amount of error aggregated. In addition, the elbow

is more pronounced over time as SSE improvements are steeper (angle of the curve

before the elbow point), which may be an indicator of better cluster isolation and

predictability. This could be attributed to the greater amount of historical data

accumulated each week.

Figure 41

K-Means SSE (Cumulative Weeks 1-15)

Kneed identified Elbow at K=5 for

all weeks.

111

The predictive performance measures f1-Score (Figure 42), precision (Figure 43),

and recall (Figure 44) were then computed for each AI/ML model for each week to show

predictive performance trends over time. Observe that prediction performance for all

models starts low initially, dips at the 2nd week, and then gradually peaks around the 4th

week. It is important to note that the stack-based genetic programming (GP) model was

superior for the first 5 weeks, even outperforming the multi-layer perceptron (MLP), a

deep learning model. It was also strange that during week 11, GP experienced a drastic

dip, but then recovered shortly after. These findings highlight the benefit and power of

GP as a potential model for early implementation, as it provides superior at-risk

prediction in the early weeks in addition to having more transparency.

Figure 42

Predictive Performance Over Time (F1-Score)

112

Figure 43

Predictive Performance Over Time (Precision)

Figure 44

Predictive Performance Over Time (Recall)

113

Figure 45 graphs the overall average scores (f1, precision, and recall) across all

models for comparison. Observe that MLP is the highest performer, which is expected as

it implements deep learning. But it is only marginally better than GP. Considering this,

GP may be preferred as it offers additional transparency and explainability as a simpler

and easier-to-interpret model. The next best performers include support vector machine

(SVM) and logistic regression (LG). SVM appears more consistent among the three

measures whereas LG demonstrated the highest precision but lower recall scores. Since

recall is more important in education, as it measures the ability to detect a true positive

(e.g., true at-risk students), SVM would be a preferred model. Following this reasoning,

the next best performers are Naïve Bayes (NB), followed by DT, and finally K-Nearest

Neighbors (KNN).

Figure 45

Mean Predictive Performance Scores

114

Binary Classifier Prediction Performance. This section summarizes the

predictive analysis results, which compares the performance of a tree-based genetic

programming XAI model to that of other AI/ML models based on LMS student activity

as feature inputs for at-risk prediction. More specifically, the GPLearn binary classifier

from the Scikit-Learn Python framework was used to explore the efficacy of tree-based

GP methods. Unlike the previous section, this analysis focused on the binary

classification that re-classified prior groups into at-risk or not-at-risk groups based on

whether the group means of their final grades were above or below the overall weekly

mean final grades of all groups.

Concerning predictive performance over time, GPLearn demonstrated very high

accuracies in the first week (f1-score of 0.94) but gradually declined and dipped in the

10th through 12th week. The performance then improved after the 12th week (see Figure

46). This performance trend was very different from the stack-based method.

Nevertheless, an 82-94% f1-score can be practical and effective in practice.

Figure 46

GPLearn Binary Classifier Performance Results Over Time

115

Figure 47 gives the predictive performance of GPLearn and other common

AI/ML models for comparison. GPLearn underperformed in comparison to other models

except for logistic regression in the first two weeks. Interestingly, the support vector

machine, decision tree, and k-Nearest Neighbor were the superior performers. Although

MLP had the highest peak scores, there were areas where it dipped in performance (1st-3rd

and 5th-8th weeks). Observe that there is a slight dip for all models in the second week,

which was a pattern observed from the previous multiclassification analysis results.

Concerning overall average performance across all weeks, SVM was the top performer

followed by DT, KNN, and MLP. Next was NB followed by LR. GPLearn was the

lowest performer (slightly over 86% f1-score).

Figure 47

Binary Classifier f1-Scores

116

Overall, GPLearn underperformed when compared to other models (see Figure

48). Interestingly, the support vector machine, decision tree, and k-Nearest Neighbor

were the superior performers. Although MLP had the highest peak scores, there were

areas where it dipped in performance (1st-3rd and 5th-8th weeks). These results show

that genetic programming may have limited performance as a binary classifier. However,

the explainability that GPLearn offers may be worth the performance trade-off. The

explainability of GPLearn is further discussed in the next section.

Figure 48

Overall Binary Classifier Performance Results

117

Explainability Analysis (RQ4)

This section presents an explainability comparative analysis of three XAI models,

namely, the stack-based genetic programming classifier, tree-based genetic programming

(GP) binary classifier, and decision tree (DT) classifier. These models are considered

explainable as they contain visual or rule-based representations of the underlying logic to

describe the reasoning behind their predictions. Unlike deep learning methods, which

contain a high number of connected and interacting components (known as neurons),

explainable models are much simpler and easier to interpret.

Explainability of Stack-Based GP. This section explores the explainability of

the Ellyn-GP M4GP algorithm, a stack-based lexicase genetic programming multi-

classifier written by La Cava et al. (2017; 2019). The results in the previous section

showed that the M4GP model demonstrated exceptional predictive performance

comparable to other deep learning leading models such as multi-layer perceptron. In La

Cava et al.’s (2019) work, M4GP demonstrated competitive performances against other

state-of-the-art models across a broad array of problem sets. But the question remains

how explainable are stack-based models? The answer is that they are not directly

interpretable due to the complex transformations involved.

Table 17 presents the top 10 models obtained from training M4GP on class labels

obtained from the prior K-Means Clustering Classification analysis performed as part of

this study. Observe that each of the model solutions appears simple, with only a few first-

order terms (7 items for the smallest and 20 for the largest) in the stack (represented by

elements within the brackets). Surprisingly, such a model produced accuracies on par

with the multi-layer perception with f1-scores above 98%. But understanding the model

118

is not as straightforward since the results are presented in an unfamiliar dimensional

space.

Table 17

Stack-Based GP (M4GP) Solutions

Solutions f1-score

[x_1, 0.509, x_2, x_3, x_0, 0.003, 0.129]

0.9898

[x_1, -0.042, 0.186, 0.014, x_2, -0.176, x_0, x_3]

1.

[x_1, x_2, 0.505, 0.001, 0.044, -0.076, -0.205, 0.128, x_0, x_3, 1.009, 0.0, -0.0]

0.9942

[-0.0, -0.537, x_3, 0.241, 0.001, x_0, x_1, -0.079, -0.132, x_2, -0.007]

1.

[x_2, x_1, 0.021, -0.009, 0.245, 0.006, x_0, x_3, 0.141, 0.003, -0.002]

0.9941

[-0.173, 0.047, -0.203, 0.48, x_1, 0.158, 0.131, x_0, 0.167, x_3, x_2, 0.037]

0.9932

[x_3, -0.005, 0.154, -0.003, -0.026, x_1, -0.11, 0.002, x_2, x_0]

1.

[0.053, 0.0, -0.027, x_3, 0.204, x_2, 0.023, -0.002, 0.108, 0.324, 0.008, 0.013, -0.869, 0.025,

0.025, 0.392, 0.184, x_1, x_0]

1.

[0.421, 0.504, -0.0, x_3, 0.657, x_2, -0.159, 0.558, 0.057, -0.416, -0.969, 0.232, -0.297, -

0.012, -0.038, -0.008, -0.115, x_1, x_0]

1.

[0.952, 0.16, -0.001, x_3, -0.015, x_2, -0.025, -0.042, 0.164, -0.341, -0.038, x_0, -0.241, -

0.026, 0.007, 0.633, 0.037, x_1, -0.21]

0.9872

According to La Cava et al. (2019), the M4GP algorithm “optimizes models by

first performing a transformation of the feature space into a new space of potentially

different dimensionality, and then performing classification using a distance function in

the transformed space” (p. 260). The model implements a distance-based nearest centroid

classifier similar to k-Means clustering where samples are classified based on the

minimum distance to cluster centroids. So how can the solutions be interpreted to provide

meaningful insight? Unlike K-Means Clustering, which performs clustering on the

feature space, M4GP clustering is performed on new n-dimensional space with different

p-clustered labels. Unfortunately, there is little to interpret as the space is unfamiliar and

119

only serves the purpose of improving classification accuracy. However, one can observe

that the solutions contain variables from the feature space (e.g., x_n terms). As such, it

can be inferred that the features themselves contribute to the classification if they appear

in the solution set.

Explainability of a Tree-Based Binary Genetic Programming Classifier.

Another alternative to stack-based genetic programming models is binary tree-based

models, which can provide simpler and more interpretable visual representations. For

example, Stephen’s (2016) GPLearn model is a binary tree-based classifier, which can

leverage Scikit-Learn’s graphviz package to output a syntax tree visual model. To

explore this model, the classification analysis was repeated, and at-risk groups were

categorized as at-risk, or not-at-risk students based on whether their mean values were

above or below the weekly group means of final grades. After training and predicting

using the 10-fold cross-validation method, GPLearn demonstrated a precision, recall, and

f1-score of r.85, .86, and .85 respectively. Figure 49 gives the associated tree model

output.

120

Figure 49

Tree-Based Genetic Programming Binary Classifier

Observed that the model is easier to interpret than the stack-based M4GP as the

representations are directly associated with the feature space. According to Ferreira et al.

(2020), the presence or absence of features in this model can be interpreted as an

indicator of importance. As such, major influential features can be immediately identified

as discussion (disc_cnt) and module (mod_cnt) activity. This is consistent with the

previous correlation analysis where discussion and module activity were identified as

having the most significant associations to final grades. Furthermore, the model can be

interpreted as a function of discussion and module activity and rewritten as equation (7).

121

As an equation, the binary classification can be explained based on an analysis of module

and discussion ranges and their impact on the output results.

𝑓(𝑑𝑖𝑠𝑐𝑐𝑛𝑡 , 𝑚𝑜𝑑𝑐𝑛𝑡) =
(

0.973
(𝑚𝑜𝑑𝑐𝑛𝑡 + 𝑑𝑖𝑠𝑐𝑐𝑛𝑡)

− 0.973)

(𝑚𝑜𝑑𝑐𝑛𝑡 + 𝑑𝑖𝑠𝑐𝑐𝑛𝑡)
− 0.973 (7)

Upon initial inspection, equation (7) may appear arbitrary. However, this is

expected as the objective of genetic programming is to develop solutions using randomly

selected programs, which may be novel and in this case are equations built from

operators (+, -, /) and operands (a rational number between 0 and 1). The resulting

solution is just one of many in the solution space, which may contain an infinite number

of possibilities. But how exactly does this equation translate to the at-risk state?

According to the GPLearn documentation, the output of the equation is transformed into

probabilities of each class using a sigmoid function (see equation (8) and Figure 50)

 The sigmoid function shows that negative or positive values of the output results

can be used to classify binary predictions based on their probability (e.g., p < .5 can be

classified as one group while p ≥ .5 can be classified as another) (Stephens, 2016).

Therefore, equation (7) can be analyzed to identify what values of discussion and module

activity result in an overall positive or negative value. Based on this, the following

observations can be made:

• The terms “mod_cnt + disc_cnt” in the solution equation can range from 0 to

2 as each variable is a normalized frequency ranging from 0 to 1. When both

are close to zero, the equation results in a positive value and can be classified

122

as at-risk (i.e., students with both low discussion and low module activity).

This is consistent with prior K-Means Clustering Classification analysis where

clusters 0, 2, and 4 were lower performing groups that also had low values of

discussion and module activity (see Figure 40).

• When one variable is zero and the other is one, the results will still end up as a

negative number (the numerator will be close to zero and thus reduce the left

operand of the minus sign) and thus classify the student as not-at-risk (i.e.,

when either discussion or module activity is high). This is consistent with

clusters 1 and 3 from the K-Means Clustering classification results (Figure 40)

in that discussion and module activity are influential factors alone for higher

performing groups.

• When both equal one, the resulting value is a negative number, which can be

classified as not-at-risk (i.e., students with both high discussion and high

module activity). This is logical as either factor would contribute to higher

performance. This is an additional characteristic that was not found in prior K-

means Clustering Classification analysis.

• Thus, the GPLearn binary classifier model provides mathematical

explainability that is consistent with prior K-Means Clustering Classification

as well as more insight into other high-performing groups.

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓) = 1 (1 + 𝑒−𝑓)⁄ (8)

123

Figure 50

Sigmoid Function

Explainability of a Decision Tree (Binary Classifier). To provide a fair

comparison, the same classification process was performed using the binary-class

decision tree model, which is shown in Figure 51. For prediction performance, the

decision tree outperformed the GPLearn binary classifier with precision, recall, and f1-

score of .97 (12% gain in performance). However, the higher accuracy came with the

trade-off of explainability as the resulting model has too many components, which

renders it too complex for practical interpretations.

124

Figure 51

Binary-Class Decision Tree

To improve the explainability of the decision tree, the maximum tree depth was

limited to three for the same analysis. In addition, Scikit-Learn’s graphviz (2022)

package was used to format the nodes and provide additional labeling to improve

explainability and readability. Figure 52 shows the updated decision tree, which shows

that limiting the maximum tree depth has significantly improved the explainability of the

decision tree. In addition, there was only a slight reduction in performance as the model

had a precision, recall, and f1-score of .93, .94, and .94 respectively (only a 3%

reduction). Note that each node provides several explainable information:

• The Boolean expressions provide a characterization of the child nodes. A

complete characterization of at-risk activity behaviors can be described by the

125

associated expressions along the path traversed to the leaf node, which

identifies the final class predicted for a particular sample.

• The ratio of total samples that are associated with each node provides insight

into the number of at-risk students.

• The associated ratios of samples partitioned into at-risk or not-at-risk groups

(i.e., the first and second entry of the value array) provides insight into the

number of correct or incorrect classifications, which is selected based on the

group with the highest proportion.

• The Gini index provides a measure of classification confidence and quality.

Lower values of Gini indicate more homogeneity in the classified distribution

(i.e., fewer classification errors).

• Class labels identify the classified group based on the value array where the

class with the highest ratio is selected.

126

Figure 52

Binary-Class Decision Tree (Max Depth of 3)

By analyzing the interpretable metrics in Figure 52, the following observations

and explanations can be made (refer to Figure 40 for references to prior clustering

analysis):

• There are eight total groups (two not-at-risk and six at-risk types) represented

by the leaf nodes and the Boolean expressions associated with the path

traversed.

127

• The first not-at-risk group (9.7% of total samples) is characterized by lower

module, higher discussion, and lower grade activity. 85% of the samples were

accurately classified. This is consistent with cluster 1 in prior clustering

analysis.

• The second not-at-risk group (17.7% of total samples) is associated with a

higher module, lower announcement, and lower grade activity. 95% of the

samples were correctly classified in this group. This group is consistent with

cluster 1 in prior clustering analysis.

• The first at-risk group (64.3% of total samples) is characterized by lower

module and lower discussion activity. 99% of the samples were correctly

classified. When mod_cnt is not less than .37 (the second at-risk group), there

appears to be a decreased probability (77%) that the students are at-risk. This

first group is similar to clusters 0, 2, and 4 of the prior cluster analysis. The

second at-risk group is a new finding.

• The third at-risk group (2.5% of total samples) is associated with a lower

module, higher discussion, and higher grade activity. 78% of samples were

correctly classified. This at-risk group is a new finding.

• The fourth at-risk group (2.2% of the total samples) is associated with a higher

module, lower announcement, and higher grade. 76 percent were correctly

classified. This group is a new finding.

• The fifth at-risk group (2% of total samples) is associated with a higher

module, higher announcement, and lower module activity. 97% of samples

were correctly classified. This group is a new finding.

128

• Finally, the sixth at-risk group (0.6% of total samples) is associated with the

higher module and higher announcement activity. Only 51% were correctly

classified. This group is a new finding. However, the accuracy is too low so

this group should be excluded from use.

As demonstrated, the decision tree was able to provide significant insight into

various types of at-risk and not-at-risk groups. Furthermore, the value of correctly

classified samples provides an additional measure of confidence that can be used in

practice to assess model trustworthiness. The percent of the total also helps identify the

effect size of the at-risk problems. In this example, it is clear that the first at-risk group

represents the bulk of at-risk students as it comprises over two/thirds of the total samples.

In summary, the decision tree binary classifier, when limited to a max depth of three,

resulted in superior explainability compared to both the GPLearn binary tree classifier

and M4GP stack-based classifier. Concerning prediction performance, it outperformed

GPLearn and was slightly less accurate than M4GP. Considering the enhanced

explainability, the decision tree is the preferred choice for practical applications. This is

primarily attributed to the explainable information offered by Scikit-Learn’s graphviz

package.

