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ABSTRACT 

Lollar, David M., Does BPS cause lipid synthesis and ER stress in HEPG2 cells?. Master 
of Science (Biology), December, 2018, Sam Houston State University, Huntsville, Texas. 
 

Bisphenol A (BPA) was originally designed as a synthetic estrogen but is now 

used as a monomer in the production of plastics.  Recent research has linked exposure to 

low doses of BPA, below the reference dose (the safe long-term daily dose) of 50µg (kg-

1 day-1), with a number of health problems including diminished fertility, insulin 

resistance, obesity, accumulation of triglycerides in the liver and the induction of 

endoplasmic reticulum (ER) stress with subsequent non-alcoholic fatty liver disease.  

Because of the problems with BPA, bisphenol S (BPS) has become a popular alternative 

in plastic production.  However, emerging research has associated BPS with many of the 

same health problems as BPA.  In this study, I examine the effects of low-dose exposure 

to BPS on HepG2 cells, an established in vitro model system of liver function in use 

since 1974.  More specifically, I monitored the total amount of lipid droplets, and the 

amount of acetyl-CoA carboxylase (the catalyst of the first, and rate limiting step of fatty 

acid synthesis) to measure fatty acid synthesis in HepG2 cells exposed to low doses of 

BPS, and further I examine the levels of ER chaperone protein glucose-regulated protein 

78 (GRP78/BiP) to study effects of BPS on ER stress.  In short, I found no significant 

effect of BPS exposure on the cells in that there was no significant change in lipid levels, 

p-ACC, or GRP78/BiP levels.   

 

KEY WORDS: Plastic, Bisphenol, Metabolism, Endoplasmic reticulum, Unfolded 
protein response 
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CHAPTER I 

Introduction 

BISPHENOL A 

BPA is currently used as a monomer in the production of polycarbonate plastics 

including food and beverage containers [5-8,10,11,13-15].  BPA leaching from plastic 

containers is the primary source of human exposure [5,6].  Based on high dose studies 

conducted on mice and rats in the 1980s, the US-EPA found 50mg (kg-1 day-1) to be the 

lowest observed adverse effect level (LOAEL), i.e. the lowest dose at which adverse 

effects were observed, and used this value to calculate a reference dose (the safe long 

term daily dose) of 50µg (kg-1 day-1) [8].  More recent studies have found a wide range of 

adverse effects of BPA at concentrations below the reference dose, because BPA has a 

nonmonotonic dose response curve [5-8,10-13] (Figure 1).  The discovery of 

nonmonotonic dose responses has led to a paradigm shift in toxicology [6].  It is no 

longer sufficient to test high doses until a LOAEL is found. The possibility of 

physiological effects at levels below the LOAEL demands testing of a wide range of 

concentrations of a chemical at doses even below the LOAEL.  
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Fig. 1. Nonmonotonic dose response. A monotonic dose response curve is one in which 
the sign of the slope of the curve never changes (A and B above).  Meanwhile, a 
nonmonotonic dose response dose have a change in the sign of the slope of the curve. 

 
 

Biologically active levels of BPA, that is levels of BPA that have been observed 

to have adverse effects in animal and in vitro models, have been detected in the over 90% 

of people surveyed [5,6,8,11,13-15].  Studies have found an average BPA concentration 

of 1.4-2.4 ng/ml in human maternal sera, and 8.3 ng/ml in 15-18 week fetal amniotic 

fluid.  Studies of human urine have found average levels of total (free and conjugated) 

BPA at 1.63 ng/ml in males and 1.12 ng/ml in females [16].  The ubiquity of BPA in 

human populations amplifies concerns about its potential toxicity.     

Bisphenol A (BPA) was designed as a synthetic estrogen [5,6] and binds to 

nuclear estrogen receptors α and β with a 1000 to 2000 fold lower affinity than 17β-

estradiol. On this basis, it is classified as a weak estrogen [5].  When nuclear estrogen 

receptors are bound by BPA they become differentially responsive to coactivators and 

corepressors, thereby leading to changes in gene expression leading to cellular 

proliferation [5].   
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More recent research has shown that BPA also has a number of non-genomic 

effects [5,8,9].  For example, BPA binds to estrogen receptors localized to the plasma 

membrane [5,6,7,9] and can act as an agonist to estrogen receptor α which promotes 

cellular proliferation.  It also acts as an antagonist to estrogen receptor β which inhibits 

proliferation [5,8].  In this way, BPA is a proliferative agent [5].   

