\qquad
A parametric surface is similar to a parametric curve $\vec{r}(t)$, with the addition of a second parameter:

$$
\vec{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle, \quad a \leq u \leq b, c \leq v \leq d
$$

For example, a particular helicoid has parameterization

$$
\vec{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, \quad 0 \leq u \leq 5,0 \leq v \leq 6 \pi
$$

A particular torus has parameterization

$$
\vec{r}(u, v)=\langle(2+\cos u) \cos v,(2+\cos u) \sin v, \sin u\rangle, \quad 0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi
$$

1. On the helicoid defined above: $\vec{r}(u, v)=\langle u \cos v, u \sin v, v\rangle, \quad 0 \leq u \leq 5,0 \leq v \leq 6 \pi$ (a) Compute the vector $\overrightarrow{r_{u}}=\frac{\partial \vec{r}}{\partial u}$ of partial derivatives with respect to the parameter u.
(b) Compute $\overrightarrow{r_{v}}=\frac{\partial \vec{r}}{\partial v}$ as well.
(c) What can be said about the direction of these two vectors (in relation to the surface itself)?
(d) What can be said about the vector $\overrightarrow{r_{u}} \times \overrightarrow{r_{v}}$?
2. Compute the equation of the plane tangent to the helicoid above at the point corresponding to $(u, v)=(3, \pi)$.
3. Compute the surface area of the helicoid on the domain $0 \leq u \leq 5,0 \leq v \leq 6 \pi$.
4. Compute the surface area of the torus above on its domain $0 \leq u \leq 2 \pi, 0 \leq v \leq 2 \pi$