Explainability of Decision Trees (Multi-Classifier). In the last section, an

analysis was performed to assess the explainability of the decision tree binary classifier.

Similarly, this section explores the explainability of the multi-class decision tree. Figure

53 gives the visual representation of the decision tree trained and fitted to classification

labels obtained from prior K-Means classification analysis. Similar to the binary decision

129

tree, using default settings resulted in an overly complex tree that is arguably complex

and not interpretable.

Figure 53

Multi-Class Decision Tree Classifier

Figure 54 gives an updated decision tree when max depth is set to four, which was

identified optimal level to achieve a balance between explainability and prediction

performance (f1-score of 91.8%). In contrast, a max depth of 3 resulted in a simpler but

less accurate model (f1-score of 71.6%) while a max depth of 5 resulted in an overly

complex model with only marginal improvements in accuracy (f1-score of 92.8%).

Explainability was also improved by color coding of the nodes to indicate class numbers

with an intensity of color indicating the classification accuracy. Compared to GPLearn,

the multi-class decision tree is more explainable as the cluster class is explicitly

identified. The class provides a one-to-one mapping to labels obtained from prior

130

clustering analysis (see Figure 40). Compared to the prior decision trees, this model

provides more insight into other influential features as well as several traversal variations.

Figure 54

Multi-Class Decision Tree Classifier (Max Depth = 3)

Although there is a larger number of items in the decision tree, the color coding

and interpretable metrics help alleviate the cognitive load. Traversing any path is a

simple exercise to characterize the associated groups, which are defined at the leaf level.

In addition, the Gini index and color intensity also help provide a measure of confidence

or trustworthiness where a lower index associates with a deeper color to signify higher

131

classification accuracy at the associate node. Using this model, at-risk students (identified

as clusters 0, 2, and 4 in prior classification analysis) with high predictive performance

(greater than 90% accurate). For example, the largest at-risk group was classified as

cluster 0, which comprised 45.1% of the samples and is associated with levels of

activities across all features. Furthermore, prediction accuracy was high (.97) for this

group. Thus, the decision trees, like K-Means clustering, can provide more fine-grain

explanations by identifying specific levels of features to classify at-risk students. Specific

interventions can be planned to improve student interactions in features with lower

activities.

Implications of Explainable Results. This section discusses the explainability

analysis results and their applications to educational practice. Topics discussed include

identifying key explanations about at-risk students activity behaviors provided by the

XAI models as well as benefits that can be leveraged. In addition, recommendations are

provided on how these explanations can be used by instructors, students, and/or

university administrators.

What do the models explain? The explainability analysis compared and

contrasted the interpretability of stack-based GP, tree-based GP, and Decision Trees

models trained from clustered labels of prior classification analysis. The objective was to

determine how the models can explain student at-risk behaviors based on logged LMS

activity (i.e., access frequency to discussion forums, module content, grade pages, and

announcement pages). The results indicate that different models had different levels of

explainability (i.e., complexity and ease of human understanding).

132

First, the analysis found that the stack-based GP exhibited the highest predictive

performance but the poorest explainability. Although stack-based GP produced simple

stack-based solutions, interpretability was not obvious due to the complexity of

dimensional space transformations involved. The stack-based algorithm, known as

M4GP, first transforms the feature space to a new space of different dimensionality

before applying classification based on nearest centroid and Mahalanobis distance similar

to k-Means Clustering (La Cava et al., 2019). As a result, the model produced is a stack

comprised of synthetic features mapped to an unfamiliar dimensional space. Although the

solutions are simple and contain features as variable elements, the mapping back to the

original feature space is not obvious nor trivial. What can be inferred is that the synthetic

features, which may contain activity features, contribute to new synthetic characteristics,

that must be transformed back for meaningful insight. Unfortunately, there is a lack of

literature research on explaining or describing stack-based genetic programming. Most

studies identified stack-based GP as a simple and interpretable model but did not provide

practical explanations, examples, or visualizations (La Cava et al., 2017, 2019; Perkis,

1994; Stoffel & Spector, 1996). Therefore, the explainability of stack-based GP is

assessed as poor.

On the other hand, the GPLearn binary tree classifier provided better explanations

as the output model was a single binary tree that could be represented as a first-order

algebraic equation. The model was simply an equation that contained the features

(discussion and module activity) as variables forming a mathematical relationship that

could be analyzed and interpreted. Whether a sample was labeled at-risk or not depends

on the outputs of equation (7), where low values of discussion and module activity would

133

result in mappings to an at-risk group via a sigmoid function. Conversely, high values of

discussion and module activity would result in a not-at-risk mapping. However, there was

still limited practical explainability as there was little insight for mapping results back to

the original at-risk groups discovered during prior classification analysis.

Surprisingly, decision trees were found to have the best explainable results.

Initially, decision tree models developed were accurate but overly complex as there were

too many nodes for practical interpretation. It was later discovered that by limiting a max

depth, the explainability of the tree could be improved. Optimal values were found for

both binary and multi-class decision trees. Furthermore, the Scikit-Learn graphviz

package provided additional formatting capabilities along with interpretable metrics such

as color coding by class type, a Gini and probability metric to assess node-level

classification accuracy, and sample partition. The color intensity of each node also maps

to the classification accuracy demonstrated by each node.

As a result, various types of behaviors could be explained by traversing the tree

from the root node to the leaf node and examining the Boolean expression results to

characterize at-risk behaviors. Leaf nodes represent the final classified groups where the

traversed Boolean expressions describe feature traits (i.e., whether particular features

were above or below a threshold). Hence, formative feedback could be provided to

instructors and students to explain why they were identified as at-risk. The model not

only demonstrated consistency with prior K-Means Classification clusters but also

revealed new groups and insights that could be accurately predicted. The Gini metric,

color intensity, and partition probability also helped to provide a measure for confidence

134

and trustworthiness of predictions. Using these metrics, one could ignore inaccurate

nodes of the model while making effective use of the more accurate predictions.

What are key XAI benefits found? So, what are the real benefits that XAI can

offer? In this study, XAI was implemented as a post-hoc analysis of existing data in an

LMS system. The research provided a proof of concept to explore and investigate what

could be possible. In practice, these models could be implemented in a real-time

environment to provide automated analysis, alerting, and intervention guidance to

students, instructors, and administrators with live actionable data. This saves instructors

and institutions time and effort from manual analysis and unguided interventions. As an

early warning system, XAI may be able to detect early signs of at-risk students that were

not possible with late periodic assessments. This research found that at-risk behaviors can

be predicted with very high accuracy in the early weeks of instruction, which is a critical

time for interventions.

This research also demonstrated how different XAI models, such as stack-based

GP, tree-based GP, and decision trees exhibited different levels of explainability.

Unfortunately, GP explainability is still limiting due to the lack of literature and

supporting visualization technologies. In contrast, decision trees had extensive

visualization support from the Scikit-Learn python application programming interface

that greatly enhanced explainability. This research discovered that default settings of

decision trees could result in overly complex models. With some tuning of max depth

functions, highly accurate and explainable models could be achieved. The results of the

explainability analysis show that decision trees are superior in explainability. When used

to train on prior labeling, decision trees can be valuable post-hoc explainable techniques

135

for describing complex models. This study demonstrated how XAI models found

consistency with prior K-Means analysis.

Finally, another key benefit that XAI offers is the ability to improve the trust,

adoption, and use of emerging AI (Adadi & Berrada, 2018; Crowe et al., 2017; Sun &

Medaglia, 2019). Without proper reasoning behind at-risk predictions, instructors may

hesitate to act on alerts or indications. Without information feedback, they are left to

investigate the underlying reasons, which can take extensive time and effort assuming the

predictions are accurate. Additional explanations can provide confidence for decision-

making. For example, the decision tree’s explainable metrics such as Gini index,

probability proportions, and color-coded intensities help provide confidence metrics for

different parts of the model, which are easy to interpret and use for practical applications.

This information, when provided to students and teachers, can provide context and

awareness that is critical for decision-making (Alonso & Casalino, 2019). At-risk

indications with lower accuracy (e.g., high Gini value or low classification accuracy) may

be ignored while those with higher accuracy could be addressed.

Key Takeaways for Educational Stakeholders. From the K-Means Clustering

analysis, at-risk students were found to exhibit lower levels of LMS interaction across all

features, such as discussions, modules, grades, and announcements. Of those, discussions

and module activities were found to have the highest correlations to final grades. This

was later confirmed by the explainability analysis where consistent findings were found

by the XAI models’ at-risk explanations. These results are further supported by the

developed Theory-Guided Feature Selection (TGFS) model, which identifies discussions

and modules as important factors related to Social Learning and Fink’s Significant

136

Learning foundational knowledge concepts. Finally, these findings were also consistent

with the XAI and EDM literature review, which identified the significance of student

LMS activity in predicting and explaining student outcomes (Chamizo-Gonzalez et al.,

2015; Xing et al., 2015). This triangulation of results provides robust support that: (1)

student LMS activity can impact student outcomes and (2) student activity can be used to

predict and explain at-risk behaviors.

These findings can prove useful for instructors, students, and university

administrators. For instance, instructors can leverage this information to place additional

focus on tracking and engaging students and their discussion forums and module

interaction early in the semester. Those with a lack of interaction across all LMS

functions such as discussion forums, module content, grade pages, and announcement are

key indicators of at-risk students. The result of the study shows that even an increase in

any single LMS interaction can promote an increase in learning outcomes. The institution

can also create programs to promote early student interaction by providing preliminary

training, resources, or material to raise awareness of the importance of early interaction,

collaboration, and participation. This help prepare learners by identifying the importance

of participation, which has been shown to promote their learning success.

Institution administrators can implement supporting technologies that facilitate

and promote student discussion engagement and content participation within the LMS

environment. Examples include better discussion forums with collaborative real-time

capabilities. New technologies may increase interest and student engagement. In addition,

administrators could work with institution instructional designers to implement an early

warning system that implements XAI models to provide at-risk indications with

137

explainable feedback, such as reasons behind those predictions as well as a confidence

measure of the associate predictions (i.e., how likely the predictions are true). This allows

for both instructors and students to use those predictions based on their judgment and

decision-making processes. Over time, this will help not only improve student outcomes,

but also trust and adoption of XAI systems for educational use.

Chapter Summary

This chapter presented the results of the XAI EDM study, which included a

description of the EDM process, theory-guided feature selection, and various analyses

performed to answer the four key research questions.

RQ1 Findings

After excluding outliers and correcting for traditional learning biases, final grades

were found to have a modest (r = .22 and .21 respectively) positive correlation to

discussion**, module**, and grade** activity and a weak (r = .09) correlation to

announcement** page access frequency (** = p < .001). All other feature correlations

were statistically insignificant and were excluded for subsequent analysis.

Thus, for online learners, teachers and instructors can promote knowledge and

social learning interactions by tracking, monitoring, and soliciting student activity

associated with discussions and module access. Furthermore, instructors can promote

student engagement by providing more frequent assessments and notifications. By

playing an active role in instruction, teachers can improve student activity, which was

shown to associate with higher learning outcomes.

138

RQ2 Findings

There were 6 identifiable groups with differing levels of at-risk patterns. The at-

risk group (ILP) had a mean final grade of 0.37 (±.18SD) and exhibited very low activity

for all features. The mean final grade was significantly lower than other groups, H(4) = -

954 to -1120, p < .001, and r = -.72 to -.83. Four groups represented Good Performers

and were associated with higher levels of individual activities (AAGP, GAGP, DAGP,

and MAGP). There was one confounding group (IHP) characterized as having a high

final grade with low activity across all features, which was attributed to a large

proportion of the sample corresponding to students who enrolled in traditional learning.

This group was excluded to remove traditional course biases where students were not

required to interact with the LMS environment. Removing this group also improved the

correlation results identified in RQ1.

Based on RQ2 findings, at-risk learners are attributed to those who lack student

activity across all features. For online teachers, the lack of engagement and participation

should be an early predictor of success, especially in the early weeks when interventions

could be the most effective. Interventions employed can include frequent communication

and interaction with underactive students.

RQ3 Findings

There were 5 predictable at-risk groups. Three of the groups were low performers

(ILP, GALP, and AALP) who were associated with the following conditions: all lower

activities; all low activities except for grade access; all low activities except for

announcement activity. The remaining two groups (DAHP and GAGP) were

characterized as high and good performers who were associated with higher discussion

139

and higher module activities. These results were consistent with the results for RQ1.

Prediction performance for all models was high and increased with time. GP and MLP

were the most accurate models.

Based on RQ3 findings, discussion and module access were associated with

higher learning outcomes whereas grade and announcement activities were associated

with lower learning outcomes. This could be attributed to the fact that there is a large

ratio of traditional in-classroom students that were not excluded. Unfortunately,

classification without final grade as a feature did not reveal the confounding group

(higher performer with lower activity), which needed to be identified for exclusion.

Similar to RQ3 findings, lower performers are associated with lower activities

across all features and higher performers were associated with higher levels of discussion

and module access. As such, online teachers can aim to monitor, track, and improve the

discussion and module activity to promote success. In addition, teachers should spend

more time engaging students who have little to no interaction across all features.

RQ4 Findings

The prediction performance evaluation comparing various AI/ML models found

that stack-based GP performed comparably to MLP and superior to other models.

Although stack-based GP is simple, mapping its components back to the features is non-

trivial and may be difficult to explain. Comparative explainability analysis between

stack-based GP (M4GP), tree-based binary GP (GPLearn), and decision tree (binary and

multi-classifier) revealed that stack-based GP had the poorest explainability but best

performance. Decision trees with default settings result in accurate but highly complex

and non-explainable models. When modified to limit max depth, Decision trees retained

140

high accuracy with a much simpler and more explainable model. Leveraging Scikit-

Learn’s graphviz package for decision tree resulted in superior explainability. Future

work is needed to prove the explainability of stack-based GP.

141

CHAPTER V

Validity and Reliability

Introduction

This chapter provides a discussion on the validity and reliability of the current

research. Validity is concerned with accuracy and credibility whereas reliability is

concerned with repeatability and consistency of the research (L. Cohen et al., 2018).

Furthermore, Cohen et al. (2018) emphasized that “reliability is a necessary but

insufficient condition for validity in research” (p. 245). To ensure quality and worthwhile

research, both validity and reliability must be ensured as much as practically feasible

within the constraints of time, technology, and resources.

How are validity and reliability addressed? For quantitative research, Cohen et al.

(2018 cited Shadish et al. 2002) recommend addressing threats to internal validity, such

as low statistical power, violation of assumptions, measurement error, limited data range,

variation in treatment procedures, extraneous variables, variability in outcome measures,

statistical error, and false assumption of causality. Concerning external validity, the

research should address the generalizability of results based on the population

representativeness of the data sample (L. Cohen et al., 2018, p. 254). Finally, reliability

can be “achieved, in part, by a thorough literature review of the state of the field and how

it has been researched to date” (L. Cohen et al., 2018, p. 181).

This research implements many of Cohen et al.’s (L. Cohen et al., 2018, p. 201)

for improving the validity and reliability of the current research, which are summarized in

the proceeding sections. In addition, limitations and associated mitigation strategies are

identified concerning specific threats to internal validity.

142

Literature and Theoretical Supports

In sections Statement of the Problem, Significance of Study, and Literature

Research, evidence was provided for the importance of explainable artificial intelligence

and its potential uses in predicting at-risk students for educational improvement purposes.

The literature review identified both benefits and challenges revolving around XAI in

education, which provided the motivation and guidance for the study. Furthermore, meta-

analysis research found provided triangulation of results that help identify research

consensus as well as non-findings.

Sample Size

A primary benefit of EDM is the ability to obtain large sample sizes thanks to

automation and tooling. This study was able to collect the data from the entire population

for a period of interest, which enabled sufficient random sampling of a statistically

representative sample size for mean difference testing. Furthermore, the determination of

sample size was guided by an a priori power analysis.

Power Analysis

Validity of sample size was ensured by conducting an ad prior power analysis,

which was described in the Methods section of this study. The results of the power

analysis indicated that the minimum sample size required to detect small effects was 368

across test types, assuming equal group size, power of 0.8, and alpha of 0.05. For this

study, a total of 58,924 samples were collected from the target population, which

represent unique pairs of student/course enrollments (3,043 courses and 23,862 students).

Groups of equal sample size (N=500) were randomly selected for post-hoc statistical tests

143

(e.g., correlation and difference testing), which should provide sufficient power to detect

small or greater differences.

