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ABSTRACT 

Bui, Ngoc Van P., Explainable AI (XAI): Improving at-risk student prediction with 

theory-guided data science, K-Means classification, and genetic programming. Doctor of 

Education (Instructional Systems Design and Technology), August 2022, Sam Houston 

State University, Huntsville, Texas. 

 

This research explores the use of eXplainable Artificial Intelligence (XAI) in 

Educational Data Mining (EDM) to improve the performance and explainability of 

artificial intelligence (AI) and machine learning (ML) models predicting at-risk students. 

Explainable predictions provide students and educators with more insight into at-risk 

indicators and causes, which facilitates instructional intervention guidance. 

Historically, low student retention has been prevalent across the globe as nations 

have implemented a wide range of interventions (e.g., policies, funding, and academic 

strategies) with only minimal improvements in recent years  (Stolk et al., 2007). In the 

US, recent attrition rates indicate two out of five first-time freshman students will not 

graduate from the same four-year institution within six years (NCES, 2020). In response, 

emerging AI research leveraging recent advancements in Deep Learning has 

demonstrated high predictive accuracy for identifying at-risk students, which is useful for 

planning instructional interventions. 

However, research suggested a general trade-off between performance and 

explainability of predictive models (Arrieta et al., 2020; Gunning et al., 2019). Those that 

outperform, such as deep neural networks (DNN), are highly complex and considered 

black boxes (i.e., systems that are difficult to explain, interpret, and understand). The lack 

of model transparency/explainability results in shallow predictions with limited feedback 

prohibiting useful intervention guidance. Furthermore, concerns for trust and ethical use 
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are raised for decision-making applications that involve humans, such as health, safety, 

and education. 

To address low student retention and the lack of interpretable models, this 

research explored the use of eXplainable Artificial Intelligence (XAI) in Educational 

Data Mining (EDM) to improve instruction and learning. More specifically, XAI has the 

potential to enhance the performance and explainability of AI/ML models predicting at-

risk students. The scope of this study includes a hybrid research design comprising: (1) a 

systematic literature review of XAI and EDM applications in education; (2) the 

development of a theory-guided feature selection (TGFS) conceptual learning model; and 

(3) an EDM study exploring the efficacy of a TGFS XAI model. 

The EDM study implemented K-Means Classification for explorative 

(unsupervised) and predictive (supervised) analysis in addition to assessing Genetic 

Programming (GP), a type of XAI model, predictive performance, and explainability 

against common AI/ML models. Online student activity and performance data were 

collected from a learning management system (LMS) from a four-year higher education 

institution. Student data was anonymized and protected to ensure data privacy and 

security. Data was aggregated at weekly intervals to compute and assess the predictive 

performance (sensitivity, recall, and f-1 score) over time. Mean differences and effect 

sizes are reported at the .05 significance level. Reliability and validity are improved by 

implementing research best practices (J. Cohen, 1988; Field, 2018; He et al., 2016). 

KEYWORDS:  Explainable artificial intelligence; XAI; Genetic programming; Machine 

learning; Educational data mining; Learner analytics; At-risk student prediction; Student 

retention 
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CHAPTER I 

Introduction 

The research contributes to the field of Instructional Systems Design and 

Technology (ISDT) by designing, developing, and evaluating an at-risk student predictive 

model using Educational Data Mining (EDM) process grounded in instructional theory 

and evidence-based practices. To prepare for a fast-evolving and technology-driven 

society, this work leverages emerging computational techniques to support and inform 

instructional practice. This work explored how improving the explainability of AI models 

can help identify interaction characteristics of at-risk students as well as improve the 

prediction performance of existing systems. 

Recent advancements in AI such as Deep Neural Networks (DNN) have 

demonstrated unprecedented performance in pattern recognition, automation, and 

prediction (Adadi & Berrada, 2018). As a result, there has been widespread research and 

adoption of AI across diverse fields and applications (Arrieta et al., 2020).  In education, 

AI models have been used in EDM to predict at-risk students and enable timely 

interventions for impro student performance (Chitti et al., 2020), which are associated 

with higher student retention (Baldelovar, 2016; McCoy & Byrne, 2017). Research 

advancing at-risk student predictions can help address the poor state of student retention, 

which has been slow and stagnant over the past two decades (Beer & Lawson, 2017; 

NCES, 2022; Tinto, 2006). 

Although current AI implementations have demonstrated high accuracies for 

predicting at-risk students, emerging research suggests a general trade-off between 

predictive performance and explainability (Gunning & Aha, 2019). AI models that 
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outperform, such as deep neural networks (DNN), are highly complex, inherently 

unexplainable, and are considered black boxes, which are systems that are too difficult 

for humans to explain, interpret, and understand (Knight, 2017).  The lack of 

transparency in at-risk student predictions is evident in educational data mining (EDM) 

research, which prompted the need for more interpretable models (Chitti et al., 2020). 

In response to the lack of transparent AI, the field of Explainable AI (XAI) 

emerged with goals to improve model informativeness, trustworthiness, causality, 

transferability, confidence, fairness, accessibility, interactivity, and privacy (Arrieta et al., 

2020). This research contributes to XAI by exploring selected explainable techniques and 

explainable models for improving at-risk student predictions. More specifically, this 

study evaluates the performance and explainability of K-Means Classification, an 

explainable technique, and Genetic Programming (GP), and explainable model, using a 

developed Theory-Guided Feature Selection (TGFS) model that incorporates relevant 

theories such as Activity Theory, Significant Learning Model, and Social Learning 

Theory. 

Statement of the Problem 

This research addresses two primary problems: (1) the need to improve the poor 

state of student retention in higher education; and (2), the need to use Explainable 

Artificial Intelligence (XAI) to improve the performance and explainability of at-risk 

student predictions. The ability to improve the accuracy and explainability of at-risk 

predictions can lead to better feedback for instruction interventions and lower student 

attrition attributed to poor performance outcomes. Furthermore, model explainability 
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helps improve user trust and adoption in practice. The proceeding paragraphs will give a 

brief review of the problems as well as the benefits that XAI offers. 

First, the problem of student retention is evident in the low and stagnant 

graduation rates (averaging 56% and 33% for four-year and two-year institutions 

respectively from 1996 to 2016) of higher education in the US over the past two decades  

(Beer & Lawson, 2017; NCES, 2022; Tinto, 2006). Compared to the Organization for 

Economic Co-operation and Development (OECD) (78%) and European countries (79%) 

(2020), the US national averages are substantially lower. The lack of progress highlights 

the significant waste of financial, time, and labor investments from students, institutions, 

and governments and the need for more effective interventions. 

In addition, student attrition statistics from Wellman et al. (2012) show that 

students leave due to both academic and non-academic factors. McCoy and Byrne’s 

(2017) literature review identified contributing factors such as diversity, culture, socio-

economic background, academic performance, financial aid, social support, national 

policies, and standards. The wide array of contributing factors presents the need for 

diverse research and intervention improvements with considerations for student, 

institution, and government contexts. The scope of this research focuses on improving 

student retention from an academic performance perspective by improving at-risk student 

predictions using state-of-the-art XAI techniques and models. 

Second, the need to use XAI can be explained by first understanding the 

importance and current state of using AI in education. The recent advancements in 

artificial intelligence (AI), machine learning (ML), availability of large datasets, and 

distributive computing have enabled unprecedented performance in pattern recognition, 
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automation, and prediction (Adadi & Berrada, 2018; Gunning et al., 2019; Khare et al., 

2018; Ramalingam et al., 2018; Samek & Müller, 2019). However, emerging works 

indicate a trade-off between prediction performance and model interpretability or 

explainability (i.e., how easy it is for humans to understand a model) (Arrieta et al., 2020; 

Gunning et al., 2019). High-performing models are typically too complex and hard to 

interpret or explain, which raises concerns about trust, ethical use, safety, and technology 

adoption (Adadi & Berrada, 2018; Arrieta et al., 2020; Crowe & LaPierre, 2018; Samek 

et al., 2021; Samek & Müller, 2019; Sun & Medaglia, 2019; Zhai et al., 2021). 

Unfortunately, these challenges are evident in existing early warning systems as their 

predictions lack meaningful insight or informative feedback for intervention guidance 

(Cano & Leonard, 2019). 

This research addresses these concerns by exploring eXplainable AI (XAI) 

research to improve its trust, reliability, transparency, performance, adoption, and 

acceptance. In addition to improving educational outcomes, this study addresses the lack 

of XAI literature for educational applications (Abdul et al., 2018; Adadi & Berrada, 

2018; Arrieta et al., 2020; Gilpin et al., 2019; Gunning et al., 2019; Gunning & Aha, 

2019; Samek et al., 2021; Samek & Müller, 2019; Vilone & Longo, 2020). Building upon 

the limited and emerging works in XAI, this research responds to the prompt for adopting 

Theory-Guided Data Science (TGDS) to enhance predictive performance and explainable 

results in higher education (Pillay, 2020; Xing et al., 2015). Implementing TGDS has the 

potential to improve prediction performance as well as address the lack of theoretical 

grounding in EDM and Learner Analytics research (Clow, 2013; Conijn et al., 2017). 

This research implemented an EDM protocol to analyze learner LMS data of a dual-mode 
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(i.e., traditional and online) higher education institution to develop, assess, and analyze 

explainable techniques and explainable models for predicting at-risk learners. 

Purpose of the Study 

The purpose of this study is to explore the efficacy of XAI to improve the 

performance and explainability of at-risk student predictions. More specifically, this 

study will implement Theory-Guided Data Science (TGDS), K-Means Clustering, and 

Genetic Programming (GP), all of which have been demonstrated in early works to 

enhance predictive performance and explainable results in higher education (Pillay, 2020; 

Xing et al., 2015). This study proposes a novel theory-guided feature selection (TGFS) 

conceptual learning model, which aims to improve model explainability as well as 

addresses the lack of theoretical grounding in Educational Data Mining (EDM) and 

Learner Analytics research (Clow, 2013; Conijn et al., 2017). EDM protocols from the 

literature are leveraged to provide a robust and reliable data collection, research, and 

analysis process within an online Learning Management System (LMS) of a dual-mode 

higher education institution. 

Research Questions 

The following are the XAI EDM study research questions to be investigated: 

• RQ1: What are the associations between activity factors and student final grades? 

• RQ2: What are characteristics of at-risk students that can be identified using K-

Means Cluster Analysis? 

• RQ3: What are characteristics of at-risk students that can be predicted using XAI 

techniques and models? 
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• RQ4: How do explainable models compare to complex models when LMS 

student activities are used as features to predict at-risk students? 

Significance of the Study 

This study addresses concerns, challenges, and gaps in the current literature by 

contributing innovative research in the field of XAI research with a specific focus on 

improving educational outcomes. First, this study contributes to the critical need to 

improve student retention in higher education to address the historically low and stagnant 

progress (NCES, 2020; Tinto, 2006). Although emerging AI technologies such as Deep 

Neural Networks are highly effective at predicting at-risk students, they are considered 

black-box systems, which lack explainability, are difficult to understand, and may raise 

concerns for trust, fairness, safety, ethics, regulatory compliance, and technology 

acceptance (Arrieta et al., 2020). Second, this study contributes to the gap in XAI 

research in the educational domain, is which evident by the scarce number of works cited 

in recent explainable systematic literature reviews (Adadi & Berrada, 2018; Anjomshoae 

et al., 2019; Arrieta et al., 2020; Vilone & Longo, 2020). And third, this study focuses on 

online learning environments, which enable EDM for XAI implementation while 

promoting technological sustainability and educational equity thanks to the widespread 

accessibility of distance learning. This research has broader implications as XAI research 

contributes to fields beyond education, such as those in the medical, government, and 

commercial industries. 
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Implications to the Field of ISDT 

What are the implications of XAI and EDM research to online learning and more 

specifically to the field of Instructional Systems Design and Technology (ISDT)? this 

question can be answered by first framing the definition of the field. According to Reiser 

and Ely (1997), the Association of Education Communication and Technology (AECT) 

defined Instructional Technology as “the theory and practice of design, development, 

utilization, management, and evaluation of processes and resources for learning” (p. 69). 

This research aligns well with this definition in two ways to advance research and 

practice in the field. 

First, this research implemented a theory-guided feature selection model (TGFS) 

that integrates learning theories such as Activity Theory, Bruner’s Social Learning 

Theory, and Fink’s Significant Learning Theory. By leveraging theory, at-risk predictions 

and the explainability of those predictions can be improved (Xing et al., 2015). 

Furthermore,  theory-guided models address shortcomings in data-centric approaches, 

such as EDM (Karpatne et al., 2017). TGDS also improves the chance of implementing 

influential factors with causal relationships that are grounded in sound instructional 

principles. When incorporated into future at-risk student detection and prediction 

systems, TGFS can provide targeted explanations that map back to theory to provide 

intervention guidance. 

Second, this research evaluates the predictive performance and explainability of 

theory-grounded XAI models. Evaluative research provides preliminary evidence that can 

alleviate the cost of implementing and testing in practice.  In addition, when implemented 

as an early warning system, XAI models can provide more formative feedback to both 
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instructors and students. For example, early warning at-risk indications can provide 

teachers and faculty with valuable information about students that may most likely fail, 

and therefore, need additional special attention and intervention.  It allows educators to 

focus their resources to improve the overall success of most students. 

In summary, this research aligns with the field of ISDT by integrating theory with 

the design, development, and evaluation of XAI models to improve learning and 

instruction within online learning environments. Leveraging EDM research and processes 

ensures an effective, efficient, and comprehensive approach to training and predicting 

learning outcomes based on student LMS interaction data. 

Limitations 

This section identifies the limitations of the study, which are “factors that may 

affect the study but which are out of the control of the researcher” (Ostler, n.d., p. 6). 

Limitations in this study are acknowledged for transparency and mitigated, when 

possible, to enhance validity, reliability, and robustness. 

First, samples collected from the target population for the XAI EDM study were 

limited to student activity and performance parameters and did not include demographic 

or prior performance parameters. As such, sampling demographic could not be directly 

computed. To address this limitation, the central limit theorem was leveraged by 

obtaining large random samples (greater than 30) of the population, which allows for the 

assumption that the sampling distribution is normal with the mean equal to the population 

mean (Field, 2018). This in effect allows us to approximate the sampling statistics using 

inferential statistics (Kwak & Kim, 2017). Therefore, the population demographic, which 

was retrieved from NCES (2021), is reported instead of the sampling statistics. 
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Second, there were limitations in computing hardware such as time, memory, and 

processing constraints due to the large size of the LMS activity logs retrieved. To address 

this, data was extracted from the LMS database in smaller weekly segments and bounded 

to LMS activity logged during the spring semester of 2021. The data was also imported 

into a local LMS database that allowed for the processing and analysis of data that 

eliminated the restriction of working memory. 

Third, unbalanced data sets were observed during the clusters obtained during k-

Means clustering, which have negative implications on model accuracy and post-hoc 

statistical analysis (Banerjee et al., 2018; Field, 2018). Consequently, Banerjee et al. 

(2018) found that “sampling methods can have a major influence on reducing the gap 

between sensitivity and specificity of a model” (p. 362). For asymmetric class 

distribution, the specificity and sensitivity of the minority class could be adversely 

impacted and result in a high number of false negatives and false positives (Banerjee et 

al., 2018). To address this, stratified k-fold cross-validation was selected during 

supervised learning, which prevents overfitting and creates “an unbiased estimate of the 

population proportion” (Berrar, 2018, p. 4). 

To address post-hoc analysis impacts, random under-sampling will be used to 

obtain balanced data set for mean difference analysis. For large samples (greater than 30), 

the sampling distribution will be normally distributed according to the central limit 

theorem regardless of the underlying population distribution characteristic (Field, 2018). 

This allows for the use of parametric tests for statistical analysis. 
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Delimitations 

This section identifies the delimitations of the study, which are “factors that may 

affect the study over which the researcher has control… [to] …set boundaries or limits” 

for feasibility and scope (Ostler, n.d., p. 6). 

First, as part of the EDM data tuning and normalizing process, a substantial 

number of samples were removed from the population due to outliers, errors, missing 

values, or inconsistent data. This may introduce sampling exclusion bias as the data set 

will not be inclusive of all students. 

Second, the study is limited to 15-week LMS data collected from a Doctoral 

University of High Research Activity by The Carnegie Classification of Institutions of 

Higher Education with a large online student population (25 percent of students study 

exclusively online). This delimitation was necessary to keep the study feasible and within 

scope while targeting online students, which is of particular interest for this study as it 

facilitates EDM for predictive modeling. Limiting participants to a single institution will 

also mitigate concerns of volunteer bias that is common in soliciting a wider internet 

population (L. Cohen et al., 2018, p. 372). 

Third, this study excluded performance-related metrics from the feature selection 

due to inconsistent implementation of student assessment metrics (e.g., grade scores from 

assignments and quizzes) across courses. As a result, features selected for at-risk student 

prediction were isolated to student learning management system (LMS) logged activity 

frequencies (e.g., access counts to pages, tools, and functions within the LMS 

environment). Thus, this study is primarily focused on predicting at-risk students based 

on activity-only related features. 
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Assumptions 

As mentioned previously, random sampling of sufficient size will be obtained to 

leverage the central limit theorem to assume that the demographic makeup of the 

randomly selected samples (i.e., sample mean) is representative of the population 

demographic (i.e., fits a normal distribution of the population sample means), which was 

retrieved from NCES (2021). In addition, stratified k-fold cross-validation will be used 

for training/test split sampling for classification. Random undersampling will be used for 

post-hoc statistical analysis, such as association comparative analysis or hypothesis 

testing. 

For K-Means cluster analysis, outliers are removed to alleviate skewed effects and 

feature frequency values normalized due to inconsistent variables scales with large 

standardized deviations as recommended by Cohen et al. (2018). K-Means clustering 

assumes that variables are continuous with spherical clustered shapes (Everitt et al., 

2011). Typically used as a post-hoc analysis technique to discover patterns, clustering can 

be useful to the group and categorize data for subsequent analysis (L. Cohen et al., 2018). 

For this study, the clusters and their characteristics define the at-risk groups’ ground 

truths labels, which are used in the subsequent classification and comparative analysis. 

To ensure the validity and reliability of analytic findings, an analysis of the 

violation of assumptions will be performed for each respective statistical and/or analytic 

technique. In quantitative research, assumptions to consider include statistical power, 

normality, linearity, sample size, variance, homogeneity, skew, kurtosis, and outlier 

effects (L. Cohen et al., 2018). Depending on the results of the assumption checks, 

appropriate statistical tests will be selected and used. For statistical significance testing, 
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this study will adopt Cohen et al.’s (L. Cohen et al., 2018) recommendation for 

“statistical power at 0.80, alpha at 0.05, and beta at 0.20” (p. 752).  Statistical 

significance is a measure of the probability (p-value) of a calculated effect due to chance. 

Statistical significance is defined at the p<0.05 level (the probability of finding an effect 

is 5% due to chance). 

Chapter Summary 

This chapter described the XAI EDM study, its guiding research questions, 

research design, conceptual framework, reliability and validity considerations, and 

implementation methods and procedures. The study implements an EDM approach that 

leverages XAI techniques (e.g., TGDS and K-Means Cluster Analysis) and XAI models 

(e.g., Genetic Programming) to improve at-risk student prediction and explanations. The 

scope of the study includes an exploratory analysis to characterize learning groups and a 

classification analysis to assess the prediction performance and explainability of a theory-

guided model. Finally, an emerging Genetic Programming model will be evaluated on 

performance and explainability against other common leading AI/ML models. 

The remaining chapters will present the relevant sections of the research, which 

are organized as follows: Chapter 2 provides a literature review describing the problems 

and background of XAI and EDM/Learner Analytics research; Chapter 3 gives provides 

relevant theories and conceptual models; Chapter 4 presents the XAI EDM Study, which 

includes the methods and discussion of results; Chapter 5 addresses reliability and 

limitations of our study; and Chapter 6 concludes with directions for future research.  
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CHAPTER II 

Literature Review 

Introduction 

This chapter presents a literature review of the problem space revolving around 

student retention and the need for improving current at-risk student prediction systems 

using Explainable Artificial Intelligence (XAI) models in Educational Data Mining 

(EDM) research. The findings reported include (1) the demand, motivations, progress, 

and challenges of XAI; and (2) the common study types, target outcomes, and feature 

categories implemented in EDM research. The results of this literature review provided 

guidance and direction for this research. 

Methods 

This study adopted Xiao and Watson's (2019) systematic literature review process 

to enhance reliability, rigor, quality, and repeatability. A systematic literature review 

follows a rigorous process of identifying, screening, inclusion/exclusion, data extraction, 

and analysis of relevant past and current research. Initial sources were first identified by 

conducting relevant keyword searches (i.e., using search strings “XAI AND ‘explainable 

artificial intelligence’ AND predict AND ‘at-risk’ AND student AND performance AND 

outcome AND learning” or “‘educational data mining’ AND ‘Learner Analytics’” ) in the 

Google Scholar and EBSCO databases. Selected works were then screened to remove 

duplicates based on the title name. Abstracts are reviewed to filter items based on the 

inclusion criteria of being XAI and/or EDM relevant studies. A full-text review was then 

performed to extract, codify, and categorized common themes, key findings, and 

limitations of XAI and EDM research. 
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In total, 16 sources (Abe, 2019; Al Breiki et al., 2019; Al-Omar, 2018; R. S. J. D. 

Baker et al., 2011; Berens et al., 2019; Bienkowski et al., 2012; Chamizo-Gonzalez et al., 

2015, p.; Conijn et al., 2017; Imran et al., 2019; Ndou et al., 2020; Pillay, 2020; Raju et 

al., 2020; Song et al., 2019; Xing et al., 2015; Yang et al., 2021; Zheng, 2020) were 

selected, reviewed, codified, and summarized. The objective was not exhaustive, but 

precursory to analyze, coded, categorized, and triangulate common research aims, 

predictor variables, features selected, analysis techniques, and study limitations, all of 

which helped guide and support the research. 

The Problem of Student Retention and the need for XAI  

The Need to Address the Low and Stagnant Student Retention 

Improving student retention has been an ongoing challenge, both in the US and 

the world according to the National Center for Educational Statistics (2022) and Beer and 

Lawson (2017). This is evident in the historically low student retention rate and stagnant 

progress (Tinto, 2006), which can be observed from 1996 to 2010 with only marginal 

improvements thereafter (see Figure 1). On average, only 56% graduate within six years 

from a four-year institution, and, worse, 33% graduate within three years from a two-year 

institution. When compared to other nations, the US graduation rate (60%) in 2018 was 

substantially lower than the Organization for Economic Co-operation and Development 

(OECD) (78%) and European countries (79%) (OECD, 2020). In addition to increasing 

student burdens, attrition costs are significant and widespread for higher education 

institutions across the globe (2017). 
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Figure 1 

US Postsecondary Institution 150% Completion Time Graduation Rate 

 

Note. Data from the National Center for Education Statistics (NCES) Trend Generator (NCES, 

2022). In the public domain. 

These statistics highlight the critical need to improve student retention in the US 

not only for national and institutional progress but more importantly, student success. 

Addressing student attrition is important as it reflects (Long et al., 2006): the waste of 

institutional cost and government-funded expenditures in producing an outcome; the 

student financial and emotional burden; a critical measure of university quality and 

educational support services; educational equity; and waste of potential talent. 

The Need for Explainable AI (XAI) in Education 

Implementing effective learning interventions requires a grasp of the underlying 

causes of student attrition, the effectiveness of implementations in practice, and the 

current state of research. Prior research has identified a wide range of root causes 

stemming from the socio-economic background, financial aid support, family 
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background, race, culture, work status, personal choices, class size, and academic 

preparation/performance (Beer & Lawson, 2017; Stolk et al., 2007; Wills et al., 2018). To 

address this, many nations, states, and local governments have implemented various 

interventions such as student support policies, financial aid, and academic support 

programs with mixed results (Stolk et al., 2007). Stolk et al. (2007) found that 

determining consistent factors and interventions was difficult due to the varying nature of 

countries, institutions, cultures, and demographic backgrounds. Nevertheless, a common 

and robust measure of student attrition commonly referenced by the authors was 

academic performance. Concerning academic performance, Wellman et al. (2012) 

characterized two groups of student attrition: (1) those in good standing that leave early 

(48%) or late (33%); and those not in good standing that leave early (15%) or late (5%) 

(see Figure 2). It is the latter group (i.e., 20% of students not in good standing or at-risk) 

that is the target of this research. 

Figure 2 

Attrition Timing and Academic Standing of Students 

 

Note. Chart showing the percentage of student attrition for time and academic standing. Reprinted 

from Measuring (and Managing) the Invisible Costs of Postsecondary Attrition (p. 6), by J. 
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Wellman, N. Johnson, and P. Steele, 2012, American Institute for Research 

(https://files.eric.ed.gov/fulltext/ED536120.pdf). 

A common strategy in addressing student retention involves the use of early 

warning systems that collects and monitors student activity/performance to analyze and 

provide real-time indications of at-risk students. Researchers have explored how 

educational data mining (EDM) and learning analytics can be used to design, model, and 

predict student outcomes for guiding instructional interventions (Alshammari et al., 2013; 

Du et al., 2020; Şahi̇n & Yurdugül, 2020). An area of promise in predicting at-risk 

students includes the use of artificial intelligence (AI) and machine learning (ML). The 

advancements in deep learning, availability of large datasets, and distributed parallel 

computing have enabled AI/ML to achieve unprecedented performance and accuracy in 

pattern recognition, automation, and prediction (Adadi & Berrada, 2018; Gunning et al., 

2019; Khare et al., 2018; Ramalingam et al., 2018; Samek & Müller, 2019).  This is 

evident and popularized by recent AI breakthroughs. 

For example, headline news in 2016 of Google’s AlphaGo beating the world’s 

leading professional, Lee Se Dol, in the game of Go highlighted a pivotal case where 

machines exceeded human cognitive performance (Moyer, 2016; Silver et al., 2017). 

Kwon (2020) later performed a probability distribution analysis of AlphaGo’s game 

reading and decision-making ability against that of professional go players and found that 

it had statistically “surpassed human abilities” (p. 1). This is just one of many examples 

in which AI has demonstrated task superiority over humans, among others in “complex 

visual tasks” (Samek & Müller, 2019, p. 1) such as in medical imaging pattern 

recognition (Subbiah et al., 2020). As a disruptive technology, AI has the potential to 

https://files.eric.ed.gov/fulltext/ED536120.pdf
https://files.eric.ed.gov/fulltext/ED536120.pdf
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advance knowledge work automation tasks, which may supplement or even replace large 

market sectors involving human cognitive abilities (Manyika et al., 2013). 

However, the high performance of AI models typically comes at the cost of 

explainability, which is the interpretability or understandability of a system or model 

(Arrieta et al., 2020; Gunning et al., 2019). Due to their highly complex nature, most AI 

models lack explainability. This raises concerns for trust, ethical use, and safety that can 

inhibit technology adoption in applications involving humans, such as transportation, 

healthcare, legal, military, finance, and engineering  (Adadi & Berrada, 2018; Crowe & 

LaPierre, 2018; Samek et al., 2021; Samek & Müller, 2019; Sun & Medaglia, 2019; Zhai 

et al., 2021). For decision-making applications in education, the lack of explainability can 

negatively impact trust, fairness, educational equity, and technology acceptance. Non-

explainable models result in shallow feedback that limits meaningful insight needed for 

effective learning intervention guidance. 

This research addresses the limited transparency of complex black box systems by 

exploring the effectiveness of eXplainable artificial intelligence (XAI) for improving the 

performance and explainability of at-risk student predictions. As an emerging technology, 

XAI can be integrated into an early warning system (EWS) to provide at-risk student 

predictions with real-time feedback and intervention guidance for improving student 

learning and retention (Veerasamy, 2020). XAI encompasses explainable models and/or 

explainable techniques to help humans better understand, interpret, and trust machine 

learning (Gunning & Aha, 2019) as well as addressing model causality, transferability, 

fairness, and confidence (Arrieta et al., 2020). 
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Although XAI has been widely researched, there is limited literature addressing 

educational applications (Abdul et al., 2018; Adadi & Berrada, 2018; Arrieta et al., 2020; 

Gilpin et al., 2019; Gunning et al., 2019; Gunning & Aha, 2019; Samek et al., 2021; 

Samek & Müller, 2019; Vilone & Longo, 2020). When used to support teaching and 

learning, XAI can help teachers and students better understand the reasons and logic 

behind at-risk alerts to provide the meaningful insight needed for effective decision-

making, intervention planning, or self-regulated learning. 

Why XAI? 

The Emerging Demand for Explainability 

The rapid development and spread of AI have created the need to control where 

decision-making applications involve humans or human safety. The potential risks of 

negative consequences have motivated academic and government entities to increase 

awareness and research in developing more explainable systems, which later became 

known as the field of Explainable AI, or XAI (Duval, 2019). The increased interest is 

evident in the sharp rise in relevant publications (Figure 3) and online Google search 

trends (Figure 4). Arrieta et al. (2020) also found a similar trend in increasing 

explainability publications (XAI and Explainable Artificial Intelligence) since 2017 

(Figure 5). This trend is also evident in the open-research community based on similar 

XAI keyword search terms from Knoth and Zdrahal’s (2012) CORE open publication 

database (CORE, n.d.), as illustrated in Figure 6. As the field of AI and ML continues to 

grow and evolve, so will the field of XAI to address its challenges and barriers to 

trustworthiness, safety, ease of use, and adoption. 
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Figure 3 

Chart Showing Publication Trends for XAI 

 

Note. Chart retrieved from (Google Trends, n.d.) using the search string "Explainable AI" filtered 

for years ranging from 1940 to 2019. In the public domain. 