  The most well-known consequence of BPA exposure is diminished fertility due 

to its effects at multiple physiological levels.  For example, exposure of oocytes to BPA 

during the early stages of meiosis was shown to upregulate genes involved in double 

strand break, signaling, and repair [11].  This results in an increase in the number of 

crossing over events, as well as an increase in oocyte degeneration [11].  BPA exposure 

during later stages of meiosis was shown to correlate with an impaired cytoskeleton, lack 

of alignment of chromosomes, incomplete meiosis, and an increased rate of oocyte 

degeneration [11].  In addition, exposing pregnant mice to BPA causes a significant 

alteration in imprinted gene expression in the embryos, which impairs fetal, placental, 

and postnatal development [11].  Furthermore, researchers have seen that BPA exposure 

can disrupt blastocyst implantation either by mismatching the timing of the uterine 

receptivity window and blastocyst formation, or by directly altering uterine receptivity 

through BPA’s estrogenic properties [11].  BPA may also increase the risk of polycystic 

ovary syndrome through its role as a xenoestrogen [14,18].  In male rats, BPA exposure 

was shown to decrease serum levels of testosterone [5,7].  Additionally, it was found to 

decrease sperm production, decrease the percentage of moving sperm, and increase the 

incidence of malformed sperm [7].    
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 In addition to its well-known reproductive effects, BPA has been linked to 

metabolic dysfunction.  Through its ability to impair thyroid function [5,17], BPA 

exposure has been associated with thyroid resistance syndrome, and attention deficit 

disorder [18].  In addition, BPA has been linked to insulin resistance, and the 

development of Type II diabetes [5,9,10,12,13,15,17], as well as increasing the size of 

atherosclerotic lesions, and increasing coronary stenosis [13], and cardiac arrhythmias by 

altering Ca2+ handling in cardiac myocytes [9,15,19].  It is particularly interesting that 

Machtinger et al. (2014) found an increase in the expression of genes involved in de novo 

fatty acid synthesis (ATP citrate lyase, Acetyl-CoA carboxylase 1, Acetyl-CoA 

carboxylase 2, and Fatty acid synthase) in the livers of adult mice exposed to low doses 

of BPA, but they did not establish a mechanism for the effects of BPA on lipid synthesis 

[11].  It has also been suggested that BPA exposure promotes inflammation and oxidative 

stress [14].  Importantly, exposure to BPA leads to the accumulation of triglycerides and 

the induction of ER stress in the livers of rabbits and mice and has been linked to in the 

development of non-alcoholic fatty liver disease [13].  Taken together, these findings 

suggest a mechanism linking BPA exposure to a variety of pathophysiological outcomes 

[2-4]. 

BISPHENOL S 

 Because of the problems with BPA, there has been great interest in finding 

an alternative.  Currently, the leading choice is bisphenol S (BPS) one of many structural 

analogs of BPA collectively known as bisphenols.  BPS is used as an alternative to BPA 

because of its similar chemical structure (Figure 2), because it is more heat stable, and 

because it is less prone to degradation from exposure to sunlight [37].  Even so, in 2012 a 
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study by Liao et al. found BPS in 78% of urine samples from 100 American adults, 

compared to BPA being found in 95%.  BPS was found at concentrations up to 12.3 

ng/mL, and BPA was found at up to 37.7 ng/mL in those urine samples [22].  The 

similarity means that BPS has the same physical properties that make BPA an attractive 

ingredient in plastic production but may also mean that BPS shares the same detrimental 

physiological effects as BPA.   Indeed, emerging research shows that BPS is an endocrine 

disruptor with a potency comparable to that of BPA [20].  For example, one study found 

that both BPA and BPS can cause an increase in lipid content and a decrease in lipolysis 

in 3T3-L1 cells [10].  Postnatal exposure to BPS has been shown to induce uterine 

growth in rats [21].  BPS was also shown to disrupt reproduction in zebrafish, increase 

the female to male sex ratio, decrease body length, and disrupt testosterone and estrogen 

levels [21].  In vitro experiments have even shown BPS exposure to induce caspase 8 

production [21].  BPS was shown to be even more potent than BPA at inhibiting 

testosterone secretion in human testis explants after three days of treatment [29].  BPS 

could also cause unique problems as evidenced by the same study showing BPS, but not 

BPA, increased glucose uptake and leptin production [10]. 