Generalizability

Since the scope of this study targets online learners from a large four-year dual-

mode higher education institution, generalizations are limited to those of similar size,

setting, and demographic makeup. Differences in race, gender, background, and

instruction delivery could introduce variances across institutions. Additionally, the

consistency and repeatability of this study may be limited to institutions delivering LMS

like Blackboard. Unfortunately, reliability remains difficult for educational studies as

populations from different institutions are inherently different and challenging to control.

Missing Data

Missing data can negatively impact the accuracy and precision of analysis, as well

as invalidate tests that assume no missing data (L. Cohen et al., 2018). This study

addresses missing data by identifying instances encountered as well as associated

mitigations or decisions made.

During the importing of the raw activity table data into the local SQL database, a

parsing error resulted in a loss of approximately 1.54% (70,724 of 4.58 million) of the

first week’s records, or approximately 0.029% (70,724 of 243.1 million) of the

cumulative 15-week records. Since the amount of data lost is negligible, there is minimal

impact on the study. In addition, the erratic nature of the associated data was out of the

researcher’s control.

Missing data was also encountered during the data processing stage in which null

values were present for both activity features and final grades. For activity features,

144

missing data equates to a lack of logged activity, and are addressed by setting their values

equal to zero. For final grades, missing data corresponds to the lack of entry by the

instructor, which implies a withdrawal of the student from the course. As such, assigning

the missing final grade to a score of zero was insufficient. To address this, an additional

labeled column was created to differentiate between those with and without final grades

(e.g., complete, and incomplete status respectively).

Inconsistent Performance Assessment Data

Initially, this study aimed to collect student performance data (e.g., quizzes,

assignments, and exams) as features to enhance clustering and prediction accuracy.

Student performance data is highly desired as it has been thoroughly researched to

improve at-risk student prediction accuracies (see references in Table 4 for the

“performance” feature category for support). However, the researcher observed the

inconsistent implementation of graded activities and assessments across the 3,043 courses

analyzed. Although many courses had assignments, quizzes, and mid/final exams, the

exact time for assignments and quizzes were difficult to align, aggregate, and compare.

As such, student performance as a feature was excluded from the study.

Although excluding student performance features may limit model performance

and follow-on clustering and classification analysis, this research contributes to the lack

of literature on exploring activity-only features in EDM for at-risk student prediction.

From Table 3, only Xing et al.’s (2015) study investigated the impact of using activity-

only features. Their work provided the preliminary groundwork for this research, such as

leveraging a theory-guided genetic programming model using student interaction as a

feature. They demonstrated that this approach outperformed traditional models in both

145

prediction and explainability (Xing et al., 2015). However, their study was limited to a

single math course of 122 students with data collected from learning software as opposed

to an LMS system. Therefore, this study extends their work to a wider population and

larger sample size, which improves the robustness, reliability, and generalizability of XAI

research.

Chapter Summary

This chapter provided a brief definition of validity and reliability as well as

recommendations from the literature to address associated threats that could impact the

credibility and repeatability of this research. Specific threats to validity and reliability

were also identified in addition to discussing the associated decisions and actions taken to

mitigate such concerns. In summary, this research addressed various validity and

reliability where possible within the scope and constraints of the study.

146

CHAPTER VII

Future Work

Introduction

XAI Application Design

Future studies can explore the design, development, and practical implementation

of an XAI mobile learning system. Figure 11 proposes a conceptual design of the XAI

System, which leverages web and cloud technologies to enhance accessibility. The XAI

system comprises the Application, Web, and Database Server.

Figure 55

Chart Illustrating the XAI System Architecture Design

The Application Server is responsible for executing functions such as educational

data mining and from the LMS, reading from and writing to the Database Server, and

responding to Web Server commands. The Application Server also contains the

147

predictive model and at-risk detection logic. The Web Server acts as a front-end graphical

user interface between the User (students, educators, and administrators) and the

Application/Database Servers.

The Web interface will be accessible to any device with a web browser and will

present reports as well as receive information and commands from the users. At-risk

alerts are also provided via the Web Server interface, which is retrieved from the

Database Server.

The Database server stores data that is processed, formatted, and sanitized by the

Application Server, which includes student grades, LMS interaction metrics, and Web

Server interaction metrics. The Database server includes at-risk prediction alerts and

associated formative feedback, which can be retrieved and formatted by the Web Server

and presented to the User-based on their interaction and page requests.

Unlike the current study, which investigates the predictability and explainability

of XAI systems, future studies using the XAI systems in a live environment can explore

the efficacy and effectiveness of XAI systems in improving student outcomes and

retention.

Performance Features

A limitation of this study was the lack of consistent performance metrics across

courses and over time. This made it difficult to obtain a representative sample for the

population of students in the institution. Since this study aimed to explore the wider

population, performance features were excluded. As a result, predictive power and at-risk

resolution were reduced due. Future studies can reduce the scope of the target population

148

to investigate the predictability and explainability of XAI systems that include

assessment features, such as assignments, quizzes, and/or exam scores.

Intrinsic Features

Although EDM allows for the collection of large sample sizes, the data collected

is limited to what is available and logged in the LMS database. This limits the collection

of other features such as intrinsic factors, which have been thoroughly researched and

determined as critical elements influencing student performance. Cerasoli et al. (2014)

conducted a comprehensive meta-analysis and found consensus that intrinsic motivation

is a medium to strong predictor of performance. Bandura’s triadic reciprocity within his

Social Learning Theory framework identifies the reciprocal interaction between personal

factors, behavior, and the environment (Nabavi, 2012). Bandura’s also identified the

importance of perceived self-efficacy (i.e., belief in one’s ability) as a “key factor in a

generative system of human competence” (Bandura, 1977a, p. 197). When used as

features, intrinsic factors such as motivation and self-efficacy may provide additional

explanation and predictive power to student behavior, which can be measured by logged

activity. Future studies can explore these topics by implementing periodic assessments or

surveys within the LMS to solicit student intrinsic factors.

Chapter Summary

This chapter provided directions for future research, such as the implementation

of a proposed XAI Application System for exploring the efficacy of at-risk student

prediction and explanations. The research focuses on adding performance-based features

to the current research, but a smaller scope was recommended to improve prediction

performance and at-risk characterization. Finally, intrinsic features are another important

149

topic for future research that can incorporate key factors influencing student beliefs,

behaviors, and performance in the context of environmental interactions.

150

REFERENCES

Abdul, A., Vermeulen, J., Wang, D., Lim, B. Y., & Kankanhalli, M. (2018). Trends and

trajectories for explainable, accountable and intelligible systems: An HCI research

agenda. Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems, 1–18. https://doi.org/10.1145/3173574.3174156

Abdulhafedh, A. (2021). Incorporating k-means, hierarchical clustering and PCA in

customer segmentation. Journal of City and Development, 3(1), 12–30.

https://doi.org/10.12691/jcd-3-1-3

Abe, K. (2019). Data mining and machine learning applications for educational big data

in the university. 2019 IEEE Intl Conf on Dependable, Autonomic and Secure

Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on

Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology

Congress (DASC/PiCom/CBDCom/CyberSciTech), 350–355.

https://doi.org/10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00071

Adadi, A., & Berrada, M. (2018). Peeking inside the black-box: A survey on explainable

artificial intelligence (XAI). IEEE Access, 6, 52138–52160.

https://doi.org/10.1109/ACCESS.2018.2870052

Al Breiki, B., Zaki, N., & Mohamed, E. A. (2019). Using educational data mining

techniques to predict student performance. 2019 International Conference on

Electrical and Computing Technologies and Applications (ICECTA), 1–5.

https://doi.org/10.1109/ICECTA48151.2019.8959676

Aliaga, M., & Gunderson, B. (2002). Interactive statistics. Sage.

151

Al-Omar, K. (2018). Evaluating the usability and learnability of the “Blackboard” LMS

using SUS and data mining. 2018 Second International Conference on Computing

Methodologies and Communication (ICCMC), 386–390.

https://doi.org/10.1109/ICCMC.2018.8488038

Alonso, J. M., & Casalino, G. (2019). Explainable artificial intelligence for human-

centric data analysis in virtual learning environments. In D. Burgos, M. Cimitile,

P. Ducange, R. Pecori, P. Picerno, P. Raviolo, & C. M. Stracke (Eds.), First

International Workshop, HELMeTO 2019, Novedrate, CO, Italy, June 6-7, 2019,

Revised Selected Papers (Vol. 1091, Issue September, pp. 125–138). Springer

International Publishing. https://doi.org/10.1007/978-3-030-31284-8_10

Alshammari, I. A., Aldhafiri, M. D., & Al-Shammari, Z. (2013). A meta-analysis of

educational data mining on improvements in learning outcomes. College Student

Journal, 47(2), 326–333.

https://www.researchgate.net/publication/273444780_A_META-

ANALYSIS_OF_EDUCATIONAL_DATA_MINING_ON_IMPROVEMENTS_

IN_LEARNING_OUTCOMES

Anjomshoae, S., Calvaresi, D., Najjar, A., & Främling, K. (2019). Explainable agents and

robots: Results from a systematic literature review. Proceedings of the

International Joint Conference on Autonomous Agents and Multiagent Systems,

AAMAS, 2, 1078–1088. https://dl.acm.org/doi/10.5555/3306127.3331806

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A.,

Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F.

(2020). Explainable artificial intelligence (XAI): Concepts, taxonomies,

152

opportunities and challenges toward responsible AI. Information Fusion, 58, 82–

115. https://doi.org/10.1016/j.inffus.2019.12.012

Arvai, K. (2020). Kneed: Knee-point detection in Python (0.7.0) [Python].

https://github.com/arvkevi/kneed

Awaji, M. H. (2018). Evaluation of machine learning techniques for early identification

of at-risk students [Nova Southern University].

https://nsuworks.nova.edu/gscis_etd/1059/#

Baker, R., & Inventado, P. (2014). Educational data mining and learning analytics. In J.

A. Larusson & B. White (Eds.), Learning analytics: From research to practice

(pp. 61–75). Springer Science. https://doi.org/10.1007/978-1-4614-3305-7_4

Baker, R. S. J. D., Gowda, S. M., & Corbett, A. T. (2011). Automatically detecting a

student’s preparation for future learning: Help use is key. EDM 2011 -

Proceedings of the 4th International Conference on Educational Data Mining,

179–188. http://radix.www.upenn.edu/learninganalytics/ryanbaker/PFL-EDM-

2011-v19.pdf

Baldelovar, M. (2016). Determinants of students’ retention in higher education.

International Journal of Science and Research (IJSR), 7(10), 1460–1462.

https://doi.org/10.21275/ART20192308

Bandura, A. (1977a). Self-efficacy: The exercise of control. W.H. Freeman and Company.

Bandura, A. (1977b). Social learning theory. Prentice-Hall.

Banerjee, P., Dehnbostel, F. O., & Preissner, R. (2018). Prediction is a balancing act:

Importance of sampling methods to balance sensitivity and specificity of

153

predictive models based on imbalanced chemical data sets. Frontiers in

Chemistry, 6. https://doi.org/10.3389/fchem.2018.00362

Beer, C., & Lawson, C. (2017). The problem of student attrition in higher education: An

alternative perspective. Journal of Further and Higher Education, 41(6), 773–

784. https://doi.org/10.1080/0309877X.2016.1177171

Beil, D., & Theissler, A. (2020). Cluster-clean-label: An interactive machine learning

approach for labeling high-dimensional data. Proceedings of the 13th

International Symposium on Visual Information Communication and Interaction,

1–8. https://doi.org/10.1145/3430036.3430060

Berens, J., Schneider, K., Görtz, S., Oster, S., & Burghoff, J. (2019). Early detection of

students at risk—Predicting student dropouts using administrative student data

from German universities and machine learning methods. Journal of Educational

Data Mining, 11(3), 1–41.

https://jedm.educationaldatamining.org/index.php/JEDM/article/view/389

Berrar, D. (2018). Cross-validation. In Encyclopedia of bioinformatics and computational

biology (Vol. 1, pp. 542–545). Elsevier. https://doi.org/10.1016/B978-0-12-

809633-8.20349-X

Bienkowski, M., Feng, M., & Means, B. (2012). Enhancing teaching and learning

through educational data mining and learning analytics: An issue brief. USDOE.

https://tech.ed.gov/wp-content/uploads/2014/03/edm-la-brief.pdf

Broad agency announcement: Explainable artificial intelligence (XAI) DARPA-BAA-16-

53. (2016). DARPA. https://www.darpa.mil/attachments/DARPA-BAA-16-53.pdf

154

Cano, A., & Leonard, J. D. (2019). Interpretable multiview early warning system adapted

to underrepresented student populations. IEEE Transactions on Learning

Technologies, 12(2), 198–211. https://doi.org/10.1109/TLT.2019.2911079

Cava, W. L. (2017). Ellyn [C++]. https://github.com/lacava/ellyn

Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic

incentives jointly predict performance: A 40-year meta-analysis. Psychological

Bulletin, 140(4), 980–1008. https://doi.org/10.1037/a0035661

Chamizo-Gonzalez, J., Cano-Montero, E. I., Urquia-Grande, E., & Muñoz-Colomina, C.

I. (2015). Educational data mining for improving learning outcomes in teaching

accounting within higher education. The International Journal of Information and

Learning Technology, 32(5), 272–285. https://doi.org/10.1108/IJILT-08-2015-

0020

Chitti, M., Chitti, P., & Jayabalan, M. (2020). Need for interpretable student performance

prediction. https://doi.org/10.1109/DeSE51703.2020.9450735

Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education,

18(6), 683–695. https://doi.org/10.1080/13562517.2013.827653

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.).

Lawrence Elrbaum Associates.

Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th ed.).

Routledge.

Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2017). Predicting student

performance from LMS data: A comparison of 17 blended courses using Moodle

155

LMS. IEEE Transactions on Learning Technologies, 10(1), 17–29.

https://doi.org/10.1109/TLT.2016.2616312

CORE. (n.d.). CORE API. Retrieved May 9, 2022, from https://core.ac.uk/services/api

Crowe, D., & LaPierre, M. E. (2018). Virtual/mixed reality. International Journal of

Conceptual Structures and Smart Applications, 6(1), 33–47.

https://doi.org/10.4018/IJCSSA.2018010103

Crowe, D., LaPierre, M., & Kebritchi, M. (2017). Knowledge based artificial

augmentation intelligence technology: Next step in academic instructional tools

for distance learning. TechTrends, 61(5), 494–506.

https://doi.org/10.1007/s11528-017-0210-4

Du, X., Yang, J., Hung, J.-L., & Shelton, B. (2020). Educational data mining: A

systematic review of research and emerging trends. Information Discovery and

Delivery, 48(4), 225–236. https://doi.org/10.1108/IDD-09-2019-0070

Duval, A. (2019). Explainable artificial intelligence (XAI). University of Warwick, 53.

https://doi.org/10.13140/RG.2.2.24722.09929

Everitt, B. S., Landau, S., Leese, M., & Stahl, D. (2011). Cluster analysis (5th Eds.). John

Wiley & Sons, Ltd.

Ferreira, L. A., Guimarães, F. G., & Silva, R. (2020). Applying genetic programming to

improve interpretability in machine learning models. 2020 IEEE Congress on

Evolutionary Computation (CEC), 1–8.

https://doi.org/10.1109/CEC48606.2020.9185620

Field, A. (2018). Discovering statistics using IBM SPSS statistics (5th edition). SAGE

Publications.

156

Fink, L. D. (2003). Creating significant learning experiences: An integrated approach to

designing college courses. Jossey-Bass.

Frost, N., Moshkovitz, M., & Rashtchian, C. (2020). ExKMC: Expanding explainable k-

means clustering. ArXiv:2006.02399 [Cs.LG]. https://arxiv.org/abs/2006.02399v2

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., & Kagal, L. (2019).

Explaining explanations: An overview of interpretability of machine learning.

ArXiv:1806.00069 [Cs, Stat]. http://arxiv.org/abs/1806.00069

Google Trends. (n.d.). Retrieved July 13, 2020, from

https://trends.google.com/trends/?geo=US

G*Power: Statistical power analyses for Windows and Mac. (2021).