Figure 4 

Chart Showing Google Search Trends for AI, ML, and XAI 

 

Note. Chart adapted with data retrieved from (Google Trends, n.d.). In the public domain. 

https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
https://www.zotero.org/google-docs/?v6ydWH
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Figure 5 

Chart of Explainability Related Publications 

 

Note. The chart shows the rising trend in private research databases. Reprinted from (Arrieta et 

al., 2020, p. 3). From “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, 

opportunities, and challenges toward responsible AI,” by Arrieta, A. B. et al., 2020, Information 
Fusion, 58, 82–115 (https://doi.org/10.1016/j.inffus.2019.12.012). Copyright 2020 by Elsevier 

B.V. 

Figure 6 

Chart of XAI Open Publications 

 

Note. This chart shows the number of XAI open publications based on XAI keyword search terms 
queried from the CORE database. Adapted from CORE API, by Petr Knoth and Zdenek Zdrahal, 

2021 (https://core.ac.uk/services/api). In the public domain. 

https://doi.org/10.1016/j.inffus.2019.12.012
https://core.ac.uk/services/api
https://doi.org/10.1016/j.inffus.2019.12.012
https://core.ac.uk/services/api
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Although the interest in XAI has increased, the field is still in its infancy (evident 

by the low percentage of XAI publications compared to that of AI and ML in Figure 4 

and Figure 5) and lacks a common definition (Arrieta et al., 2020). For this study, the 

following definition of XAI is adopted to take into account human understanding and 

target audience (both of which are critical and relevant within the educational context): 

"Given an audience, an explainable Artificial Intelligence… produces details or reasons 

to make its functioning clear or easy to understand" (Arrieta et al., 2020, p. 6). 

Motivations for XAI 

The motivation for this research stems from the increasing demand for human and 

AI interaction in multiple applications and domains, which requires XAI to address 

concerns for transparency, fairness, ethics, trust, and regulatory compliance. Arrieta et. al. 

(2020) also provide rationales for XAI based on the target audience (see Figure 7). Target 

audiences include domain experts, regulatory entities, managers, executive members, 

scientists, developers, and affected users. The benefits of XAI include gaining trust, 

scientific knowledge, regulatory compliance, operational efficiency, research, and 

increased explainability. However, there is a lack of emphasis on educators and learners, 

whose primary interest is to improve educational outcomes and student retention. XAI 

systems can help improve the learning and instruction of students and educators by 

providing more detailed and informative indicators of at-risk performance. An easy-to-

understand, interpretable, and explainable system ultimately results in higher confidence 

and trust from educational users (Gunning & Aha, 2019; Shin, 2021). 
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Figure 7 

Chart Presenting Rationales for XAI Based on Target Audience 

 

Note. From “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities, and 

challenges toward responsible AI,” by Arrieta, A. B. et al., 2020, Information Fusion, 58, 82–115 

(https://doi.org/10.1016/j.inffus.2019.12.012). Copyright 2020 by Elsevier B.V.A preliminary 

search of the current literature also identified the following benefits of XAI: 

● Supports effective decision-making: 

○ In Educational Science, the need for explainability is required to improve 

and support effective decision-making, such as in e-Learning 

environments where human and AI system interaction is prevalent 

(Alonso & Casalino, 2019). 

● Aligns with major organizational interest: 

○ In 2016, the US Defense Advanced Research Project Agency (DARPA) 

launched the XAI program to fund research for "new or modified machine 

learning techniques that produce explainable models that, when combined 

with effective explanation techniques, enable end-users to understand, 

appropriately trust, and effectively manage the emerging generation of 

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
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Artificial Intelligence (AI) systems" (Broad Agency Announcement: 

Explainable Artificial Intelligence (XAI) DARPA-BAA-16-53, 2016, p. 5). 

● Supports learning and instruction: 

○ XAI systems not only have the potential to assist educators in designing 

courses but also provide students with explanations about their learning 

activities, which is expected to improve student perceptions and learning 

outcomes (Alonso & Casalino, 2019). 

● Increases trust and safety: 

○ “Entrusting important decisions to a system that cannot explain itself 

presents obvious dangers” (Adadi & Berrada, 2018, p. 52138). The lack of 

transparency in AI systems presents concerns of trust, especially in critical 

decision-making applications, such as medical diagnosis, criminal 

judgment, and auto-pilot vehicle systems (Adadi & Berrada, 2018; Crowe 

et al., 2017; Sun & Medaglia, 2019). 

● Promotes technology acceptance: 

○ In education, the lack of trust in black box AI raises concerns for fairness 

and educational equity, which become barriers to technology acceptance. 

XAI can provide solutions and explainability techniques to increase trust 

and promote technology acceptance of AI (Arrieta et al., 2020). 

● Addresses regulatory compliance, fairness, and trust:  

○ “AI needs to provide justifications to comply with legislation, for instance, 

the ‘‘right to explanation’’, which is a regulation included in the General 
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Data Protection Regulation (GDPR) that comes into effect across the EU 

on May 25, 2018” (Adadi & Berrada, 2018, p. 52143). 

○ “XAI systems are expected to be beneficial to society through fairness, 

transparency and explainability, regarding not only technical but also 

ethical and legal issues.” (Alonso & Casalino, 2019, pp. 2–3). 

○ “For commercial benefits, for ethics concerns or regulatory considerations, 

XAI is essential if users are to understand, appropriately trust, and 

effectively manage AI results” (Adadi & Berrada, 2018, p. 52142). 

Although XAI can offer many benefits, this research focuses on improving 

educational outcomes. More specifically, this research will investigate the efficacy of 

XAI techniques and XAI models for enhancing and augmenting instruction by providing 

early at-risk student prediction and formative explainable feedback. 

An Explainable Example 

In the current literature, there are a limited number of studies exploring the use of 

unsupervised learning for XAI research as most focus on the interpretation of supervised 

techniques (Frost et al., 2020).  The limitation of only using supervised techniques is that 

they only provide accurate predictions of at-risk students, Of the limited unsupervised 

implementations, Frost et al. (2020) investigate an expanding k-Means Clustering 

(ExKMC) methodology implementing binary threshold trees for feature characterization 

(see Figure 8).  When kept small, binary threshold tress (i.e., a type of decision tree) are 

by nature easy to understand, highly interpretable (Arrieta et al., 2020; Awaji, 2018), and 

flexible as it supports both categorical and numerical data types without sacrificing 

accuracy (Song, 2021a). From Figure 8, we can see that k-Means Clustering provides 
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adequate pattern recognition of similar groups while the binary decision tree provides an 

explainable logical structure facilitating meaningful insight based on input parameter 

values. 

Figure 8 

Binary Decision Tree 

 

Note. Figure showing a binary decision tree (bottom) representation of a k-Means Cluster (top) 

classification. Adapted from “ExKMC: Expanding Explainable k-Means Clustering,” by N. Frost, 

M. Moshkovitz, and C. Rashtchian, 2020, arXiv.org, p. 2 (https://arxiv.org/abs/2006.02399v2). 

The Forefront and Challenges of XAI 

The works of Arrieta et al. (2020) provide a comprehensive literature review of 

recent XAI research spanning 400 studies, which categorizes these models into three 

types: (1) transparent models (e.g. Linear/Logistic Regression, Decision Trees, K-Nearest 

Neighbors, Rule-based Learning, General Additive Models, and Bayesian Models); (2) 

shallow models (e.g. Tree Ensembles, Random Forests, Multiple Classifier Systems, 

Support Vector Machines); and (3) Deep Learning models (e.g. Multi-layer Neural 

Networks, Convolutional Neural Networks, Recurrent Neural Networks, and Hybrid 

Transparent Models).  Transparent models have varying levels of understandability by 

https://arxiv.org/abs/2006.02399v2
https://arxiv.org/abs/2006.02399v2
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design while shallow and Deep Learning models are considered complex and difficult to 

interpret black box systems. 

The goal of XAI research is to further develop and increase the explainability of 

existing models while preserving or improving predictive performance and accuracy. In 

Figure 9, Arrieta et al. (2020) depict the horizon of XAI research within the green band, 

which represents studies implementing various methods to increase the explainability of 

both ML and Deep Learning models. Figure 9 also illustrates Gunning et al.'s (2019) 

finding that there is a general tradeoff between accuracy and explainability based on the 

model implemented.  Explainability techniques used include implementing hybrid models 

and post-hoc techniques to increase the accuracy of more explainable systems while 

improving the interpretability of accurate models (Arrieta et al., 2020).  Although XAI 

research spans various industries and domains, this research specifically focuses on 

implementing XAI for educational at-risk predictive systems while leveraging 

instructional theory to enhance explainability and improve educational outcomes. 
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Figure 9 

Chart Illustrating the Tradeoff between Model Accuracy and Model Interpretability 

 

Note. From “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and 

challenges toward responsible AI,” by Arrieta, A. B. et al., 2020, Information Fusion, 58, 82–115 

(https://doi.org/10.1016/j.inffus.2019.12.012). Copyright 2020 by Elsevier B.V. 

Educational Data Mining and Learner Analytics 

Common Study Types 

Most of the literature reviewed implemented EDM and/or Learning Analytics to 

collect student LMS data, analyze and classify patterns, and build predictive models to 

provide early detection of at-risk students and intervention guidance in hopes to improve 

educational outcomes and student retention. From Table 1, study types found include 

predictive (13), analysis (3), correlation (2), comparative (1), and frequency analysis (1). 

We also included literature reviews (3) to provide additional insight that may have been 

missed from the limited number of studies selected. Most studies (13) focused on 

predicting student learning outcomes, such as final grade or pass/fail result, which is 

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/j.inffus.2019.12.012
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consistent with (Conijn et al., 2017). Note that some works had multiple studies, which we 

counted as separate experimental implementations. 

Table 1 

Target Study Types 

 

Study Types Sources Studies 

Predictive 

(Abe, 2019; Al Breiki et al., 2019; R. S. J. D. Baker et al., 2011; 

Berens et al., 2019; Conijn et al., 2017; Imran et al., 2019; Ndou 

et al., 2020; Xing et al., 2015; Zheng, 2020) 

13 

Literature Review (Bienkowski et al., 2012; Pillay, 2020; Raju et al., 2020) 3 

Analysis (Al-Omar, 2018; Song et al., 2019; Yang et al., 2021) 3 

Correlation (Abe, 2019; Chamizo-Gonzalez et al., 2015) 2 

Comparative (Al Breiki et al., 2019) 1 

Frequency Analysis (Al Breiki et al., 2019) 1 

Grand Total  23 

Common Target Outcomes 

Table 2 gives a frequency summary of the target study outcomes of the 

experimental studies reviewed (excluding three literature reviews) categorized by category 

predicted or analyzed, which includes student achievement (credits earned), behavior 

(personality traits), perceived usability (sentiment), performance (activity, final exam, final 

grade, and pass/fail result), preparations for learning (PFL test score), and retention 

(dropout). Note that student performance had the highest research interest with a primary 

focus on predicting final grades. 
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Table 2 

Target Study Outcomes 

Outcome Categories Outcome Variables Studies 

Achievement Credits Earned (Abe, 2019) 1 

Behavior Student Personality Traits (Zheng, 2020) 1 

Perceived Usability Sentiment (Al-Omar, 2018) 1 

Performance 

Activity (Xing et al., 2015) 1 

Final Exam (Yang et al., 2021) 1 

Final Grade: 4 studies from (Al Breiki et al., 2019); and 

(Chamizo-Gonzalez et al., 2015; Conijn et al., 2017; Ndou 

et al., 2020; Song et al., 2019) 

8 

Pass/Fail (Abe, 2019; Imran et al., 2019) 2 

Preparations for 

Future Learning 

(PFL) 

PFL Test Score (R. S. J. D. Baker et al., 2011) 1 

Retention Dropout (Berens et al., 2019) 4 

Grand Total  20 

 

Table 3 gives the study distribution of the predicted target outcome variables 

(excluding three literature reviews) sorted by studies implemented. Predicted categories 

found include performance (activity, final exam, final grade, and pass/fail result), student 

achievement (credits earned), behavior (personality traits), perceived usability 

(sentiment), and preparations for learning (PFL test score), and retention (dropout). The 

performance category had the highest research implementations with a primary focus on 

predicting final grades. This study will investigate factors impacting final grade, as it is 

the most common target outcome to predict. 
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Table 3 

Target Predictor Variables 

Predicted Categories Variables Studies Implemented 

Performance 

Final Grade 

(Al Breiki et al., 2019; Chamizo-Gonzalez et 

al., 2015; Conijn et al., 2017; Ndou et al., 2020; 

Song et al., 2019) 

Pass/Fail (Abe, 2019; Imran et al., 2019) 

Activity (Xing et al., 2015) 

Final Exam  (Yang et al., 2021) 

Retention Dropout (Abe, 2019; Berens et al., 2019) 

Achievement Credits Earned  (Abe, 2019) 

Behavior Student Personality Traits  (Zheng, 2020) 

Perceived Usability Sentiment  (Al-Omar, 2018) 

PFL PFL Test Score (R. S. J. D. Baker et al., 2011) 

 

Common Feature Categories 

Table 4 summarizes the feature selection categories sorted by studies 

implemented. The categories of features (i.e., predictor variables) include student 

activity, context, performance, learner characteristics, time, achievement, learner 

perception, concurrent courses, course content, participation, and SafeAssign Score. 

Among these, student activity, context, and performance were the most prominent 

predictors used. For this study, student LMS activity will be selected as potential features 

for prediction. 
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Table 4 

Feature Categories 

Features Categories Studies Implemented 

Student activity 

(R. S. J. D. Baker et al., 2011; Bienkowski et al., 2012; Chamizo-Gonzalez et 

al., 2015; Conijn et al., 2017; Song et al., 2019; Xing et al., 2015; Yang et al., 

2021; Zheng, 2020) 

Context 
(Abe, 2019; Berens et al., 2019; Bienkowski et al., 2012; Imran et al., 2019; 

Ndou et al., 2020; Zheng, 2020) 

Performance 
(Abe, 2019; Al Breiki et al., 2019; Berens et al., 2019; Conijn et al., 2017; 

Imran et al., 2019) 

Learner 

Characteristics 
(Bienkowski et al., 2012; Ndou et al., 2020; Zheng, 2020) 

Time (Bienkowski et al., 2012; Ndou et al., 2020; Song et al., 2019) 

Achievement (Abe, 2019; Berens et al., 2019) 

Learner Perception (Al-Omar, 2018; Bienkowski et al., 2012) 

Concurrent Courses (Berens et al., 2019) 

Course Content (Bienkowski et al., 2012) 

Participation (Abe, 2019) 

SafeAssign Score (Zheng, 2020) 

 

Summary of Literature Findings 

This section provides a summary of literature review findings related to EDM 

research using logged student activity as features for predicting students’ outcomes. 

Table 5 highlights the selected literature and its results. 
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Table 5 

Study Findings 

Outcome 

Variable 

Features Findings Reference 

Activity Logged interaction frequency data 

based on activity theory: subject 

(initiated activity, received activity), 

community (chat activity), division 

of labor (content activity), object 

(module activity, group activity). 

Investigated a Theory-guided GP 

model, which outperformed other 

models in prediction accuracy and 

interpretability. 

 

Predicted student performance 

(represented by several activities 

completed) with higher accuracy: 

fitness (80.2%), sensitivity (80.3%), 

and specificity (80.3%). 

 

Outperformed other models (except 

for Naïve Bayes) in predicting at-

risk (low number of activities 

completed) students: 

(fitness=89.5%; sensitivity=85%; 

and specificity=94.4%). 

As a white box model, GP is 

preferred over Naive Bayes as it 

offers explainable results useful for 

intervention guidance. 

 

(Xing et 

al., 2015) 

Credits 

Earned 

Attendance Rate Demonstrated a strong correlation 

between attendance and academic 

achievement (units acquired) for 

regular, postponed, and dropout 

groups. 

(Abe, 

2019) 

(continued) 
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Outcome 

Variable 

Features Findings Reference 

Dropout Age, Gender, Location, Nationality, 

Immigration Background, Health 

Insurance, Educational Background, 

Prior Courses Completed, Number 

of Concurrent Courses Enrolled, 

Employment Status, Relevant Exam 

Score, Other Exam Score, GPA, 

Failed Exams per Semester, Exams 

Not Participated per Semester, 

Number of No-Show Exams per 

Semester 

Three types of tests were analyzed: 

based on dropout rate, average 

dropout rate, and performance data 

only. 

 

AdaBoost predictive accuracy is 

strong (67 - 95% from enrollment to 

the fourth semester) and improves 

with increasing semesters. 

Demographic prediction is low at 

enrollment (67% and 50% for state 

and private universities 

respectively). 

Accuracy is high in the fourth 

semester (up to 83% for private). 

Demographic data is only useful 

during enrollment and the first 

semester as it does not substantially 

improve accuracy after performance 

data is available. Performance data is 

better than demographic data at 

predicting dropouts. 

(Berens et 

al., 2019) 

 
Average Attendance Rate Poor classification performance at 

the beginning of the first semester. 

There was a good predictive 

performance in the 6th week (all 

methods had precision and recall > 

72%) and at the end of the semester 

(neural network method had about 

85% accuracy) for poor and good 

performers, but poor predictive 

power (precision and recall < 65%) 

for medium performers.  

Predictive performance was higher 

at the end of the first and second 

semesters. 

 

(Abe, 

2019) 

 
Entrance Exam Type, Entrance 

Exam Scores, Unit Acquisition Rate, 

Average Attendance Rate, Semester 

GPA 

Prediction accuracy increases over 

time using the Naives Bayes 

method. At the end of the first year, 

prediction accuracy ranged from 

.797 to .814 for all methods. 

 

(Abe, 

2019) 

(continued) 
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Outcome 

Variable 

Features Findings Reference 

 
Unit Acquisition Rate, Attendance 

Rate 

For students with low acquisition 

(rate < 37) and low attendance (< 

79%), 96% (24 of 25 students) drop 

out of school or postpone 

graduation. 

(Abe, 

2019) 

Final 

Exam 

Student behavioral: content 

interaction in the form of backtrack 

reading rate (BRR), reading time 

(RT), adding annotations (AN), and 

deleting annotations (D-AN). 

Classified three groups:  

Comprehensive learning group 

(CLG), Reflective learning group 

(RLG), and Selective learning group 

(SLG). 

Median learning outcome scores for 

the three groups were 84, 83, and 76, 

respectively. 

CLG had the highest RT, AN, and 

D-AN. RLG had the highest BRR 

and next highest RT, AN, and D-

AN. CLG had the lowest all (BRR, 

RT, AN, and D-AN). 

High interaction (CLG) can be 

compensated with less interaction 

but more reflective (BRR) 

behaviors. 

 

Low interaction in all categories will 

likely lead to lower performance. 

 

(Yang et 

al., 2021) 

Final 

Grade 

Biographical (grade 12 scores, year 

started, age, and others) and 

enrollment observations 

(socioeconomic, psycho-social, pre- 

and intra-collect scores, and 

individual attributes). 

 

All six analysis techniques resulted 

in high predictive accuracy ranging 

from 83% up to 95% for 1st, 2nd, 

and final year outcomes. Random 

forest was most accurate. 

(Ndou et 

al., 2020) 

 
Influential Course GPA The smaller subset can offer 

accurate prediction (96.4%), but 

slightly slower than using the full 

course seethe highest test accuracy 

was obtained with Random Forest. 

 

(Al Breiki 

et al., 

2019) 

(continued) 
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Outcome 

Variable 

Features Findings Reference 

 
LMS log data (clicks, online 

sessions, total time online, number 

of course page views, irregularity of 

study time/interval, the largest 

period of inactivity, time until first 

activity, average time per session, 

number of resources viewed, number 

of links viewed, number of content 

page views, number of discussion 

post views, the total number of 

discussion posts, number of quizzes 

started, number of attempts per quiz, 

number of quizzes passed, number 

of quiz views, number assignments 

submitted, assign. (submission) 

views, number of wiki edits, number 

of wiki views, average assessment 

grade 

Although there were statistically 

significant correlations for most of 

the predictor variables, the authors 

found that there was low predictive 

power and low portability across 

courses. 

A larger percentage of the explained 

variance is attributed to the student, 

rather than the course level. 

Overall, the authors found mixed 

effects for predictors in both size and 

direction when predicting final exam 

scores. 

LMS log data alone is limited. 

For early intervention, other 

variables are needed to improve 

predictive power. Recommended 

variables include learning 

dispositions, personality 

characteristics, self-disclosure data 

about dispositions, entry test results, 

learning styles, motivation, and 

engagement; all of which have been 

previously shown with a significant 

correlation with the final grade. 

The authors also stress the need for 

theoretical grounding. The 

portability of LMS predictors still 

needs more research. 

 

 

(Conijn et 

al., 2017) 

 
Course, Model Selection Frequency Used various classification 

algorithms to identify courses 

influencing final GPA. Frequency 

analysis was performed to identify 

the most influential courses. 

Findings revealed some courses 

were more influential than others.  

(Al Breiki 

et al., 

2019) 

  
Naive Bayes and SVM-based SMO 

algorithms were the most accurate 

(84.83%) classification methods. 

Higher accuracy was also achieved 

for processed data (replaced missing 

values) versus unaltered data. 

 

(Al Breiki 

et al., 

2019) 

(continued) 
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Outcome 

Variable 

Features Findings Reference 

  
SMOReg (SVM) performed the best 

concerning correlation coefficient 

(.9698) between predicted and actual 

GPA scores. 

 

(Al Breiki 

et al., 

2019) 

 
Student active and passive 

participation from LMS data mining. 

Active activities include assignment 

upload, forum add a post, forum 

update post, and forum view 

discussion. Passive activities include 

content (assignment, blog, course, 

forum, resource) view interactions 

11 variables were found significantly 

correlated to positive learning 

outcomes for at least one of the four 

courses analyzed. Found that learner 

activity can influence learning where 

the type of activity may depend on 

the course type. The final regression 

model included active assignment 

upload, active forum posts, and 

passive resource view as influential 

factors (p < .001) contributing to 

positive learning outcomes. The 

model explains 84% of the variance 

in learning outcomes. 

 

(Chamizo-

Gonzalez 

et al., 

2015) 

 
System Access, Session Time, 

Discussion Length, Discussion 

Quality, Conversation Length, 

Conversation Quality 

The final grade is correlated with 

system access, time spent, 

discussion length, discussion quality, 

and conversation quality. 

No correlation was found for 

conversation length. System access 

was correlated with time spent and 

discussion length. There is a strong 

correlation between discussion 

quality and conversation quality. 

Two factors were identified 

comprising learner 

participant/interaction in online 

courses. Factor 1 was labeled 

Interaction quality based on high 

loadings from discussion quality and 

conversation quality. Factor 2 was 

labeled LMS-oriented Interaction 

based on high loadings from system 

access, time spent, and discussion 

length. 

 

(Song et 

al., 2019) 

Pass/Fail 33 Features including Student 

Grades, Demographics, Social 

Related Features, and School-

Related Features. Of the 33, 12 were 

selected using a filter method using 

an information gain-based selection 

algorithm 

J48 achieved the highest accuracy 

(95.78%) for predicting student 

performance. 

(Imran et 

al., 2019) 

(continued) 
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Outcome 

Variable 

Features Findings Reference 

 
GPA, Units, Attendance Rate, 

Related Subject Grades, Cumulative 

Units 

Predictive performance for various 

subjects can be effective (accuracy 

of 68 - 95%). Accuracy can be 

improved using related subject 

grades. However, accuracy 

performance varies depending on the 

subject and features used; causality 

is not yet clear and requires further 

study. 

 

(Abe, 

2019) 

PFL Test 

Score 

Student LMS Interaction Behavior 

Each feature is the proportion of 

time a specific student behavior 

occurs in the LMS log file. Features 

include: "help avoidance"; "long 

pauses after error messages"; "long 

pauses after reading on-demand hint 

messages"; "long pauses after 

reading an on-demand hint message 

and getting the current action right"; 

"off-task behavior"; "long pauses on 

skills assessed as known"; "gaming 

the system"; "contextual 

slip/carelessness"; and "the presence 

of spikes during learning the 

moment-by-moment learning 

model". 

 

Cross-validation correlation was 

better than Bayesian Knowledge 

Tracing at predicting student 

performance on preparations for 

future learning (PFL) tests. It can 

predict with decent accuracy and 

achieves most of its predictive 

power in around 20% of the 

Cognitive Tutor activities for 

College Genetics, which highlights 

the potential for early warning at-

risk learner detection. 

Features related to helping such as 

help avoidance or long pauses after 

on-demand hints, under certain 

conditions, can help predict student 

performance. 

(R. S. J. 

D. Baker 

et al., 

2011) 

Sentiment Student Usability Sentiment, 

Instructor Usability Sentiment 

Three clusters were identified for 

each program type (distance 

students, external students, e-

Learning students, and instructors). 

Concluded that Blackboard is 

reliable and well-designed but 

violates basic usability guidelines. 

Distance education students suffer 

the most, followed by external 

students. Overall, the usability of 

LMS is low for all user types. 

 

(Al-Omar, 

2018) 

(continued) 
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Outcome 

Variable 

Features Findings Reference 

Student 

Personality 

Traits 

Demographic features (age, gender, 

nationality, and marital status from 

survey data. 

 

Learning behaviors (late submission, 

number of attempts, and SafeAssign 

score) mined from Blackboard LMS.  

 

Personality traits were obtained from 

Big5 Framework and Ten-Item 

Personality Inventory (TIPI) 

questionnaire. 

When treated as categorical 

variables, personality traits are best 

classified by neural networks. 

As numerical variables, support 

vector regression is best. 

Classification accuracy was low 

(roughly 20-45%) for all personality 

traits (openness, conscientiousness, 

extraversion, agreeableness, and 

neuroticism). 

(Zheng, 

2020) 

 

The following provides a summary of the literature findings: 

o Most EDM approaches target predictive models with student performance 

outcomes (grades, pass/fail, dropout) as labels. Common features include 

activity/behavioral data from LMS/EDM and/or performance data (grades, 

pass/fail status, and course types). Some include demographics or pre-assessments 

as well. 

o Interaction is typically correlated with higher learning outcomes, but not always. 

Predictive accuracy increases over time. Prediction is most accurate with 

performance outcomes. However, activity data or demographic/pre-assessment 

data may be useful for early at-risk prediction when performance data is not yet 

available. When performance data is available, activity data adds marginal 

improvements in prediction accuracy. 

o Incorporate, if possible, demographic, pre-course performance data, 

activity/behavioral data, and performance data as potential features. Data 

collection will be limited based on what is available within the LMS. 
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o To provide early at-risk prediction, predict at weekly intervals rather than at the 

end of the course. Predictive models should include past data to enhance 

prediction accuracy. 

o Explainable models such as decision trees or Genetic Programming are preferred 

to be able to offer insightful intervention guidance thanks to improved 

transparency. 

o There is a lack of XAI studies in education as well as a lack of EDM studies 

incorporating theory. 

These findings provide valuable support, insight, triangulation, and guidance for 

this study, such as feature selection, model selection, and analytic methods. 

Theoretical Supports 

Introduction 

This section gives a review of the theoretical supports leveraged by the XAI EDM 

study, such as Theory-Guided Data Science (TGDS) and its use for improving model 

performance and explainability; Activity Theory and its use to model human-computer 

interaction; Fink’s Significant Learning Theory to model interactions between human, 

knowledge, and learning; and Social Learning Theory to consider the importance of self-

efficacy in learning as well as incorporate elements of human to human interaction. Using 

these theoretical constructions, a novel Theory-Guided Feature Selection (TGFS) 

Conceptual Learning Model is proposed and described. 

Theory-Guided Data Science 

This study adopts Karpatne et al.’s (2017) theory-guided framework, which 

couples theory with predictive data science. TGDS (Karpatne et al., 2017) provides two 
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primary benefits: (a) enhances explainability by providing scientific consistency from 

theory-based models; and (b) promotes scientific discovery by providing novel predictive 

insight from data science. Leveraging both technology and theory ensures an informed 

approach to embracing innovation that is sound in learning principles and instructional 

methods. 

TGDS aims to address the limitations of a data-science-only or theory-only 

approach. This provides new insights into the flexibility and innovative nature of data 

science while improving the reliability and explainability of predictive models correlated 

to theory (Karpatne et al., 2017). As such, the predictive model, feature selection, and 

post-study explainability analysis will be supported by Activity Theory, Fink’s 

Significant Learning model, and Bandura’s Social Learning Theory. 