  

 

Fig. 2. Chemical Structures of BPA and BPS.  Adapted from Kang et al. 2014.  
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ENDOPLASMIC RETICULUM (ER) STRESS 

 Most membrane bound or secreted proteins are first folded and modified in the 

ER.  The environment of the ER is ideally suited to protein modification and folding 

because of the chaperone proteins, enzymes, and high levels of calcium contained within 

[30].  ER stress is caused by the accumulation of unfolded or improperly folded proteins 

in the ER.  Persistent ER stress can cause a cell to undergo apoptosis, and lead to a 

variety of pathological outcomes.  To alleviate ER stress, cells activate the unfolded 

protein response (UPR) (Figure 3).  Under normal conditions the ER stress sensors 

protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 α (IRE1α), and 

activating transcription factor 6 (ATF6) are bound to the chaperone protein glucose-

regulated protein 78 (GRP78/BiP).  However, during ER stress the protein folding 

capacity of the ER is exceeded, which causes GRP78/BiP to dissociate from these ER 

stress sensors.  This dissociation of GRP78/BiP from PERK, IRE1α and ATF6 leads to 

the activation of the UPR.  The ultimate goal of the UPR is to alleviate ER stress.  This is 

accomplished by increasing the ER’s protein folding capacity while concurrently 

decreasing protein synthesis.  PERK inhibits protein synthesis by phosphorylating and 

inactivating eukaryotic initiation factor 2α (eIF2α).  This results in a reduced protein load 

on the ER.  IRE1α regulates the splicing of mRNA encoding X-box binding protein 1 

(XBP1) thereby activating it.  Active XBP1 stimulates transcription of additional ER 

chaperones thereby increasing the ER’s protein folding capacity.  IRE1α also induces 

degradation of mRNAs to reduce the protein load on the ER.  In chronic ER stress IRE1α 

also activates pro-inflammatory and pro-apoptotic pathways [1-4].  ATF6 activates the 

transcription of several ER proteins including GRP78/BiP to increase the capacity of the 
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ER, and Derlin-3 which enhances ER associated degradation and reduces the amount of 

misfolded protein in the ER [1-4].  If normal protein folding is restored PERK, IRE1α, 

and ATF6 can again be bound by GRP78/BiP, the UPR can end, and the cell can resume 

normal function. 

 

Fig. 3. ER stress and the unfolded protein response.  Adapted from Mahli et al. 2011. 
 
 

However, in cases where the UPR is unable to restore the natural order, an 

apoptotic response is triggered. In particular, the pro-apoptotic proteins Bcl-2-associated 

X protein (Bax) and Bcl-2 homologous antagonist killer (Bak) will associate with IRE1α 

which activates c-Jun N-terminal kinase (JNK) to promote apoptosis.  At the same time, 

PERK, through eIF2α, increases the level of CCAAT-enhancer-binding protein 

homologous protein (CHOP), which also promotes apoptosis [1] (Figure 4). 
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Fig. 4. The UPR and apoptosis.  Adapted from Mahli et al. 2011.  
 

ER STRESS AND LIPID METABOLISM 

The mechanical relationship between lipids and ER stress remains unclear, but 

recent studies have shown that exposure to palmitate activates the Toll-like receptor 4 

(TLR-4) pathway.  They also demonstrated that palmitate exposure activated IRE1α, by 

activating TLR-4 and therefore could be responsible for lipid induced ER stress [32]. 