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-

arbeitspsychologie/gpower.html

Gunning, D., & Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI)

program. AI Magazine, 40(2), 44–58. https://doi.org/10.1609/aimag.v40i2.2850

Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., & Yang, G.-Z. (2019). XAI—

Explainable artificial intelligence. Science Robotics, 4(37), eaay7120.

https://doi.org/10.1126/scirobotics.aay7120

He, F., Mazumdar, S., Tang, G., Bhatia, T., Anderson, S., Dew, M., Krafty, R., V.L., N.,

Deshpande, S., Hall, M., & C., R. (2016). Nonparametric MANOVA approaches

for non-normal multivariate outcomes with missing values. Communications in

Statistics - Theory and Methods, 46.

https://doi.org/10.1080/03610926.2016.1146767

157

Imran, M., Latif, S., Mehmood, D., & Shah, M. S. (2019). Student academic performance

prediction using supervised learning techniques. International Journal of

Emerging Technologies in Learning (IJET), 14(14), 92.

https://doi.org/10.3991/ijet.v14i14.10310

Kalles, D., & Pierrakeas, C. (2006). Analyzing student performance in distance learning

with genetic algorithms and decision trees. Applied Artificial Intelligence, 20(8),

655–674. https://doi.org/10.1080/08839510600844946

Karpatne, A., Atluri, G., Faghmous, J., Steinbach, M., Banerjee, A., Ganguly, A.,

Shekhar, S., Samatova, N., & Kumar, V. (2017). Theory-guided data science: A

new paradigm for scientific discovery from data. IEEE Transactions on

Knowledge and Data Engineering, 29(10), 2318–2331.

https://doi.org/10.1109/TKDE.2017.2720168

Khare, K., Stewart, B., & Khare, A. (2018). Artificial Intelligence and the student

experience: An institutional perspective. IAFOR Journal of Education, 6(3), 63–

78.

Knight, W. (2017). The dark secret at the heart of AI. MIT Technology Review, 120(3),

11. https://www.technologyreview.com/2017/04/11/5113/the-dark-secret-at-the-

heart-of-ai/

Knoth, P., & Zdrahal, Z. (2012). CORE: Three access levels to underpin open access. D-

Lib Magazine, 18(11/12). https://doi.org/10.1045/november2012-knoth

Kondo, N., Okubo, M., & Hatanaka, T. (2017). Early detection of at-risk students using

machine learning based on LMS log data. Proceedings - 2017 6th IIAI

158

International Congress on Advanced Applied Informatics, IIAI-AAI 2017, 198–

201. https://doi.org/10.1109/IIAI-AAI.2017.51

Kwak, S. G., & Kim, J. H. (2017). Central limit theorem: The cornerstone of modern

statistics. Korean Journal of Anesthesiology, 70(2), 144.

https://doi.org/10.4097/kjae.2017.70.2.144

Kwon, O. (2020). Very simple statistical evidence that AlphaGo has exceeded human

limits in playing GO game. ArXiv:2002.11107 [Cs].

http://arxiv.org/abs/2002.11107

La Cava, W., Silva, S., Danai, K., Spector, L., Vanneschi, L., & Moore, J. H. (2019).

Multidimensional genetic programming for multiclass classification. Swarm and

Evolutionary Computation, 44, 260–272.

https://doi.org/10.1016/j.swevo.2018.03.015

La Cava, W., Silva, S., Vanneschi, L., Spector, L., & Moore, J. (2017). Genetic

programming representations for multi-dimensional feature learning in

biomedical classification. In G. Squillero & K. Sim (Eds.), Applications of

Evolutionary Computation (Vol. 10199, pp. 158–173). Springer International

Publishing. https://doi.org/10.1007/978-3-319-55849-3_11

Layton, R. (2017). Learning data mining with Python: Use Python to manipulate data

and build predictive models (2nd Eds.). https://learning.oreilly.com/library/view/-

/9781787126787/?ar

Long, M., Ferrier, F., & Heagney, M. (2006). Stay, play or give it away? Students

continuing, changing or leaving university study in first year. Monash University,

253. https://files.eric.ed.gov/fulltext/ED505791.pdf

159

Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2013). Disruptive

technologies: Advances that will transform life, business, and the global economy

(pp. 1–162). McKinsey Global Institute.

https://www.mckinsey.com/~/media/McKinsey/Business Functions/McKinsey

Digital/Our Insights/Disruptive

technologies/MGI_Disruptive_technologies_Full_report_May2013.ashx

Matplotlib: Python plotting—Matplotlib 3.4.3 documentation. (n.d.). Retrieved

September 5, 2021, from https://matplotlib.org/

McCoy, S., & Byrne, D. (2017). Student retention in higher education. In Economic

Insights on Higher Education Policy in Ireland: Evidence from a Public System

(pp. 111–141). https://doi.org/10.1007/978-3-319-48553-9_5

McCrum-Gardner, E. (2008). Which is the correct statistical test to use? British Journal

of Oral and Maxillofacial Surgery, 46(1), 38–41.

https://doi.org/10.1016/j.bjoms.2007.09.002

Michael, W. (2021). Seaborn: Statistical data visualization.

https://seaborn.pydata.org/index.html

Moyer, C. (2016, March 28). How Google’s AlphaGo beat a go world champion. The

Atlantic. https://www.theatlantic.com/technology/archive/2016/03/the-invisible-

opponent/475611/

Muijs, D. (2004). Doing quantitative research in education with SPSS. Sage Publications.

Nabavi, R. T. (2012). Bandura’s social learning theory & social cognitive learning

theory. Research Gate, 24.

160

https://www.researchgate.net/publication/267750204_Bandura%27s_Social_Lear

ning_Theory_Social_Cognitive_Learning_Theory

NCES. (2020, April). The Condition of Education—Postsecondary Education—

Programs, Courses, and Completions—Undergraduate Retention and Graduation

Rates—Indicator April (2020). https://nces.ed.gov/programs/coe/indicator_ctr.asp

NCES. (2021). College Navigator—National Center for Education Statistics.

https://nces.ed.gov/collegenavigator/

NCES. (2022). Trend Generator. https://nces.ed.gov/ipeds/TrendGenerator/app/

Ndou, N., Ajoodha, R., & Jadhav, A. (2020). Educational data-mining to determine

student success at higher education institutions. 2020 2nd International

Multidisciplinary Information Technology and Engineering Conference

(IMITEC), 1–8. https://doi.org/10.1109/IMITEC50163.2020.9334139

OECD. (2020). Education at a glance 2020: OECD indicators. OECD.

https://doi.org/10.1787/69096873-en

Ostler, D. E. (n.d.). Guidelines for writing research proposals, reports, theses, and

dissertations. 13.

Pandas: Powerful python data analysis toolkit. (2021). [Python]. pandas.

https://github.com/pandas-dev/pandas (Original work published 2010)

Peikari, M., Salama, S., Nofech-Mozes, S., & Martel, A. L. (2018). A cluster-then-label

semi-supervised learning approach for pathology image classification. Scientific

Reports, 8(1), 7193. https://doi.org/10.1038/s41598-018-24876-0

161

Perera-Diltz, D. M., & Moe, J. L. (2014). Formative and summative assessment in online

education. Journal of Research in Innovative Teaching, 7(4), 14.

https://digitalcommons.odu.edu/chs_pubs/37

Perkis, T. (1994). Stack-based genetic programming. Proceedings of the First IEEE

Conference on Evolutionary Computation. IEEE World Congress on

Computational Intelligence, 148–153 vol.1.

https://doi.org/10.1109/ICEC.1994.350025

Pillay, N. (2020). The impact of genetic programming in education. Genetic

Programming and Evolvable Machines, 21(1–2), 87–97.

https://doi.org/10.1007/s10710-019-09362-4

Raju, R., Kalaiselvi, N., M., A. S., I., D., & A., S. (2020). Educational data mining: A

comprehensive study. 2020 International Conference on System, Computation,

Automation and Networking (ICSCAN), 1–5.

https://doi.org/10.1109/ICSCAN49426.2020.9262399

Ramalingam, V. V., Pandian, A., Chetry, P., & Nigam, H. (2018). Automated essay

grading using machine learning algorithm. Journal of Physics: Conference Series,

1000(1), 012030. https://doi.org/10.1088/1742-6596/1000/1/012030

Reiser, R. A., & Ely, D. P. (1997). The field of educational technology as reflected

through its definitions. Educational Technology Research and Development,

45(3), 63–72. https://doi.org/10.1007/BF02299730

Şahi̇n, M., & Yurdugül, H. (2020). Educational data mining and learning analytics: Past,

present and future. Eğitsel Veri Madenciliği ve Öğrenme Analitikleri: Dünü,

Bugünü ve Geleceği., 9(1), 121–131. https://doi.org/10.14686/buefad.606077

162

Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller, K.-R. (2021).

Explaining deep neural networks and beyond: A review of methods and

applications. Proceedings of the IEEE, 109(3), 247–278.

https://doi.org/10.1109/JPROC.2021.3060483

Samek, W., & Müller, K.-R. (2019). Towards explainable artificial intelligence. In

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 11700 LNCS

(pp. 5–22). https://doi.org/10.1007/978-3-030-28954-6_1

Satopaa, V., Albrecht, J., Irwin, D., & Raghavan, B. (2011). Finding a “kneedle” in a

haystack: Detecting knee points in system behavior. 2011 31st International

Conference on Distributed Computing Systems Workshops, 166–171.

https://doi.org/10.1109/ICDCSW.2011.20

Schunk, D. H., & Pajares, F. (2009). Self-efficacy theory. In Handbook of motivation at

school. (pp. 35–53). Routledge/Taylor & Francis Group.

Scikit-learn: Machine learning in python—Scikit-learn 0.24.2 documentation. (n.d.).

Retrieved August 28, 2021, from https://scikit-learn.org/stable/index.html

SciPy.org—SciPy.org. (n.d.). Retrieved August 28, 2021, from https://www.scipy.org/

Shin, D. (2021). The effects of explainability and causability on perception, trust, and

acceptance: Implications for explainable AI. International Journal of Human-

Computer Studies, 146, 102551. https://doi.org/10.1016/j.ijhcs.2020.102551

Shrestha, N. (2020). Detecting multicollinearity in regression analysis. American Journal

of Applied Mathematics and Statistics, 8(2), 39–42.

https://doi.org/10.12691/ajams-8-2-1

163

Siemens, G., & Baker, R. S. J. d. (2012). Learning analytics and educational data mining:

Towards communication and collaboration. Proceedings of the 2nd International

Conference on Learning Analytics and Knowledge, 252–254.

https://doi.org/10.1145/2330601.2330661

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,

T., Baker, L., Lai, M., & Bolton, A. (2017). Mastering the game of go without

human knowledge. Nature, 550(7676), 354–359.

Sklearn.tree.export_graphviz. (2022). Scikit-Learn. https://scikit-

learn/stable/modules/generated/sklearn.tree.export_graphviz.html

Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, f-score and

ROC: A family of discriminant measures for performance evaluation. In A. Sattar

& B. Kang (Eds.), AI 2006: Advances in Artificial Intelligence (Vol. 4304, pp.

1015–1021). Springer Berlin Heidelberg. https://doi.org/10.1007/11941439_114

Song, D. (2021a). Advance statistics 10: Classification 2. https://shsu.blackboard.com

Song, D. (2021b). Advance statistics 11: Clustering 1. https://shsu.blackboard.com

Song, D. (2021c). Advance statistics 12: Clustering 2. https://shsu.blackboard.com

Song, D. (2021d, April 7). 2021 Spring COUN 7374 Week 12. Machine Learning—

Clustering Part 2. https://www.youtube.com/watch?v=MC1KbJ4TAUw

Song, D., Rice, M., & Oh, E. Y. (2019). Participation in online courses and interaction

with a virtual agent. The International Review of Research in Open and

Distributed Learning, 20(1). https://doi.org/10.19173/irrodl.v20i1.3998

Stephens, T. (2016). Introduction to GP — gplearn 0.4.2 documentation.

https://gplearn.readthedocs.io/en/stable/intro.html

164

Stoffel, K., & Spector, L. (1996). High-performance, parallel, stack-based genetic

programming. In J. R. Koza, D. E. Goldberg, D. B. Fogel, & R. L. Riolo (Eds.),

Genetic Programming 1996: Proceedings of the First Annual Conference (pp.

224–229). The MIT Press. http://faculty.hampshire.edu/lspector/pubs/HiGP-gp96-

e.pdf

Stolk, C. van, Tiessen, J., Cliff, J., & Levitt, R. (2007). Student retention in higher

education courses: International comparison (p. 94). Rand Corporation.

https://www.rand.org/content/dam/rand/pubs/technical_reports/2007/RAND_TR4

82.pdf

Subbiah, U., Kumar, R. V., Panicker, S. A., Bhalaje, R. A., & S, P. (2020). An enhanced

deep learning architecture for the classification of cancerous lymph node images.

2020 Second International Conference on Inventive Research in Computing

Applications (ICIRCA), 381–386.

https://doi.org/10.1109/ICIRCA48905.2020.9183250

Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of artificial intelligence in the

public sector: Evidence from public healthcare. Government Information

Quarterly, 36(2), 368–383. https://doi.org/10.1016/j.giq.2018.09.008

The Texas State University System. (2022, February). Workbook: TSUS enrollment

explorer. https://public.tableau.com/views/TSUSEnrollmentExplorer-

aggregatev3/SelectStudents?%3Adisplay_static_image=y&%3AbootstrapWhenN

otified=true&%3Aembed=true&%3Alanguage=en-

US&:embed=y&:showVizHome=n&:apiID=host0#navType=0&navSrc=Parse

165

Tinto, V. (2006). Research and practice of student retention: What next? Journal of

College Student Retention: Research, Theory & Practice, 8(1), 1–19.

https://doi.org/10.2190/4YNU-4TMB-22DJ-AN4W

Veerasamy, A. K. (2020). Predictive models as early warning systems for student

academic performance in introductory programming [University of Turku].

https://core.ac.uk/reader/347181188

Vilone, G., & Longo, L. (2020). Explainable artificial intelligence: A systematic review.

Dl. http://arxiv.org/abs/2006.00093

Visualizing cross-validation behavior in scikit-learn—Scikit-learn 0.24.2 documentation.

(n.d.). Retrieved August 29, 2021, from https://scikit-

learn.org/stable/auto_examples/model_selection/plot_cv_indices.html

Vygotsky, L. S. (1985). Mind in society: The development of higher psychological

processes. In M. Cole, V. John-Steiner, S. Scribner, & E. Souberman (Eds.),

Harefuah (Vol. 108, Issues 3–4).

Wellman, J., Johnson, N., & Steele, P. (2012). Measuring (and managing) the invisible

cost of postsecondary attrition (p. 12). American Institute for Research.

https://files.eric.ed.gov/fulltext/ED536120.pdf

Wills, R., Elder, A., & Molina, D. (2018). What matters in college student success?

Determinants of college retention and graduation rates. Education, 138(4), 309–

322. https://eric.ed.gov/?id=EJ1180297

Xiao, Y., & Watson, M. (2019). Guidance on conducting a systematic literature review.