This study extends Xing et al.’s (Xing et al., 2015) work by investigating the 

effectiveness of using LMS activity data for predicting at-risk students. To supplement 

this, we incorporated Fink’s (2003) Holistic View of Active Learning, which comprises: 

(1) student access to information and ideas (i.e., content); (2) student experiences (e.g., 

doing, observing, actual, simulated, or authentic settings, etc.); and (3) leaner reflection 

activities (e.g., essays, discussions, etc.). Using both models, we can obtain an initial 

comprehensive list of educational data mining parameters for feature selection. 

Activity Theory 

This study adopts Xing et al.’s (Xing et al., 2015) interpretation and 

implementation of Engeström activity theory, which posits learning as a contribution of 

interacting elements within a complex system. The interactions are described as tools, 

subjects, rules, community, and division of labor as illustrated in  Figure 10. Observe that 
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Xing et al.’s implementation is an adaptation, in which the object represents the primary 

interaction of tools, rules, community, and division of labor. Note that subject represents 

the student and is a secondary factor that interacts with other parameters, but not the 

object (i.e., learning tasks) directly. Under this model, learning is assumed to be directly 

supported by the learning tasks implemented. Using activity theory as a guide, we 

propose the following interpretations concerning feature selection: 

• The subject represents the student. Subject information such as student behaviors, 

demographics, skills, and knowledge can also serve as potential features. 

• The tools are supporting applications and functions within the LMS that subjects 

directly interact with for learning support, such as helpful resources, plugins, and 

applications. 

• The rules are constraints placed by the system, such as the LMS functions, 

instructors, or students themselves. For example, rubrics are constraints placed by 

instructors for controlling the quality of subject tasks. 

• The community represents the contribution of social learning and can be measured 

by student interactions with communicating elements of the LMS (e.g., email, 

discussion forums, or social learning apps). 

• The division of labor represents the individual contribution of the subject to 

overall learning improvement and can be measured by their interaction with the 

course content, such as learning modules. 
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Figure 10 

Activity Theory 

 

Note. Image reprinted from (Xing et al., 2015). 

Fink’s Significant Learning Theory 

Although activity theory presents a holistic perspective of learning based on 

student interaction, there is a lack of emphasis on other learner-centric factors such as 

self-regulation, motivation, autonomy, and self-efficacy. To add focus on learner needs, 

we analyzed Fink’s (Fink, 2003) Significant Learning theory as shown in Figure 11 for 

identifying possible features for student at-risk prediction. 
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Figure 11 

Fink’s Taxonomy of Significant Learning 

 

Note. Image reprinted from (Fink, 2003). 

According to Fink, learning is a complex interactive process between the six 

domains of foundational knowledge, application, integration, human dimension, caring, 

and learning how to learn. Concerning LMS activities, the following factors are 

applicable and considered for feature selection: 

• The human dimension can be analogous to activity theory’s community factor as 

both leverages the social interaction dimension. LMS activities applicable to this 
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dimension include email, chat, forum discussions, and social media 

communication. The human dimension is also closely related to integration, 

which requires communication to connect ideas, people, and realms of life. 

• Foundational Knowledge represents the information and ideas that are 

independently gained (e.g., interaction with content and resources) or indirectly 

gained (e.g., social, and interactive communication). 

• Learning How to Learn measures a learner's self-regulated learning capability or 

autonomy, drive, and volition. These can be measured by their independent and 

self-driven actions to acquire knowledge and skills, such as accessing LMS 

resources and tools. 

Unfortunately, logging limitations of LMS activity prevent us from using intrinsic 

learning dimensions such as caring, which requires measures such as student feedback. 

Application, on the other hand, can be measured indirectly by performance outcomes, 

such as assignment grades, quizzes, projects, or exams. Direct measures will require in-

depth content analysis to assess the level of application quality. Depending on the nature 

of the performance activities, specific application metrics can be retrieved. However, the 

scope of this study does not include using performance measures as we discovered a large 

variance in performance outcome implementation that could not be generalized across 

large data sets. 

Social Learning Theory 

Bandura's (1977b) Social Learning Theory and Vygotsky's (1985) Zone of 

Proximal Development can help provide a comprehensive framework for understanding 

the social aspects of human learning. 
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In Bandura's (1977b) social learning theory, "vicarious, symbolic, and self-

regulatory processes [are prominent roles] in psychological functioning" (p. vii). Social 

learning theory posits a "continuous reciprocal interaction between cognitive, behavioral, 

and environmental determinants" in which human development is impacted by both their 

independent capabilities as well as external influences (p. vii). Social learning theory 

posits that the role of self-efficacy is to not only influence behaviors and environments 

but also be influenced by them (Bandura, 1977a, 1977b; Schunk & Pajares, 2009). 

"Assuming requisite skills and positive values and outcome expectations, self-efficacy is 

a key determinant of individuals’ motivation, learning, self-regulation, and achievement" 

(Schunk & Pajares, 2009, p. 37). 

In Vygotsky's (1985) Zone of Proximal Development (ZPD) theory, learning is 

supported by external influences, which provide knowledge and experiences beyond what 

any single learner can achieve alone. In ZPD, learning lags development, which 

corresponds to a state of mastery where the learner can demonstrate knowledge and skills 

independent of external support (e.g., the ability to solve a complex math problem 

without the help of a peer, coach, or teacher) (Vygotsky, 1985). Beyond development, 

there will be slightly harder problems that the learner will be unable to complete alone 

but likely successful with external support. This slightly higher difficulty level is ZPD 

and can serve as a predictor of future learning that can be facilitated by social support. 

Thus, learning can be promoted by social learning aspects of human interaction. 

For continuous monitoring and evaluation of social learning, formative 

assessments can be implemented in conjunction with collaborative social activities, such 

as using rubrics with discussion boards, e-portfolios, reflective journaling, and wikis 
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(Perera-Diltz & Moe, 2014). Therefore, a student’s interaction with assessment-relevant 

material within the LMS can promote the learning process. 

Theory-Guided Feature Selection (TGFS) Model 

Synthesizing relevant elements of the theoretical constructs described previously 

(i.e., Activity, Fink’s Significant Learning, and Social Learning Theory), a novel Theory-

Guided Feature Selection (TGFS) conceptual learning model that promotes student-

centric social learning is developed and shown in Figure 12. Note that this model is 

neither comprehensive nor complete, as it was designed as a guide to identify and select 

relevant theory-guided features for the XAI EDM study. Theoretical elements such as 

intrinsic value or self-efficacy were excluded as those features are not readily available 

from LMS data collection. Future studies could incorporate these measures by 

administering additional data collection instruments such as interviews or surveys. 
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Figure 12 

Theory Guided Feature Selection (TGFS) Model 

 

 

The TGFS Conceptual Learning Model can help identify and categorize viable 

features when inspecting and analyzing potential logged data of institutional learning 

management systems. The Venn diagram identifies the three primary theoretical learning 

constructs: social learning, knowledge/content, autonomy, and self-regulation. Features 

that fall in overlapping areas can boost learning by leveraging the benefits of multiple 

scaffolds. The supporting adjacent components represent Significant Learning and 

Activity Theory supports that provide further justification and support for the respective 

theoretical learning construct. When used as a guide, data analysts can quickly identify 
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variables of interest, theoretical support, and learning scaffolding potential. As a post-

analysis tool, the TGFS model can help provide explanations to model predictions as well 

as guide learning interventions. 

Conceptual Framework 

Conceptually, this study frames around Karpatne et al.’s (2017) theory-guided 

data science (TGDS), which couples theory with predictive data science. TGDS 

(Karpatne et al., 2017) provides two primary benefits: (a) enhances explainability by 

providing scientific consistency from theory-based models; and (b) promotes scientific 

discovery by providing novel predictive insight from data science. Leveraging both 

technology and theory ensures an informed approach to embracing innovation that is 

sound in learning principles and instructional methods. 

The conceptual design of this study extends Xing et al.’s (Xing et al., 2015) 

genetic programming (GP) prediction model guided by Activity Theory, which describes 

a learner’s social and technology-mediated interactions with the learning environment. 

To supplement this, we incorporated Fink’s (2003) Holistic View of Active Learning, 

which comprises: (1) learner access to information and ideas (i.e., content); (2) learner 

experiences (e.g., doing, observing, actual, simulated, or authentic settings, etc.); and (3) 

leaner reflection activities (e.g., essays, discussions, etc.). Finally, social learning and 

self-regulation theory is adopted from Bandura’s Social Learning Theory (Bandura, 

1977b) and Vygotsky's (1985) Zone of Proximal Development. 

Synthesizing these theoretical frameworks, a novel Theory-Guided Feature 

Selection (TGFS) Conceptual Learning Model is developed and proposed (see Figure 

12). Using this model, an initial comprehensive list of educational data mining 
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parameters for data collection can be identified, categorized, and used for guiding 

instructional interventions.  

Conceptual Model 

The conceptual model for this study leverages Xing et al.'s (2015) theoretical 

framework for the student prediction model (see Figure 13) as it incorporates the various 

elements of our study, such as theory, learning analytics, educational data mining (EDM), 

and application (i.e. the XAI performance, explainability, and statistical evaluation).  

Figure 13 

Theoretical Framework for Student Prediction Model 

 

Note. Chart reprinted from Xing et al. (2015). 

https://www.zotero.org/google-docs/?kX4tVX
https://www.zotero.org/google-docs/?kX4tVX
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Unlike prior research, which has focused on individual components for target 

studies, Xing et al.’s (2015) framework provide a system view identifying “links between 

theory and computation, and optimization and interpretation… to develop an easily 

interpreted and applied prediction model for real-life learning environments” (p. 179). 

This view shows how learning analytics is supported by theory to provide relevant 

context for explainability and interpretations while EDM is supported by computation 

theory (e.g., AI and ML) to improve the accuracy and prediction of outcomes. When 

combined, a high-performing explainable model can be developed for learning 

applications, such as predicting at-risk students and/or providing explainable learning 

interventions. 

Genetic Programming 

Genetic Programming (GP) is an evolutionary technique that builds models based 

on parent/offspring selection, mutation, and evolution. Some are subsets of Decision 

Trees but have the additional ability to evolve to optimize performance, accuracy, and 

efficiency. This is achieved by iteratively training a predefined decision tree until the 

desired accuracy is achieved. The visual design of the trees, conditional expressions used, 

and numerical weights are transparent to the user and therefore provide explainability for 

analyzing why a particular path was undertaken (see Figure 9). 
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Figure 14 

Example of a GP Decision Tree 

 

Note. Chart reprinted from Xing et al. (2015). 

Following a genetic tree is intuitive and easy to interpret, which makes it useful 

for not only predicting (e.g., at-risk indication of drop-out) but also providing 

explanations (e.g., formative feedback for at-risk indicators). GP models have been 

shown accurate and effective in many studies and serve as an ideal implementation for 

predicting at-risk students (Kalles & Pierrakeas, 2006; Xing et al., 2015).  

Emerging works in genetic programming also include stack-based classifiers that 

have demonstrated comparable performance to state-of-the-art models in a variety of 

applications (La Cava et al., 2017, 2019). Consistent with this, Perkis (1994) notes that 

https://www.zotero.org/google-docs/?M0B6Zk
https://www.zotero.org/google-docs/?M0B6Zk
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stack-based genetic programming is “a promising technique… worthy of further 

consideration” (p. 152) as it provides “efficiency and simplicity of implementation” that 

are “comparable or superior to current methods” for certain problem sets. 

This study integrates and advances the emerging works of Xing et al. (2015) and 

La Cava et al.’s (Cava, 2017; 2019) Ellyn-GP model by exploring theory-guided feature 

selection, k-Means clustering, and stack-based genetic programming multi-classifier to 

understand and predict at-risk student groups. Tree-based GP models from the Ski-Kit 

Learn, such as GP Learn binary classifier, are also explored. 

Section Summary 

This section introduced the theoretical underpinnings of the study, such as the use 

of Theory-Guided Data Science to improve model validity and reliability through the 

incorporation of sound instructional theories and principles. Applicable theories 

identified and described include Activity Theory, Fink’s Significant Learning Theory, 

and Social Learning Theory. Synthesizing these theoretical constructs, a novel Theory-

Guided Feature Selection (TGFS) Conceptual Learning Model was developed and 

proposed. The conceptual model will be used in the EDM study to analyze and guide the 

feature selection process. The TGFS model also provides a framework for model 

explanation and intervention planning. Finally, Xing et al.’s (2015) conceptual model was 

referenced and described to capture the overall research approach that leverages theory, 

learning analytics, and EDM toward at-risk student prediction applications. 
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Chapter Summary 

This chapter provided a relevant literature review concerning the target research 

problem of student retention and the need for XAI at-risk student predictive systems. 

Early works were identified to provide support for the emerging demand for 

explainability, motivations for XAI, as well as prompt future research. Extensive studies 

were systematically synthesized to identify the current state of EDM research, as well as 

common features and outcome variables studied. A summary of literature findings 

revealed promising works leveraging theory-guided data science (TGDS) and genetic 

programming. Finally, relevant theoretical frameworks were presented, which provided 

support for a theory-guided feature selection model. A brief description of genetic 

programming and its benefits was summarized. 
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CHAPTER III 

Methods 

Introduction 

The objective of this research is to explore the performance and efficacy of 

theory-grounded explainable artificial intelligence (XAI) to predict and explain at-risk 

students in an online learning management system (LMS). To achieve this, quantitative 

research methodologies in educational data mining (EDM) and learning analytics (LA) 

were adopted, both of which offer data-centric techniques to improve and understand 

online learning in higher education. 

Educational data mining (EDM) is employed to collect student performance, 

logged interaction activity, and learning outcomes from a higher institution LMS system. 

Data will be anonymized and protected to ensure data privacy and security. Interaction 

frequency was computed at weekly intervals to explore the model’s predictive 

performance over time using common measures of AI/ML accuracy (f1-score, recall, and 

precision). Efficacy will be determined by analyzing the predictive performance and 

interpretability of the GP-TGDS model against other known AI/ML models (e.g., student 

retention and learning outcomes). Mean differences and effect sizes are reported at the 

.05 significance level.  

In the following sections, detailed methods and procedures are described to 

identify the process of feature selection, data collection, processing, analysis, and 

performance evaluation. 
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Research Questions 

We investigated the following research questions (RQs): 

• RQ1: What are the associations between activity factors and student final grades? 

• RQ2: What are the characteristics of at-risk students that can be identified? 

• RQ3: What are characteristics of at-risk students that can be predicted using XAI 

techniques and models? 

• RQ4: How do explainable models compare to complex models when LMS 

student activities are used as features to predict at-risk students? 

Population, Setting, and Demographics 

The target population selected for this study is a large four-year higher education 

institution that offers distance learning and has average student retention near or below 

the US national average six-year graduation rate to capture a representative population 

for studying at-risk students. Offering distance learning is required as these study targets 

institutions delivering online learning using a learning management system to enable the 

collection of existing student activity logged data for educational data mining. 

Figure 15 gives the six-year graduation rate for the US national average and the 

selected institution for comparison (NCES, 2021). As shown, the selected institution has 

historically underperformed concerning the national average for cohorts 2004 to 2014. In 

addition, 14% enrolled in distance-only classes, 44% enrolled in some distance classes, 

and 42% are not enrolled in any distance classes (NCES, 2021). Of all graduates, 55% are 

enrolled in distance-only classes, 13% are enrolled in some distance classes, and 32% are 

not enrolled in any distance education. Note that graduates comprise only 14.7% of all 
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students. Thus, the institution meets the inclusion retention and distance learning 

inclusion criteria. 

Figure 15 

150% Graduation Rate for All Full-time/First-Time Students (Fall 2015) 

 

Note. Data adapted from NCES and Texas University System websites (NCES, 2021; The Texas 

State University System, 2022). In the public domain. 

Raw student activity logs and performance data were collected from a Blackboard 

Learning Management System (LMS) database spanning 15 weeks in the Spring semester 

of 2021. According to the Texas University System (TSUS) enrollment database (The 

Texas State University System, 2022), the 2021 Spring semester had a total enrollment 

size of 19,753 students who pursued undergraduate (85.3%), master's (12.3%), doctoral 

research (1.7%), or post-baccalaureate (0.7%) degrees. Two-thirds (64.1%) were females 

and most (69.7%) were enrolled in full-time status. The race/ethnicity was primarily 
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White (48.7%), Hispanic/Latino (25.8%), and Black or African American (18.1%) (see 

Figure 16 for additional details).  

Figure 16 

Student Proportions of Race/Ethnicity (Spring 2021) 

 

• Most graduates (74%) work part-time. 

Note. Image reprinted from The Texas University System (2022). In the public domain. 

Most students were in-state (98.7%) and between the ages of 18 and 24 (78.1%; 

see Figure 17). Using EDM processes, the data was analyzed, cleaned, and tune for 

follow-on statistical, exploratory, classification, prediction, and explainability analysis to 

investigate the study’s research questions. It is important to note that according to the 

institution’s leadership, the school used the Blackboard LMS to track both traditional and 

online grades.  Since the majority of students were enrolled in traditional classroom 

environments, there was a large number of students with a lack of LMS interaction 

activity that was excluded to prevent skewing of results. 
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Figure 17 

Student Proportions of Race/Ethnicity (Spring 2021) 

 

 

EDM Process 

This section provides a brief background on EDM and describes the process 

adopted to collect, process, and analyze data for this study. According to Aliaga and 

Gunderson (2002), quantitative research is “explaining phenomena by collecting 

numerical data that are analyzed using mathematically based methods (in particular 

statistics)” (as cited in Muijs, 2004, p. 1). Both EDM and LA fall into this definition as 

they “share a common interest in data-intensive approaches to education research, and 

share the goal of enhancing educational practice” (R. Baker & Inventado, 2014, p. 62).  

In contrast, Siemens and Baker (2012) identify some differences between the respective 

field definitions: 
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• The International Educational Data Mining Society defines EDM as “developing 

methods for exploring the unique types of data that come from educational 

settings, and using those methods to better understand students, and the settings 

which they learn in” (pp. 252). 

• The Society for Learning Analytics Research defines LA as “the measurement, 

collection, analysis, and reporting of data about learners and their contexts, for 

purposes of understanding and optimizing learning and the environments in which 

it occurs” (pp. 252-253). 

Furthermore, EDM emphasizes automated discovery techniques to inform 

learners and educators (such as an at-risk indication system), whereas LA takes a step 

further to provide human judgment and analysis of that data to “empower instructors and 

learners” (e.g., providing informative feedback and suggestions for intervention 

guidance) (Siemens & Baker, 2012, p. 253). 

Thus, while EDM provides a methodology and process for collecting, reducing, 

and developing predictive models, LA adds a layer of interpretation and explainability by 

including human interpretations (i.e., using visualizations or theory) of automated results. 

This provides a comprehensive and holistic framework for developing XAI models that 

not only predicts at-risk students but also enhance the explainability of at-risk indicators 

by providing informative feedback. 

Figure 18 illustrates the planned EDM/LA research methodology adapted from 

Yang et al. (2021) and Imran et al. (2019). To improve the reliability of the study, this 

process includes a post-hoc statistical analysis for determining the statistical significance 

and explaining the variance of influential factors. 
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Figure 18 

Planned EDM/LA Research Methods Process 

 

 

Feature Selection Process 

The selection of student activity features was guided by a combination of 

literature review, data inspection/analysis, and theoretical support, which are discussed in 

the proceeding subsections. 
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Literature Support 

Preliminary literature research results identified student activity as the most used 

feature for predicting at-risk students (see Table 4). The following summarizes the 

finding concerning predicting student outcomes: 

• Using correlation and logistic regression, Chamizo-Gonzalez et al. (2015) 

found a positive correlation between student activity (e.g., assignment 

uploads, discussion forum posts, discussion forum views, assignment 

views, blog views, course views, and resource views) and learning 

outcomes. 

• Using Cross-Validated Correlation and Bayesian Knowledge Tracing, 

Baker et al. (2011) were able to predict student performance, with the 

former method demonstrating superior accuracy. 

• Bienkowski et al.’s (2012) literature review found that LMS logged data 

such as student responses coupled with prior skills, knowledge, 

performance, course content, time, and demographics demonstrated 

prediction accuracy up to 81% for those who failed. They concluded that, 

in general, EDM can help build models to explore factors influencing 

student learning (Bienkowski et al., 2012). 

• In a correlation study analyzing the relationship between learner 

interaction with an LMS and virtual agent, Song et al. (2019) found high 

loadings from system access, time spent, and discussion length. 

• Using various correlation and regression methods, Conijn et al. (2017) 

found statistically significant correlations for the majority of predictor 
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variables (e.g., various student activity, interaction time, and performance 

metrics). However, there was low predictive power and low portability 

across courses. 

• Finally, using EDM, activity theory-guided feature selection, Genetic 

Programming, and student activity features, Xing et al. (2015) 

demonstrated superior at-risk prediction performance when compared to 

other common models, except for Naives Bayes. They concluded that the 

additional explainability of Genetic Programming made it a preferable 

choice. 

Most findings demonstrated positive results and support for using student LMS 

activity as potential features for at-risk prediction. 

Data Inspection/Analysis Support 

After performing a detailed analysis of the Blackboard LMS database schema and 

underlying logged data, student activity metrics were identified as the most abundant and 

consistent across all courses. The logged activities were also available during the early 

weeks of instruction, which is an advantageous time to detect and respond to early signs 

of at-risk behaviors. Performance metrics such as quizzes, assignments, or pre-course 

grades were excluded due to the lack of sample size and inconsistent implementations 

across courses and weekly implementation. The data inspection/analysis activities were 

an iterative process that spans the entire study from initial data collection and literature 

review through statistical, clustering, and predictive analysis where additional cleaning, 

tuning, and outliers were addressed. 
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Theoretical Support 

From the literature review (Table 6), a major limitation observed was that most 

studies lacked theoretical support. Only Xing et al.’s (2015) Genetic Programming 

leveraging activity as a basis for feature selection demonstrated the most promise with 

superior results when compared to other models. Their work provided inspiration and 

guidance for extending EDM theory-guided data science to improve prediction 

performance and explainability. Continuing their work, this study develops and explores 

a theory-guided feature selection model incorporating learning theories such as Activity 

Theory, Fink’s Significant Learning Theory, and Social Learning Theory. Refer to 

section Theory-Guided Feature Selection (TGFS) Model, Figure 12, and Figure 22 for a 

description of the model, visual representation, and initial feature selection results 

respectively. 

Table 6 

Studies with Theory-Grounded Models 

Study Type Literature Reference Theory-Grounded 

Analysis (Al-Omar, 2018; Song et al., 2019; Yang et al., 2021) 

 

No 

Comparative (Al Breiki et al., 2019) 

 

No 

Correlation (Abe, 2019; Chamizo-Gonzalez et al., 2015) 

 

No 

Frequency Analysis (Al Breiki et al., 2019) 

 

No 

Predictive (Abe, 2019; Al Breiki et al., 2019; R. S. J. D. Baker et 

al., 2011; Berens et al., 2019; Conijn et al., 2017; 

Imran et al., 2019; Ndou et al., 2020; Zheng, 2020) 

 

No 

 
(Xing et al., 2015) Yes 
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Analysis Methods 

This section identifies and describes the analysis methods performed, such as 

statistical analysis (descriptive and inferential), power analysis, feature analysis, 

exploratory cluster analysis, classification analysis, prediction performance analysis, and 

explainability analysis. 

Statistical Analysis 

Descriptive statistics were performed to summarize, describe, and identify 

associations within the collected data using measures of central tendency, variation, 

range, confidence interval, distribution shape, and association/correlation (L. Cohen et 

al., 2018). Descriptive statistics also help check for violations of normality, which may 

drive the type of hypothesis tests used (e.g., parametric or non-parametric) to ensure 

reliability and validity of results (L. Cohen et al., 2018). Descriptive statistics were used 

in analyzing both the population and sampled datasets used for inferential statistics. 

Inferential statistics were performed to identify statistically significant mean 

differences within the data parameters (independent and dependent variables). The 

selection of test type will depend on a variable of factors, such as (McCrum-Gardner, 

2008): measurement scale (nominal, ordinal, interval); independent vs. paired (pre/post) 

groups; parametric vs. non-parametric assumptions (normal vs. non-normal); and 

independent or paired groups. Since this research explored multiple independent and 

dependent variables, comparisons between and within groups were conducted using the 

MANOVA with IBM SPSS. 
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Power Analysis 

To effectively detect significant differences, McCrum-Gardner (2008) 

recommends conducting a power analysis to identify the minimum sample size required. 

Field (2018) identifies power as the probability of finding an effect assuming one exists, 

which is mathematically represented as (1-𝛽), where 𝛽 is the probability of not finding an 

effect when one exists (i.e. Type II statistical error). Cohen (1988) recommends using a 

power of 0.80 (𝛽 = 0.2) in conjunction with 𝛼 = 0.05 as a guide for sufficient 

power.  Using G*Power (2021) as recommended by Field (2018), the applicable sample 

size for applicable tests with inputs set to two-tail, 𝛼 = .05, 1-𝛽 = .80, N1 = N2, and 

Cohen’s d = 0.5 (medium effect) are as follows: 

Independent t-tests: N1 = N2 = 64 

Wilcoxon-Mann-Whitney test: N1 = N2 = 67 

Paired Sample t-test: N = 34 

Wilcoxon Signed Rank test: N = 35 

Correlation (Point biserial model): N = 64 

Observe that the Wilcoxon-Mann-Whitney test requires the largest sample size 

and thus is the determining factor. To detect a medium effect (d = 0.5), the minimum 

sample size required for each group is 67 (134 total) in case a normal distribution cannot 

be assumed. If we wanted to be able to detect a small effect (d = 0.3), then we would 

need an individual group sample size of 184, or a total study sample size of 368. Thus, a 

sample size of 368 places the minimum limit that enables sufficient power to detect a 

small effect. 
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Feature Analysis (RQ1) 

Feature analysis is an iterative process of selecting features to reduce noise and 

redundancy while improving model performance and explainability (Layton, 2017). In 

this study, feature analysis is performed at various stages, such as during database feature 

identification, data collection and pre-processing, and clustering/classification analysis. 

The initial potential features are identified in the previous “Initial Database Features 

Identification.” However, final feature determination will be dependent on further 

analysis, which may be excluded when addressing high correlation and collinearity 

during K-Means Clustering analysis. Python packages and libraries such as Pandas 

(Pandas, 2010/2021), SciPy (SciPy.Org — SciPy.Org, n.d.), SciKit-Learn (Scikit-Learn: 

Machine Learning in Python — Scikit-Learn 0.24.2 Documentation, n.d.),  Seaborn 

(Michael, 2021), and matplotlib (Matplotlib: Python Plotting — Matplotlib 3.4.3 

Documentation, n.d.) was used for computational analysis and data visualizations. 

To address RQ1, a correlation analysis was performed to identify significant 

features (p < .05) correlated to final grades. Feature pairs with high correlations (above 

0.6) were reduced by excluding the feature with the lowest number of samples to mitigate 

problems associated with high collinearity between independent variables (Abdulhafedh, 

2021; Field, 2018; Kondo et al., 2017), which introduces redundant factors that could 

reduce model prediction accuracy (Layton, 2017). Features with insignificant correlations 

(p > .05) to final grade and a higher percentage of missing values are excluded to reduce 

noise from irrelevant factors. 
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Exploratory Cluster Analysis (Process Overview) 

Before classification (i.e., supervised learning and prediction) can be performed, 

the dataset must be grouped and labeled into classes that can be predicted based on 

feature patterns. This process is known as clustering, which is an unsupervised learning 

technique (e.g., K-Means Clustering, Hierarchal Clustering, Spectral Clustering, etc.) 

used to split datasets into subsets based on similarities (Song, 2021b, 2021c). For this 

study, K-Means Clustering will be used as the clustering method. 

K-Means Clustering is a specific type of unsupervised machine learning analysis 

method used to explore patterns and groups based on similarities or differences in the 

underlying dataset parameters (Layton, 2017; Song, 2021d). The technique is especially 

useful when either no class exists for prediction (Song, 2021c) or when the data set is too 

large and impractical for manual classification assignment (Song, 2021d); both of which 

apply to this study. Other advantages include “simple mathematical ideas, fast 

convergence, and easy implementation” (Yuan & Yang, 2019, p. 226). However, Yuan 

and Yang (2019) note that K-Means algorithms become a challenge with dealing with 

analyzing “massive data sets” (p. 226). 

In brief, the K-Means Clustering algorithm employs an iterative process of 

finding representative “centroids” or means of cluster samples given a pre-determined 

number of groups (i.e., K) (Layton, 2017, p. 231). The centroids will change slightly after 

each iteration of the assignment (i.e., selecting a data point closest to the previously 

calculated centroid) and update (i.e., computing the next centroid based on the new data 

point) (Song, 2021c, p. 5) and stop either after a pre-determined number of iterations or 

when the centroid updates converge and stabilize (Layton, 2017). 
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One of the key goals of K-Means cluster analysis is finding the optimal number of 

clusters (i.e., K) representative of the patterns that exist assuming we have no additional 

insight besides the dataset given. Although any number can be used as a pre-determined 

input to the K-Means Cluster Analysis, Yuan and Yang (2019) note that “in practice, the 

K value is generally difficult to define” (p. 228), especially to find meaningful groups. In 

a comparative study, Yuan and Yang (2019) investigated the performance of four 

alternate methods, namely, the Elbow Method, Gap Statistic, Silhouette Coefficient, and 

Canopy. Their results are summarized as follows: 

• The Elbow Method involves graphing a sum of squared error (SSE) metric versus 

K and then finding the point of inflection (Yuan & Yang, 2019, p. 233). 