Importantly, exposure to BPA leads to the accumulation of triglycerides and the 

induction of ER stress in the livers of rabbits and mice [13] and has been associated with 

many pathologies, including the development of Type II diabetes [5,9,10,12,13,15,17], 

atherosclerosis [12], non-alcoholic fatty liver disease [13], inflammation and oxidative 

stress [14].  Therefore, it is possible that BPS exposure has many of the same effects. 

 

FATTY ACID SYNTHESIS 

 Fatty acid synthesis occurs mainly in the liver and adipose tissue [30] (Figure 5).  

The first step of de novo fatty acid synthesis is the conversion of acetyl-CoA to malonyl-

CoA by acetyl-CoA carboxylase (ACC).  This is the rate-limiting step in fatty acid 

synthesis.  Next fatty acid synthase (FAS) catalyzes a repeating process that generates 
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palmitate from acetyl-CoA and malonyl-CoA.  FAS catalyzes the addition of malonyl-

CoA to generate a palmitate, a 16-carbon fatty acid, as the final product.  Palmitate can 

then translocate to the ER to be modified to make other fatty acids.  Elongation of 

palmitate occurs by the addition of malonyl-CoA and is catalyzed by fatty acid elongases 

which are encoded by elongation of very long-chain fatty acid (ELOVL) genes [21].  

Interestingly, an increase in lipid synthesis can cause ER stress through mechanisms that 

remain poorly understood, but it is noteworthy that ER stress is associated with a number 

of diseases including hepatitis, fatty liver disease, non-alcoholic fatty liver disease, 

insulin resistance, and inflammation [1-4].  

 

Fig. 5. Fatty acid synthesis.  
 

 In this study I used HepG2 cells as a model of liver function.  HepG2 cells were 

derived from a human hepatoblastoma, have been used as a model for studying normal 

liver function since 1979 [4] and are known to express ERα, ERβ, GPR30 (a G-protein 

coupled estrogen receptor), as well as the insulin, and insulin-like receptors [23]. 

OBJECTIVES 

 The objective of this study was to determine if low dose exposure to BPS induces 

an ER stress response as a result of increased lipid synthesis in a cell culture model of 
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hepatic function, namely the HepG2 cell line.  For this study low dose of BPS will be 

defined as below the LOAEL of BPA, because the LOAEL of BPS is not yet established.  

HYPOTHESIS 

 My null hypothesis is that exposure to low doses of BPS will have no effect on 

lipid synthesis and induction of ER stress in HepG2 cells.  My specific hypotheses are 

that low dose BPS exposure will increase lipid synthesis in HepG2 cells, and that low 

dose BPS exposure will lead to ER stress in HepG2 cells.   

 I tested these hypotheses by measuring global lipid synthesis in intact HepG2 

cells using Oil Red O stain, as well as measuring the activity of acetyl-CoA carboxylase 1 

(ACC1) and inactive p-ACC1 via Enzyme Linked Immunosorbent Assay (ELISA). In 

addition, I will measure the induction of ER stress using the expression of GRP78/BiP as 

an indicator via ELISA. 
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CHAPTER II 

Materials and Methods 

CELL LINES 

 In this study the human HepG2 cell line was used.  HepG2 cells were derived 

from a human hepatoblastoma and have been used as a model for studying liver function 

since 1979 [4].  The cells were maintained in Dulbecco’s modified Eagle’s medium 

(DMEM) with 2mM of stable glutamine, 1mM sodium pyruvate, 0.5% 

penicillin/streptomycin, and 10% serum in a humidified atmosphere at 37 °C. 

Serum free DMEM was made from DMEM with 2mM of stable glutamine, 1mM sodium 

pyruvate, and 2% BSA. 

CELL CULTURE  

 Despite its utility as a pH indicator in cell culture media, phenol red has been 

demonstrated to have estrogenic properties [24].  Consequently, cells were grown in 

phenol red free media to avoid this potential confound.  Culture flasks were seeded with 

one million cells per flask and grown for two weeks changing the media every three days.  