Journal of Planning Education and Research, 39(1), 93–112.

https://doi.org/10.1177/0739456X17723971

166

Xing, W., Guo, R., Petakovic, E., & Goggins, S. (2015). Participation-based student final

performance prediction model through interpretable genetic programming:

Integrating learning analytics, educational data mining and theory. Computers in

Human Behavior, 47, 168–181. https://doi.org/10.1016/j.chb.2014.09.034

Yang, Y. C. C., Chen, I. Y. L., & Hiroaki, O. (2021). Toward precision education:

Educational data mining and learning analytics for identifying students learning

patterns with ebook systems. Educational Technology & Society, 24(1), 152–163.

https://ezproxy.shsu.edu/login?url=http://search.ebscohost.com/login.aspx?direct=

true&db=edsjsr&AN=edsjsr.26977864&site=eds-live&scope=site

Yuan, C., & Yang, H. (2019). Research on k-value selection method of k-means

clustering algorithm. J, 2(2), 226–235. https://doi.org/10.3390/j2020016

Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., Liu, J.-B., Yuan,

J., & Li, Y. (2021). A review of artificial intelligence (AI) in education from 2010

to 2020. Complexity, 2021, e8812542. https://doi.org/10.1155/2021/8812542

Zheng, Y. (2020). Predicting personality traits by student learning behaviors on

Blackboard systems. SHS Web of Conferences, 77, 01003.

https://doi.org/10.1051/shsconf/20207701003

167

APPENDIX

Analysis Scripts

/data

486K Jun 16 00:11 act01.csv.gz

297K Jun 16 00:11 act02.csv.gz

330K Jun 16 00:11 act03.csv.gz

328K Jun 16 00:11 act04.csv.gz

327K Jun 16 00:11 act05.csv.gz

310K Jun 16 00:11 act06.csv.gz

310K Jun 16 00:11 act07.csv.gz

287K Jun 16 00:11 act08.csv.gz

296K Jun 16 00:11 act09.csv.gz

261K Jun 16 00:11 act10.csv.gz

213K Jun 16 00:11 act11.csv.gz

175K Jun 16 00:11 act12.csv.gz

166K Jun 16 00:11 act13.csv.gz

287K Jun 16 00:11 act14.csv.gz

280K Jun 16 00:11 act15.csv.gz

486K Jun 16 00:11 cumulative_act01.csv.gz

525K Jun 16 00:11 cumulative_act02.csv.gz

582K Jun 16 00:11 cumulative_act03.csv.gz

630K Jun 16 00:11 cumulative_act04.csv.gz

665K Jun 16 00:11 cumulative_act05.csv.gz

693K Jun 16 00:11 cumulative_act06.csv.gz

702K Jun 16 00:11 cumulative_act07.csv.gz

708K Jun 16 00:11 cumulative_act08.csv.gz

713K Jun 16 00:11 cumulative_act09.csv.gz

716K Jun 16 00:11 cumulative_act10.csv.gz

719K Jun 16 00:11 cumulative_act11.csv.gz

722K Jun 16 00:11 cumulative_act12.csv.gz

725K Jun 16 00:11 cumulative_act13.csv.gz

745K Jun 16 00:11 cumulative_act14.csv.gz

763K Jun 17 02:57 cumulative_act15.csv.gz

 94K Jun 16 00:11 cumulative_act15_clustered.csv.gz

 11M Jun 16 00:28 data-1624239985814_course_user.csv.gz

9.1M Jun 16 00:28 data-1624240128001_course_user.csv.gz

1.5M Jun 16 00:28 data-1624240236386_course_user.csv.gz

 27M Jun 16 00:30 gradebook_grade_calc_210223_1108.csv.gz

 20M Jun 16 00:30 gradebook_main_data-1624482074159.csv.gz

 16M Jun 16 00:11 schema.zip

168

Code for Exploratory Clustering (RQ1 & RQ2)

/src/cluster_analysis_cumulative_act15_exploratory.py

#!/usr/bin/env python

coding: utf-8

Cluster Analysis

Imports

In[1]:

Datasets

import pandas as pd

import numpy as np

sklearn for clustering analysis

from sklearn.cluster import KMeans

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import Pipeline

from sklearn.datasets import make_blobs

from sklearn.metrics import silhouette_score

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import RobustScaler

from sklearn.preprocessing import Normalizer

from sklearn.preprocessing import MinMaxScaler

scipy

from scipy.stats import pearsonr

from scipy.io import arff # for working with Weka

Kneed imports

from kneed import KneeLocator

Data Visualizations

import matplotlib.pyplot as plt

import matplotlib as mpl

from matplotlib import colors

import seaborn as sns

from ellyn import ellyn

In[2]:

169

rCuffOff = 0.6

alpha = 0.05

Import Data

In[3]:

from pathlib import Path

df = pd.read_csv(Path("../data/cumulative_act15.csv.gz"))

len(df)

Feature Exclusion

- Exclude irrelevant features

- Exclude features with p > .05

- Exclude redundant features

- Exclude outliers

In[4]:

exclude irrelevant features

df = df.drop(columns=['course','student'])

len(df)

In[5]:

pvalue = df.corr(method=lambda x, y: pearsonr(x, y)[1]) -

np.eye(len(df.columns))

alphaMax = alpha

mask = np.zeros_like(pvalue)

mask[np.triu_indices_from(mask)] = True

with sns.axes_style("white"):

 f, ax = plt.subplots(figsize=(7, 5))

 ax = sns.heatmap(pvalue, mask=mask, square=True, linewidths=.01,

vmax=alphaMax)

In[6]:

170

exclude insignificantly correlated features

col = [i for i in pvalue.columns if pvalue[i].final_grade > alphaMax]

df = df.drop(columns=col)

print("Excluding features: " + str(col))

len(df)

In[7]:

corr = abs(df.corr(method='spearman'))

corrMax = rCuffOff

mask = np.zeros_like(corr)

mask[np.triu_indices_from(mask)] = True

with sns.axes_style("white"):

 f, ax = plt.subplots(figsize=(7, 5))

 ax = sns.heatmap(corr, mask=mask, vmin=0, vmax=corrMax, square=True,

linewidths=.01)

In[8]:

Exclude highly correlated and missing values

def excludeHighlyCorrelatedAndMissingValues(df, r):

 temp = []

 corr = abs(df.corr(method='spearman'))

 for y in corr.columns:

 for x in corr.index.values:

 if(x != y):

 c = corr[y][x]

 if(c > r):

 if [y,x] not in temp:

 temp.append([x,y])

 print("Highly correlated pair found: " +

str([x,y]))

 if(len(temp) > 0):

 drop = []

 for i in temp:

 a = i[0]

 b = i[1]

 dA = df.drop(columns=a).dropna()

 dB = df.drop(columns=b).dropna()

 print("Size after dropping " + a + ": " + str(dA.size))

 print("Size after dropping " + b + ": " + str(dB.size))

171

 if(dA.size > dB.size):

 print("\tDropping " + a)

 drop.append(a)

 else:

 print("\tDropping " + b)

 drop.append(b)

 for i in drop:

 df = df.drop(columns=i)

 return df.dropna()

 else:

 return df.dropna()

df = excludeHighlyCorrelatedAndMissingValues(df, corrMax)

In[9]:

df

In[10]:

fig, ax1 = plt.subplots()

ax1.set_xlabel('Feature')

ax1.set_ylabel('Activity Frequency')

ax1.set_title('Activity Summary (N=' + str(len(df)) + ')')

temp = df.drop(columns=['final_grade'])

ax1.boxplot(temp, labels=temp.columns)

temp2 = df['final_grade']

ax2 = ax1.twinx()

ax2.boxplot(temp2, labels=['final_grade'],

positions=[len(temp.columns)+1])

ax2.set_ylabel('Final Grade', color='purple')

ax2.tick_params('y',colors='purple')

ask matplotlib for the plotted objects and their labels

lines, labels = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

172

In[11]:

Exclude outliers

def iqr_outliers(df, feature, factor):

 Q1= df[feature].quantile(0.25)

 Q3 = df[feature].quantile(0.75)

 IQR = Q3 - Q1

 upper_limit = Q3 + factor * IQR

 lower_limit = Q1 - factor * IQR

 return upper_limit, lower_limit

def std_outliers(df, feature, factor):

 upper_limit = df[feature].mean() + factor * df[feature].std()

 lower_limit = df[feature].mean() - factor * df[feature].std()

 return upper_limit, lower_limit

lastSize = 0

while lastSize != len(df):

lastSize = len(df)

for c in df.columns:

 upper, lower = iqr_outliers(df, c, 1.5)

 df = df[(df[c] > lower) & (df[c] < upper)]

In[12]:

len(df)

In[13]:

df

In[14]:

fig, ax1 = plt.subplots()

ax1.set_xlabel('Feature')

ax1.set_ylabel('Activity Frequency')

ax1.set_title('Activity Summary (N=' + str(len(df)) + ')')

temp = df.drop(columns=['final_grade'])

173

ax1.boxplot(temp, labels=temp.columns)

temp2 = df['final_grade']

ax2 = ax1.twinx()

ax2.boxplot(temp2, labels=['final_grade'],

positions=[len(temp.columns)+1])

ax2.set_ylabel('Final Grade', color='purple')

ax2.tick_params('y',colors='purple')

ask matplotlib for the plotted objects and their labels

lines, labels = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

In[15]:

Linear scalers

def scaleMinMax(df):

 from sklearn.preprocessing import MinMaxScaler

 scaler = MinMaxScaler()

 return pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

def scaleRobust(df):

 from sklearn.preprocessing import RobustScaler

 scaler = RobustScaler()

 return pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

def scaleNormalizer(df):

 from sklearn.preprocessing import Normalizer

 scaler = Normalizer()

 return pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

Nonlinear transformers

def transformQuantile(df):

 from sklearn.preprocessing import QuantileTransformer

 qt = QuantileTransformer()

 return pd.DataFrame(qt.fit_transform(df), columns=df.columns)

def transformPower(df):

 from sklearn.preprocessing import PowerTransformer

 pt = PowerTransformer()

 return pd.DataFrame(pt.fit_transform(df), columns=df.columns)

174

Scale/Transform

df = scaleMinMax(df)

In[16]:

df

Cluster Analysis

In[17]:

def clusterKMeans(df):

 kmeans_kwargs = {

 "init":"k-means++",

 "n_init": 1,

 "max_iter": 500,

 "random_state": 0

 }

 sse = []

 N = 21

 for k in range(1,N):

 kmeans = KMeans(n_clusters=k, **kmeans_kwargs)

 kmeans.fit(df.drop(columns='final_grade'))

 sse.append(kmeans.inertia_)

 k1 = KneeLocator(range(1,N), sse, curve="convex",

direction="decreasing")

 plt.style.use("fivethirtyeight")

 plt.plot(range(1,N), sse, 'ko-', label='SSE (Week 1-15 Cumulative

Activity)')

 plt.xticks(range(1,N))

 plt.xlabel("Clusters (K)")

 plt.ylabel("SSE")

 plt.title('k-Means SSE (Exploratory)')

 k = k1.elbow

 plt.plot([k], sse[k-1], 'X', ms=10, color='red', label='Elbow Point')

 plt.legend()

 plt.show()

 print("Cluster size: " + str(k1.elbow))

175

 kmeans = KMeans(n_clusters=k1.elbow, **kmeans_kwargs)

 kmeans.fit(df.drop(columns='final_grade'))

 return df.assign(cluster=kmeans.labels_)

df = clusterKMeans(df)

df

In[18]:

df['cluster'].unique()

In[19]:

df.to_csv("../data/cumulative_act15_clustered.csv")

In[20]:

df.cluster.nunique()

In[21]:

fig, ax1 = plt.subplots()

ax1.set_xlabel('Feature')

ax1.set_ylabel('Activity Frequency')

ax1.set_title('Activity Summary (N=' + str(len(df)) + ')')

temp = df.drop(columns=['final_grade', 'cluster'])

ax1.boxplot(temp, labels=temp.columns)

temp2 = df['final_grade']

ax2 = ax1.twinx()

ax2.boxplot(temp2, labels=['final_grade'],

positions=[len(temp.columns)+1])

ax2.set_ylabel('Final Grade', color='purple')

ax2.tick_params('y',colors='purple')

176

ask matplotlib for the plotted objects and their labels

lines, labels = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

g = sns.PairGrid(df, hue="cluster", palette='tab10')

g.map_diag(sns.kdeplot, linewidth=3, common_norm=False)

g.map_lower(sns.scatterplot)

g.map_upper(sns.kdeplot, alpha=0.9)

g.add_legend()

In[22]:

means = df.groupby(['cluster']).mean()

means

In[23]:

std = df.groupby(['cluster']).std()

std

In[24]:

fig, ax1 = plt.subplots()

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:']

ax1.set_title('K-Means Cluster Summary (Classification)')

ax1.set_ylabel('Normalized Frequency')

ax1.set_xlabel('Cluster')

j = 0

for i in df.drop(columns=['cluster','final_grade']).columns:

 ax1.plot(means[i], marker[j], ms=10, label=i)

 j += 1

ax2 = ax1.twinx()

ax2.plot(means['final_grade'], marker[j], color='purple', ms=10,

label='final_grade')

ax2.set_ylabel('Final Grade', color='purple')

ax2.tick_params('y',colors='purple')

ax2.grid(True,linestyle='--')

177

ask matplotlib for the plotted objects and their labels

lines, labels = ax1.get_legend_handles_labels()

lines2, labels2 = ax2.get_legend_handles_labels()

ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.15, 1.0),

loc='upper left')

In[25]:

from sklearn import metrics

metrics.silhouette_score(df.drop(columns='cluster'), df['cluster'],

metric='euclidean')

In[38]:

def getAtRiskBooleansGroup(df, cutoff):

 # get boolean array where at-risk students are defined as final grade

is less than cutoff value

 temp =

pd.DataFrame(df.get(['cluster','final_grade'])).groupby(['cluster'])

 at_risk_groups = []

 for i in range(0,len(temp)):

 mean = temp.get_group(i).mean()['final_grade']

 if(mean < cutoff):

 at_risk_groups.append(i)

 y = np.zeros(len(df), dtype=bool)

 for i in at_risk_groups:

 y = y | (df['cluster'] == i)

 return y

In[45]:

def getAtRiskBooleansSamples(df, cutoff):

 # get boolean array where at-risk students are defined as final grade

is less than cutoff value

 temp =

pd.DataFrame(df.get(['cluster','final_grade'])).groupby(['cluster'])

 mean = df['final_grade'].mean()

 y = np.zeros(len(df), dtype=bool)

178

 y = df['final_grade'] < mean

 return y

In[70]:

def evaluateEllynGP(df, folder):

 from ellyn import ellyn

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 import statistics

 model = ellyn(

 g = 100, classification = True, class_m4gp = True,

op_list=['n','v','+','-','*','/'],

 # ================ Results and printing

 resultspath= './' + folder,

 #savename

 savename="gp",

 #print initial population

 print_init_pop = True,

 #print last population

 print_last_pop = True,

 #print best individual at end

 print_best_ind = True)

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 y_pred = cross_val_predict(model, x, y, cv=10)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

results = evaluateEllynGP(df, 'gp_cumulative_act15_classification')

print(results)

In[]:

import statistics

from sklearn.naive_bayes import GaussianNB

from sklearn.model_selection import cross_val_predict

from sklearn.metrics import classification_report

179

def evaluateNB(x, y):

 gnb = GaussianNB()

 y_pred = cross_val_predict(gnb, x, y, cv=10)

 return classification_report(y, y_pred)

x = df.drop(columns=['cluster', 'final_grade'])

y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

feature_names = df.drop(columns=['cluster', 'final_grade']).columns

c = evaluateNB(x, y)

print(c)

In[]:

df

In[]:

def evaluateBinaryGP(df):

 from gplearn.genetic import SymbolicClassifier

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import classification_report

 import statistics

 from sklearn import tree

 import graphviz

 x = df.drop(columns=['cluster', 'final_grade'])

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 feature_names = df.drop(columns=['cluster', 'final_grade']).columns

 gp = SymbolicClassifier(parsimony_coefficient=.01,

 feature_names=feature_names,

 random_state=1, verbose=True,

 generations=100)

 gp.fit(x,y)

 y_pred = cross_val_predict(gp, x, y, cv=10, verbose=True, n_jobs=15)

 dot_data = gp._program.export_graphviz()

 graph = graphviz.Source(dot_data)

 return gp, y_pred, classification_report(y, y_pred), graph

gp, y_pred, report, g = evaluateBinaryGP(df)

180

In[]:

print(report)

print(gp._program)

g

In[75]:

import graphviz

import statistics

from pandas import DataFrame

def evaluateDT(x:DataFrame,y:DataFrame):

 from sklearn import tree

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 from sklearn.tree import export_text

 model = tree.DecisionTreeClassifier(max_depth=3)

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True,

n_jobs=15)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 model.fit(x,y)

 dot_data = tree.export_graphviz(model, out_file=None,

feature_names=x.columns, class_names=['Not-At-Risk','At-Risk'],

filled=True, rounded=True, special_characters=True, proportion=True,

precision=2, rotate=True)

 graph = graphviz.Source(dot_data)

 return precision, recall, f1, len(y), graph

x = df.drop(columns=['cluster', 'final_grade'])

y = getAtRiskBooleansGroup(df, statistics.mean(df['final_grade']))

results = evaluateDT(x,y)

print(results)

results[4]

In[78]:

181

import graphviz

import statistics

from pandas import DataFrame

def toStrArray(numArray):

 return [str(i) for i in numArray]

def evaluateDTMulti(df):

 from sklearn import tree

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 from sklearn.tree import export_text

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = df['cluster'].values

 model = tree.DecisionTreeClassifier(max_depth=4)

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True,

n_jobs=15)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 model.fit(x,y)

 dot_data = tree.export_graphviz(model, out_file=None,

feature_names=df.drop(columns=['cluster','final_grade']).columns,

class_names=toStrArray(df['cluster'].unique()), filled=True, rounded=True,

special_characters=True, proportion=True, precision=2, rotate=True)

 graph = graphviz.Source(dot_data)

 return precision, recall, f1, len(y), graph

results = evaluateDTMulti(df)

print(results)

results[4]

In[]:

import arff

arff.dump('test.arff', df.values, relation='relation

name',names=df.columns)