• Gap Statistic is a complex algorithm iterating values of K to find a maximum 

“Gap” value based on Monte Carlo sampling and “reference 

measurements”(Yuan & Yang, 2019, p. 229). 

• The Silhouette Coefficient algorithm involves calculating and determining a 

maximum “S(i)” metric representing the “cohesion” (i.e., similarity) of clusters 

for different K values (Yuan & Yang, 2019, pp. 230–231). 

• The Canopy algorithm involves divided data sets, overlapping subsets, distance 

comparisons (given a pre-determined range), and iterative aggregation and 

deletion (Yuan & Yang, 2019). 

In summary, Yuan and Yang (2019) found that all four methods were feasible 

when using small data, with the Elbow Method and Canopy algorithms computationally 

more efficient than the Gap Statistic and Silhouette Coefficient methods. For simplicity 

and ease of implementation, this study uses a Python Kneed Package to automate the 
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process of finding K and the Elbow Method for visual verification. Figure 19 gives an 

example scenario from Yuan and Yang (2019) where the “elbow” point was identified at 

K = 3. 

Figure 19 

Exemplar Inertia Graph for Implementing the Elbow Method 

 

Note. Image adapted from “Research on K-Value selection method of K-Means Clustering 

algorithm,” by C. Yuan and H. Yang, 2019, J, 2(2), p. 229 (https://www.mdpi.com/2571-

8800/2/2/16). 

Exploratory Cluster Analysis (RQ2) 

After post-processing and the final selection of features, K-Means clustering 

analysis was performed to explore and identify clusters for prediction. The optimal 

number of clusters, K, was determined using the Python kneed package (Arvai, 2020; 

Satopaa et al., 2011), which detects the “knee” point based on where the “curve becomes 

more ‘flat’” (p. 3). This was visually verified using the elbow method to confirm 

correctness and consistency (Yuan & Yang, 2019). The cluster activity frequency was 

Inflection/Elbow Point 

https://www.mdpi.com/2571-8800/2/2/16
https://www.mdpi.com/2571-8800/2/2/16
https://www.mdpi.com/2571-8800/2/2/16
https://www.mdpi.com/2571-8800/2/2/16
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then plotted with the outcome variable (mean final grades) for pattern analysis. 

Meaningful labels and descriptions of each cluster are given to identify and characterize 

at-risk activity behavior patterns to investigate and answer RQ2. 

As an unsupervised learning method, both activity features and final grade 

outcomes were used as input variables, which has positive and negative implications. As 

a benefit, using final grades as an input feature helps to discriminate clusters concerning 

at-risk outcomes. However, in practice, final grades are not available and cannot be used 

as a feature for prediction. Although at-risk groups can easily be identified and labeled 

during unsupervised learning, prediction of those labels will be limited without the 

underlying assumption of final grades as an input predictor variable. This was later 

confirmed by evaluating the performance of variable models against the unsupervised K-

Means model. 

Classification Analysis (RQ3) 

To address the predictive limitations of the unsupervised k-Means cluster model, 

a new k-Means cluster analysis was conducted to develop a model based on activity as 

input features (i.e., final grades are not included as a feature). This results in natural 

groups for student activity behaviors. The mean final grades are then computed and 

graphed against each cluster’s activity features for post-hoc analysis, classification (i.e., 

creating outcome labels to be predicted), and characterization of at-risk student groups. 

Mean final grades define the level at-risk while the features (i.e., interaction frequency) 

identify associated group behaviors. The final labels are then used as ground truths (i.e., 

accepted as true for grouping outcomes). This process is known as a “cluster-then-label” 

process, which has been shown effective and accurate in labeling big data, especially 
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when it is cost-prohibitive and resource-intensive (Beil & Theissler, 2020; Peikari et al., 

2018). This approach investigates the predictability of at-risk characteristics to address 

RQ3. 

The process of classification and prediction involves the training and testing of 

sampled datasets (i.e., training and testing re-sampled datasets) obtained from a 

population sample (i.e., the dataset collected for this study). The sampling method used to 

select the training and testing sets is of critical importance as it could impact model 

performance (Banerjee et al., 2018; Berrar, 2018). For example, a common problem 

when training a model is that of “overfitting”, which is when a model is “perfectly 

adapted to the data set at hand but then unable to generalize well to new, unseen data” 

(Berrar, 2018, p. 1). To address this, various sampling methods have been devised. The 

following list gives a summary of common methods highlighted by Berrar (2018). 
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Table 7 

Training Split Methods 

Training Split 

Method 
Description 

Single hold-out 

random 

sampling 

Random sampling is performed on the data set until a percentage of the training set 

is reached (e.g., 10-30% for testing and the remaining for training). 

K-Fold random 

subsampling 

Single hold-out random is performed K times, where each training + testing group 

sample size equals the dataset size divided by K. Performance is average over K 

sets. Could result in overlapping sets. 

K-fold cross-

validation 

Similar to K-Fold random subsampling but ensures there is no overlap in each 

training/test set. This alleviates overfitting and overtraining from training/testing 

the same samples multiple times. 

Stratified K-fold 

cross-validation 

K-fold cross-validation with stratified random is performed to ensure class 

proportions of each individual set are reflects that of the population sample. This 

provides an “unbiased estimate of the population proportion” (2018, p. 4). 

Leave-one-out 

cross-validation 

(LOOCV) 

This is a special case of K-fold cross-validation where each training set is excluded 

in the validation set (i.e., the validation set contains k-n sets at each iteration). 

Although this provides an “unbiased estimate of true prediction error,” there is a 

tradeoff of higher variance and computational load. 

Jackknife Like LOOCV but focused on estimating the bias or variance of a statistic rather 
than the generalization ability of a predictive model. 

 

Based on Table 7, stratified 10-fold cross-validation (see Figure 20 for an 

example illustration) was selected for training set splitting to help alleviate overfitting 

and disproportionate sampling due to unbalanced data sets (Berrar, 2018; Visualizing 

Cross-Validation Behavior in Scikit-Learn — Scikit-Learn 0.24.2 Documentation, n.d.). 

Furthermore, 10-fold cross-validation was found to have a small bias and accuracy, as 

long as the data sets were sufficiently large (Berrar, 2018). Finally, due to its widespread 

use, stratified k-fold cross-validation is natively supported by the SciKit-Learn API, 

which makes it readily accessible for this study. 
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Figure 20 

Stratified K-Fold Cross-Validation Training Split 

 

Note. Image reprinted from (Visualizing Cross-Validation Behavior in Scikit-Learn — Scikit-

Learn 0.24.2 Documentation, n.d.) 

Performance measures (i.e., precision, recall, and f1-score) are averaged across K 

sets, reported, and analyzed to identify the prediction performance, which is described in 

the following section. 

Prediction Performance Analysis (RQ4) 

Using the classification model and training split methodology described in the 

previous section, a performance evaluation was conducted to compare the prediction 

performance of various AI/ML models with varying levels of explainability and 

complexity. Measures of precision, recall, and f1-score were computed at weekly 

intervals of cumulative data to analyze prediction performance over time, which allows 

for assessing early warning potential. 

According to Arrieta et al. findings (Arrieta et al., 2020, p. 30), there is a 

“common trade-off between model interpretability and performance”. This work 



75 

 

 

contributes to the XAI goals of improving the performance of explainable models and 

explainability of complex models by integrated theory-guided implementations of 

AI/ML. As will be demonstrated, when models are designed with theory in mind, 

explainable model performance can improve without further modification. This study 

will demonstrate that explainable models can be comparable, if not better in specific 

cases, than complex black-box models. 

Depending on the nature of the data and field of study, different predictive 

performance measures are used. For balanced data sets, accuracy, as given in equation 

(1), might be sufficient (Sokolova et al., 2006). However, when data sets are unbalanced, 

overall accuracy is biased and is a poor measure of model performance. For this study, 

unbalanced datasets are expected as there will be disproportions in the number of at-risk 

students compared to other groups. As such, traditional accuracy may be a poor measure 

and will not be used. 

 

 accuracy = (TP+TN)/(TP+FP+TN+FN) (1) 

 

Where, 

TP = True Positive 

TN = True Negative 

FP = False Positive 

FN = False Negative 

To address unbalanced data sets, alternative measures such as the confusion 

matrix (Table 8), precision, recall, and f1-score will be used to assess model 

performance. Precision, recall, and f1-score are defined by equations (2), (3), and (4) 
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respectively (Scikit-Learn: Machine Learning in Python — Scikit-Learn 0.24.2 

Documentation, n.d.) for the confusion matrix parameters (i.e., TP, TN, FP, and FN). 

Table 8 

Confusion Matrix 

Predicted 

Positive Negative 

A
ct

u
a

l 

P
o
si

ti
v
e
 

True Positive (TP) False Negative (FN) 

N
eg

a
ti

v
e
 

False Positive (FP) True Negative (TN) 

 

 precision = TP/(TP+FP) (2) 

 recall = TP/(TP+FN) (3) 

 f1-score = 2∙(precision ∙ recall)/(precision+recall) (4) 

 

Intuitively, the three metrics are interpreted as follows (Scikit-Learn: Machine 

Learning in Python — Scikit-Learn 0.24.2 Documentation, n.d.): 

• Precision measures the “ability of the classifier not to label as positive a sample 

that is negative.” 

• Recall measures the “ability of the classifier to find all the positive samples.” 

• f1-score is the weighted average of precision and recall. 

Both precision and recall are important for at-risk student detection. When 

precision is low, a classifier may identify students who are not at-risk as at-risk and result 

in unnecessary interventions for those who do not need it. On the other hand, when the 
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recall is low, the classifier will not be able to detect at-risk students, which is the primary 

objective of educational data mining. Thus, recall is a more critical measure for 

predicting at-risk students. 

Explainability Analysis (RQ4) 

Explainability analysis was performed to explore the explainability of 

implemented XAI models, such as the decision tree, stack-based genetic programming 

multi-classifier, and tree-based genetic programming binary classifier. Visual models are 

explored, compared, and contrasted. 

Chapter Summary 

This chapter introduced the XAI EDM Study and associated target research 

questions as well as the theoretical and conceptual framework. The underlying 

demographics of the dataset were also discussed to characterize the generalizability of the 

study. A detailed description of the methods and procedures was provided to identify the 

EDM process and analysis methods. In the next section, the XAI EDM Study Results will 

be reported and discussed. 
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CHAPTER IV 

Results 

Introduction 

This chapter provides the results of the XAI EDM study, which comprises the 

results of the EDM process, theory-guided feature selection, feature analysis, exploratory 

clustering analysis, classification analysis, prediction performance comparative analysis, 

and explainability analysis. 

EDM Process Results 

The following list summarizes the data collection and processing steps performed 

to prepare the LMS log data for analysis. 

1. Data Collection 

1.1. Export LMS data to CSV files 

1.2. Analyze/develop python processing scripts 

1.3. Process/import data into working MySQL database 

2. Extract initial features and outcome variables into new tables 

2.1. Activity data is aggregated as frequency counts 

2.2. Datasets are grouped weekly 

2.3. Compute the normalized final grade scores (score/total possible) 

3. SQL Inclusion/Exclusion Pre-processing 

3.1. Excluded records with missing final grades 

3.2. Exclude records with final grades > 1.0 

4. Export features and outcome variable table to CSV file 

4.1. The first column is the course ID 
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4.2. The second column is the student ID 

4.3. Third through (Nth – 1) column are features 

4.4. The nth column is final_grade (target  outcome variable) 

4.5. Two types of datasets are extracted: 

4.5.1.Weekly aggregate data of activity frequency (15 files for weeks 1 to 15). 

4.5.2.Cumulative aggregate data of activity frequency (15 files for weeks 1 to 15). 

5. Python Pre-processing 

5.1. Import CSV file into Python Jupiter Notebook 

5.2. Exclude statistically insignificant features (p > .01) 

5.3. Exclude highly correlated features (r > .7) 

5.4. Exclude outliers beyond 2 standard deviations 

5.5. Transform/Scale Data to normalize activity frequency between 0 and 1 

(MinMaxScaler) 

The Python pre-processing step includes feature exclusions to reduce collinearity 

effects, which could negatively impact model performance and accuracy (Abdulhafedh, 

2021; Field, 2018; Kondo et al., 2017; Layton, 2017). Figure 21 illustrates the actual data 

collection and processing steps performed with associated sample sizes identified at each 

stage. The dataset comprised comma-separated value (CSV) files representing selected 

data tables extracted from the LMS database. Personal identifiable information was 

excluded to ensure the privacy and confidentiality of user data. Data was also securely 

stored and processed on a password-protected computer implementing multi-factor 

authentication and volume encryption. 
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Figure 21 

Data Collection and Processing Results Flow Chart 
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Descriptive Statistics 

Table 9 

Descriptive Statistics of Raw Data Before Feature Selection 

 N Minimum Maximum Mean Std. Deviation 

disc_cnt 45295 1.0 349327.0 514.521 3506.8233 

mod_cnt 24538 1.0 64860.0 227.692 649.6914 

email_cnt 13055 1.0 15100.0 27.105 221.1084 

mobile_cnt 16130 1.0 35425.0 338.426 690.1081 

res_cnt 21327 1.0 748155.0 2702.885 17587.5283 

grade_cnt 42492 1.0 11295.0 89.271 204.8992 

quizexam_cnt 25573 1.0 167918.0 383.805 2311.3193 

rubric_cnt 5754 1.0 7880.0 64.218 355.1623 

announce_cnt 28967 1.0 5705.0 90.929 203.5616 

tools_cnt 3204 1.0 6581.0 124.147 493.2645 

final_grade 45365 .00 1.00 .8378 .20456 

 

Feature Selection Results 

A preliminary feature selection analysis was performed by reviewing the LMS 

database schema to identify relevant tables to extract. With a specific interest in student 

activity and performance outcomes, the activity and grades table were selected for 

extraction. The course and grade type tables were also included as they provided cross-

reference keys (i.e., user and course primary keys) that linked the various tables together. 

Following the import of data into a local MySQL database, feature selection 

analysis was performed to identify relevant and available student-logged activity data. 

This involved relevant keyword searches on student activity types supported by the 

literature research and theoretical background. This highlights an important point that 

activity features are limited by the existing data. As a result, the following 10 keywords 

were identified: 
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1. “discussion” 

2. “module” 

3. “email” 

4. “mobile” 

5. “resource” 

6. “grade” 

7. “quiz” OR “exam” 

8. “rubric” 

9. “announcement” 

10. “tools” 

These keywords represent potential and relevant features selected based on LMS 

logged data that occurred the most often and are selected to ensure sufficient data 

collection and sample size. The features are then compared against the theoretical 

framework identified in Figure 22. Features that can be categorized into the areas of 

Social Learning, Knowledge/Content, and Autonomy/Self-regulation are therefore 

supported by the underlying theoretical supports and can serve as preliminary influential 

learning factors. The Venn model also identifies how each activity is related to one or 

more learning dimensions that may provide scaffolding effects. In theory, a greater 

number of overlapping dimensions for any activity would result in greater learning 

potential. However, there may be a point of diminishing returns due to task or cognitive 

overload. 
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We can observe that some features can impact different aspects of the learning 

process. Tools, discussion, and mobile are similar in that they provide collaborative 

functions enabling the learning of content while requiring some level of student 

autonomy and self-regulation. Email is typically a learner-learner or learner-instructor 

interaction that facilitates clarification of understanding. The resource component 

represents supplementary material that aids the learning process but is not typically 

required. Students who access resources are more self-driven and are eager to learn how 

to learn. Student activity access to grades, quizzes/exams, and rubric pages are related to 

self-assessment, which can promote learning through self-regulation in response to gaps. 

Finally, autonomous, and self-regulated learners are more likely to check announcements 

to ensure learning tasks are completed on time or instructor notifications are addressed. 

The learning model shown provides a relevant framework for effective initial feature 

selection. 
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Figure 22 

Conceptual Model of Learning Support Dimensions 

 

Using structured query language (SQL), the frequency count of relevant keywords 

was obtained from the activity log table. Figure 23 gives an example of keyword search 

results identifying the top sorted frequency count of relevant log text containing the 

keyword “tool”. This process was repeated for relevant keywords identified by either 

visually inspecting the data or purposefully selecting from theory. 
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Figure 23 

Screenshot of SQL Keyword Search Frequency Results 

 

Analysis Results 

Feature Analysis (RQ1)  

This section presents the results of the feature analysis, which uses correlation to 

and RQ1 (i.e., determine the associations between activity factors and student final 

grades). Statistical significance is determined at the .05 level and effect size is interpreted 

using Cohen et al.’s (2018) recommendation for weak (±0.1), modest (±0.3), moderate 

(±0.5), strong (±0.8), and very strong (≥ 0.8) values of Pearson’s r respectively. For 

initial correlation analysis, the 15th-week cumulative data set (N=45365) was used to 

account for all samples collected. Figure 24 and Figure 25 give the Pearson’s correlation 

coefficient (r)  and p-value matrix, respectively. 

 



86 

 

 

Figure 24 

Correlation (Pearson’s R) Matrix 
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Figure 25 

P-Value Matrix (Pearson’s R) 

 

 

Overall, the Pearson’s correlation results show that final grades have a statistically 

significant and weak positive correlation (r < .1, p < .001) to student interaction 

frequency with discussions forums (disc_cnt), module content (mod_cnt), mobile access 

(mobile_cnt), grade pages (grade_cnt), and announcement notifications (announce_cnt). 

All other activities (email, resource, quiz/exam, rubric, and tools access frequency) were 

not statistically significant (p > .05). 
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The lack of significant correlations may be attributed to the fact that the 

correlation analysis was based on the initial population dataset (45,365 samples covering 

2,908 courses and 22,953 students), which included both online and traditional in-

classroom courses. As mentioned previously, only a small number of undergraduate and 

graduate students are enrolled online, which averages around 25% of total enrolled 

students according to the institution’s leadership. As such, the majority of students 

enrolled in courses that required little to no student activity. This explanation is supported 

by Chamizo-Gonzalez et al.’s (2015) findings that correlation varies not only by activity 

type but also by course type. When all courses were included in the correlation analysis, 

correlations were significantly lower than the maximum of individual correlations 

between final grade and student activity frequency. In their study of 4,989 students, 

Chimizo-Gonzalez found the following correlations with respect to final grade: resources 

views (r = .13, p < .001; r ranged between 0 to .4), content page views (r = .17, p < .001; 

r ranged between .01 and .4), discussion post views (r = .04, p < .01; r ranged between 

.01 and .24), and quiz page views (r = .14, p < .001; r ranged .02 and .39). In short, 

general predictive power is low, but may be high concerning sub-groups such as course 

types. 

To address these problems, additional sample exclusions were performed to 

remove insignificant features, pairs with strong correlations, and outliers. The features 

email, resources, quiz/exam, rubric, and tools (email_cnt, res_cnt, quiz_cnt, exam_cnt, 

rubric_cnt, and tools_cnt respectively) were excluded as they have statistically 

insignificant (p > .05) correlations to final grade due to a lack of associative and 

predictive power. Features with strong correlations (Pearson’s r > 0.6) were also checked 
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and removed to mitigate collinearity concerns (L. Cohen et al., 2018). Reducing 

collinearity by feature exclusion can help improve statistical significance (Shrestha, 

2020) as well as model effectiveness. For the notable correlated pair, the feature with a 

higher number of missing values was excluded to mitigate data loss. 

Finally, the dataset was analyzed to identify and remove outliers beyond 1.5 the 

Interquartile Range. Only a single iteration was performed to alleviate data loss. After 

removing outliers, a total sample size of 5,855 remained. Afterward, a Minmax scaler 

was performed to normalize all activity features to the ratio range between 0 and 1, which 

allows for a relative comparison between activity frequency and final grade. Figure 26 

and Figure 27 give the given sample distribution histograms for the final grade and 

features, respectively. Observe that the final grade distribution has a non-normal, left-

skew, and leptokurtic shape whereas the feature distributions have a non-normal, right-

skew, and leptokurtic shape. This data sample served as the dataset for the proceeding 

exploratory clustering analysis. 

Figure 26 

Final Grade Distribution Histogram 
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Figure 27 

Feature Distribution Histogram 

 

 

The results of the exploratory cluster analysis, which is described in the next 

section, revealed a confounding cluster characterized by a high mean final grade and low 

activity frequency across all features. This group can be explained as students who did 

not interact with the LMS for most of their learning, such as those who prefer to use 

external resources, or students who belong to traditional in-classroom courses.  They may 

use the LMS to obtain course materials, but not actively participate in discussion posts or 

module content access as these were not implemented for traditional courses. Given the 

fact that this group represented the largest cluster size (34.4%), it is more likely that this 
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group contained traditional learners as discussion posts and module access are required 

components of online courses requiring frequent participation. Samples from traditional 

courses not only underestimate student activity in online courses but also skew the 

correlation results due to significant group size. As such, this group was excluded from 

the data set and a correlation analysis was recomputed to obtain a more reliable 

assessment. 

Figure 28 and Figure 29 give the correlation results after excluding the 

confounding group, which corrects for traditional learning effects. Observe that the 

correlation results have improved as discussion, module, and grade access frequencies 

had modest positive and statistically significant correlations (r = .22, .21, and .17 

respectively with p < .001) to the final grade. In addition, announcement page access 

frequency had a weak positive and statistically significant correlation (r .096, p < .001) 

with the final grade. The updated correlations after sampling exclusion demonstrated a 

significant improvement compared to previous results (r = .02, .05, .03, and .05 for 

discussion, module, grade, and announcement activity respectively). 

The results indicate that discussion, module, and grade access frequency have a 

modest positive association with learning outcomes while announcement access 

frequency has a weak association. These results are comparable to Chimizo-Gonzalez's 

findings for specific courses (2015). This highlights the importance of detecting and 

removing bias from traditional students, which negatively impacted features associated 

with content (disc_cnt, mod_cnt), social interactions (disc_cnt), and motivation/self-

regulatory activities (grade_cnt and announce_cnt). 

 



92 

 

 

Figure 28 

Correlation Matrix (Pearson’s R) After Sample Exclusion 

 

 

Figure 29 

P-Value Matrix (Pearson’s R) After Sample Exclusion 
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Exploratory Cluster Analysis (RQ2) 

To answer RQ2 (i.e., What are characteristics of at-risk students that can be 

identified using educational data mining?), a k-Means cluster exploratory analysis was 

conducted on the 15th-week cumulative dataset. For exploratory analysis, the final grade 

was included as a feature, which helped improve clustering results. However, using final 

grade as a feature also has predictive power trade-offs, which will be discussed later. As 

mentioned previously, outliers and missing values were excluded. The remaining dataset 

was then normalized between 0 and 1 using the SciKit-Learn MinMaxScaler function to 

alleviate unbalanced distributions among feature frequencies. Normalizing also enables 

relative comparisons between feature frequency as a ratio of maximum LMS interaction. 

K-Means clustering is comprised of: (1) finding the optimal cluster size K (see 

Figure 30); and (2) obtaining/analyzing k-Means clustering results (Figure 31 and Figure 

32) to identify characteristics of low (at-risk) and high (not-at-risk) performing students. 

Figure 30 

K-Means SSE (Exploratory) 
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Figure 31 

K-Means Cluster Matrix (Exploratory) 

 

 

In Figure 31, the diagonal charts represent the histograms for the associated 

clusters concerning the associated feature of interest. Observe that there is significant 

skewing with multiple peaks of different heights, all of which signify unbalanced 

distributions. Concerning final grades, there is distinct clustering for all features. Figure 

32 gives k-Means results as normalized mean activity (left axis) and final grade (right 

axis) concerning each cluster (bottom axis). Analyzing this chart, student at-risk 
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characteristics were labeled and described based on activity frequency and its relationship 

to mean final grade scores (see Table 10). 

Figure 32 

K-Means Cluster Summary (Exploratory) 

 

 

Table 10 

Exploratory Group Labeling and Characterization 

K Label At-

Risk 

LMS Activity 

Characteristic 

Mean Final 

Grade 

0 Inactive High 

Performer (IHP) 

No Lowest activity for all 

features. 

.88 ± .11SD 

N = 2018 (34.4%) 

1 Inactive Low 

Performer (ILP) 

Yes Very low activity for all 

features. 

.37 ± .18SD 

N = 945 (16.1%) 

2 Announcement-

Active Good 

Performer (AAGP) 

No High announcement activity; 

all others very low. 

.79 ± .19SD 

N = 685 (11.7%) 

3 Grade-Active Good 

Performer (GAGP) 

No High-grade access activity; 

all others very low. 

.79 ± .19SD 

N = 794 (13.5%) 

4 Discussion-Active 

Good Performer 

(DAGP) 

No High discussion activity; all 

others very low. 

.84 ± .16SD 

N = 623 (10.6%) 

5 Module-Active 

Good Performer 

(MAGP) 

No High content activity; all 

others very low. 

.83 ± .18SD 

N = 790 (13.5%) 
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Table 10 identifies one at-risk group (Inactive Low Performer; cluster 1) 

characterized by having very low relative activity among all features. Note that the 

Inactive High Performer group also had similar characteristics, as it had the lowest 

activity among all features with slightly lower activity than the at-risk Inactive Lower 

Performer group. This confounding result is problematic as there are no obvious 

discriminating factors between the two groups, which was found to limit predictability. 

Figure 33 gives the results of conducting a Naives Bayes classification using 10-fold 

cross-validation. Note that the final grade was removed as a feature during model training 

as in practice, the final grade is not available until the end of the course. This has some 

negative implications. Observe that, overall, there are high accuracies for clusters 2 – 3, 

but lower accuracies for clusters 0 and 1, which are the high performers and at-risk 

groups. This is expected as clusters 0 and 1 are very similar concerning activity 

frequencies (both had the lowest) with no obvious differentiating factors distinguishing 

them apart. 

Figure 33 

Naives Bayes Preliminary Classification Results 
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The lack of discriminating factors could be attributed to external factors or 

features not measured. For example, the Inactive High Performer student could be the 

type of learner who prefers to study or communicate outside of the LMS environment, 

which results in lower LMS activity. Another explanation is that this group represented 

students who were enrolled in traditional courses that were delivered in a classroom 

environment and did not require online participation. The latter explanation is more likely 

as the confounding group (cluster 0) had almost three times (N = 2018 or 34.4%) the 

group size compared to other clusters (N = 623 – 945 or 10.6% - 16.1%). This is 

consistent with the institution enrollment statistics where the majority of students were 

enrolled in traditional in-classroom courses. Without a discriminating factor, the 

predictive power of these classifications will be limited once the final grade is removed 

from the feature set during supervised classification. To address this, clusters with low 

activity (mean values less than 0.2) and high final grades (values greater than 0.8)  were 

excluded to remove traditional learners from the dataset. As a result, Figure 34 shows that 

the Naïve Bayes prediction performance for the at-risk group (cluster 1) has been 

significantly improved (61% improvement of f-score from 0.19 to 0.8). 
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Figure 34 

Naives Bayes Preliminary Classification Results (Excluding Cluster 0) 

 

 

Statistical Analysis of Mean Differences between Independent Groups 

This section describes the statistical analysis performed to determine if mean 

differences between final grade scores differ among the five at-risk groups (ILP, AAGP, 

GAGP, DAGP, and MAGP) identified in Table 10 and Figure 34. First, a description of 

the descriptive statistics and assumptions checks will be given followed by the test for 

mean differences using the Kruskal-Wallis test. 

Descriptive Statistics. After excluding the IHP group, the updated population 

sample had a sample size of N = 3837. A 60% random sampling  (N = 2299) was 

performed on the population for statistical analysis. The associated descriptive statistics 

are given in Table 11 and group size proportions are depicted in Figure 35, where the 

groups ILP, AAGP, GAGP, DAGP, and MAGP have a sample size of 580 (25.2%), 417 

(18.1%), 480 (20.9%), 367 (15.9%), and 455 (19.8%) respectively. This ensures that the 

smallest sample size for each cluster is near or greater than 368, which was the group size 
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determined from prior power analysis with sufficient power to detect small effects at the 

.05 level. Although the groups are not equal, they are comparable and sufficiently large. 

Figure 35 

Proportions of Random-Sampled Data Set 

 

 

From Table 11, the overall mean final grade was 0.705 (±0.266SD) with the 

following normalized mean frequencies: 0.268 (±.238SD) for discussion access; .286 

(±.258SD) for module access; .295 (±.261SD) grade page access; and .242 (±.266SD) for 

announcement page access. 
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Table 11 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

disc_cnt 2299 0 0.922 0.268 0.238 

mod_cnt 2299 0 0.922 0.286 0.258 

grade_cnt 2299 0 1 0.295 0.261 

announce_cnt 2299 0 1 0.242 0.266 

final_grade 2299 0 1 0.705 0.266 

 

Assumption Checks. Normality was assessed by analyzing the skewness and 

kurtosis of each distribution using equations (5) and (6) to determine significance, where 

Z = z-score, S = skewness value, K = kurtosis value, and SE = standard error (Field, 

2018). Significance is determined when the absolute value of Z is greater than 1.96 (i.e., 

p < .05). The calculated Z-scores for skew and kurtosis are given in Table 12, which 

shows there is a statistically significant presence of both skew and kurtosis (Zs > 1.96 

and Zk > 1.96). Therefore, normality is violated. 