182

In[]:

def evaluateEllynGP(df, folder):

 from ellyn import ellyn

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 model = ellyn(

 g = 100, classification = True, class_m4gp = True,

op_list=['n','v','+','-','*','/','<','>','<=','>='],

 # ================ Results and printing

 resultspath= './' + folder,

 #savename

 savename="gp",

 #print initial population

 print_init_pop = True,

 #print last population

 print_last_pop = True,

 #print best individual at end

 print_best_ind = True)

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) #binary

classification

 y_pred = cross_val_predict(model, x, y, cv=10)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateEllynGP(df, 'wk_' + "{:02d}".format(i+1))

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

183

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Genetic Programming, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Genetic Programming')

184

Code for Classification Analysis (RQ1 & RQ3)

/src/cluster_analysis_cumulative_All.py

#!/usr/bin/env python

coding: utf-8

Cluster Analysis

Imports

In[1]:

Datasets

import pandas as pd

import numpy as np

sklearn for clustering analysis

from sklearn.cluster import KMeans

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import Pipeline

from sklearn.datasets import make_blobs

from sklearn.metrics import silhouette_score

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import RobustScaler

from sklearn.preprocessing import Normalizer

from sklearn.preprocessing import MinMaxScaler

scipy

from scipy.stats import pearsonr

from scipy.io import arff # for working with Weka

Kneed imports

from kneed import KneeLocator

Data Visualizations

import matplotlib.pyplot as plt

import matplotlib as mpl

from matplotlib import colors

import seaborn as sns

In[2]:

185

rCuffOff = 0.6

alpha = 0.05

Import Data

In[3]:

from pathlib import Path

fname = 'cumulative_act'

df = pd.read_csv(Path("../../_Data/act01.csv"))

dfArray = []

dfArray.append(df)

for i in range(2,16):

 df = pd.read_csv(Path("../../_Data/" + fname + "{:02d}".format(i) +

'.csv'))

 dfArray.append(df)

In[4]:

dfArray

Feature Exclusion

- Exclude irrelevant features

- Exclude features with p > .05

- Exclude redundant features

- Exclude outliers

In[5]:

exclude irrelevant features

for i in range(0,len(dfArray)):

 dfArray[i] = dfArray[i].drop(columns=['course','student'])

In[6]:

dfArray

186

In[7]:

exclude insignificantly correlated features

for j in range(0, len(dfArray)):

 pvalue = dfArray[j].corr(method=lambda x, y: pearsonr(x, y)[1]) -

np.eye(len(dfArray[j].columns))

 alphaMax = alpha

 col = [i for i in pvalue.columns if pvalue[i].final_grade > alphaMax]

 dfArray[j] = dfArray[j].drop(columns=col)

 print("Excluding features in Dataset " + str(j) + ": " + str(col))

In[8]:

Exclude highly correlated and missing values

def excludeHighlyCorrelatedAndMissingValues(df, r):

 temp = []

 corr = abs(df.corr(method='spearman'))

 for y in corr.columns:

 for x in corr.index.values:

 if(x != y):

 c = corr[y][x]

 if(c > r):

 if [y,x] not in temp:

 temp.append([x,y])

 print("Highly correlated pair found: " + str([x,y]))

 if(len(temp) > 0):

 drop = []

 for i in temp:

 a = i[0]

 b = i[1]

 dA = df.drop(columns=a).dropna()

 dB = df.drop(columns=b).dropna()

 print("Size after dropping " + a + ": " + str(dA.size))

 print("Size after dropping " + b + ": " + str(dB.size))

 if(dA.size > dB.size):

 print("\tDropping " + a)

 drop.append(a)

 else:

 print("\tDropping " + b)

 drop.append(b)

 for i in drop:

187

 df = df.drop(columns=i)

 return df.dropna()

 else:

 return df.dropna()

corrMax = rCuffOff

for i in range(0, len(dfArray)):

 print("Analyzing correlation in Dataset " + str(i) + " for exclusion.")

 dfArray[i] = excludeHighlyCorrelatedAndMissingValues(dfArray[i], corrMax)

In[9]:

Exclude outliers

def iqr_outliers(df, feature, factor):

 Q1= df[feature].quantile(0.25)

 Q3 = df[feature].quantile(0.75)

 IQR = Q3 - Q1

 upper_limit = Q3 + factor * IQR

 lower_limit = Q1 - factor * IQR

 return upper_limit, lower_limit

def std_outliers(df, feature, factor):

 upper_limit = df[feature].mean() + factor * df[feature].std()

 lower_limit = df[feature].mean() - factor * df[feature].std()

 return upper_limit, lower_limit

for i in range(0, len(dfArray)):

 df = dfArray[i]

 for c in df.columns:

 upper, lower = iqr_outliers(df, c, 1.5)

 df = df[(df[c] > lower) & (df[c] < upper)]

 dfArray[i] = df

In[10]:

Linear scalers

def scaleMinMax(df):

 from sklearn.preprocessing import MinMaxScaler

 scaler = MinMaxScaler()

 return pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

Scale/Transform

188

for i in range(0, len(dfArray)):

 dfArray[i] = scaleMinMax(dfArray[i])

In[11]:

import statistics

nArray = [len(x) for x in dfArray]

print("mean: " + str(statistics.mean(nArray)))

print("stdev: " + str(statistics.stdev(nArray)))

In[12]:

sns.boxplot(nArray)

Cluster Analysis

In[13]:

def clusterKMeans(df, N, dataSetLabel, lineType, markerType, ax):

 kmeans_kwargs = {

 "init":"k-means++",

 "n_init": 1,

 "max_iter": 500,

 "random_state": 0

 }

 sse = []

 for k in range(1,N):

 kmeans = KMeans(n_clusters=k, **kmeans_kwargs)

 kmeans.fit(df.drop(columns='final_grade'))

 sse.append(kmeans.inertia_)

 ax.plot(range(1,N), sse, label=dataSetLabel, linewidth=2,

linestyle=lineType, marker=markerType)

 ax.legend()

 ax.set_xticks(range(1,N))

 k1 = KneeLocator(range(1,N), sse, curve="convex", direction="decreasing")

 print("Cluster size: " + str(k1.elbow))

189

 kmeans = KMeans(n_clusters=k1.elbow, **kmeans_kwargs)

 kmeans.fit(df.drop(columns='final_grade'))

 return df.assign(cluster=kmeans.labels_)

plt.style.use("fivethirtyeight")

fig, ax = plt.subplots()

ax.figure.set_figwidth(8)

ax.figure.set_figheight(6)

ax.set_xlabel("Clusters (K)")

ax.set_ylabel("SSE")

ax.set_title('K-Means SSE (Cumulative Weeks 1-15)')

import itertools

lineTypes = itertools.cycle(['solid', 'dotted', 'dashed', 'dashdot'])

markerTypes = itertools.cycle(['o','v','^','<','>','s','P','*','X','D'])

for i in range(0, len(dfArray)):

 dfArray[i] = clusterKMeans(dfArray[i], 21, 'wk ' + str(i+1),

next(lineTypes), next(markerTypes), ax)

In[14]:

for i in range(0, len(dfArray)):

 print("wk " + str(i+1) + " cluster size: " +

str(dfArray[i].cluster.nunique()))

In[15]:

for i in range(0,len(dfArray)):

 print(str(i) + " : " + str(dfArray[i].groupby(['cluster']).mean()))

In[16]:

std = dfArray[0].groupby(['cluster']).std()

std

In[17]:

190

global variables for performance comparisons

f1Array = []

precisionArray = []

recallArray = []

f1Labels = []

In[18]:

def evaluateLR(df):

 from sklearn.linear_model import LogisticRegression

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = df['cluster'].values

 model = LogisticRegression(random_state=0)

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateLR(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

191

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Logistic Regression, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Logistic Regression')

7.6s

In[19]:

def evaluateDT(df):

 from sklearn import tree

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = df['cluster'].values

 model = tree.DecisionTreeClassifier()

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateDT(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

192

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Decision Tree, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('DecisionTree')

1.4s

In[20]:

from datetime import datetime

dt = datetime.now()

print(dt)

In[21]:

def evaluateEllynGP(df, folder):

 from ellyn import ellyn

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 model = ellyn(

 g = 100, classification = True, class_m4gp = True,

op_list=['n','v','+','-','*','/','<','>','<=','>='],

 # ================ Results and printing

 resultspath= './' + folder,

 #savename

 savename="gp",

 #print initial population

 print_init_pop = True,

 #print last population

 print_last_pop = True,

 #print best individual at end

 print_best_ind = True)

193

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = df['cluster'].values

 y_pred = cross_val_predict(model, x, y, cv=10)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateEllynGP(df, 'wk_' + "{:02d}".format(i+1))

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Genetic Programming, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Genetic Programming')

178m 45.5s

In[22]:

def evaluateKNN(df):

 from sklearn.neighbors import KNeighborsClassifier

194

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = df['cluster'].values

 model = KNeighborsClassifier(n_neighbors=3)

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateKNN(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (K-Nearest Neighbors, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('K-Nearest Neighbors')

2.2s

195

In[23]:

def evaluateNB(x,y):

 from sklearn.naive_bayes import GaussianNB

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 model = GaussianNB()

 y_pred = cross_val_predict(model, x, y, cv=10)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = df['cluster'].values

 p, r, f, s = evaluateNB(x,y)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,len(precision)+1)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Naive Bayes, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Naive Bayes')

196

0.7s

In[24]:

def evaluateSVM(df):

 from sklearn import svm

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 model = svm.SVC()

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = df['cluster'].values

 y_pred = cross_val_predict(model, x, y, cv=10, n_jobs=15)

 precision, recall, f1, support = precision_recall_fscore_support(y, y_pred,

average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateSVM(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Support Vector Machine, Cumulative Data)')

197

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Support Vector Machine')

3.9s

In[25]:

def evaluateMLP(df, hlz):

 from sklearn.neural_network import MLPClassifier

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 model = MLPClassifier(solver='lbfgs', hidden_layer_sizes=hlz,

random_state=0, max_iter=10000)

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = df['cluster'].values

 y_pred = cross_val_predict(model, x, y, cv=10, n_jobs=15)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateMLP(df, (10,10))

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

198

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Multi-layer Perceptron, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Multi-layer Perceptron')

44.4s

In[26]:

fig, ax = plt.subplots()

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:']

ax.set_title('f1-Score')

ax.set_ylabel('Score')

ax.set_xlabel('Week')

ax.figure.set_figwidth(8)

ax.figure.set_figheight(5)

j = 0

cols = f1Labels

for i in cols:

 ax.plot(range(1, len(f1Array[j])+1), f1Array[j], marker[j], ms=10,

label=i, linewidth=3)

 j += 1

plt.legend(loc='lower right')

In[27]:

fig, ax = plt.subplots()

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:']

ax.set_title('Precision')

ax.set_ylabel('Score')

ax.set_xlabel('Week')

ax.figure.set_figwidth(8)

ax.figure.set_figheight(5)

j = 0

199

cols = f1Labels

for i in cols:

 ax.plot(range(1, len(precisionArray[j])+1), precisionArray[j], marker[j],

ms=10, label=i, linewidth=3)

 j += 1

plt.legend(loc='lower right')

In[28]:

fig, ax = plt.subplots()

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:']

ax.set_title('Recall')

ax.set_ylabel('Score')

ax.set_xlabel('Week')

ax.figure.set_figwidth(8)

ax.figure.set_figheight(5)

j = 0

cols = f1Labels

for i in cols:

 ax.plot(range(1, len(recallArray[j])+1), recallArray[j], marker[j], ms=10,

label=i, linewidth=3)

 j += 1

plt.legend(loc='lower right')

In[29]:

meanF1 = []

meanPrecision = []

meanRecall = []

for i in f1Array:

 meanF1.append(np.average(i))

for i in precisionArray:

 meanPrecision.append(np.average(i))

for i in recallArray:

 meanRecall.append(np.average(i))

results = {

200

 'Mean f1-Score':meanF1,

 'Mean Precision':meanPrecision,

 'Mean Recall':meanRecall,

 'Model':f1Labels

}

perfDF = pd.DataFrame(results)

perfDF.plot.bar(x='Model', ylim=[.94,1], title='Mean Performance Scores',

ylabel='Score')

plt.legend(loc='lower right')

In[30]:

meanF1

201

Code for Binary Classification (RQ4)

/src/cluster_analysis_cumulative_All_BinaryClassification.py

#!/usr/bin/env python

coding: utf-8

Cluster Analysis

Imports

In[1]:

Datasets

import pandas as pd

import numpy as np

sklearn for clustering analysis

from sklearn.cluster import KMeans

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.pipeline import Pipeline

from sklearn.datasets import make_blobs

from sklearn.metrics import silhouette_score

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import RobustScaler

from sklearn.preprocessing import Normalizer

from sklearn.preprocessing import MinMaxScaler

scipy

from scipy.stats import pearsonr

from scipy.io import arff # for working with Weka

Kneed imports

from kneed import KneeLocator

Data Visualizations

import matplotlib.pyplot as plt

import matplotlib as mpl

from matplotlib import colors

import seaborn as sns

In[2]:

202

rCuffOff = 0.6

alpha = 0.05

Import Data

In[7]:

fname = 'cumulative_act'

df = pd.read_csv("../data/act01.csv.gz")

dfArray = []

dfArray.append(df)

for i in range(2,16):

 df = pd.read_csv("../data/" + fname + "{:02d}".format(i) + '.csv.gz')

 dfArray.append(df)

In[8]:

dfArray

Feature Exclusion

- Exclude irrelevant features

- Exclude features with p > .05

- Exclude redundant features

- Exclude outliers

In[9]:

exclude irrelevant features

for i in range(0,len(dfArray)):

 dfArray[i] = dfArray[i].drop(columns=['course','student'])

In[10]:

dfArray

In[11]:

203

exclude insignificantly correlated features

for j in range(0, len(dfArray)):

 pvalue = dfArray[j].corr(method=lambda x, y: pearsonr(x, y)[1]) -

np.eye(len(dfArray[j].columns))

 alphaMax = alpha

 col = [i for i in pvalue.columns if pvalue[i].final_grade > alphaMax]

 dfArray[j] = dfArray[j].drop(columns=col)

 print("Excluding features in Dataset " + str(j) + ": " + str(col))

In[12]:

Exclude highly correlated and missing values

def excludeHighlyCorrelatedAndMissingValues(df, r):

 temp = []

 corr = abs(df.corr(method='spearman'))

 for y in corr.columns:

 for x in corr.index.values:

 if(x != y):

 c = corr[y][x]

 if(c > r):

 if [y,x] not in temp:

 temp.append([x,y])

 print("Highly correlated pair found: " + str([x,y]))

 if(len(temp) > 0):

 drop = []

 for i in temp:

 a = i[0]

 b = i[1]

 dA = df.drop(columns=a).dropna()

 dB = df.drop(columns=b).dropna()

 print("Size after dropping " + a + ": " + str(dA.size))

 print("Size after dropping " + b + ": " + str(dB.size))

 if(dA.size > dB.size):

 print("\tDropping " + a)

 drop.append(a)

 else:

 print("\tDropping " + b)

 drop.append(b)

 for i in drop:

 df = df.drop(columns=i)

 return df.dropna()

 else:

204

 return df.dropna()

corrMax = rCuffOff

for i in range(0, len(dfArray)):

 print("Analyzing correlation in Dataset " + str(i) + " for exclusion.")

 dfArray[i] = excludeHighlyCorrelatedAndMissingValues(dfArray[i], corrMax)

In[13]:

Exclude outliers

def iqr_outliers(df, feature, factor):

 Q1= df[feature].quantile(0.25)

 Q3 = df[feature].quantile(0.75)

 IQR = Q3 - Q1

 upper_limit = Q3 + factor * IQR

 lower_limit = Q1 - factor * IQR

 return upper_limit, lower_limit

def std_outliers(df, feature, factor):

 upper_limit = df[feature].mean() + factor * df[feature].std()

 lower_limit = df[feature].mean() - factor * df[feature].std()

 return upper_limit, lower_limit

for i in range(0, len(dfArray)):

 df = dfArray[i]

 for c in df.columns:

 upper, lower = iqr_outliers(df, c, 1.5)

 df = df[(df[c] > lower) & (df[c] < upper)]

 dfArray[i] = df

In[14]:

Linear scalers

def scaleMinMax(df):

 from sklearn.preprocessing import MinMaxScaler

 scaler = MinMaxScaler()

 return pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

Scale/Transform

for i in range(0, len(dfArray)):

 dfArray[i] = scaleMinMax(dfArray[i])

205

In[15]:

import statistics

nArray = [len(x) for x in dfArray]

print("mean: " + str(statistics.mean(nArray)))

print("stdev: " + str(statistics.stdev(nArray)))

In[16]:

sns.boxplot(nArray)

Cluster Analysis

In[17]:

def clusterKMeans(df, N, dataSetLabel, lineType, markerType, ax):

 kmeans_kwargs = {

 "init":"k-means++",

 "n_init": 1,

 "max_iter": 500,

 "random_state": 0

 }

 sse = []

 for k in range(1,N):

 kmeans = KMeans(n_clusters=k, **kmeans_kwargs)

 kmeans.fit(df.drop(columns='final_grade'))

 sse.append(kmeans.inertia_)

 ax.plot(range(1,N), sse, label=dataSetLabel, linewidth=2,

linestyle=lineType, marker=markerType)

 ax.legend()

 ax.set_xticks(range(1,N))

 k1 = KneeLocator(range(1,N), sse, curve="convex", direction="decreasing")

 print("Cluster size: " + str(k1.elbow))

 kmeans = KMeans(n_clusters=k1.elbow, **kmeans_kwargs)

 kmeans.fit(df.drop(columns='final_grade'))

 return df.assign(cluster=kmeans.labels_)

206

plt.style.use("fivethirtyeight")

fig, ax = plt.subplots()

ax.figure.set_figwidth(8)

ax.figure.set_figheight(6)

ax.set_xlabel("Clusters (K)")

ax.set_ylabel("SSE")

ax.set_title('K-Means SSE (Cumulative Weeks 1-15)')

import itertools

lineTypes = itertools.cycle(['solid', 'dotted', 'dashed', 'dashdot'])

markerTypes = itertools.cycle(['o','v','^','<','>','s','P','*','X','D'])

for i in range(0, len(dfArray)):

 dfArray[i] = clusterKMeans(dfArray[i], 21, 'wk ' + str(i+1),

next(lineTypes), next(markerTypes), ax)

In[18]:

for i in range(0, len(dfArray)):

 print("wk " + str(i+1) + " cluster size: " +

str(dfArray[i].cluster.nunique()))

In[19]:

for i in range(0,len(dfArray)):

 print(str(i) + " : " + str(dfArray[i].groupby(['cluster']).mean()))

In[20]:

std = dfArray[0].groupby(['cluster']).std()

std

In[21]:

def getAtRiskBooleans(df, cutoff):

 # get boolean array where at-risk students are defined as final grade is

less than cutoff value

207

 temp =

pd.DataFrame(df.get(['cluster','final_grade'])).groupby(['cluster'])

 at_risk_groups = []

 for i in range(0,len(temp)):

 mean = temp.get_group(i).mean()['final_grade']

 if(mean < cutoff):

 at_risk_groups.append(i)

 y = np.zeros(len(df), dtype=bool)

 for i in at_risk_groups:

 y = y | (df['cluster'] == i)

 return y

In[22]:

def evaluateNB(df):

 from sklearn.naive_bayes import GaussianNB

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 model = GaussianNB()

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 y_pred = cross_val_predict(model, x, y, cv=10)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateNB(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

208

x = range(1,len(precision)+1)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Naive Bayes, Cumulative Data)')

plt.legend(loc='lower right')

f1Array = []

precisionArray = []

recallArray = []

f1Labels = []

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Naive Bayes')

In[23]:

f1

In[24]:

def evaluateKNN(df):

 from sklearn.neighbors import KNeighborsClassifier

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 model = KNeighborsClassifier(n_neighbors=3)

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

209

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateKNN(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (K-Nearest Neighbors, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('K-Nearest Neighbors')

In[25]:

def evaluateDT(df):

 from sklearn import tree

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 model = tree.DecisionTreeClassifier()

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

210

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateDT(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Decision Tree, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('DecisionTree')

In[26]:

def evaluateLR(df):

 from sklearn.linear_model import LogisticRegression

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 model = LogisticRegression(random_state=0)

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2)

211

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateLR(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Logistic Regression, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Logistic Regression')

In[27]:

def evaluateSVM(df):

 from sklearn import svm

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import precision_recall_fscore_support

 model = svm.SVC()

212

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 y_pred = cross_val_predict(model, x, y, cv=10, n_jobs=15)

 precision, recall, f1, support = precision_recall_fscore_support(y, y_pred,

average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateSVM(df)

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Support Vector Machine, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Support Vector Machine')

In[28]:

def evaluateMLP(df, hlz):

 from sklearn.neural_network import MLPClassifier

 from sklearn.model_selection import cross_val_predict

213

 from sklearn.metrics import precision_recall_fscore_support

 model = MLPClassifier(solver='lbfgs', hidden_layer_sizes=hlz,

random_state=0, max_iter=10000)

 x = df.drop(columns=['cluster', 'final_grade']).values

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 #y = df['cluster'].values

 y_pred = cross_val_predict(model, x, y, cv=10, n_jobs=15)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 return precision, recall, f1, len(y)

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

 p, r, f, s = evaluateMLP(df, (10,10))

 precision.append(p)

 recall.append(r)

 f1.append(f)

 support.append(s)

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Multi-layer Perceptron, Cumulative Data)')

plt.legend(loc='lower right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Multi-layer Perceptron')

In[29]:

214

def evaluateGP(df):

 from gplearn.genetic import SymbolicClassifier

 from sklearn.model_selection import cross_val_predict

 from sklearn.metrics import classification_report

 from sklearn.metrics import precision_recall_fscore_support

 from sklearn import tree

 import statistics

 import graphviz

 x = df.drop(columns=['cluster', 'final_grade'])

 y = getAtRiskBooleans(df, statistics.mean(df['final_grade']))

 feature_names = df.drop(columns=['cluster', 'final_grade']).columns

 gp = SymbolicClassifier(parsimony_coefficient=.01,

 feature_names=feature_names,

 random_state=1, verbose=True)

 gp.fit(x,y)

 y_pred = cross_val_predict(gp, x, y, cv=2, verbose=True, n_jobs=15)

 dot_data = gp._program.export_graphviz()

 graph = graphviz.Source(dot_data)

 report = precision_recall_fscore_support(y, y_pred, average='macro')

 return gp, y_pred, report, graph

gp, y_pred, report, g = evaluateGP(df)

print(report)

print(gp._program)

g

In[30]:

precision = []

recall = []

f1 = []

support = []

clusters = []

for i in range(0, len(dfArray)):

 df = dfArray[i]

215

 gp, y_pred, report, graph = evaluateGP(df)

 precision.append(report[0])

 recall.append(report[1])

 f1.append(report[2])

 support.append(report[3])

 clusters.append(df.cluster.nunique())

x = range(1,16)

mp = 'o-'

mr = 'v--'

mf = 's:'

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3)

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3)

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3)

plt.xlabel('Week')

plt.ylabel('Score')

plt.title('Prediction Performance (Genetic Programming, Cumulative Data)')

plt.legend(loc='upper right')

f1Array.append(f1)

precisionArray.append(precision)

recallArray.append(recall)

f1Labels.append('Genetic Programming')

In[31]:

fig, ax = plt.subplots()

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:']

ax.set_title('f1-Score')

ax.set_ylabel('Score')

ax.set_xlabel('Week')

ax.figure.set_figwidth(8)

ax.figure.set_figheight(5)

j = 0

cols = f1Labels

for i in cols:

 ax.plot(range(1, len(f1Array[j])+1), f1Array[j], marker[j], ms=10,

label=i, linewidth=3)

 j += 1

plt.ylim([.8,1])

plt.legend(loc='lower right')

216

In[32]:

fig, ax = plt.subplots()

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:']

ax.set_title('Precision')

ax.set_ylabel('Score')

ax.set_xlabel('Week')

ax.figure.set_figwidth(8)

ax.figure.set_figheight(5)

j = 0

cols = f1Labels

for i in cols:

 ax.plot(range(1, len(precisionArray[j])+1), precisionArray[j], marker[j],

ms=10, label=i, linewidth=3)

 j += 1

plt.ylim([.8,1])

plt.legend(loc='lower right')

In[33]:

fig, ax = plt.subplots()

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:']

ax.set_title('Recall')

ax.set_ylabel('Score')

ax.set_xlabel('Week')

ax.figure.set_figwidth(8)

ax.figure.set_figheight(5)

j = 0

cols = f1Labels

for i in cols:

 ax.plot(range(1, len(recallArray[j])+1), recallArray[j], marker[j], ms=10,

label=i, linewidth=3)

 j += 1

plt.ylim([.8,1])

plt.legend(loc='lower right')

In[34]:

217

meanF1 = []

meanPrecision = []

meanRecall = []

for i in f1Array:

 meanF1.append(np.average(i))

for i in precisionArray:

 meanPrecision.append(np.average(i))

for i in recallArray:

 meanRecall.append(np.average(i))

results = {

 'Mean f1-Score':meanF1,

 'Mean Precision':meanPrecision,

 'Mean Recall':meanRecall,

 'Model':f1Labels

}

perfDF = pd.DataFrame(results)

perfDF.plot.bar(x='Model', ylim=[.85,1], title='Mean Performance Scores',

ylabel='Score')

plt.legend(loc='lower left')

In[35]:

statistics.mean(df['final_grade'])

218

Helper Code for Other Scripts

/src/helper.py

Imports

from datetime import date, timedelta

from email.utils import format_datetime

from gplearn.genetic import SymbolicClassifier

from math import nan

from matplotlib import cm

from matplotlib import colors

from matplotlib.colors import Colormap

from matplotlib.colors import ListedColormap

from pandas import DataFrame

from random import seed

from scipy.stats import pearsonr

from scipy.stats import spearmanr

from sklearn import metrics

from sklearn import tree

from sklearn.metrics import classification_report

from sklearn.metrics import precision_recall_fscore_support

from sklearn.model_selection import cross_val_predict

from sklearn.naive_bayes import GaussianNB

from sklearn.preprocessing import MinMaxScaler

from sklearn.preprocessing import Normalizer

from sklearn.preprocessing import PowerTransformer

from sklearn.preprocessing import QuantileTransformer

from sklearn.preprocessing import RobustScaler

from sklearn.tree import export_text

from unittest import skip

from sklearn.cluster import KMeans

import colorsys

import graphviz

import matplotlib as mpl

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import seaborn as sns

import statistics

from kneed import KneeLocator

def print_samples_info(df:DataFrame):

 print("Samples: ", df.shape[0])

 print("unique courses: ", df['course'].nunique())

 print("unique students: ", df['student'].nunique())

219

 print("unique course/student pairs: ",

len(df[['course','student']].drop_duplicates()))

def get_outlier_limits(df:DataFrame, feature:str):

 Q1= df[feature].quantile(0.25)

 Q3 = df[feature].quantile(0.75)

 IQR = Q3 - Q1

 upper_limit = Q3 + 1.5 * IQR

 lower_limit = Q1 - 1.5 * IQR

 return upper_limit, lower_limit

def add_enrollment_timedelta(df:DataFrame, startDate:date, endDate:date) -

> DataFrame:

 """Adds enrollment_timedelta feature that equals the number of days

the students registered before the last day of registration.

 Note that this performs an inner join, which effectively excludes

samples, which did not enroll between the start and end date."""

 dir = "../data/"

 ed = pd.read_csv(dir + "data-

1624239985814_course_user.csv.gz", dtype={'pk1':int, 'crs_main_pk1':int,

'data_src_pk1':int, 'role':str, 'users_pk1':int, 'enrollment_date':str})

 ed = pd.concat([ed,pd.read_csv(dir + "data-

1624240128001_course_user.csv.gz", dtype={'pk1':int, 'crs_main_pk1':int,

'data_src_pk1':int, 'role':str, 'users_pk1':int, 'enrollment_date':str})])

 ed = pd.concat([ed,pd.read_csv(dir + "data-

1624240236386_course_user.csv.gz", dtype={'pk1':int, 'crs_main_pk1':int,

'data_src_pk1':int, 'role':str, 'users_pk1':int, 'enrollment_date':str})])

 ed.columns =

['pk1','course','data_src','role','student','enrollment_date']

 ed['enrollment_date'] = pd.to_datetime(ed['enrollment_date']).dt.date

 ed = ed[(ed['enrollment_date'] >

startDate) & (ed['enrollment_date'] <

endDate.__add__(timedelta(days=1)))]

 ed['enrollment_timedelta'] = (ed['enrollment_date'] -

startDate).dt.days.astype(int)

 return df.merge(ed[['course','student','enrollment_timedelta']],

on=['course','student'], how='inner')

def add_missing_final_grade(df:DataFrame) -> DataFrame:

 """Adds missing_final_grade feature column where 1 = missing and 0 =

not missing."""

 df = df.assign(missing_final_grade=[1 if fg == True else 0 for fg in

df['final_grade'].isnull()])

 return df

220

def add_courses_enrolled(df:DataFrame) -> DataFrame:

 """Adds courses_enrolled feature that equals the number of concurrent

courses enrolled by the associated student."""

 courses_enrolled =

df.groupby('student').count()['course'].rename("courses_enrolled")

 return df.join(courses_enrolled,on='student')

def add_class_size(df:DataFrame) -> DataFrame:

 """Adds class_size feature that equals the number of students enrolled

in the associated course."""

 class_size =

df.groupby('course').count()['student'].rename("class_size")

 return df.join(class_size,on='course')

def get_at_risk_level(fg:float) -> int:

 """Returns at_risk_level as an integer"""

 arl = 0

 if(fg >= 0.9):

 arl = 1 # very_low

 elif(fg >= 0.8):

 arl = 2 # low

 elif(fg >= 0.7):

 arl = 3 # medium

 elif(fg >= 0.6):from datetime import date, timedelta

def get_at_risk_booleans(df, cutoff):

 at_risk_groups = []

 for i in df['cluster'].unique(): # for each numbered cluster

 mean = statistics.mean(df.query("cluster == " +

str(i))['final_grade']) # compute the mean final_grade

 if(mean < cutoff): # if it's less than the cutoff

 at_risk_groups.append(i) # add it to the at-risk group

 # create a new array and assign at-risk == true for those in the at-

risk group

 y = np.zeros(len(df), dtype=bool)

 for i in at_risk_groups:

 y = y | (df['cluster'] == i)

 return y

def add_at_risk_levels(df:DataFrame) -> DataFrame:

 """Adds at-risk levels based on final grades."""

 df = df.assign(at_risk_level=[get_at_risk_level(fg) for fg in

df['final_grade'].values])

221

 return df

def pad_zeroes(n:int, i:int) -> str:

 """Pads n zeros to i and returns the result."""

 return ("{:0" + str(n) + "d}").format(i)

def get_cmap_r(ratio:float) -> Colormap:

 """Creates a reverse gray scale color map from 0 to 1 with pink

highlighting lower range of the scale from 0 to ratio."""

 binary = cm.get_cmap('binary_r',100)

 newcolors = binary(np.linspace(0,1,100))

 pink = np.array([96/100, 9/100, 58/100, 1])

 newcolors[:int(ratio*100), :] = pink

 newcmp = ListedColormap(newcolors)

 return newcmp

def get_cmap(ratio:float) -> Colormap:

 """Creates a gray scale color map from 0 to 1 with pink highlighting

the upper range of the scale from ratio to 1."""

 binary = cm.get_cmap('binary',100)

 newcolors = binary(np.linspace(0,1,100))

 pink = np.array([96/100, 9/100, 58/100, 1])

 newcolors[int(ratio*100):, :] = pink

 newcmp = ListedColormap(newcolors)

 return newcmp

def get_mean_random_samples(df:DataFrame, N:int, K:int) -> DataFrame:

 """Obtains N mean samples of K random samples. When N and K are

'large' (greater than 30), a normally distribution of samples of the means

can be obtained regardless of underlying distribution shape."""

 dfsMeans = pd.DataFrame(columns=df.columns)

 for i in range(0,N):

 dfs = [x for x in df.sample(n=K).mean()]

 dfsMeans =

pd.concat([dfsMeans,pd.DataFrame(data=dfs,index=df.columns).transpose()],a

xis=0)

 dfsMeans.reindex()

 return dfsMeans

def plot_histogram(df:DataFrame,col:str,bins:int):

 sns.histplot(df[col], bins=bins).set_title(col + ' (N=' + str(len(df))

+ ")")

def plot_corr_matrix(df:DataFrame, R:float, L:int, W:int):

 corr = abs(df.corr(method='pearson'))