 

 𝑍𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑆−0

𝑆𝐸𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠
 

 

(5) 

 𝑍𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝐾−0

𝑆𝐸𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠
 (6) 
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Table 12 

Calculated Z-scores for Skew and Kurtosis 

  
Skewness   Kurtosis   

Statistic SE Zs Statistic SE Zk 

disc_cnt 1.027 0.051 20.13725 0.232 0.102 2.27451 

mod_cnt 0.829 0.051 16.2549 -0.347 0.102 3.401961 

grade_cnt 0.827 0.051 16.21569 -0.376 0.102 3.686275 

announce_cnt 1.156 0.051 22.66667 0.228 0.102 2.235294 

final_grade -0.76 0.051 14.90196 -0.381 0.102 3.735294 

 

To check for violations in homogeneity, Levine’s test was conducted using SPSS 

one-way ANOVA test and shown in Table 13. Levine’s test results rejected the null 

hypothesis of equal variances for all independent and dependent variables (p < .05). 

Therefore, homogeneity is violated. 

 

Table 13 

Test of Homogeneity of Variances 

 Levine Statistic df1 df2 Sig. 

disc_cnt Based on Mean 15.257 4 2294 .000 

mod_cnt Based on Mean 11.840 4 2294 .000 

grade_cnt Based on Mean 6.923 4 2294 .000 

announce_cnt Based on Mean 7.443 4 2294 .000 

final_grade Based on Mean 2.481 4 2294 .042 

 

Since there were violations in both normality and homogeneity, the Kruskal-

Wallis test was selected for testing mean differences. The Kruskal-Wallis is a non-

parametric test that is commonly used for assessing mean differences between 

independent samples when assumptions of normality or homogeneity are violated (L. 

Cohen et al., 2018; Field, 2018). In addition, there are assumptions for randomly 

generated samples, independent group samples, and similar underlying distributions (L. 
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Cohen et al., 2018). As previously noted, the data was randomly selected from the 

population where each group represent independent samples. This meets the first two 

assumptions. Figure 36 gives the distribution histograms of the activity frequencies, all of 

which demonstrated a right-skewed distribution, which meets the last assumption 

requiring similar distribution shapes. 

Figure 36 

Distribution Comparison 

 

Kruskal-Wallis Mean Difference Test Results. A Kruskal-Wallis test was 

conducted to evaluate differences in final grades among the five at-risk groups (ILP, 

AAGP, GAGP, DAGP, and MAGP). The test, which was corrected for tied ranks, was 

significant H(4) = 1078.807, p < .001 (see Table 14). 
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Table 14 

Independent-Samples Kruskal-Wallis Test Summary 

Total N 2299 

Test Statistic 1078.807a 

Degree Of Freedom 4 

Asymptotic Sig.(2-sided test) .000 

Note. a. The test statistic is adjusted for ties. 

 

Follow-up tests were conducted to evaluate pairwise differences among the three 

groups, controlling for Type I error across tests by using the Bonferroni approach. Effect 

size is calculated as 𝑟 = 𝑍 √𝑁⁄ , where Z is the standard test statistic and N is the total 

sample size of group comparisons (Field, 2018). The results of these tests are presented in 

Figure 37 and Table 15. In summary, there was a significant difference in mean final 

grades among at-risk groups, H(4) = 1078.807, p < .001. In summary, the pairwise 

comparison with adjusted p-values indicated the following: 

• ILP group had a significantly lower mean final grade than groups: 

o GAGP, H(4) = -954, p < .001, r = -.72 

o AAGP, H(4) = -976, p < .001, r = -.73 

o MAGP, H(4) = -1102, p < .001, r = -.83 

o DAGP, H(4) = -1120, p < .001, r = -.82 

• GAGP group had significantly lower mean final grade than groups: 

o MAGP, H(4) = -148, p = .006, r = -.11 

o DAGP, H(4) = -166, p = .003, r = -.12 

• AAGP group had significantly lower mean final grade than groups: 

o MAGP, H(4) = -126, p = .051, r = -.09 
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o DAGP, H(4) = -143, p = .025, r = -.11 

• There were no significant differences between: 

o GAGP and AAGP, H(4) = 22.398, p = 1.0, r = .02 

o MAGP and DAGP, H(4) = 17.45, p = 1.0, r = .01 

 

Figure 37 

At-Risk Group Final Grades Boxplots 

 
 

 

Table 15 

Final Grade Pairwise Comparisons of At-Risk Groups 

Sample 1-Sample 2 Test Statistic Std. Error 

Std. Test 

Statistic Sig. Adj. Sig.a 
N r 

ILP-GAGP -953.940 40.854 -23.350 .000 .000 1060 -0.72 

ILP-AAGP -976.338 42.509 -22.968 .000 .000 997 -0.73 

ILP-MAGP -1102.148 41.463 -26.581 .000 .000 1035 -0.83 

ILP-DAGP -1119.599 44.161 -25.352 .000 .000 947 -0.82 

GAGP-AAGP 22.398 44.322 .505 .613 1.000 897 0.02 

GAGP-MAGP -148.208 43.321 -3.421 .001 .006 935 -0.11 

(continued) 
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Sample 1-Sample 2 Test Statistic Std. Error 

Std. Test 

Statistic Sig. Adj. Sig.a 
N r 

GAGP-DAGP -165.658 45.910 -3.608 .000 .003 847 -0.12 

AAGP-MAGP -125.810 44.885 -2.803 .005 .051 872 -0.09 

AAGP-DAGP -143.260 47.388 -3.023 .003 .025 784 -0.11 

MAGP-DAGP 17.450 46.453 .376 .707 1.000 822 0.01 

Note. Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions are the same. 

 Asymptotic significances (2-sided tests) are displayed. The significance level is .050. 

a. Significance values have been adjusted by the Bonferroni correction for multiple tests. 

 

Classification Analysis (RQ3) 

In this section, the cluster analysis was re-performed based on activity-only 

features, which would reveal naturally occurring clusters associated with their mean final 

grades for interpretation and analysis. This method also is more representative of 

implementation in practice (i.e., final grades are not available as a feature for early at-risk 

prediction). 

Using only activity as features, K-Means clustering was repeated for the 15th-

week cumulative data set. Figure 38 gives the SSE plot with the elbow point identified at 

K = 5 using the Python Kneed package. We can verify that this point is credible due to 

the sharp change in slope (elbow) at K=5. Overall, this indicates that there are 5 natural 

clusters when considering only activity data as features. 
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Figure 38 

K-Means SSE (Classification) 

 

 

Using K=5, k-Means clustering was conducted to explore naturally occurring 

patterns. The k-Means classification matrix is shown in Figure 39. Like the exploratory 

clustering analysis, the diagonal plots show skewed distributions, which indicates the 

presence of unbalanced data sets. Furthermore, the overall cluster separation is distinct 

between feature-to-feature interactions. However, this is no obvious separation between 

the final grade and each of the activity features (last row). In the last column of the contour 

plot, there is significant overlap. To get a better measure of final grade cluster separation, 

mean activity and scores were analyzed. 
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Figure 39 

K-Means Cluster Matrix (Classification) 

 

 

Figure 40 depicts the k-Means cluster summary, which plots the mean normalized 

activity and final grade concerning each cluster. Like the exploratory analysis, there are 

discriminating factors for groups 1 through 4 (disc_cnt, grade_cnt, mod_cnt, and 

announce_cnt respectively). The final grade range is also narrow (76 – 81). Thus, the 

differences in at-risk and not at-risk students are much more subtle with significant 

overlap. 
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Figure 40 

K-Means Cluster Summary (Classification) 

 

 

Analyzing Figure 40, the at-risk groups were labeled and characterized in Table 16. 

Observe that higher final grades were associated with higher discussion and module 

activities (clusters 1 and 3) but not higher grade page nor announcement activity frequency 

(clusters 2 and 4). Furthermore, low activities across all features resulted in lower final 

grades. Finally, clustering based on activity-only features demonstrated a narrow range of 

predictable at-risk final grade levels. The characterization found is partially consistent with 

studies leveraging activity theory (Xing et al., 2015) and social learning theory (Nabavi, 

2012) in that certain types of student interactions, such as discussion and module access 

frequency, with the learning environment can influence performance outcomes. 
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Table 16 

Exploratory Group Labeling and Characterization 

K Label At-Risk LMS Activity Characteristic Mean Final 

Grade 

0 Inactive Low 

Performer (ILP) 

Yes Low activity across all features; 

coupled with a lower final 

grade. 

0.76 ± .25SD 

N = 2591 

(44.2%) 

1 Discussion-Active 

High Performer 

(DAHP) 

No High discussion activity with a 

low module, grade, and 

announcement activity; coupled 

with a higher final grade. 

0.81 ± .21SD 

N = 674 (11.5%) 

2 Grade-Active Low 

Performer (GALP) 

Yes High-grade page access with 

low discussion, module, and 

announcement activity; coupled 

with a lower final grade. 

0.77 ± .22SD 

N = 909 (15.5%) 

3 Grade-Active Good 

Performer (GAGP) 

Marginal Higher module activity with a 

lower grade, discussion, and 

announcement activity; coupled 

with a marginally higher grade. 

0.79 ± .23SD 

N = 904 (15.4%) 

4 Announcement-Active 

Low Performer 

(AALP) 

Yes Higher announcement activity 

with the lower module, grade, 

and announcement activity; 

coupled with the lowest grade. 

0.75 ± 24SD 

N = 777 (13.3%) 

 

Prediction Performance Analysis (RQ4) 

Multi-classifier Performance. This section summarizes the predictive analysis 

results, which compares the performance of a stack-based genetic programming XAI 

model to that of other AI/ML models based on LMS student activity as feature inputs for 

at-risk prediction. Supervised learning was performed by first training each model using 

stratified 10-fold cross-validation to predict at-risk labeled ground truths obtained from 

conducting k-Means classification for weekly cumulative datasets. 
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Using the Python kneed package, cluster size was automatically determined to be 

K=5 for each week’s cumulative dataset, which was also visually verified using the 

elbow method (Figure 41). Observe how SSE grows over time due to the larger amount 

of data, which contributed to a higher amount of error aggregated. In addition, the elbow 

is more pronounced over time as SSE improvements are steeper (angle of the curve 

before the elbow point), which may be an indicator of better cluster isolation and 

predictability. This could be attributed to the greater amount of historical data 

accumulated each week. 

Figure 41 

K-Means SSE (Cumulative Weeks 1-15) 

 

 

Kneed identified Elbow at K=5 for 

all weeks. 
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The predictive performance measures f1-Score (Figure 42), precision (Figure 43), 

and recall (Figure 44) were then computed for each AI/ML model for each week to show 

predictive performance trends over time. Observe that prediction performance for all 

models starts low initially, dips at the 2nd week, and then gradually peaks around the 4th 

week. It is important to note that the stack-based genetic programming (GP) model was 

superior for the first 5 weeks, even outperforming the multi-layer perceptron (MLP), a 

deep learning model. It was also strange that during week 11, GP experienced a drastic 

dip, but then recovered shortly after. These findings highlight the benefit and power of 

GP as a potential model for early implementation, as it provides superior at-risk 

prediction in the early weeks in addition to having more transparency. 

Figure 42 

Predictive Performance Over Time (F1-Score) 
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Figure 43 

Predictive Performance Over Time (Precision) 

 

 

Figure 44 

Predictive Performance Over Time (Recall) 
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Figure 45 graphs the overall average scores (f1, precision, and recall) across all 

models for comparison. Observe that MLP is the highest performer, which is expected as 

it implements deep learning. But it is only marginally better than GP. Considering this, 

GP may be preferred as it offers additional transparency and explainability as a simpler 

and easier-to-interpret model. The next best performers include support vector machine 

(SVM) and logistic regression (LG). SVM appears more consistent among the three 

measures whereas LG demonstrated the highest precision but lower recall scores. Since 

recall is more important in education, as it measures the ability to detect a true positive 

(e.g., true at-risk students), SVM would be a preferred model. Following this reasoning, 

the next best performers are Naïve Bayes (NB), followed by DT, and finally K-Nearest 

Neighbors (KNN). 

Figure 45 

Mean Predictive Performance Scores 
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Binary Classifier Prediction Performance. This section summarizes the 

predictive analysis results, which compares the performance of a tree-based genetic 

programming XAI model to that of other AI/ML models based on LMS student activity 

as feature inputs for at-risk prediction. More specifically, the GPLearn binary classifier 

from the Scikit-Learn Python framework was used to explore the efficacy of tree-based 

GP methods. Unlike the previous section, this analysis focused on the binary 

classification that re-classified prior groups into at-risk or not-at-risk groups based on 

whether the group means of their final grades were above or below the overall weekly 

mean final grades of all groups.  

Concerning predictive performance over time, GPLearn demonstrated very high 

accuracies in the first week (f1-score of 0.94) but gradually declined and dipped in the 

10th through 12th week. The performance then improved after the 12th week (see Figure 

46). This performance trend was very different from the stack-based method. 

Nevertheless, an 82-94% f1-score can be practical and effective in practice. 

Figure 46 

GPLearn Binary Classifier Performance Results Over Time 
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Figure 47 gives the predictive performance of GPLearn and other common 

AI/ML models for comparison. GPLearn underperformed in comparison to other models 

except for logistic regression in the first two weeks. Interestingly, the support vector 

machine, decision tree, and k-Nearest Neighbor were the superior performers. Although 

MLP had the highest peak scores, there were areas where it dipped in performance (1st-3rd 

and 5th-8th weeks). Observe that there is a slight dip for all models in the second week, 

which was a pattern observed from the previous multiclassification analysis results. 

Concerning overall average performance across all weeks, SVM was the top performer 

followed by DT, KNN, and MLP. Next was NB followed by LR. GPLearn was the 

lowest performer (slightly over 86% f1-score). 

Figure 47 

Binary Classifier f1-Scores 
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Overall, GPLearn underperformed when compared to other models (see Figure 

48). Interestingly, the support vector machine, decision tree, and k-Nearest Neighbor 

were the superior performers. Although MLP had the highest peak scores, there were 

areas where it dipped in performance (1st-3rd and 5th-8th weeks). These results show 

that genetic programming may have limited performance as a binary classifier. However, 

the explainability that GPLearn offers may be worth the performance trade-off. The 

explainability of GPLearn is further discussed in the next section. 

Figure 48 

Overall Binary Classifier Performance Results 
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Explainability Analysis (RQ4) 

This section presents an explainability comparative analysis of three XAI models, 

namely, the stack-based genetic programming classifier, tree-based genetic programming 

(GP) binary classifier, and decision tree (DT) classifier. These models are considered 

explainable as they contain visual or rule-based representations of the underlying logic to 

describe the reasoning behind their predictions. Unlike deep learning methods, which 

contain a high number of connected and interacting components (known as neurons), 

explainable models are much simpler and easier to interpret. 

Explainability of Stack-Based GP. This section explores the explainability of 

the Ellyn-GP M4GP algorithm, a stack-based lexicase genetic programming multi-

classifier written by La Cava et al. (2017; 2019). The results in the previous section 

showed that the M4GP model demonstrated exceptional predictive performance 

comparable to other deep learning leading models such as multi-layer perceptron. In La 

Cava et al.’s (2019) work, M4GP demonstrated competitive performances against other 

state-of-the-art models across a broad array of problem sets. But the question remains 

how explainable are stack-based models? The answer is that they are not directly 

interpretable due to the complex transformations involved. 

Table 17 presents the top 10 models obtained from training M4GP on class labels 

obtained from the prior K-Means Clustering Classification analysis performed as part of 

this study. Observe that each of the model solutions appears simple, with only a few first-

order terms (7 items for the smallest and 20 for the largest) in the stack (represented by 

elements within the brackets). Surprisingly, such a model produced accuracies on par 

with the multi-layer perception with f1-scores above 98%. But understanding the model 
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is not as straightforward since the results are presented in an unfamiliar dimensional 

space. 

Table 17 

Stack-Based GP (M4GP) Solutions 

Solutions f1-score 

[x_1, 0.509, x_2, x_3, x_0, 0.003, 0.129] 

  

0.9898 

[x_1, -0.042, 0.186, 0.014, x_2, -0.176, x_0, x_3] 

  

1.         

[x_1, x_2, 0.505, 0.001, 0.044, -0.076, -0.205, 0.128, x_0, x_3, 1.009, 0.0, -0.0] 

  

0.9942 

[-0.0, -0.537, x_3, 0.241, 0.001, x_0, x_1, -0.079, -0.132, x_2, -0.007] 

  

1.         

[x_2, x_1, 0.021, -0.009, 0.245, 0.006, x_0, x_3, 0.141, 0.003, -0.002] 

  

0.9941 

[-0.173, 0.047, -0.203, 0.48, x_1, 0.158, 0.131, x_0, 0.167, x_3, x_2, 0.037] 

  

0.9932 

[x_3, -0.005, 0.154, -0.003, -0.026, x_1, -0.11, 0.002, x_2, x_0] 

  

1.         

[0.053, 0.0, -0.027, x_3, 0.204, x_2, 0.023, -0.002, 0.108, 0.324, 0.008, 0.013, -0.869, 0.025, 

0.025, 0.392, 0.184, x_1, x_0] 
  

1.         

[0.421, 0.504, -0.0, x_3, 0.657, x_2, -0.159, 0.558, 0.057, -0.416, -0.969, 0.232, -0.297, -

0.012, -0.038, -0.008, -0.115, x_1, x_0] 

  

1.         

[0.952, 0.16, -0.001, x_3, -0.015, x_2, -0.025, -0.042, 0.164, -0.341, -0.038, x_0, -0.241, -

0.026, 0.007, 0.633, 0.037, x_1, -0.21] 

0.9872 

 

According to La Cava et al. (2019), the M4GP algorithm “optimizes models by 

first performing a transformation of the feature space into a new space of potentially 

different dimensionality, and then performing classification using a distance function in 

the transformed space” (p. 260). The model implements a distance-based nearest centroid 

classifier similar to k-Means clustering where samples are classified based on the 

minimum distance to cluster centroids. So how can the solutions be interpreted to provide 

meaningful insight? Unlike K-Means Clustering, which performs clustering on the 

feature space, M4GP clustering is performed on new n-dimensional space with different 

p-clustered labels. Unfortunately, there is little to interpret as the space is unfamiliar and 



119 

 

 

only serves the purpose of improving classification accuracy. However, one can observe 

that the solutions contain variables from the feature space (e.g., x_n terms). As such, it 

can be inferred that the features themselves contribute to the classification if they appear 

in the solution set. 

Explainability of a Tree-Based Binary Genetic Programming Classifier. 

Another alternative to stack-based genetic programming models is binary tree-based 

models, which can provide simpler and more interpretable visual representations. For 

example, Stephen’s (2016) GPLearn model is a binary tree-based classifier, which can 

leverage Scikit-Learn’s graphviz package to output a syntax tree visual model. To 

explore this model, the classification analysis was repeated, and at-risk groups were 

categorized as at-risk, or not-at-risk students based on whether their mean values were 

above or below the weekly group means of final grades. After training and predicting 

using the 10-fold cross-validation method, GPLearn demonstrated a precision, recall, and 

f1-score of r.85, .86, and .85 respectively. Figure 49 gives the associated tree model 

output. 
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Figure 49 

Tree-Based Genetic Programming Binary Classifier 

 

 

Observed that the model is easier to interpret than the stack-based M4GP as the 

representations are directly associated with the feature space. According to Ferreira et al. 

(2020), the presence or absence of features in this model can be interpreted as an 

indicator of importance. As such, major influential features can be immediately identified 

as discussion (disc_cnt) and module (mod_cnt) activity. This is consistent with the 

previous correlation analysis where discussion and module activity were identified as 

having the most significant associations to final grades. Furthermore, the model can be 

interpreted as a function of discussion and module activity and rewritten as equation (7). 
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As an equation, the binary classification can be explained based on an analysis of module 

and discussion ranges and their impact on the output results. 

 

 

𝑓(𝑑𝑖𝑠𝑐𝑐𝑛𝑡 , 𝑚𝑜𝑑𝑐𝑛𝑡) =
(

0.973
(𝑚𝑜𝑑𝑐𝑛𝑡 + 𝑑𝑖𝑠𝑐𝑐𝑛𝑡)

− 0.973)

(𝑚𝑜𝑑𝑐𝑛𝑡 + 𝑑𝑖𝑠𝑐𝑐𝑛𝑡)
− 0.973 (7) 

 

Upon initial inspection, equation (7) may appear arbitrary. However, this is 

expected as the objective of genetic programming is to develop solutions using randomly 

selected programs, which may be novel and in this case are equations built from 

operators (+, -, /) and operands (a rational number between 0 and 1). The resulting 

solution is just one of many in the solution space, which may contain an infinite number 

of possibilities. But how exactly does this equation translate to the at-risk state? 

According to the GPLearn documentation, the output of the equation is transformed into 

probabilities of each class using a sigmoid function (see equation (8) and Figure 50) 

 The sigmoid function shows that negative or positive values of the output results 

can be used to classify binary predictions based on their probability (e.g., p < .5 can be 

classified as one group while p ≥ .5 can be classified as another) (Stephens, 2016). 

Therefore, equation (7) can be analyzed to identify what values of discussion and module 

activity result in an overall positive or negative value.  Based on this, the following 

observations can be made: 

• The terms “mod_cnt + disc_cnt” in the solution equation can range from 0 to 

2 as each variable is a normalized frequency ranging from 0 to 1.  When both 

are close to zero, the equation results in a positive value and can be classified 
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as at-risk (i.e., students with both low discussion and low module activity). 

This is consistent with prior K-Means Clustering Classification analysis where 

clusters 0, 2, and 4 were lower performing groups that also had low values of 

discussion and module activity (see Figure 40). 

• When one variable is zero and the other is one, the results will still end up as a 

negative number (the numerator will be close to zero and thus reduce the left 

operand of the minus sign) and thus classify the student as not-at-risk (i.e., 

when either discussion or module activity is high). This is consistent with 

clusters 1 and 3 from the K-Means Clustering classification results (Figure 40) 

in that discussion and module activity are influential factors alone for higher 

performing groups. 

• When both equal one, the resulting value is a negative number, which can be 

classified as not-at-risk (i.e., students with both high discussion and high 

module activity). This is logical as either factor would contribute to higher 

performance. This is an additional characteristic that was not found in prior K-

means Clustering Classification analysis. 

• Thus, the GPLearn binary classifier model provides mathematical 

explainability that is consistent with prior K-Means Clustering Classification 

as well as more insight into other high-performing groups. 

 

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑓) =  1 (1 + 𝑒−𝑓)⁄  (8) 
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Figure 50 

Sigmoid Function 

 

 

Explainability of a Decision Tree (Binary Classifier). To provide a fair 

comparison, the same classification process was performed using the binary-class 

decision tree model, which is shown in Figure 51.  For prediction performance, the 

decision tree outperformed the GPLearn binary classifier with precision, recall, and f1-

score of .97 (12% gain in performance).  However, the higher accuracy came with the 

trade-off of explainability as the resulting model has too many components, which 

renders it too complex for practical interpretations. 
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Figure 51 

Binary-Class Decision Tree 

 

 

To improve the explainability of the decision tree, the maximum tree depth was 

limited to three for the same analysis. In addition, Scikit-Learn’s graphviz (2022) 

package was used to format the nodes and provide additional labeling to improve 

explainability and readability. Figure 52 shows the updated decision tree, which shows 

that limiting the maximum tree depth has significantly improved the explainability of the 

decision tree. In addition, there was only a slight reduction in performance as the model 

had a precision, recall, and f1-score of .93, .94, and .94 respectively (only a 3% 

reduction). Note that each node provides several explainable information: 

• The Boolean expressions provide a characterization of the child nodes. A 

complete characterization of at-risk activity behaviors can be described by the 
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associated expressions along the path traversed to the leaf node, which 

identifies the final class predicted for a particular sample. 

• The ratio of total samples that are associated with each node provides insight 

into the number of at-risk students. 

• The associated ratios of samples partitioned into at-risk or not-at-risk groups 

(i.e., the first and second entry of the value array) provides insight into the 

number of correct or incorrect classifications, which is selected based on the 

group with the highest proportion. 

• The Gini index provides a measure of classification confidence and quality. 

Lower values of Gini indicate more homogeneity in the classified distribution 

(i.e., fewer classification errors). 

• Class labels identify the classified group based on the value array where the 

class with the highest ratio is selected. 
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Figure 52 

Binary-Class Decision Tree (Max Depth of 3) 

 

 

By analyzing the interpretable metrics in Figure 52, the following observations 

and explanations can be made (refer to Figure 40 for references to prior clustering 

analysis): 

• There are eight total groups (two not-at-risk and six at-risk types) represented 

by the leaf nodes and the Boolean expressions associated with the path 

traversed. 
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• The first not-at-risk group (9.7% of total samples) is characterized by lower 

module, higher discussion, and lower grade activity. 85% of the samples were 

accurately classified. This is consistent with cluster 1 in prior clustering 

analysis. 

• The second not-at-risk group (17.7% of total samples) is associated with a 

higher module, lower announcement, and lower grade activity. 95% of the 

samples were correctly classified in this group. This group is consistent with 

cluster 1 in prior clustering analysis. 

• The first at-risk group (64.3% of total samples) is characterized by lower 

module and lower discussion activity. 99% of the samples were correctly 

classified. When mod_cnt is not less than .37 (the second at-risk group), there 

appears to be a decreased probability (77%) that the students are at-risk. This 

first group is similar to clusters 0, 2, and 4 of the prior cluster analysis. The 

second at-risk group is a new finding. 

• The third at-risk group (2.5% of total samples) is associated with a lower 

module, higher discussion, and higher grade activity. 78% of samples were 

correctly classified. This at-risk group is a new finding. 

• The fourth at-risk group (2.2% of the total samples) is associated with a higher 

module, lower announcement, and higher grade. 76 percent were correctly 

classified. This group is a new finding. 

• The fifth at-risk group (2% of total samples) is associated with a higher 

module, higher announcement, and lower module activity. 97% of samples 

were correctly classified. This group is a new finding. 
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• Finally, the sixth at-risk group (0.6% of total samples) is associated with the 

higher module and higher announcement activity. Only 51% were correctly 

classified. This group is a new finding. However, the accuracy is too low so 

this group should be excluded from use. 

As demonstrated, the decision tree was able to provide significant insight into 

various types of at-risk and not-at-risk groups. Furthermore, the value of correctly 

classified samples provides an additional measure of confidence that can be used in 

practice to assess model trustworthiness. The percent of the total also helps identify the 

effect size of the at-risk problems. In this example, it is clear that the first at-risk group 

represents the bulk of at-risk students as it comprises over two/thirds of the total samples. 

In summary, the decision tree binary classifier, when limited to a max depth of three, 

resulted in superior explainability compared to both the GPLearn binary tree classifier 

and M4GP stack-based classifier. Concerning prediction performance, it outperformed 

GPLearn and was slightly less accurate than M4GP. Considering the enhanced 

explainability, the decision tree is the preferred choice for practical applications. This is 

primarily attributed to the explainable information offered by Scikit-Learn’s graphviz 

package. 

Explainability of Decision Trees (Multi-Classifier). In the last section, an 

analysis was performed to assess the explainability of the decision tree binary classifier. 

Similarly, this section explores the explainability of the multi-class decision tree.  Figure 

53 gives the visual representation of the decision tree trained and fitted to classification 

labels obtained from prior K-Means classification analysis. Similar to the binary decision 
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tree, using default settings resulted in an overly complex tree that is arguably complex 

and not interpretable. 

Figure 53 

Multi-Class Decision Tree Classifier 

 

 

Figure 54 gives an updated decision tree when max depth is set to four, which was 

identified optimal level to achieve a balance between explainability and prediction 

performance (f1-score of 91.8%). In contrast, a max depth of 3 resulted in a simpler but 

less accurate model (f1-score of 71.6%) while a max depth of 5 resulted in an overly 

complex model with only marginal improvements in accuracy (f1-score of 92.8%). 

Explainability was also improved by color coding of the nodes to indicate class numbers 

with an intensity of color indicating the classification accuracy.  Compared to GPLearn, 

the multi-class decision tree is more explainable as the cluster class is explicitly 

identified. The class provides a one-to-one mapping to labels obtained from prior 
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clustering analysis (see Figure 40). Compared to the prior decision trees, this model 

provides more insight into other influential features as well as several traversal variations. 

Figure 54 

Multi-Class Decision Tree Classifier (Max Depth = 3) 

 

Although there is a larger number of items in the decision tree, the color coding 

and interpretable metrics help alleviate the cognitive load.  Traversing any path is a 

simple exercise to characterize the associated groups, which are defined at the leaf level. 