222

 mask = np.zeros_like(corr)

 mask[np.triu_indices_from(mask)] = True

 with sns.axes_style("white"):

 f, ax = plt.subplots(figsize=(W,L))

 plt.title(label="Correlation Matrix (Pearson's R)")

 ax = sns.heatmap(corr, mask=mask, square=True, linewidths=.01,

vmax=R, annot=True)

 return corr

def plot_pval_matrix(df:DataFrame, ALPHA:float, L:int, W:int):

 pvalue = df.corr(method=lambda x, y: pearsonr(x, y)[1]) -

np.eye(len(df.columns))

 mask = np.zeros_like(pvalue)

 mask[np.triu_indices_from(mask)] = True

 with sns.axes_style("white"):

 f, ax = plt.subplots(figsize=(W,L))

 ax.set_title("P-Value Matrix (Pearson's R)")

 ax = sns.heatmap(pvalue, mask=mask, square=True, linewidths=.01,

vmax=ALPHA, annot=True)

 return pvalue

sns.histplot(data=df,

x='final_grade',hue='at_risk_level',bins=10,palette=sns.color_palette("bri

ght",6)).set_title('Final Grade (N=' + str(len(df)) + ")")

Linear scalers

def scaleMinMax(df):

 scaler = MinMaxScaler()

 col = df.drop(columns=['course','student']).columns

 df[col] = scaler.fit_transform(df[col])

 return df

def scaleRobust(df):

 scaler = RobustScaler()

 return pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

def scaleNormalizer(df):

 scaler = Normalizer()

 return pd.DataFrame(scaler.fit_transform(df), columns=df.columns)

Nonlinear transformers

def transformQuantile(df):

 qt = QuantileTransformer()

 return pd.DataFrame(qt.fit_transform(df), columns=df.columns)

223

def transformPower(df):

 pt = PowerTransformer()

 return pd.DataFrame(pt.fit_transform(df), columns=df.columns)

Exclude outliers

def iqr_outliers(df, feature, factor):

 Q1= df[feature].quantile(0.25)

 Q3 = df[feature].quantile(0.75)

 IQR = Q3 - Q1

 upper_limit = Q3 + factor * IQR

 lower_limit = Q1 - factor * IQR

 return upper_limit, lower_limit

def std_outliers(df, feature, factor):

 upper_limit = df[feature].mean() + factor * df[feature].std()

 lower_limit = df[feature].mean() - factor * df[feature].std()

 return upper_limit, lower_limit

def remove_outliers(df:DataFrame) -> DataFrame:

 for c in df.columns:

 if ((c == 'course') or (c == 'student')):

 continue

 upper, lower = iqr_outliers(df, c, 1.5)

 df = df[(df[c] > lower) & (df[c] < upper)]

 return df

def remove_outliers_recursive(df:DataFrame) -> DataFrame:

 n = 0

 while(True):

 n = len(df)

 df = remove_outliers(df)

 if(n == len(df)):

 break

 return df

def plot_activity_summary(df:DataFrame, w:int):

 fig, ax1 = plt.subplots()

 ax1.set_xlabel('Feature')

 ax1.set_ylabel('Activity Frequency')

 ax1.set_title('Activity Summary (N=' + str(len(df)) + ')')

 ax1.figure.set_figwidth(w)

 temp = df.drop(columns=['final_grade'])

 ax1.boxplot(temp, labels=temp.columns)

 temp2 = df['final_grade']

 ax2 = ax1.twinx()

224

 ax2.boxplot(temp2, labels=['final_grade'],

positions=[len(temp.columns)+1])

 ax2.set_ylabel('Final Grade', color='purple')

 ax2.tick_params('y',colors='purple')

Exclude highly correlated and missing values

def excludeHighlyCorrelatedAndMissingValues(df:DataFrame, r:float) ->

DataFrame:

 temp = []

 corr =

abs(df.drop(columns=['student','course']).corr(method='spearman'))

 for y in corr.columns:

 for x in corr.index.values:

 if(x != y):

 c = corr[y][x]

 if(c > r):

 if [y,x] not in temp:

 temp.append([x,y])

 print("Highly correlated pair found: " +

str([x,y]))

 if(len(temp) > 0):

 drop = []

 for i in temp:

 a = i[0]

 b = i[1]

 dA = df.drop(columns=a).dropna()

 dB = df.drop(columns=b).dropna()

 print("Size after dropping " + a + ": " + str(dA.size))

 print("Size after dropping " + b + ": " + str(dB.size))

 if(dA.size > dB.size):

 print("\tDropping " + a)

 drop.append(a)

 else:

 print("\tDropping " + b)

 drop.append(b)

 for i in drop:

 df = df.drop(columns=i)

 return df.dropna()

 else:

 return df.dropna()

def evaluateGP(df:DataFrame, at_risk_cutoff:float):

 x = df.drop(columns=['cluster','final_grade'])

 y = get_at_risk_booleans(df, at_risk_cutoff)

225

 feature_names = x.columns

 gp = SymbolicClassifier(parsimony_coefficient=.01,

 feature_names=feature_names,

 random_state=1, verbose=True)

 gp.fit(x,y)

 y_pred = cross_val_predict(gp, x, y, cv=2, verbose=True, n_jobs=15)

 dot_data = gp._program.export_graphviz()

 graph = graphviz.Source(dot_data)

 return gp, y_pred, classification_report(y, y_pred), graph

def evaluateNB(df):

 x = df.drop(columns=['cluster']).values

 y = df['cluster'].values

 gnb = GaussianNB()

 y_pred = cross_val_predict(gnb, x, y, cv=10)

 return classification_report(y, y_pred)

def evaluateDT(df):

 x = df.drop(columns=['cluster']).values

 y = df['cluster'].values

 model = tree.DecisionTreeClassifier()

 y_pred = cross_val_predict(model, x, y, cv=10, verbose=True,

n_jobs=15)

 precision, recall, f1, support = precision_recall_fscore_support(y,

y_pred, average='macro')

 model.fit(x,y)

 tree.plot_tree(model)

 return precision, recall, f1, len(y)

def clusterKMeans(df):

 kmeans_kwargs = {

 "init":"k-means++",

 "n_init": 1,

 "max_iter": 500,

 "random_state": 0

 }

 sse = []

 N = 21

 for k in range(1,N):

 kmeans = KMeans(n_clusters=k, **kmeans_kwargs)

226

 kmeans.fit(df.drop(columns=['course','student']))

 sse.append(kmeans.inertia_)

 k1 = KneeLocator(range(1,N), sse, curve="convex",

direction="decreasing")

 plt.style.use("fivethirtyeight")

 plt.plot(range(1,N), sse, 'ko-', label='SSE (Week 1-15 Cumulative

Activity)')

 plt.xticks(range(1,N))

 plt.xlabel("Clusters (K)")

 plt.ylabel("SSE")

 plt.title('K-Means SSE (Exploratory)')

 k = k1.elbow

 plt.plot([k], sse[k-1], 'X', ms=10, color='red', label='Elbow Point')

 plt.legend()

 plt.show()

 print("Cluster size: " + str(k1.elbow))

 kmeans = KMeans(n_clusters=k1.elbow, **kmeans_kwargs)

 kmeans.fit(df.drop(columns=['course','student']))

 return df.assign(cluster=kmeans.labels_)

def plot_cluster_summary(df:DataFrame):

 df = df.drop(columns=['course','student'])

 fig, ax1 = plt.subplots()

 marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:']

 ax1.set_title('K-Means Cluster Summary (Exploratory)')

 ax1.set_ylabel('Normalized Frequency')

 ax1.set_xlabel('Cluster')

 j = 0

 cols = df.drop(columns=['cluster','final_grade']).columns

 means = df.groupby(['cluster']).mean()

 for i in cols:

 ax1.plot(means[i], marker[j], ms=10, label=i)

 j += 1

 ax2 = ax1.twinx()

 ax2.plot(means['final_grade'], marker[j], color='purple', ms=10,

label='final_grade')

 ax2.set_ylabel('Final Grade', color='purple')

 ax2.tick_params('y',colors='purple')

 ax2.grid(True,linestyle='--')

227

 # ask matplotlib for the plotted objects and their labels

 lines, labels = ax1.get_legend_handles_labels()

 lines2, labels2 = ax2.get_legend_handles_labels()

 plt.legend()

 ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.15,

1.0), loc='upper left')

228

VITA

Ngoc Van P. Bui

OBJECTIVE

- Obtain challenging and rewarding opportunities to deliver student-centered and

research-driven instruction

- Augment teaching and learning with open and innovative technologies rooted in theory

and evidence-based research to improve learning performance

- Improve educational outcomes by promoting social learning and intrinsic value such

as inspiration, motivation, and self-efficacy

- Continuously learn, grow, professionally develop, and advance research in the field of

Instruction Systems Design and Technology

EDUCATION

Ed.D in Instructional Systems Design and Technology

Sam Houston State University. Huntsville, TX

Aug 2022

Master of Education - Instructional Technology

Georgia College & State University. Milledgeville, GA

May 2015

Bachelor of Arts - Computer Science

Mercer University. Macon, GA

Dec 2009

SKILLSET

Instructional Methods

- Quantitative & Qualitative Research

- Evidence-based Learning Principles

- Learning/Content Management

Systems

- Computational Learning Analytics

- Educational Data Mining

Learning Technologies

- Web Design & Development

- Database Design & Administration

- Software Programming Languages

- IBM SPSS Statistics

- Unsupervised/Supervised AI/ML

SERVICE

- Association for Education Communication Technology,

Reviewer

Jan 2020 - Present

- Southwest Educational Research Association, Reviewer Sep 2020 - Present

- Honor Society of Phi Kappa Phi, Member Apr 2015 - Present

- EDUCAUSE, Member Jan 2015 - Present

229

RESEARCH

Dissertation - Explainable AI (XAI): A Theory-based Genetic

Programming Model for Predicting At-risk Students.

- Performed literature review, educational data mining (EDM), and

computational learning analytics researching Explainable AI

(XAI) models for predicting and explaining at-risk students using

Blackboard student performance and activity data.

- Explore the efficacy of a Theory-based Genetic Programming

Model for improving and explaining at-risk student predictions

using Blackboard student behavior and performance features.

2021 - Present

Grant proposal - Technology sustainability and Explainable AI

(XAI) research: The efficacy of a mobile learning assistant

implementing theory-based genetic programming model for

predicting at-risk learners

- Performed preliminary literature research and developed a plan

and research design to investigate a XAI mobile learning

assistant for improving student retention and learning

outcomes.

2020 - 2021

CONFERENCE PAPERS/PRESENTATIONS

Bui, N. & Donggil, S. (2021). Theory-Guided XAI: Improving

Performance and Explainability of At-Risk Student Predictions.

- Performed educational data mining (EDM) on Blackboard LMS

Activity data and implemented Theory-Guided XAI Models to

explore at-risk student behaviors and prediction performance from

a large online higher education 4-year institution.

AECT

Nov 2021

Bui, N. (2021). Explainable Artificial Intelligence: A Theory-

Guided Genetic Programming Model for At-Risk Student

Prediction.

- Performed initial literature research to design research for

addressing student retention with Explainable AI (XAI).

SERA

Feb 2021

Bui, N., Collier, J., Guled, A., & Song, D. (2020). Effectiveness of

Conversational Virtual Agents in Learning Support: A

Systematic Literature Review.

- Principal lead researcher who planned, coordinated, and tracked

work tasks that lead to the successful completion of research tasks.

- Used scripting language tools such as python to automate file

management renaming and allocation tasks.

- Use spreadsheet tools for data aggregation and analysis.

- Performed data collection, reduction, synthesis, and charting for

visualization and analysis.

AECT

Nov 2020

230

PROFESSIONAL EXPERIENCE

Graduate Research Assistant

- Sam Houston State University Online

- Performed literature reviews, educational data mining (EDM), and

learning analytics (LA) using a variety of programming and AI/ML

tools (MySQL, Python, Jupyter notebooks, Weka, Seaborn, Scikit-

Learn, Matplotlib, Ellyn GP, GPLearn).

- Performed unsupervised and supervised learning to identify,

classify, and evaluate trends and patterns in student activity

behaviors and their relationship to performance outcomes.

Apr-Oct

2021

Mar-Aug

2020

New Media Instructional Specialist Intern

- Mercer University, Academic Technology Services Department

- Identified problems associated with the underutilization of

technology resources in higher academia stemming from

insufficient faculty training.

- Conducted training workshops and seminars to raise faculty

awareness of the technology available at Mercer that was being

underutilized.

- Trained faculty and students on the benefits and proper use of LMS

and Media tools for instruction and learning.

Jan-Apr

2015

University Instructional Technology Coordinator

- Mercer University, Psychology Department

- Supported undergraduate studies with the development of research

involving computational media

- Provided IT service support to students and faculty in

troubleshooting computing systems

- Updated, maintained, and resolved technical issues for efficient

operation of computer lab systems

Aug 2010

to

Dec 2012

Mercer on Mission Vietnam Coordinator

- Mercer University, International Programs

- Coordinated, planned, and organized 5 years of international

missionary trips for faculty and students.

- Designed, developed, and instructed a preliminary course in the

Vietnamese language and culture.

- Designed, developed, and maintained an online website for tracking

and content management of student journal entries while abroad.

Summers of

2009 - 2013

IT Help Desk – Computer Tech

- Mercer University, Computer Science & Engineering Departments

- Monitored and diagnosed computer lab issues as they arrive and

provide technical support to students and faculty

- Obtained valuable interpersonal communication skills with people

of diverse backgrounds (students, faculty, and IT service

technicians)

2006 - 2009

231

DOSSIER

Please visit my Dossier site (https://sites.google.com/view/ngocvan-bui-dossier)

for a comprehensive collection of research papers, presentations, and work samples, such

as complete course designs using Google Docs, Moodle, and Blackboard LM

https://sites.google.com/view/ngocvan-bui-dossier/home?authuser=1
https://sites.google.com/view/ngocvan-bui-dossier/home?authuser=1

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Statement of the Problem
	Purpose of the Study
	Research Questions
	Significance of the Study
	Implications to the Field of ISDT
	Limitations
	Delimitations
	Assumptions
	Chapter Summary

	Literature Review
	Introduction
	Methods
	The Problem of Student Retention and the need for XAI
	The Need to Address the Low and Stagnant Student Retention
	The Need for Explainable AI (XAI) in Education

	Why XAI?
	The Emerging Demand for Explainability
	Motivations for XAI
	An Explainable Example
	The Forefront and Challenges of XAI

	Educational Data Mining and Learner Analytics
	Common Study Types
	Common Target Outcomes
	Common Feature Categories
	Summary of Literature Findings

	Theoretical Supports
	Introduction
	Theory-Guided Data Science
	Activity Theory
	Fink’s Significant Learning Theory
	Social Learning Theory
	Theory-Guided Feature Selection (TGFS) Model
	Conceptual Framework
	Conceptual Model
	Genetic Programming
	Section Summary

	Chapter Summary

	Methods
	Introduction
	Research Questions
	Population, Setting, and Demographics
	EDM Process
	Feature Selection Process
	Literature Support
	Data Inspection/Analysis Support
	Theoretical Support

	Analysis Methods
	Statistical Analysis
	Power Analysis
	Feature Analysis (RQ1)
	Exploratory Cluster Analysis (Process Overview)
	Exploratory Cluster Analysis (RQ2)
	Classification Analysis (RQ3)
	Prediction Performance Analysis (RQ4)
	Explainability Analysis (RQ4)

	Chapter Summary

	Results
	Introduction
	EDM Process Results
	Descriptive Statistics
	Feature Selection Results
	Analysis Results
	Feature Analysis (RQ1)
	Exploratory Cluster Analysis (RQ2)
	Statistical Analysis of Mean Differences between Independent Groups
	Classification Analysis (RQ3)
	Prediction Performance Analysis (RQ4)
	Explainability Analysis (RQ4)

	Chapter Summary
	RQ1 Findings
	RQ2 Findings
	RQ3 Findings
	RQ4 Findings

	Validity and Reliability
	Introduction
	Literature and Theoretical Supports
	Sample Size
	Power Analysis
	Generalizability
	Missing Data
	Inconsistent Performance Assessment Data
	Chapter Summary

	Future Work
	Introduction
	XAI Application Design

	Performance Features
	Intrinsic Features
	Chapter Summary

	REFERENCES
	APPENDIX
	VITA
	conceptual-framework
	methods-and-procedures