In addition, the Gini index and color intensity also help provide a measure of confidence 

or trustworthiness where a lower index associates with a deeper color to signify higher 
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classification accuracy at the associate node. Using this model, at-risk students (identified 

as clusters 0, 2, and 4 in prior classification analysis) with high predictive performance 

(greater than 90% accurate). For example, the largest at-risk group was classified as 

cluster 0, which comprised 45.1% of the samples and is associated with levels of 

activities across all features. Furthermore, prediction accuracy was high (.97) for this 

group. Thus, the decision trees, like K-Means clustering, can provide more fine-grain 

explanations by identifying specific levels of features to classify at-risk students. Specific 

interventions can be planned to improve student interactions in features with lower 

activities.  

Implications of Explainable Results. This section discusses the explainability 

analysis results and their applications to educational practice. Topics discussed include 

identifying key explanations about at-risk students activity behaviors provided by the 

XAI models as well as benefits that can be leveraged. In addition, recommendations are 

provided on how these explanations can be used by instructors, students, and/or 

university administrators.   

What do the models explain? The explainability analysis compared and 

contrasted the interpretability of stack-based GP, tree-based GP, and Decision Trees 

models trained from clustered labels of prior classification analysis. The objective was to 

determine how the models can explain student at-risk behaviors based on logged LMS 

activity (i.e., access frequency to discussion forums, module content, grade pages, and 

announcement pages). The results indicate that different models had different levels of 

explainability (i.e., complexity and ease of human understanding). 
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First, the analysis found that the stack-based GP exhibited the highest predictive 

performance but the poorest explainability. Although stack-based GP produced simple 

stack-based solutions, interpretability was not obvious due to the complexity of 

dimensional space transformations involved. The stack-based algorithm, known as 

M4GP, first transforms the feature space to a new space of different dimensionality 

before applying classification based on nearest centroid and Mahalanobis distance similar 

to k-Means Clustering (La Cava et al., 2019). As a result, the model produced is a stack 

comprised of synthetic features mapped to an unfamiliar dimensional space. Although the 

solutions are simple and contain features as variable elements, the mapping back to the 

original feature space is not obvious nor trivial. What can be inferred is that the synthetic 

features, which may contain activity features, contribute to new synthetic characteristics, 

that must be transformed back for meaningful insight. Unfortunately, there is a lack of 

literature research on explaining or describing stack-based genetic programming. Most 

studies identified stack-based GP as a simple and interpretable model but did not provide 

practical explanations, examples, or visualizations (La Cava et al., 2017, 2019; Perkis, 

1994; Stoffel & Spector, 1996). Therefore, the explainability of stack-based GP is 

assessed as poor. 

On the other hand, the GPLearn binary tree classifier provided better explanations 

as the output model was a single binary tree that could be represented as a first-order 

algebraic equation. The model was simply an equation that contained the features 

(discussion and module activity) as variables forming a mathematical relationship that 

could be analyzed and interpreted.  Whether a sample was labeled at-risk or not depends 

on the outputs of equation (7), where low values of discussion and module activity would 
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result in mappings to an at-risk group via a sigmoid function. Conversely, high values of 

discussion and module activity would result in a not-at-risk mapping. However, there was 

still limited practical explainability as there was little insight for mapping results back to 

the original at-risk groups discovered during prior classification analysis. 

Surprisingly, decision trees were found to have the best explainable results. 

Initially, decision tree models developed were accurate but overly complex as there were 

too many nodes for practical interpretation. It was later discovered that by limiting a max 

depth, the explainability of the tree could be improved. Optimal values were found for 

both binary and multi-class decision trees. Furthermore, the Scikit-Learn graphviz 

package provided additional formatting capabilities along with interpretable metrics such 

as color coding by class type, a Gini and probability metric to assess node-level 

classification accuracy, and sample partition. The color intensity of each node also maps 

to the classification accuracy demonstrated by each node. 

As a result, various types of behaviors could be explained by traversing the tree 

from the root node to the leaf node and examining the Boolean expression results to 

characterize at-risk behaviors. Leaf nodes represent the final classified groups where the 

traversed Boolean expressions describe feature traits (i.e., whether particular features 

were above or below a threshold). Hence, formative feedback could be provided to 

instructors and students to explain why they were identified as at-risk. The model not 

only demonstrated consistency with prior K-Means Classification clusters but also 

revealed new groups and insights that could be accurately predicted. The Gini metric, 

color intensity, and partition probability also helped to provide a measure for confidence 
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and trustworthiness of predictions. Using these metrics, one could ignore inaccurate 

nodes of the model while making effective use of the more accurate predictions. 

What are key XAI benefits found? So, what are the real benefits that XAI can 

offer? In this study, XAI was implemented as a post-hoc analysis of existing data in an 

LMS system. The research provided a proof of concept to explore and investigate what 

could be possible. In practice, these models could be implemented in a real-time 

environment to provide automated analysis, alerting, and intervention guidance to 

students, instructors, and administrators with live actionable data. This saves instructors 

and institutions time and effort from manual analysis and unguided interventions. As an 

early warning system, XAI may be able to detect early signs of at-risk students that were 

not possible with late periodic assessments. This research found that at-risk behaviors can 

be predicted with very high accuracy in the early weeks of instruction, which is a critical 

time for interventions. 

This research also demonstrated how different XAI models, such as stack-based 

GP, tree-based GP, and decision trees exhibited different levels of explainability. 

Unfortunately, GP explainability is still limiting due to the lack of literature and 

supporting visualization technologies. In contrast, decision trees had extensive 

visualization support from the Scikit-Learn python application programming interface 

that greatly enhanced explainability. This research discovered that default settings of 

decision trees could result in overly complex models. With some tuning of max depth 

functions, highly accurate and explainable models could be achieved. The results of the 

explainability analysis show that decision trees are superior in explainability. When used 

to train on prior labeling, decision trees can be valuable post-hoc explainable techniques 
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for describing complex models. This study demonstrated how XAI models found 

consistency with prior K-Means analysis. 

Finally, another key benefit that XAI offers is the ability to improve the trust, 

adoption, and use of emerging AI (Adadi & Berrada, 2018; Crowe et al., 2017; Sun & 

Medaglia, 2019). Without proper reasoning behind at-risk predictions, instructors may 

hesitate to act on alerts or indications. Without information feedback, they are left to 

investigate the underlying reasons, which can take extensive time and effort assuming the 

predictions are accurate. Additional explanations can provide confidence for decision-

making. For example, the decision tree’s explainable metrics such as Gini index, 

probability proportions, and color-coded intensities help provide confidence metrics for 

different parts of the model, which are easy to interpret and use for practical applications. 

This information, when provided to students and teachers, can provide context and 

awareness that is critical for decision-making (Alonso & Casalino, 2019). At-risk 

indications with lower accuracy (e.g., high Gini value or low classification accuracy) may 

be ignored while those with higher accuracy could be addressed. 

Key Takeaways for Educational Stakeholders. From the K-Means Clustering 

analysis, at-risk students were found to exhibit lower levels of LMS interaction across all 

features, such as discussions, modules, grades, and announcements. Of those, discussions 

and module activities were found to have the highest correlations to final grades. This 

was later confirmed by the explainability analysis where consistent findings were found 

by the XAI models’ at-risk explanations. These results are further supported by the 

developed Theory-Guided Feature Selection (TGFS) model, which identifies discussions 

and modules as important factors related to Social Learning and Fink’s Significant 
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Learning foundational knowledge concepts. Finally, these findings were also consistent 

with the XAI and EDM literature review, which identified the significance of student 

LMS activity in predicting and explaining student outcomes (Chamizo-Gonzalez et al., 

2015; Xing et al., 2015). This triangulation of results provides robust support that: (1) 

student LMS activity can impact student outcomes and (2) student activity can be used to 

predict and explain at-risk behaviors. 

These findings can prove useful for instructors, students, and university 

administrators.  For instance, instructors can leverage this information to place additional 

focus on tracking and engaging students and their discussion forums and module 

interaction early in the semester. Those with a lack of interaction across all LMS 

functions such as discussion forums, module content, grade pages, and announcement are 

key indicators of at-risk students. The result of the study shows that even an increase in 

any single LMS interaction can promote an increase in learning outcomes. The institution 

can also create programs to promote early student interaction by providing preliminary 

training, resources, or material to raise awareness of the importance of early interaction, 

collaboration, and participation. This help prepare learners by identifying the importance 

of participation, which has been shown to promote their learning success. 

Institution administrators can implement supporting technologies that facilitate 

and promote student discussion engagement and content participation within the LMS 

environment. Examples include better discussion forums with collaborative real-time 

capabilities. New technologies may increase interest and student engagement. In addition, 

administrators could work with institution instructional designers to implement an early 

warning system that implements XAI models to provide at-risk indications with 
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explainable feedback, such as reasons behind those predictions as well as a confidence 

measure of the associate predictions (i.e., how likely the predictions are true). This allows 

for both instructors and students to use those predictions based on their judgment and 

decision-making processes. Over time, this will help not only improve student outcomes, 

but also trust and adoption of XAI systems for educational use. 

Chapter Summary 

This chapter presented the results of the XAI EDM study, which included a 

description of the EDM process, theory-guided feature selection, and various analyses 

performed to answer the four key research questions. 

RQ1 Findings 

After excluding outliers and correcting for traditional learning biases, final grades 

were found to have a modest (r = .22 and .21 respectively) positive correlation to 

discussion**, module**, and grade** activity and a weak (r = .09) correlation to 

announcement** page access frequency (** = p < .001). All other feature correlations 

were statistically insignificant and were excluded for subsequent analysis. 

Thus, for online learners, teachers and instructors can promote knowledge and 

social learning interactions by tracking, monitoring, and soliciting student activity 

associated with discussions and module access. Furthermore, instructors can promote 

student engagement by providing more frequent assessments and notifications. By 

playing an active role in instruction, teachers can improve student activity, which was 

shown to associate with higher learning outcomes. 
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RQ2 Findings 

There were 6 identifiable groups with differing levels of at-risk patterns. The at-

risk group (ILP) had a mean final grade of 0.37 (±.18SD) and exhibited very low activity 

for all features. The mean final grade was significantly lower than other groups, H(4) = -

954 to -1120, p < .001, and r = -.72 to -.83. Four groups represented Good Performers 

and were associated with higher levels of individual activities (AAGP, GAGP, DAGP, 

and MAGP). There was one confounding group (IHP) characterized as having a high 

final grade with low activity across all features, which was attributed to a large 

proportion of the sample corresponding to students who enrolled in traditional learning. 

This group was excluded to remove traditional course biases where students were not 

required to interact with the LMS environment. Removing this group also improved the 

correlation results identified in RQ1. 

Based on RQ2 findings, at-risk learners are attributed to those who lack student 

activity across all features. For online teachers, the lack of engagement and participation 

should be an early predictor of success, especially in the early weeks when interventions 

could be the most effective. Interventions employed can include frequent communication 

and interaction with underactive students. 

RQ3 Findings 

There were 5 predictable at-risk groups. Three of the groups were low performers 

(ILP, GALP, and AALP) who were associated with the following conditions: all lower 

activities; all low activities except for grade access; all low activities except for 

announcement activity. The remaining two groups (DAHP and GAGP) were 

characterized as high and good performers who were associated with higher discussion 
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and higher module activities. These results were consistent with the results for RQ1. 

Prediction performance for all models was high and increased with time. GP and MLP 

were the most accurate models. 

Based on RQ3 findings, discussion and module access were associated with 

higher learning outcomes whereas grade and announcement activities were associated 

with lower learning outcomes. This could be attributed to the fact that there is a large 

ratio of traditional in-classroom students that were not excluded. Unfortunately, 

classification without final grade as a feature did not reveal the confounding group 

(higher performer with lower activity), which needed to be identified for exclusion. 

Similar to RQ3 findings, lower performers are associated with lower activities 

across all features and higher performers were associated with higher levels of discussion 

and module access. As such, online teachers can aim to monitor, track, and improve the 

discussion and module activity to promote success. In addition, teachers should spend 

more time engaging students who have little to no interaction across all features. 

RQ4 Findings 

The prediction performance evaluation comparing various AI/ML models found 

that stack-based GP performed comparably to MLP and superior to other models. 

Although stack-based GP is simple, mapping its components back to the features is non-

trivial and may be difficult to explain. Comparative explainability analysis between 

stack-based GP (M4GP), tree-based binary GP (GPLearn), and decision tree (binary and 

multi-classifier) revealed that stack-based GP had the poorest explainability but best 

performance. Decision trees with default settings result in accurate but highly complex 

and non-explainable models. When modified to limit max depth, Decision trees retained 
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high accuracy with a much simpler and more explainable model. Leveraging Scikit-

Learn’s graphviz package for decision tree resulted in superior explainability. Future 

work is needed to prove the explainability of stack-based GP. 
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CHAPTER V 

Validity and Reliability 

Introduction 

This chapter provides a discussion on the validity and reliability of the current 

research. Validity is concerned with accuracy and credibility whereas reliability is 

concerned with repeatability and consistency of the research (L. Cohen et al., 2018). 

Furthermore, Cohen et al. (2018) emphasized that “reliability is a necessary but 

insufficient condition for validity in research” (p. 245). To ensure quality and worthwhile 

research, both validity and reliability must be ensured as much as practically feasible 

within the constraints of time, technology, and resources. 

How are validity and reliability addressed? For quantitative research, Cohen et al. 

(2018 cited Shadish et al. 2002) recommend addressing threats to internal validity, such 

as low statistical power, violation of assumptions, measurement error, limited data range, 

variation in treatment procedures, extraneous variables, variability in outcome measures, 

statistical error, and false assumption of causality. Concerning external validity, the 

research should address the generalizability of results based on the population 

representativeness of the data sample (L. Cohen et al., 2018, p. 254). Finally, reliability 

can be “achieved, in part, by a thorough literature review of the state of the field and how 

it has been researched to date” (L. Cohen et al., 2018, p. 181). 

This research implements many of Cohen et al.’s (L. Cohen et al., 2018, p. 201) 

for improving the validity and reliability of the current research, which are summarized in 

the proceeding sections. In addition, limitations and associated mitigation strategies are 

identified concerning specific threats to internal validity. 
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Literature and Theoretical Supports 

In sections Statement of the Problem, Significance of Study, and Literature 

Research, evidence was provided for the importance of explainable artificial intelligence 

and its potential uses in predicting at-risk students for educational improvement purposes. 

The literature review identified both benefits and challenges revolving around XAI in 

education, which provided the motivation and guidance for the study. Furthermore, meta-

analysis research found provided triangulation of results that help identify research 

consensus as well as non-findings. 

Sample Size 

A primary benefit of EDM is the ability to obtain large sample sizes thanks to 

automation and tooling. This study was able to collect the data from the entire population 

for a period of interest, which enabled sufficient random sampling of a statistically 

representative sample size for mean difference testing. Furthermore, the determination of 

sample size was guided by an a priori power analysis. 

Power Analysis 

Validity of sample size was ensured by conducting an ad prior power analysis, 

which was described in the Methods section of this study. The results of the power 

analysis indicated that the minimum sample size required to detect small effects was 368 

across test types, assuming equal group size, power of 0.8, and alpha of 0.05. For this 

study, a total of 58,924 samples were collected from the target population, which 

represent unique pairs of student/course enrollments (3,043 courses and 23,862 students). 

Groups of equal sample size (N=500) were randomly selected for post-hoc statistical tests 
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(e.g., correlation and difference testing), which should provide sufficient power to detect 

small or greater differences. 

Generalizability 

Since the scope of this study targets online learners from a large four-year dual-

mode higher education institution, generalizations are limited to those of similar size, 

setting, and demographic makeup. Differences in race, gender, background, and 

instruction delivery could introduce variances across institutions. Additionally, the 

consistency and repeatability of this study may be limited to institutions delivering LMS 

like Blackboard. Unfortunately, reliability remains difficult for educational studies as 

populations from different institutions are inherently different and challenging to control. 

Missing Data 

Missing data can negatively impact the accuracy and precision of analysis, as well 

as invalidate tests that assume no missing data (L. Cohen et al., 2018). This study 

addresses missing data by identifying instances encountered as well as associated 

mitigations or decisions made. 

During the importing of the raw activity table data into the local SQL database, a 

parsing error resulted in a loss of approximately 1.54% (70,724 of 4.58 million) of the 

first week’s records, or approximately 0.029% (70,724 of 243.1 million) of the 

cumulative 15-week records. Since the amount of data lost is negligible, there is minimal 

impact on the study. In addition, the erratic nature of the associated data was out of the 

researcher’s control. 

Missing data was also encountered during the data processing stage in which null 

values were present for both activity features and final grades. For activity features, 
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missing data equates to a lack of logged activity, and are addressed by setting their values 

equal to zero. For final grades, missing data corresponds to the lack of entry by the 

instructor, which implies a withdrawal of the student from the course. As such, assigning 

the missing final grade to a score of zero was insufficient. To address this, an additional 

labeled column was created to differentiate between those with and without final grades 

(e.g., complete, and incomplete status respectively). 

Inconsistent Performance Assessment Data 

Initially, this study aimed to collect student performance data (e.g., quizzes, 

assignments, and exams) as features to enhance clustering and prediction accuracy. 

Student performance data is highly desired as it has been thoroughly researched to 

improve at-risk student prediction accuracies (see references in Table 4 for the 

“performance” feature category for support). However, the researcher observed the 

inconsistent implementation of graded activities and assessments across the 3,043 courses 

analyzed. Although many courses had assignments, quizzes, and mid/final exams, the 

exact time for assignments and quizzes were difficult to align, aggregate, and compare. 

As such, student performance as a feature was excluded from the study. 

Although excluding student performance features may limit model performance 

and follow-on clustering and classification analysis, this research contributes to the lack 

of literature on exploring activity-only features in EDM for at-risk student prediction. 

From Table 3, only Xing et al.’s (2015) study investigated the impact of using activity-

only features. Their work provided the preliminary groundwork for this research, such as 

leveraging a theory-guided genetic programming model using student interaction as a 

feature. They demonstrated that this approach outperformed traditional models in both 
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prediction and explainability (Xing et al., 2015).  However, their study was limited to a 

single math course of 122 students with data collected from learning software as opposed 

to an LMS system. Therefore, this study extends their work to a wider population and 

larger sample size, which improves the robustness, reliability, and generalizability of XAI 

research. 

Chapter Summary 

This chapter provided a brief definition of validity and reliability as well as 

recommendations from the literature to address associated threats that could impact the 

credibility and repeatability of this research. Specific threats to validity and reliability 

were also identified in addition to discussing the associated decisions and actions taken to 

mitigate such concerns. In summary, this research addressed various validity and 

reliability where possible within the scope and constraints of the study. 
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CHAPTER VII 

Future Work 

Introduction 

XAI Application Design 

Future studies can explore the design, development, and practical implementation 

of an XAI mobile learning system. Figure 11 proposes a conceptual design of the XAI 

System, which leverages web and cloud technologies to enhance accessibility. The XAI 

system comprises the Application, Web, and Database Server. 

Figure 55 

Chart Illustrating the XAI System Architecture Design 

 

 

The Application Server is responsible for executing functions such as educational 

data mining and from the LMS, reading from and writing to the Database Server, and 

responding to Web Server commands. The Application Server also contains the 
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predictive model and at-risk detection logic. The Web Server acts as a front-end graphical 

user interface between the User (students, educators, and administrators) and the 

Application/Database Servers. 

The Web interface will be accessible to any device with a web browser and will 

present reports as well as receive information and commands from the users. At-risk 

alerts are also provided via the Web Server interface, which is retrieved from the 

Database Server. 

The Database server stores data that is processed, formatted, and sanitized by the 

Application Server, which includes student grades, LMS interaction metrics, and Web 

Server interaction metrics. The Database server includes at-risk prediction alerts and 

associated formative feedback, which can be retrieved and formatted by the Web Server 

and presented to the User-based on their interaction and page requests. 

Unlike the current study, which investigates the predictability and explainability 

of XAI systems, future studies using the XAI systems in a live environment can explore 

the efficacy and effectiveness of XAI systems in improving student outcomes and 

retention. 

Performance Features 

A limitation of this study was the lack of consistent performance metrics across 

courses and over time. This made it difficult to obtain a representative sample for the 

population of students in the institution. Since this study aimed to explore the wider 

population, performance features were excluded. As a result, predictive power and at-risk 

resolution were reduced due. Future studies can reduce the scope of the target population 
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to investigate the predictability and explainability of XAI systems that include 

assessment features, such as assignments, quizzes, and/or exam scores. 

Intrinsic Features 

Although EDM allows for the collection of large sample sizes, the data collected 

is limited to what is available and logged in the LMS database. This limits the collection 

of other features such as intrinsic factors, which have been thoroughly researched and 

determined as critical elements influencing student performance. Cerasoli et al. (2014) 

conducted a comprehensive meta-analysis and found consensus that intrinsic motivation 

is a medium to strong predictor of performance. Bandura’s triadic reciprocity within his 

Social Learning Theory framework identifies the reciprocal interaction between personal 

factors, behavior, and the environment (Nabavi, 2012). Bandura’s also identified the 

importance of perceived self-efficacy (i.e., belief in one’s ability) as a “key factor in a 

generative system of human competence” (Bandura, 1977a, p. 197). When used as 

features, intrinsic factors such as motivation and self-efficacy may provide additional 

explanation and predictive power to student behavior, which can be measured by logged 

activity. Future studies can explore these topics by implementing periodic assessments or 

surveys within the LMS to solicit student intrinsic factors. 

Chapter Summary 

This chapter provided directions for future research, such as the implementation 

of a proposed XAI Application System for exploring the efficacy of at-risk student 

prediction and explanations. The research focuses on adding performance-based features 

to the current research, but a smaller scope was recommended to improve prediction 

performance and at-risk characterization. Finally, intrinsic features are another important 
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topic for future research that can incorporate key factors influencing student beliefs, 

behaviors, and performance in the context of environmental interactions. 
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APPENDIX 

Analysis Scripts 

/data 

486K Jun 16 00:11  act01.csv.gz 

297K Jun 16 00:11  act02.csv.gz 

330K Jun 16 00:11  act03.csv.gz 

328K Jun 16 00:11  act04.csv.gz 

327K Jun 16 00:11  act05.csv.gz 

310K Jun 16 00:11  act06.csv.gz 

310K Jun 16 00:11  act07.csv.gz 

287K Jun 16 00:11  act08.csv.gz 

296K Jun 16 00:11  act09.csv.gz 

261K Jun 16 00:11  act10.csv.gz 

213K Jun 16 00:11  act11.csv.gz 

175K Jun 16 00:11  act12.csv.gz 

166K Jun 16 00:11  act13.csv.gz 

287K Jun 16 00:11  act14.csv.gz 

280K Jun 16 00:11  act15.csv.gz 

486K Jun 16 00:11  cumulative_act01.csv.gz 

525K Jun 16 00:11  cumulative_act02.csv.gz 

582K Jun 16 00:11  cumulative_act03.csv.gz 

630K Jun 16 00:11  cumulative_act04.csv.gz 

665K Jun 16 00:11  cumulative_act05.csv.gz 

693K Jun 16 00:11  cumulative_act06.csv.gz 

702K Jun 16 00:11  cumulative_act07.csv.gz 

708K Jun 16 00:11  cumulative_act08.csv.gz 

713K Jun 16 00:11  cumulative_act09.csv.gz 

716K Jun 16 00:11  cumulative_act10.csv.gz 

719K Jun 16 00:11  cumulative_act11.csv.gz 

722K Jun 16 00:11  cumulative_act12.csv.gz 

725K Jun 16 00:11  cumulative_act13.csv.gz 

745K Jun 16 00:11  cumulative_act14.csv.gz 

763K Jun 17 02:57  cumulative_act15.csv.gz 

 94K Jun 16 00:11  cumulative_act15_clustered.csv.gz 

 11M Jun 16 00:28  data-1624239985814_course_user.csv.gz 

9.1M Jun 16 00:28  data-1624240128001_course_user.csv.gz 

1.5M Jun 16 00:28  data-1624240236386_course_user.csv.gz 

 27M Jun 16 00:30  gradebook_grade_calc_210223_1108.csv.gz 

 20M Jun 16 00:30  gradebook_main_data-1624482074159.csv.gz 

 16M Jun 16 00:11  schema.zip 
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Code for Exploratory Clustering (RQ1 & RQ2) 

/src/cluster_analysis_cumulative_act15_exploratory.py 

#!/usr/bin/env python 

# coding: utf-8 

 

# # Cluster Analysis 

 

# ## Imports 

 

# In[1]: 

 

# Datasets 

import pandas as pd 

import numpy as np 

 

# sklearn for clustering analysis 

from sklearn.cluster import KMeans 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.pipeline import Pipeline 

from sklearn.datasets import make_blobs 

from sklearn.metrics import silhouette_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import RobustScaler 

from sklearn.preprocessing import Normalizer 

from sklearn.preprocessing import MinMaxScaler 

 

# scipy 

from scipy.stats import pearsonr 

from scipy.io import arff   # for working with Weka 

 

# Kneed imports 

from kneed import KneeLocator 

 

# Data Visualizations 

import matplotlib.pyplot as plt 

import matplotlib as mpl 

from matplotlib import colors 

import seaborn as sns 

from ellyn import ellyn 

 

# In[2]: 
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rCuffOff = 0.6 

alpha = 0.05 

 

# ## Import Data 

 

# In[3]: 

 

from pathlib import Path 

df = pd.read_csv(Path("../data/cumulative_act15.csv.gz")) 

len(df) 

 

# ## Feature Exclusion 

# - Exclude irrelevant features 

# - Exclude features with p > .05 

# - Exclude redundant features 

# - Exclude outliers 

 

# In[4]: 

 

# exclude irrelevant features 

df = df.drop(columns=['course','student']) 

len(df) 

 

# In[5]: 

 

pvalue = df.corr(method=lambda x, y: pearsonr(x, y)[1]) - 

np.eye(len(df.columns)) 

alphaMax = alpha 

mask = np.zeros_like(pvalue) 

mask[np.triu_indices_from(mask)] = True 

with sns.axes_style("white"): 

    f, ax = plt.subplots(figsize=(7, 5)) 

    ax = sns.heatmap(pvalue, mask=mask, square=True, linewidths=.01, 

vmax=alphaMax) 

 

# In[6]: 
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# exclude insignificantly correlated features 

col = [i for i in pvalue.columns if pvalue[i].final_grade > alphaMax] 

df = df.drop(columns=col) 

print("Excluding features: " + str(col)) 

len(df) 

 

# In[7]: 

 

corr = abs(df.corr(method='spearman')) 

corrMax = rCuffOff 

mask = np.zeros_like(corr) 

mask[np.triu_indices_from(mask)] = True 

with sns.axes_style("white"): 

    f, ax = plt.subplots(figsize=(7, 5)) 

    ax = sns.heatmap(corr, mask=mask, vmin=0, vmax=corrMax, square=True, 

linewidths=.01) 

 

# In[8]: 

 

# Exclude highly correlated and missing values 

def excludeHighlyCorrelatedAndMissingValues(df, r): 

    temp = [] 

    corr = abs(df.corr(method='spearman')) 

    for y in corr.columns: 

        for x in corr.index.values: 

            if(x != y): 

                c = corr[y][x] 

                if(c > r): 

                    if [y,x] not in temp: 

                        temp.append([x,y]) 

                        print("Highly correlated pair found: " + 

str([x,y])) 

 

    if(len(temp) > 0): 

        drop = [] 

        for i in temp: 

            a = i[0] 

            b = i[1] 

            dA = df.drop(columns=a).dropna() 

            dB = df.drop(columns=b).dropna() 

            print("Size after dropping " + a + ": " + str(dA.size)) 

            print("Size after dropping " + b + ": " + str(dB.size)) 
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            if(dA.size > dB.size): 

                print("\tDropping " + a) 

                drop.append(a) 

            else: 

                print("\tDropping " + b) 

                drop.append(b) 

        for i in drop: 

            df = df.drop(columns=i) 

        return df.dropna() 

    else: 

        return df.dropna() 

 

df = excludeHighlyCorrelatedAndMissingValues(df, corrMax) 

 

# In[9]: 

 

df 

 

# In[10]: 

 

fig, ax1 = plt.subplots() 

ax1.set_xlabel('Feature') 

ax1.set_ylabel('Activity Frequency') 

ax1.set_title('Activity Summary (N=' + str(len(df)) + ')') 

 

temp = df.drop(columns=['final_grade']) 

ax1.boxplot(temp, labels=temp.columns) 

 

temp2 = df['final_grade'] 

ax2 = ax1.twinx() 

ax2.boxplot(temp2, labels=['final_grade'], 

positions=[len(temp.columns)+1]) 

 

ax2.set_ylabel('Final Grade', color='purple') 

ax2.tick_params('y',colors='purple') 

 

# ask matplotlib for the plotted objects and their labels 

lines, labels = ax1.get_legend_handles_labels() 

lines2, labels2 = ax2.get_legend_handles_labels() 
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# In[11]: 

 

# Exclude outliers 

def iqr_outliers(df, feature, factor): 

    Q1= df[feature].quantile(0.25) 

    Q3 = df[feature].quantile(0.75) 

    IQR = Q3 - Q1 

    upper_limit = Q3 + factor * IQR 

    lower_limit = Q1 - factor * IQR 

    return upper_limit, lower_limit 

 

def std_outliers(df, feature, factor): 

    upper_limit = df[feature].mean() + factor * df[feature].std() 

    lower_limit = df[feature].mean() - factor * df[feature].std() 

    return upper_limit, lower_limit 

 

# lastSize = 0 

# while lastSize != len(df): 

#     lastSize = len(df) 

for c in df.columns: 

    upper, lower = iqr_outliers(df, c, 1.5) 

    df = df[(df[c] > lower) & (df[c] < upper)] 

 

# In[12]: 

 

len(df) 

 

# In[13]: 

 

df 

 

# In[14]: 

 

fig, ax1 = plt.subplots() 

ax1.set_xlabel('Feature') 

ax1.set_ylabel('Activity Frequency') 

ax1.set_title('Activity Summary (N=' + str(len(df)) + ')') 

 

temp = df.drop(columns=['final_grade']) 
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ax1.boxplot(temp, labels=temp.columns) 

 

temp2 = df['final_grade'] 

ax2 = ax1.twinx() 

ax2.boxplot(temp2, labels=['final_grade'], 

positions=[len(temp.columns)+1]) 

 

ax2.set_ylabel('Final Grade', color='purple') 

ax2.tick_params('y',colors='purple') 

 

# ask matplotlib for the plotted objects and their labels 

lines, labels = ax1.get_legend_handles_labels() 

lines2, labels2 = ax2.get_legend_handles_labels() 

 

# In[15]: 

 

# Linear scalers 

def scaleMinMax(df): 

    from sklearn.preprocessing import MinMaxScaler 

    scaler = MinMaxScaler() 

    return pd.DataFrame(scaler.fit_transform(df), columns=df.columns) 

 

def scaleRobust(df): 

    from sklearn.preprocessing import RobustScaler 

    scaler = RobustScaler() 

    return pd.DataFrame(scaler.fit_transform(df), columns=df.columns) 

 

def scaleNormalizer(df): 

    from sklearn.preprocessing import Normalizer 

    scaler = Normalizer() 

    return pd.DataFrame(scaler.fit_transform(df), columns=df.columns) 

 

# Nonlinear transformers 

def transformQuantile(df): 

    from sklearn.preprocessing import QuantileTransformer 

    qt = QuantileTransformer() 

    return pd.DataFrame(qt.fit_transform(df), columns=df.columns) 

 

def transformPower(df): 

    from sklearn.preprocessing import PowerTransformer 

    pt = PowerTransformer() 

    return pd.DataFrame(pt.fit_transform(df), columns=df.columns) 
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# Scale/Transform 

df = scaleMinMax(df) 

 

# In[16]: 

 

df 

 

# ## Cluster Analysis 

 

# In[17]: 

 

def clusterKMeans(df): 

    kmeans_kwargs = { 

        "init":"k-means++", 

        "n_init": 1, 

        "max_iter": 500, 

        "random_state": 0 

    } 

 

    sse = [] 

    N = 21 

    for k in range(1,N): 

        kmeans = KMeans(n_clusters=k, **kmeans_kwargs) 

        kmeans.fit(df.drop(columns='final_grade')) 

        sse.append(kmeans.inertia_) 

    k1 = KneeLocator(range(1,N), sse, curve="convex", 

direction="decreasing") 

 

    plt.style.use("fivethirtyeight") 

    plt.plot(range(1,N), sse, 'ko-', label='SSE (Week 1-15 Cumulative 

Activity)') 

    plt.xticks(range(1,N)) 

    plt.xlabel("Clusters (K)") 

    plt.ylabel("SSE") 

    plt.title('k-Means SSE (Exploratory)') 

    k = k1.elbow 

    plt.plot([k], sse[k-1], 'X', ms=10, color='red', label='Elbow Point') 

    plt.legend() 

    plt.show() 

 

    print("Cluster size: " + str(k1.elbow)) 
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    kmeans = KMeans(n_clusters=k1.elbow, **kmeans_kwargs) 

    kmeans.fit(df.drop(columns='final_grade')) 

    return df.assign(cluster=kmeans.labels_) 

 

df = clusterKMeans(df) 

df 

 

# In[18]: 

 

df['cluster'].unique() 

 

# In[19]: 

 

df.to_csv("../data/cumulative_act15_clustered.csv") 

 

# In[20]: 

 

df.cluster.nunique() 

 

# In[21]: 

 

fig, ax1 = plt.subplots() 

ax1.set_xlabel('Feature') 

ax1.set_ylabel('Activity Frequency') 

ax1.set_title('Activity Summary (N=' + str(len(df)) + ')') 

 

temp = df.drop(columns=['final_grade', 'cluster']) 

ax1.boxplot(temp, labels=temp.columns) 

 

temp2 = df['final_grade'] 

ax2 = ax1.twinx() 

ax2.boxplot(temp2, labels=['final_grade'], 

positions=[len(temp.columns)+1]) 

 

ax2.set_ylabel('Final Grade', color='purple') 

ax2.tick_params('y',colors='purple') 
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# ask matplotlib for the plotted objects and their labels 

lines, labels = ax1.get_legend_handles_labels() 

lines2, labels2 = ax2.get_legend_handles_labels() 

 

# g = sns.PairGrid(df, hue="cluster", palette='tab10') 

# g.map_diag(sns.kdeplot, linewidth=3, common_norm=False) 

# g.map_lower(sns.scatterplot) 

# g.map_upper(sns.kdeplot, alpha=0.9) 

# g.add_legend() 

 

# In[22]: 

 

means = df.groupby(['cluster']).mean() 

means 

 

# In[23]: 

 

std = df.groupby(['cluster']).std() 

std 

 

# In[24]: 

 

fig, ax1 = plt.subplots() 

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:'] 

ax1.set_title('K-Means Cluster Summary (Classification)') 

ax1.set_ylabel('Normalized Frequency') 

ax1.set_xlabel('Cluster') 

j = 0 

for i in df.drop(columns=['cluster','final_grade']).columns: 

    ax1.plot(means[i], marker[j], ms=10, label=i) 

    j += 1 

 

ax2 = ax1.twinx() 

ax2.plot(means['final_grade'], marker[j], color='purple', ms=10, 

label='final_grade') 

ax2.set_ylabel('Final Grade', color='purple') 

ax2.tick_params('y',colors='purple') 

ax2.grid(True,linestyle='--') 
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# ask matplotlib for the plotted objects and their labels 

lines, labels = ax1.get_legend_handles_labels() 

lines2, labels2 = ax2.get_legend_handles_labels() 

ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.15, 1.0), 

loc='upper left') 

 

# In[25]: 

 

from sklearn import metrics 

metrics.silhouette_score(df.drop(columns='cluster'), df['cluster'], 

metric='euclidean') 

 

# In[38]: 

 

def getAtRiskBooleansGroup(df, cutoff): 

    # get boolean array where at-risk students are defined as final grade 

is less than cutoff value 

    temp = 

pd.DataFrame(df.get(['cluster','final_grade'])).groupby(['cluster']) 

    at_risk_groups = [] 

    for i in range(0,len(temp)): 

        mean = temp.get_group(i).mean()['final_grade'] 

        if(mean < cutoff): 

            at_risk_groups.append(i) 

     

    y = np.zeros(len(df), dtype=bool) 

    for i in at_risk_groups: 

        y = y | (df['cluster'] == i) 

 

    return y 

 

# In[45]: 

 

def getAtRiskBooleansSamples(df, cutoff): 

    # get boolean array where at-risk students are defined as final grade 

is less than cutoff value 

    temp = 

pd.DataFrame(df.get(['cluster','final_grade'])).groupby(['cluster']) 

    mean = df['final_grade'].mean() 

    y = np.zeros(len(df), dtype=bool) 



178 

 

 

    y = df['final_grade'] < mean 

 

    return y 

 

# In[70]: 

 

def evaluateEllynGP(df, folder): 

    from ellyn import ellyn 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

    import statistics 

    model = ellyn( 

        g = 100, classification = True, class_m4gp = True, 

op_list=['n','v','+','-','*','/'], 

         # ================ Results and printing 

         resultspath= './' + folder, 

         #savename 

         savename="gp", 

         #print initial population 

         print_init_pop = True, 

         #print last population 

         print_last_pop = True, 

         #print best individual at end 

         print_best_ind = True) 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

    y_pred = cross_val_predict(model, x, y, cv=10) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

    return precision, recall, f1, len(y) 

 

results = evaluateEllynGP(df, 'gp_cumulative_act15_classification') 

print(results) 

 

# In[ ]: 

 

import statistics 

from sklearn.naive_bayes import GaussianNB 

from sklearn.model_selection import cross_val_predict 

from sklearn.metrics import classification_report 
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def evaluateNB(x, y): 

    gnb = GaussianNB() 

    y_pred = cross_val_predict(gnb, x, y, cv=10) 

    return classification_report(y, y_pred) 

x = df.drop(columns=['cluster', 'final_grade']) 

y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

feature_names = df.drop(columns=['cluster', 'final_grade']).columns 

c = evaluateNB(x, y) 

print(c) 

 

# In[ ]: 

 

df 

 

# In[ ]: 

 

def evaluateBinaryGP(df): 

    from gplearn.genetic import SymbolicClassifier 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import classification_report 

    import statistics 

    from sklearn import tree 

    import graphviz 

    x = df.drop(columns=['cluster', 'final_grade']) 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

    feature_names = df.drop(columns=['cluster', 'final_grade']).columns 

    gp = SymbolicClassifier(parsimony_coefficient=.01, 

                            feature_names=feature_names, 

                            random_state=1, verbose=True, 

                            generations=100) 

    gp.fit(x,y) 

    y_pred = cross_val_predict(gp, x, y, cv=10, verbose=True, n_jobs=15) 

 

    dot_data = gp._program.export_graphviz() 

     

    graph = graphviz.Source(dot_data) 

 

    return gp, y_pred, classification_report(y, y_pred), graph 

 

gp, y_pred, report, g = evaluateBinaryGP(df) 
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# In[ ]: 

 

print(report) 

print(gp._program) 

g 

 

# In[75]: 

 

import graphviz 

import statistics 

from pandas import DataFrame 

 

def evaluateDT(x:DataFrame,y:DataFrame): 

    from sklearn import tree 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

    from sklearn.tree import export_text 

 

    model = tree.DecisionTreeClassifier(max_depth=3) 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, 

n_jobs=15) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

 

    model.fit(x,y) 

 

    dot_data = tree.export_graphviz(model, out_file=None, 

feature_names=x.columns, class_names=['Not-At-Risk','At-Risk'], 

filled=True, rounded=True, special_characters=True, proportion=True, 

precision=2, rotate=True) 

    graph = graphviz.Source(dot_data) 

 

    return precision, recall, f1, len(y), graph 

x = df.drop(columns=['cluster', 'final_grade']) 

y = getAtRiskBooleansGroup(df, statistics.mean(df['final_grade'])) 

results = evaluateDT(x,y) 

print(results) 

results[4] 

 

# In[78]: 
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import graphviz 

import statistics 

from pandas import DataFrame 

 

def toStrArray(numArray): 

    return [str(i) for i in numArray] 

 

def evaluateDTMulti(df): 

    from sklearn import tree 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

    from sklearn.tree import export_text 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = df['cluster'].values 

    model = tree.DecisionTreeClassifier(max_depth=4) 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, 

n_jobs=15) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

 

    model.fit(x,y) 

 

    dot_data = tree.export_graphviz(model, out_file=None, 

feature_names=df.drop(columns=['cluster','final_grade']).columns, 

class_names=toStrArray(df['cluster'].unique()), filled=True, rounded=True, 

special_characters=True, proportion=True, precision=2, rotate=True) 

    graph = graphviz.Source(dot_data) 

 

    return precision, recall, f1, len(y), graph 

 

results = evaluateDTMulti(df) 

print(results) 

results[4] 

 

# In[ ]: 

 

import arff 

 

arff.dump('test.arff', df.values, relation='relation 

name',names=df.columns) 
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# In[ ]: 

 

def evaluateEllynGP(df, folder): 

    from ellyn import ellyn 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

    model = ellyn( 

        g = 100, classification = True, class_m4gp = True, 

op_list=['n','v','+','-','*','/','<','>','<=','>='], 

         # ================ Results and printing 

         resultspath= './' + folder, 

         #savename 

         savename="gp", 

         #print initial population 

         print_init_pop = True, 

         #print last population 

         print_last_pop = True, 

         #print best individual at end 

         print_best_ind = True) 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) #binary 

classification 

    y_pred = cross_val_predict(model, x, y, cv=10) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateEllynGP(df, 'wk_' + "{:02d}".format(i+1)) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 
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x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Genetic Programming, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Genetic Programming') 

 

  



184 

 

 

Code for Classification Analysis (RQ1 & RQ3) 

/src/cluster_analysis_cumulative_All.py 

#!/usr/bin/env python 

# coding: utf-8 

 

# # Cluster Analysis 

 

# ## Imports 

 

# In[1]: 

 

# Datasets 

import pandas as pd 

import numpy as np 

 

# sklearn for clustering analysis 

from sklearn.cluster import KMeans 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.pipeline import Pipeline 

from sklearn.datasets import make_blobs 

from sklearn.metrics import silhouette_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import RobustScaler 

from sklearn.preprocessing import Normalizer 

from sklearn.preprocessing import MinMaxScaler 

 

# scipy 

from scipy.stats import pearsonr 

from scipy.io import arff   # for working with Weka 

 

# Kneed imports 

from kneed import KneeLocator 

 

# Data Visualizations 

import matplotlib.pyplot as plt 

import matplotlib as mpl 

from matplotlib import colors 

import seaborn as sns 

 

# In[2]: 
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rCuffOff = 0.6 

alpha = 0.05 

 

# ## Import Data 

 

# In[3]: 

 

from pathlib import Path 

fname = 'cumulative_act' 

df = pd.read_csv(Path("../../_Data/act01.csv")) 

dfArray = [] 

dfArray.append(df) 

for i in range(2,16): 

    df = pd.read_csv(Path("../../_Data/" + fname + "{:02d}".format(i) + 

'.csv')) 

    dfArray.append(df) 

 

# In[4]: 

 

dfArray 

 

# ## Feature Exclusion 

# - Exclude irrelevant features 

# - Exclude features with p > .05 

# - Exclude redundant features 

# - Exclude outliers 

 

# In[5]: 

 

# exclude irrelevant features 

for i in range(0,len(dfArray)): 

    dfArray[i] = dfArray[i].drop(columns=['course','student']) 

 

# In[6]: 

 

dfArray 
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# In[7]: 

 

# exclude insignificantly correlated features 

for j in range(0, len(dfArray)): 

    pvalue = dfArray[j].corr(method=lambda x, y: pearsonr(x, y)[1]) - 

np.eye(len(dfArray[j].columns)) 

    alphaMax = alpha 

    col = [i for i in pvalue.columns if pvalue[i].final_grade > alphaMax] 

    dfArray[j] = dfArray[j].drop(columns=col) 

    print("Excluding features in Dataset " + str(j) + ": " + str(col)) 

 

# In[8]: 

 

# Exclude highly correlated and missing values 

def excludeHighlyCorrelatedAndMissingValues(df, r): 

    temp = [] 

    corr = abs(df.corr(method='spearman')) 

    for y in corr.columns: 

        for x in corr.index.values: 

            if(x != y): 

                c = corr[y][x] 

                if(c > r): 

                    if [y,x] not in temp: 

                        temp.append([x,y]) 

                        print("Highly correlated pair found: " + str([x,y])) 

 

    if(len(temp) > 0): 

        drop = [] 

        for i in temp: 

            a = i[0] 

            b = i[1] 

            dA = df.drop(columns=a).dropna() 

            dB = df.drop(columns=b).dropna() 

            print("Size after dropping " + a + ": " + str(dA.size)) 

            print("Size after dropping " + b + ": " + str(dB.size)) 

            if(dA.size > dB.size): 

                print("\tDropping " + a) 

                drop.append(a) 

            else: 

                print("\tDropping " + b) 

                drop.append(b) 

        for i in drop: 
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            df = df.drop(columns=i) 

        return df.dropna() 

    else: 

        return df.dropna() 

 

corrMax = rCuffOff 

for i in range(0, len(dfArray)): 

    print("Analyzing correlation in Dataset " + str(i) + " for exclusion.") 

    dfArray[i] = excludeHighlyCorrelatedAndMissingValues(dfArray[i], corrMax) 

 

# In[9]: 

 

# Exclude outliers 

def iqr_outliers(df, feature, factor): 

    Q1= df[feature].quantile(0.25) 

    Q3 = df[feature].quantile(0.75) 

    IQR = Q3 - Q1 

    upper_limit = Q3 + factor * IQR 

    lower_limit = Q1 - factor * IQR 

    return upper_limit, lower_limit 

 

def std_outliers(df, feature, factor): 

    upper_limit = df[feature].mean() + factor * df[feature].std() 

    lower_limit = df[feature].mean() - factor * df[feature].std() 

    return upper_limit, lower_limit 

 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    for c in df.columns: 

        upper, lower = iqr_outliers(df, c, 1.5) 

        df = df[(df[c] > lower) & (df[c] < upper)] 

    dfArray[i] = df 

 

# In[10]: 

 

# Linear scalers 

def scaleMinMax(df): 

    from sklearn.preprocessing import MinMaxScaler 

    scaler = MinMaxScaler() 

    return pd.DataFrame(scaler.fit_transform(df), columns=df.columns) 

 

# Scale/Transform 
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for i in range(0, len(dfArray)): 

    dfArray[i] = scaleMinMax(dfArray[i]) 

 

# In[11]: 

 

import statistics 

nArray = [len(x) for x in dfArray] 

print("mean: " + str(statistics.mean(nArray))) 

print("stdev: " + str(statistics.stdev(nArray))) 

 

# In[12]: 

 

sns.boxplot(nArray) 

 

# ## Cluster Analysis 

 

# In[13]: 

 

def clusterKMeans(df, N, dataSetLabel, lineType, markerType, ax): 

    kmeans_kwargs = { 

        "init":"k-means++", 

        "n_init": 1, 

        "max_iter": 500, 

        "random_state": 0 

    } 

 

    sse = [] 

    for k in range(1,N): 

        kmeans = KMeans(n_clusters=k, **kmeans_kwargs) 

        kmeans.fit(df.drop(columns='final_grade')) 

        sse.append(kmeans.inertia_) 

     

    ax.plot(range(1,N), sse, label=dataSetLabel, linewidth=2, 

linestyle=lineType, marker=markerType) 

    ax.legend() 

    ax.set_xticks(range(1,N)) 

 

    k1 = KneeLocator(range(1,N), sse, curve="convex", direction="decreasing") 

    print("Cluster size: " + str(k1.elbow)) 
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    kmeans = KMeans(n_clusters=k1.elbow, **kmeans_kwargs) 

    kmeans.fit(df.drop(columns='final_grade')) 

    return df.assign(cluster=kmeans.labels_) 

 

plt.style.use("fivethirtyeight") 

fig, ax = plt.subplots() 

ax.figure.set_figwidth(8) 

ax.figure.set_figheight(6) 

ax.set_xlabel("Clusters (K)") 

ax.set_ylabel("SSE") 

ax.set_title('K-Means SSE (Cumulative Weeks 1-15)') 

 

import itertools 

lineTypes = itertools.cycle(['solid', 'dotted', 'dashed', 'dashdot']) 

markerTypes = itertools.cycle(['o','v','^','<','>','s','P','*','X','D']) 

 

for i in range(0, len(dfArray)): 

    dfArray[i] = clusterKMeans(dfArray[i], 21, 'wk ' + str(i+1), 

next(lineTypes), next(markerTypes), ax) 

 

# In[14]: 

 

for i in range(0, len(dfArray)): 

    print("wk " + str(i+1) + " cluster size: " + 

str(dfArray[i].cluster.nunique())) 

 

# In[15]: 

 

for i in range(0,len(dfArray)): 

    print(str(i) + " : " + str(dfArray[i].groupby(['cluster']).mean())) 

 

# In[16]: 

 

std = dfArray[0].groupby(['cluster']).std() 

std 

 

# In[17]: 
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# global variables for performance comparisons 

f1Array = [] 

precisionArray = [] 

recallArray = [] 

f1Labels = [] 

 

# In[18]: 

 

def evaluateLR(df): 

    from sklearn.linear_model import LogisticRegression 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = df['cluster'].values 

    model = LogisticRegression(random_state=0) 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateLR(df) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 
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plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Logistic Regression, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Logistic Regression') 

 

# 7.6s 

 

# In[19]: 

 

def evaluateDT(df): 

    from sklearn import tree 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = df['cluster'].values 

    model = tree.DecisionTreeClassifier() 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateDT(df) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 
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mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Decision Tree, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('DecisionTree') 

 

# 1.4s 

 

# In[20]: 

 

from datetime import datetime 

dt = datetime.now() 

print(dt) 

 

# In[21]: 

 

def evaluateEllynGP(df, folder): 

    from ellyn import ellyn 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

    model = ellyn( 

        g = 100, classification = True, class_m4gp = True, 

op_list=['n','v','+','-','*','/','<','>','<=','>='], 

         # ================ Results and printing 

         resultspath= './' + folder, 

         #savename 

         savename="gp", 

         #print initial population 

         print_init_pop = True, 

         #print last population 

         print_last_pop = True, 

         #print best individual at end 

         print_best_ind = True) 
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    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = df['cluster'].values 

    y_pred = cross_val_predict(model, x, y, cv=10) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateEllynGP(df, 'wk_' + "{:02d}".format(i+1)) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Genetic Programming, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Genetic Programming') 

 

# 178m 45.5s 

 

# In[22]: 

 

def evaluateKNN(df): 

    from sklearn.neighbors import KNeighborsClassifier 
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    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = df['cluster'].values 

    model = KNeighborsClassifier(n_neighbors=3) 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateKNN(df) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (K-Nearest Neighbors, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('K-Nearest Neighbors') 

 

# 2.2s 

 



195 

 

 

# In[23]: 

 

def evaluateNB(x,y): 

    from sklearn.naive_bayes import GaussianNB 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

    model = GaussianNB() 

 

    y_pred = cross_val_predict(model, x, y, cv=10) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = df['cluster'].values 

    p, r, f, s = evaluateNB(x,y) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,len(precision)+1) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Naive Bayes, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Naive Bayes') 
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# 0.7s 

 

# In[24]: 

 

def evaluateSVM(df): 

  from sklearn import svm 

  from sklearn.model_selection import cross_val_predict 

  from sklearn.metrics import precision_recall_fscore_support 

 

  model = svm.SVC() 

 

  x = df.drop(columns=['cluster', 'final_grade']).values 

  y = df['cluster'].values 

  y_pred = cross_val_predict(model, x, y, cv=10, n_jobs=15) 

  precision, recall, f1, support = precision_recall_fscore_support(y, y_pred, 

average='macro') 

  return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

  df = dfArray[i] 

  p, r, f, s = evaluateSVM(df) 

  precision.append(p) 

  recall.append(r) 

  f1.append(f) 

  support.append(s) 

  clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Support Vector Machine, Cumulative Data)') 



197 

 

 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Support Vector Machine') 

 

# 3.9s 

 

# In[25]: 

 

def evaluateMLP(df, hlz): 

    from sklearn.neural_network import MLPClassifier 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

    model = MLPClassifier(solver='lbfgs', hidden_layer_sizes=hlz, 

random_state=0, max_iter=10000) 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = df['cluster'].values 

    y_pred = cross_val_predict(model, x, y, cv=10, n_jobs=15) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateMLP(df, (10,10)) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 
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plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Multi-layer Perceptron, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Multi-layer Perceptron') 

 

# 44.4s 

 

# In[26]: 

 

fig, ax = plt.subplots() 

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:'] 

ax.set_title('f1-Score') 

ax.set_ylabel('Score') 

ax.set_xlabel('Week') 

ax.figure.set_figwidth(8) 

ax.figure.set_figheight(5) 

 

j = 0 

cols = f1Labels 

for i in cols: 

    ax.plot(range(1, len(f1Array[j])+1), f1Array[j], marker[j], ms=10, 

label=i, linewidth=3) 

    j += 1 

 

plt.legend(loc='lower right') 

 

# In[27]: 

 

fig, ax = plt.subplots() 

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:'] 

ax.set_title('Precision') 

ax.set_ylabel('Score') 

ax.set_xlabel('Week') 

ax.figure.set_figwidth(8) 

ax.figure.set_figheight(5) 

 

j = 0 
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cols = f1Labels 

for i in cols: 

    ax.plot(range(1, len(precisionArray[j])+1), precisionArray[j], marker[j], 

ms=10, label=i, linewidth=3) 

    j += 1 

 

plt.legend(loc='lower right') 

 

# In[28]: 

 

fig, ax = plt.subplots() 

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:'] 

ax.set_title('Recall') 

ax.set_ylabel('Score') 

ax.set_xlabel('Week') 

ax.figure.set_figwidth(8) 

ax.figure.set_figheight(5) 

 

j = 0 

cols = f1Labels 

for i in cols: 

    ax.plot(range(1, len(recallArray[j])+1), recallArray[j], marker[j], ms=10, 

label=i, linewidth=3) 

    j += 1 

 

plt.legend(loc='lower right') 

 

# In[29]: 

 

meanF1 = [] 

meanPrecision = [] 

meanRecall = [] 

for i in f1Array: 

    meanF1.append(np.average(i)) 

 

for i in precisionArray: 

    meanPrecision.append(np.average(i)) 

 

for i in recallArray: 

    meanRecall.append(np.average(i)) 

 

results = { 
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    'Mean f1-Score':meanF1, 

    'Mean Precision':meanPrecision, 

    'Mean Recall':meanRecall, 

    'Model':f1Labels 

} 

 

perfDF = pd.DataFrame(results) 

 

perfDF.plot.bar(x='Model', ylim=[.94,1], title='Mean Performance Scores', 

ylabel='Score') 

plt.legend(loc='lower right') 

 

# In[30]: 

 

meanF1 
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Code for Binary Classification (RQ4) 

/src/cluster_analysis_cumulative_All_BinaryClassification.py 

#!/usr/bin/env python 

# coding: utf-8 

 

# # Cluster Analysis 

 

# ## Imports 

 

# In[1]: 

 

# Datasets 

import pandas as pd 

import numpy as np 

 

# sklearn for clustering analysis 

from sklearn.cluster import KMeans 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.pipeline import Pipeline 

from sklearn.datasets import make_blobs 

from sklearn.metrics import silhouette_score 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import RobustScaler 

from sklearn.preprocessing import Normalizer 

from sklearn.preprocessing import MinMaxScaler 

 

# scipy 

from scipy.stats import pearsonr 

from scipy.io import arff   # for working with Weka 

 

# Kneed imports 

from kneed import KneeLocator 

 

# Data Visualizations 

import matplotlib.pyplot as plt 

import matplotlib as mpl 

from matplotlib import colors 

import seaborn as sns 

 

# In[2]: 
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rCuffOff = 0.6 

alpha = 0.05 

 

# ## Import Data 

 

# In[7]: 

 

fname = 'cumulative_act' 

df = pd.read_csv("../data/act01.csv.gz") 

dfArray = [] 

dfArray.append(df) 

for i in range(2,16): 

    df = pd.read_csv("../data/" + fname + "{:02d}".format(i) + '.csv.gz') 

    dfArray.append(df) 

 

# In[8]: 

 

dfArray 

 

# ## Feature Exclusion 

# - Exclude irrelevant features 

# - Exclude features with p > .05 

# - Exclude redundant features 

# - Exclude outliers 

 

# In[9]: 

 

# exclude irrelevant features 

for i in range(0,len(dfArray)): 

    dfArray[i] = dfArray[i].drop(columns=['course','student']) 

 

# In[10]: 

 

dfArray 

 

# In[11]: 
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# exclude insignificantly correlated features 

for j in range(0, len(dfArray)): 

    pvalue = dfArray[j].corr(method=lambda x, y: pearsonr(x, y)[1]) - 

np.eye(len(dfArray[j].columns)) 

    alphaMax = alpha 

    col = [i for i in pvalue.columns if pvalue[i].final_grade > alphaMax] 

    dfArray[j] = dfArray[j].drop(columns=col) 

    print("Excluding features in Dataset " + str(j) + ": " + str(col)) 

 

# In[12]: 

 

# Exclude highly correlated and missing values 

def excludeHighlyCorrelatedAndMissingValues(df, r): 

    temp = [] 

    corr = abs(df.corr(method='spearman')) 

    for y in corr.columns: 

        for x in corr.index.values: 

            if(x != y): 

                c = corr[y][x] 

                if(c > r): 

                    if [y,x] not in temp: 

                        temp.append([x,y]) 

                        print("Highly correlated pair found: " + str([x,y])) 

 

    if(len(temp) > 0): 

        drop = [] 

        for i in temp: 

            a = i[0] 

            b = i[1] 

            dA = df.drop(columns=a).dropna() 

            dB = df.drop(columns=b).dropna() 

            print("Size after dropping " + a + ": " + str(dA.size)) 

            print("Size after dropping " + b + ": " + str(dB.size)) 

            if(dA.size > dB.size): 

                print("\tDropping " + a) 

                drop.append(a) 

            else: 

                print("\tDropping " + b) 

                drop.append(b) 

        for i in drop: 

            df = df.drop(columns=i) 

        return df.dropna() 

    else: 



204 

 

 

        return df.dropna() 

 

corrMax = rCuffOff 

for i in range(0, len(dfArray)): 

    print("Analyzing correlation in Dataset " + str(i) + " for exclusion.") 

    dfArray[i] = excludeHighlyCorrelatedAndMissingValues(dfArray[i], corrMax) 

 

# In[13]: 

 

# Exclude outliers 

def iqr_outliers(df, feature, factor): 

    Q1= df[feature].quantile(0.25) 

    Q3 = df[feature].quantile(0.75) 

    IQR = Q3 - Q1 

    upper_limit = Q3 + factor * IQR 

    lower_limit = Q1 - factor * IQR 

    return upper_limit, lower_limit 

 

def std_outliers(df, feature, factor): 

    upper_limit = df[feature].mean() + factor * df[feature].std() 

    lower_limit = df[feature].mean() - factor * df[feature].std() 

    return upper_limit, lower_limit 

 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    for c in df.columns: 

        upper, lower = iqr_outliers(df, c, 1.5) 

        df = df[(df[c] > lower) & (df[c] < upper)] 

    dfArray[i] = df 

 

# In[14]: 

 

# Linear scalers 

def scaleMinMax(df): 

    from sklearn.preprocessing import MinMaxScaler 

    scaler = MinMaxScaler() 

    return pd.DataFrame(scaler.fit_transform(df), columns=df.columns) 

 

# Scale/Transform 

for i in range(0, len(dfArray)): 

    dfArray[i] = scaleMinMax(dfArray[i]) 
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# In[15]: 

 

import statistics 

nArray = [len(x) for x in dfArray] 

print("mean: " + str(statistics.mean(nArray))) 

print("stdev: " + str(statistics.stdev(nArray))) 

 

# In[16]: 

 

sns.boxplot(nArray) 

 

# ## Cluster Analysis 

 

# In[17]: 

 

def clusterKMeans(df, N, dataSetLabel, lineType, markerType, ax): 

    kmeans_kwargs = { 

        "init":"k-means++", 

        "n_init": 1, 

        "max_iter": 500, 

        "random_state": 0 

    } 

 

    sse = [] 

    for k in range(1,N): 

        kmeans = KMeans(n_clusters=k, **kmeans_kwargs) 

        kmeans.fit(df.drop(columns='final_grade')) 

        sse.append(kmeans.inertia_) 

     

    ax.plot(range(1,N), sse, label=dataSetLabel, linewidth=2, 

linestyle=lineType, marker=markerType) 

    ax.legend() 

    ax.set_xticks(range(1,N)) 

 

    k1 = KneeLocator(range(1,N), sse, curve="convex", direction="decreasing") 

    print("Cluster size: " + str(k1.elbow)) 

 

    kmeans = KMeans(n_clusters=k1.elbow, **kmeans_kwargs) 

    kmeans.fit(df.drop(columns='final_grade')) 

    return df.assign(cluster=kmeans.labels_) 
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plt.style.use("fivethirtyeight") 

fig, ax = plt.subplots() 

ax.figure.set_figwidth(8) 

ax.figure.set_figheight(6) 

ax.set_xlabel("Clusters (K)") 

ax.set_ylabel("SSE") 

ax.set_title('K-Means SSE (Cumulative Weeks 1-15)') 

 

import itertools 

lineTypes = itertools.cycle(['solid', 'dotted', 'dashed', 'dashdot']) 

markerTypes = itertools.cycle(['o','v','^','<','>','s','P','*','X','D']) 

 

for i in range(0, len(dfArray)): 

    dfArray[i] = clusterKMeans(dfArray[i], 21, 'wk ' + str(i+1), 

next(lineTypes), next(markerTypes), ax) 

 

# In[18]: 

 

for i in range(0, len(dfArray)): 

    print("wk " + str(i+1) + " cluster size: " + 

str(dfArray[i].cluster.nunique())) 

 

# In[19]: 

 

for i in range(0,len(dfArray)): 

    print(str(i) + " : " + str(dfArray[i].groupby(['cluster']).mean())) 

 

# In[20]: 

 

std = dfArray[0].groupby(['cluster']).std() 

std 

 

# In[21]: 

 

def getAtRiskBooleans(df, cutoff): 

    # get boolean array where at-risk students are defined as final grade is 

less than cutoff value 
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    temp = 

pd.DataFrame(df.get(['cluster','final_grade'])).groupby(['cluster']) 

    at_risk_groups = [] 

    for i in range(0,len(temp)): 

        mean = temp.get_group(i).mean()['final_grade'] 

        if(mean < cutoff): 

            at_risk_groups.append(i) 

     

    y = np.zeros(len(df), dtype=bool) 

    for i in at_risk_groups: 

        y = y | (df['cluster'] == i) 

 

    return y 

 

# In[22]: 

 

def evaluateNB(df): 

    from sklearn.naive_bayes import GaussianNB 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

 

    model = GaussianNB() 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

    y_pred = cross_val_predict(model, x, y, cv=10) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

 

    p, r, f, s = evaluateNB(df) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 
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x = range(1,len(precision)+1) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Naive Bayes, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array = [] 

precisionArray = [] 

recallArray = [] 

f1Labels = [] 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Naive Bayes') 

 

# In[23]: 

 

f1 

 

# In[24]: 

 

def evaluateKNN(df): 

    from sklearn.neighbors import KNeighborsClassifier 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

    model = KNeighborsClassifier(n_neighbors=3) 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

 

    return precision, recall, f1, len(y) 

 

precision = [] 
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recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateKNN(df) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (K-Nearest Neighbors, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('K-Nearest Neighbors') 

 

# In[25]: 

 

def evaluateDT(df): 

    from sklearn import tree 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

    model = tree.DecisionTreeClassifier() 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 
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    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateDT(df) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Decision Tree, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('DecisionTree') 

 

# In[26]: 

 

def evaluateLR(df): 

    from sklearn.linear_model import LogisticRegression 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import precision_recall_fscore_support 

 

    x = df.drop(columns=['cluster', 'final_grade']).values 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

    model = LogisticRegression(random_state=0) 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, n_jobs=2) 
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    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateLR(df) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Logistic Regression, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Logistic Regression') 

 

# In[27]: 

 

def evaluateSVM(df): 

  from sklearn import svm 

  from sklearn.model_selection import cross_val_predict 

  from sklearn.metrics import precision_recall_fscore_support 

 

  model = svm.SVC() 
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  x = df.drop(columns=['cluster', 'final_grade']).values 

  y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

  y_pred = cross_val_predict(model, x, y, cv=10, n_jobs=15) 

  precision, recall, f1, support = precision_recall_fscore_support(y, y_pred, 

average='macro') 

  return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

  df = dfArray[i] 

  p, r, f, s = evaluateSVM(df) 

  precision.append(p) 

  recall.append(r) 

  f1.append(f) 

  support.append(s) 

  clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Support Vector Machine, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Support Vector Machine') 

 

# In[28]: 

 

def evaluateMLP(df, hlz): 

    from sklearn.neural_network import MLPClassifier 

    from sklearn.model_selection import cross_val_predict 
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    from sklearn.metrics import precision_recall_fscore_support 

    model = MLPClassifier(solver='lbfgs', hidden_layer_sizes=hlz, 

random_state=0, max_iter=10000) 

    x = df.drop(columns=['cluster', 'final_grade']).values 

 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

 

    #y = df['cluster'].values 

    y_pred = cross_val_predict(model, x, y, cv=10, n_jobs=15) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

    return precision, recall, f1, len(y) 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 

    p, r, f, s = evaluateMLP(df, (10,10)) 

    precision.append(p) 

    recall.append(r) 

    f1.append(f) 

    support.append(s) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Multi-layer Perceptron, Cumulative Data)') 

plt.legend(loc='lower right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Multi-layer Perceptron') 

 

# In[29]: 
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def evaluateGP(df): 

    from gplearn.genetic import SymbolicClassifier 

    from sklearn.model_selection import cross_val_predict 

    from sklearn.metrics import classification_report 

    from sklearn.metrics import precision_recall_fscore_support 

    from sklearn import tree 

    import statistics 

    import graphviz 

    x = df.drop(columns=['cluster', 'final_grade']) 

 

    y = getAtRiskBooleans(df, statistics.mean(df['final_grade'])) 

 

    feature_names = df.drop(columns=['cluster', 'final_grade']).columns 

    gp = SymbolicClassifier(parsimony_coefficient=.01, 

                            feature_names=feature_names, 

                            random_state=1, verbose=True) 

    gp.fit(x,y) 

    y_pred = cross_val_predict(gp, x, y, cv=2, verbose=True, n_jobs=15) 

 

    dot_data = gp._program.export_graphviz() 

    graph = graphviz.Source(dot_data) 

 

    report = precision_recall_fscore_support(y, y_pred, average='macro') 

 

    return gp, y_pred, report, graph 

 

gp, y_pred, report, g = evaluateGP(df) 

print(report) 

print(gp._program) 

g 

 

 

# In[30]: 

 

precision = [] 

recall = [] 

f1 = [] 

support = [] 

clusters = [] 

for i in range(0, len(dfArray)): 

    df = dfArray[i] 
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    gp, y_pred, report, graph = evaluateGP(df) 

    precision.append(report[0]) 

    recall.append(report[1]) 

    f1.append(report[2]) 

    support.append(report[3]) 

    clusters.append(df.cluster.nunique()) 

 

x = range(1,16) 

mp = 'o-' 

mr = 'v--' 

mf = 's:' 

plt.plot(x, precision, mp, label='precision', ms=8, linewidth=3) 

plt.plot(x, recall, mr, label='recall', ms=8, linewidth=3) 

plt.plot(x, f1, mf, label='f1', ms=8, linewidth=3) 

plt.xlabel('Week') 

plt.ylabel('Score') 

plt.title('Prediction Performance (Genetic Programming, Cumulative Data)') 

plt.legend(loc='upper right') 

f1Array.append(f1) 

precisionArray.append(precision) 

recallArray.append(recall) 

f1Labels.append('Genetic Programming') 

 

# In[31]: 

 

fig, ax = plt.subplots() 

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:'] 

ax.set_title('f1-Score') 

ax.set_ylabel('Score') 

ax.set_xlabel('Week') 

ax.figure.set_figwidth(8) 

ax.figure.set_figheight(5) 

 

j = 0 

cols = f1Labels 

for i in cols: 

    ax.plot(range(1, len(f1Array[j])+1), f1Array[j], marker[j], ms=10, 

label=i, linewidth=3) 

    j += 1 

 

plt.ylim([.8,1]) 

plt.legend(loc='lower right') 
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# In[32]: 

 

fig, ax = plt.subplots() 

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:'] 

ax.set_title('Precision') 

ax.set_ylabel('Score') 

ax.set_xlabel('Week') 

ax.figure.set_figwidth(8) 

ax.figure.set_figheight(5) 

 

j = 0 

cols = f1Labels 

for i in cols: 

    ax.plot(range(1, len(precisionArray[j])+1), precisionArray[j], marker[j], 

ms=10, label=i, linewidth=3) 

    j += 1 

 

plt.ylim([.8,1]) 

plt.legend(loc='lower right') 

 

# In[33]: 

 

fig, ax = plt.subplots() 

marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:'] 

ax.set_title('Recall') 

ax.set_ylabel('Score') 

ax.set_xlabel('Week') 

ax.figure.set_figwidth(8) 

ax.figure.set_figheight(5) 

 

j = 0 

cols = f1Labels 

for i in cols: 

    ax.plot(range(1, len(recallArray[j])+1), recallArray[j], marker[j], ms=10, 

label=i, linewidth=3) 

    j += 1 

 

plt.ylim([.8,1]) 

plt.legend(loc='lower right') 

 

# In[34]: 
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meanF1 = [] 

meanPrecision = [] 

meanRecall = [] 

for i in f1Array: 

    meanF1.append(np.average(i)) 

 

for i in precisionArray: 

    meanPrecision.append(np.average(i)) 

 

for i in recallArray: 

    meanRecall.append(np.average(i)) 

 

results = { 

    'Mean f1-Score':meanF1, 

    'Mean Precision':meanPrecision, 

    'Mean Recall':meanRecall, 

    'Model':f1Labels 

} 

 

perfDF = pd.DataFrame(results) 

 

perfDF.plot.bar(x='Model', ylim=[.85,1], title='Mean Performance Scores', 

ylabel='Score') 

 

plt.legend(loc='lower left') 

 

# In[35]: 

 

statistics.mean(df['final_grade']) 
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Helper Code for Other Scripts 

/src/helper.py 

# Imports 

from datetime import date, timedelta 

from email.utils import format_datetime 

from gplearn.genetic import SymbolicClassifier 

from math import nan 

from matplotlib import cm 

from matplotlib import colors 

from matplotlib.colors import Colormap 

from matplotlib.colors import ListedColormap 

from pandas import DataFrame 

from random import seed 

from scipy.stats import pearsonr 

from scipy.stats import spearmanr 

from sklearn import metrics 

from sklearn import tree 

from sklearn.metrics import classification_report 

from sklearn.metrics import precision_recall_fscore_support 

from sklearn.model_selection import cross_val_predict 

from sklearn.naive_bayes import GaussianNB 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.preprocessing import Normalizer 

from sklearn.preprocessing import PowerTransformer 

from sklearn.preprocessing import QuantileTransformer 

from sklearn.preprocessing import RobustScaler 

from sklearn.tree import export_text 

from unittest import skip 

from sklearn.cluster import KMeans 

import colorsys 

import graphviz 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

import numpy as np 

import pandas as pd 

import seaborn as sns 

import statistics 

from kneed import KneeLocator 

 

def print_samples_info(df:DataFrame): 

    print("Samples: ", df.shape[0]) 

    print("unique courses: ", df['course'].nunique()) 

    print("unique students: ", df['student'].nunique()) 
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    print("unique course/student pairs: ", 

len(df[['course','student']].drop_duplicates())) 

 

def get_outlier_limits(df:DataFrame, feature:str): 

    Q1= df[feature].quantile(0.25) 

    Q3 = df[feature].quantile(0.75) 

    IQR = Q3 - Q1 

    upper_limit = Q3 + 1.5 * IQR 

    lower_limit = Q1 - 1.5 * IQR 

    return upper_limit, lower_limit 

 

def add_enrollment_timedelta(df:DataFrame, startDate:date, endDate:date) -

> DataFrame: 

    """Adds enrollment_timedelta feature that equals the number of days 

the students registered before the last day of registration. 

       Note that this performs an inner join, which effectively excludes 

samples, which did not enroll between the start and end date.""" 

    dir = "../data/" 

    ed =           pd.read_csv(dir + "data-

1624239985814_course_user.csv.gz", dtype={'pk1':int, 'crs_main_pk1':int, 

'data_src_pk1':int, 'role':str, 'users_pk1':int, 'enrollment_date':str}) 

    ed = pd.concat([ed,pd.read_csv(dir + "data-

1624240128001_course_user.csv.gz", dtype={'pk1':int, 'crs_main_pk1':int, 

'data_src_pk1':int, 'role':str, 'users_pk1':int, 'enrollment_date':str})]) 

    ed = pd.concat([ed,pd.read_csv(dir + "data-

1624240236386_course_user.csv.gz", dtype={'pk1':int, 'crs_main_pk1':int, 

'data_src_pk1':int, 'role':str, 'users_pk1':int, 'enrollment_date':str})]) 

    ed.columns = 

['pk1','course','data_src','role','student','enrollment_date'] 

    ed['enrollment_date'] = pd.to_datetime(ed['enrollment_date']).dt.date 

    ed = ed[  (ed['enrollment_date'] > 

startDate)  &  (ed['enrollment_date'] < 

endDate.__add__(timedelta(days=1)))  ] 

    ed['enrollment_timedelta'] = (ed['enrollment_date'] - 

startDate).dt.days.astype(int) 

    return df.merge(ed[['course','student','enrollment_timedelta']], 

on=['course','student'], how='inner') 

 

def add_missing_final_grade(df:DataFrame) -> DataFrame: 

    """Adds missing_final_grade feature column where 1 = missing and 0 = 

not missing.""" 

    df = df.assign(missing_final_grade=[1 if fg == True else 0 for fg in 

df['final_grade'].isnull()]) 

    return df 
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def add_courses_enrolled(df:DataFrame) -> DataFrame: 

    """Adds courses_enrolled feature that equals the number of concurrent 

courses enrolled by the associated student.""" 

    courses_enrolled = 

df.groupby('student').count()['course'].rename("courses_enrolled") 

    return df.join(courses_enrolled,on='student') 

 

def add_class_size(df:DataFrame) -> DataFrame: 

    """Adds class_size feature that equals the number of students enrolled 

in the associated course.""" 

    class_size = 

df.groupby('course').count()['student'].rename("class_size") 

    return df.join(class_size,on='course') 

 

def get_at_risk_level(fg:float) -> int: 

    """Returns at_risk_level as an integer""" 

    arl = 0 

    if(fg >= 0.9): 

        arl = 1 # very_low 

    elif(fg >= 0.8): 

        arl = 2 # low 

    elif(fg >= 0.7): 

        arl = 3 # medium 

    elif(fg >= 0.6):from datetime import date, timedelta 

 

def get_at_risk_booleans(df, cutoff): 

    at_risk_groups = [] 

    for i in df['cluster'].unique(): # for each numbered cluster 

        mean = statistics.mean(df.query("cluster == " + 

str(i))['final_grade']) # compute the mean final_grade 

        if(mean < cutoff): # if it's less than the cutoff 

            at_risk_groups.append(i) # add it to the at-risk group 

     

    # create a new array and assign at-risk == true for those in the at-

risk group 

    y = np.zeros(len(df), dtype=bool) 

    for i in at_risk_groups: 

        y = y | (df['cluster'] == i) 

 

    return y 

 

def add_at_risk_levels(df:DataFrame) -> DataFrame: 

    """Adds at-risk levels based on final grades.""" 

    df = df.assign(at_risk_level=[get_at_risk_level(fg) for fg in 

df['final_grade'].values]) 
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    return df 

 

def pad_zeroes(n:int, i:int) -> str: 

    """Pads n zeros to i and returns the result.""" 

    return ("{:0" + str(n) + "d}").format(i) 

 

def get_cmap_r(ratio:float) -> Colormap: 

    """Creates a reverse gray scale color map from 0 to 1 with pink 

highlighting lower range of the scale from 0 to ratio.""" 

    binary = cm.get_cmap('binary_r',100) 

    newcolors = binary(np.linspace(0,1,100)) 

    pink = np.array([96/100, 9/100, 58/100, 1]) 

    newcolors[:int(ratio*100), :] = pink 

    newcmp = ListedColormap(newcolors) 

    return newcmp 

 

def get_cmap(ratio:float) -> Colormap: 

    """Creates a gray scale color map from 0 to 1 with pink highlighting 

the upper range of the scale from ratio to 1.""" 

    binary = cm.get_cmap('binary',100) 

    newcolors = binary(np.linspace(0,1,100)) 

    pink = np.array([96/100, 9/100, 58/100, 1]) 

    newcolors[int(ratio*100):, :] = pink 

    newcmp = ListedColormap(newcolors) 

    return newcmp 

 

def get_mean_random_samples(df:DataFrame, N:int, K:int) -> DataFrame: 

    """Obtains N mean samples of K random samples. When N and K are 

'large' (greater than 30), a normally distribution of samples of the means 

can be obtained regardless of underlying distribution shape.""" 

    dfsMeans = pd.DataFrame(columns=df.columns) 

    for i in range(0,N): 

        dfs = [x for x in df.sample(n=K).mean()] 

        dfsMeans = 

pd.concat([dfsMeans,pd.DataFrame(data=dfs,index=df.columns).transpose()],a

xis=0) 

    dfsMeans.reindex() 

    return dfsMeans 

 

def plot_histogram(df:DataFrame,col:str,bins:int): 

    sns.histplot(df[col], bins=bins).set_title(col + ' (N=' + str(len(df)) 

+ ")") 

 

def plot_corr_matrix(df:DataFrame, R:float, L:int, W:int): 

    corr = abs(df.corr(method='pearson')) 
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    mask = np.zeros_like(corr) 

    mask[np.triu_indices_from(mask)] = True 

    with sns.axes_style("white"): 

        f, ax = plt.subplots(figsize=(W,L)) 

        plt.title(label="Correlation Matrix (Pearson's R)") 

        ax = sns.heatmap(corr, mask=mask, square=True, linewidths=.01, 

vmax=R, annot=True) 

    return corr 

 

def plot_pval_matrix(df:DataFrame, ALPHA:float, L:int, W:int): 

    pvalue = df.corr(method=lambda x, y: pearsonr(x, y)[1]) - 

np.eye(len(df.columns)) 

    mask = np.zeros_like(pvalue) 

    mask[np.triu_indices_from(mask)] = True 

    with sns.axes_style("white"): 

        f, ax = plt.subplots(figsize=(W,L)) 

        ax.set_title("P-Value Matrix (Pearson's R)") 

        ax = sns.heatmap(pvalue, mask=mask, square=True, linewidths=.01, 

vmax=ALPHA, annot=True) 

    return pvalue 

 

# sns.histplot(data=df, 

x='final_grade',hue='at_risk_level',bins=10,palette=sns.color_palette("bri

ght",6)).set_title('Final Grade (N=' + str(len(df)) + ")") 

 

# Linear scalers 

def scaleMinMax(df): 

    scaler = MinMaxScaler() 

    col = df.drop(columns=['course','student']).columns 

    df[col] = scaler.fit_transform(df[col]) 

    return df 

 

def scaleRobust(df): 

    scaler = RobustScaler() 

    return pd.DataFrame(scaler.fit_transform(df), columns=df.columns) 

 

def scaleNormalizer(df): 

    scaler = Normalizer() 

    return pd.DataFrame(scaler.fit_transform(df), columns=df.columns) 

 

# Nonlinear transformers 

def transformQuantile(df): 

    qt = QuantileTransformer() 

    return pd.DataFrame(qt.fit_transform(df), columns=df.columns) 
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def transformPower(df): 

    pt = PowerTransformer() 

    return pd.DataFrame(pt.fit_transform(df), columns=df.columns) 

 

# Exclude outliers 

def iqr_outliers(df, feature, factor): 

    Q1= df[feature].quantile(0.25) 

    Q3 = df[feature].quantile(0.75) 

    IQR = Q3 - Q1 

    upper_limit = Q3 + factor * IQR 

    lower_limit = Q1 - factor * IQR 

    return upper_limit, lower_limit 

 

def std_outliers(df, feature, factor): 

    upper_limit = df[feature].mean() + factor * df[feature].std() 

    lower_limit = df[feature].mean() - factor * df[feature].std() 

    return upper_limit, lower_limit 

 

def remove_outliers(df:DataFrame) -> DataFrame: 

    for c in df.columns: 

        if ((c == 'course') or (c == 'student')): 

            continue 

        upper, lower = iqr_outliers(df, c, 1.5) 

        df = df[(df[c] > lower) & (df[c] < upper)] 

    return df 

 

def remove_outliers_recursive(df:DataFrame) -> DataFrame: 

    n = 0 

    while(True): 

        n = len(df) 

        df = remove_outliers(df) 

        if(n == len(df)): 

            break 

    return df 

 

def plot_activity_summary(df:DataFrame, w:int): 

    fig, ax1 = plt.subplots() 

    ax1.set_xlabel('Feature') 

    ax1.set_ylabel('Activity Frequency') 

    ax1.set_title('Activity Summary (N=' + str(len(df)) + ')') 

    ax1.figure.set_figwidth(w) 

    temp = df.drop(columns=['final_grade']) 

    ax1.boxplot(temp, labels=temp.columns) 

    temp2 = df['final_grade'] 

    ax2 = ax1.twinx() 
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    ax2.boxplot(temp2, labels=['final_grade'], 

positions=[len(temp.columns)+1]) 

    ax2.set_ylabel('Final Grade', color='purple') 

    ax2.tick_params('y',colors='purple') 

 

# Exclude highly correlated and missing values 

def excludeHighlyCorrelatedAndMissingValues(df:DataFrame, r:float) -> 

DataFrame: 

    temp = [] 

    corr = 

abs(df.drop(columns=['student','course']).corr(method='spearman')) 

    for y in corr.columns: 

        for x in corr.index.values: 

            if(x != y): 

                c = corr[y][x] 

                if(c > r): 

                    if [y,x] not in temp: 

                        temp.append([x,y]) 

                        print("Highly correlated pair found: " + 

str([x,y])) 

 

    if(len(temp) > 0): 

        drop = [] 

        for i in temp: 

            a = i[0] 

            b = i[1] 

            dA = df.drop(columns=a).dropna() 

            dB = df.drop(columns=b).dropna() 

            print("Size after dropping " + a + ": " + str(dA.size)) 

            print("Size after dropping " + b + ": " + str(dB.size)) 

            if(dA.size > dB.size): 

                print("\tDropping " + a) 

                drop.append(a) 

            else: 

                print("\tDropping " + b) 

                drop.append(b) 

        for i in drop: 

            df = df.drop(columns=i) 

        return df.dropna() 

    else: 

        return df.dropna() 

 

def evaluateGP(df:DataFrame, at_risk_cutoff:float): 

    x = df.drop(columns=['cluster','final_grade']) 

    y = get_at_risk_booleans(df, at_risk_cutoff) 
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    feature_names = x.columns 

    gp = SymbolicClassifier(parsimony_coefficient=.01, 

                            feature_names=feature_names, 

                            random_state=1, verbose=True) 

    gp.fit(x,y) 

    y_pred = cross_val_predict(gp, x, y, cv=2, verbose=True, n_jobs=15) 

 

    dot_data = gp._program.export_graphviz() 

    graph = graphviz.Source(dot_data) 

 

    return gp, y_pred, classification_report(y, y_pred), graph 

 

def evaluateNB(df): 

    x = df.drop(columns=['cluster']).values 

    y = df['cluster'].values 

    gnb = GaussianNB() 

    y_pred = cross_val_predict(gnb, x, y, cv=10) 

    return classification_report(y, y_pred) 

 

def evaluateDT(df): 

    x = df.drop(columns=['cluster']).values 

    y = df['cluster'].values 

    model = tree.DecisionTreeClassifier() 

    y_pred = cross_val_predict(model, x, y, cv=10, verbose=True, 

n_jobs=15) 

    precision, recall, f1, support = precision_recall_fscore_support(y, 

y_pred, average='macro') 

 

    model.fit(x,y) 

    tree.plot_tree(model) 

 

    return precision, recall, f1, len(y) 

 

def clusterKMeans(df): 

    kmeans_kwargs = { 

        "init":"k-means++", 

        "n_init": 1, 

        "max_iter": 500, 

        "random_state": 0 

    } 

 

    sse = [] 

    N = 21 

    for k in range(1,N): 

        kmeans = KMeans(n_clusters=k, **kmeans_kwargs) 
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        kmeans.fit(df.drop(columns=['course','student'])) 

        sse.append(kmeans.inertia_) 

    k1 = KneeLocator(range(1,N), sse, curve="convex", 

direction="decreasing") 

 

    plt.style.use("fivethirtyeight") 

    plt.plot(range(1,N), sse, 'ko-', label='SSE (Week 1-15 Cumulative 

Activity)') 

    plt.xticks(range(1,N)) 

    plt.xlabel("Clusters (K)") 

    plt.ylabel("SSE") 

    plt.title('K-Means SSE (Exploratory)') 

    k = k1.elbow 

    plt.plot([k], sse[k-1], 'X', ms=10, color='red', label='Elbow Point') 

    plt.legend() 

    plt.show() 

 

    print("Cluster size: " + str(k1.elbow)) 

 

    kmeans = KMeans(n_clusters=k1.elbow, **kmeans_kwargs) 

     

    kmeans.fit(df.drop(columns=['course','student'])) 

    return df.assign(cluster=kmeans.labels_) 

 

def plot_cluster_summary(df:DataFrame): 

    df = df.drop(columns=['course','student']) 

    fig, ax1 = plt.subplots() 

    marker = ['o-', 'v--', 'D-.', 's:', 'X-', 'P--', 'p-', '>:'] 

    ax1.set_title('K-Means Cluster Summary (Exploratory)') 

    ax1.set_ylabel('Normalized Frequency') 

    ax1.set_xlabel('Cluster') 

    j = 0 

    cols = df.drop(columns=['cluster','final_grade']).columns 

    means = df.groupby(['cluster']).mean() 

    for i in cols: 

        ax1.plot(means[i], marker[j], ms=10, label=i) 

        j += 1 

 

    ax2 = ax1.twinx() 

    ax2.plot(means['final_grade'], marker[j], color='purple', ms=10, 

label='final_grade') 

    ax2.set_ylabel('Final Grade', color='purple') 

    ax2.tick_params('y',colors='purple') 

    ax2.grid(True,linestyle='--') 
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    # ask matplotlib for the plotted objects and their labels 

    lines, labels = ax1.get_legend_handles_labels() 

    lines2, labels2 = ax2.get_legend_handles_labels() 

    plt.legend() 

    ax2.legend(lines + lines2, labels + labels2, bbox_to_anchor=(1.15, 

1.0), loc='upper left') 
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