Then cells were moved to 12-well plates, and after the cells attached to the plates, the 

media was changed to fresh media containing BPS at 0, 10-9,10-8,10-7,10-6, 10-5 and 10-4 

mol/L; concentrations of BPA at 10-5 mol/L and lower are considered low doses [5].  The 

concentration range for low dose BPA was used because BPS is currently unregulated 

and can be used freely [27].  Cells were treated under these concentrations for 6, 48, and 

96 hours. 
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ASSESSMENT OF EFFECTS OF BPA ON LIPID METABOLISM AND ER 

STRESS 

 In order to assess the effect of BPS on hepatic lipid metabolism, replicate cultures 

of cells were grown in flasks, then moved to 12-well plates and treated with BPS as 

above. Immediately afterwards, cells were lysed in lysis buffer containing protease and 

phosphatase inhibitors, and total protein extracted using standard techniques.  Prior to 

ELISA, the total protein content of individual lysates was determined using a BCA assay.  

Samples were then diluted to a concentration of 300ug/ml and then 30 micrograms of 

total protein were loaded into the ELISA wells.  Protein was loaded into antibody coated 

wells of PathScan® sandwich ELISA kits (Cell Signaling Technologies) for ACC1 and 

p-ACC1 according to the manufacturer’s instructions.  In brief, a 96 well plate was 

coated with a capture antibody specific to the kit’s target.  Thirty micrograms of protein 

were added to each well, and then bound to the capture antibodies.  Unbound protein was 

then washed out before a detection antibody was added to bind to the target protein.  The 

plate was then washed again before a secondary horseradish peroxidase (HRP) linked 

antibody was added and bound to the detection antibody.  Finally, HRP substrate was 

added, broken down into a colored product, and quantified using spectrophotometry.  The 

color was proportional to the amounts of ACC and p-ACC in the protein samples.   

ACC1 catalyzes the conversion of acetyl-CoA to malonyl-CoA, which is the rate 

determining step in the synthesis of fatty acids and is inactivated by phosphorylation by 

cAMP-dependent kinase, and by AMP-activated kinase [25].  By comparing levels of 

active ACC1 to inactive p-ACC1 lipid metabolism will be estimated in vitro.   
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In addition, global lipid synthesis of wells of cells was quantified using an Oil 

Red O stain kit, from Sigma-Aldrich, on three replicate cultures tested in parallel.  In 

brief, cells were removed from the incubator and placed in the biosafety cabinet followed 

by the aspiration of the media from each well.  The plates were rinsed with 1 ml of sterile 

DPBS dispersed along the side of each well to avoid disturbing the monolayer.  The 

DPBS was then aspirated, and 1 ml of 10% formalin was added along the sides of each 

well to fix the cells after incubating for 60 minutes at room temperature.  Formalin was 

then removed from the sides of each well with a pipettor and discarded.  Then, each well 

was rinsed twice with 1ml of sterile water followed by the addition of 1 ml of 60% 

reagent alcohol for 5 minutes.  Finally, the alcohol was aspirated, and 1 ml of Oil Red O 

solution was added to each well to completely cover the cells.  The dishes were rotated to 

spread the stain evenly and allowed to stand for 30 minutes.  Each well was rinsed with 

water until the excess stain was removed.  One milliliter of hematoxylin counterstain was 

then pipetted into each well to completely cover the cells and allowed to stand for one 

minute.  Hematoxylin was aspirated, and the plates were rinsed with tap water as above.  

Plates were kept wet with water until ready to be viewed on a phase contrast microscope.  

Cells grown in DMEM mixed with vegetable oil in a 1:1 ratio were used as a positive 

control.     

After observing the cells under a phase contrast microscope, the red coloring was 

extracted and quantified using spectrophotometry.  Cells were washed with 500 µl of 

100% isopropanol for 5 minutes to extract the red stain.  The solution was then 

transferred to a new plate and absorbance at 520nm was read on the spectrophotometer. 
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MEASUREMENT OF ER STRESS 

 The ER stress in response to BPS treatment was estimated using GRP78/BiP as an 

indicator via ELISA using the lysates prepared above.  GRP78/BiP was measured using 

an Enzo Life Sciences competitive ELISA Kit.  In brief, samples were added to a 

microwell plate coated with a donkey anti-sheep IgG antibody.  Then protein samples 

were added followed by a solution of anti GRP78/BiP antibody.  Next, a solution of 

GRP78/BiP conjugated with HRP was added.  The GRP78/BiP antibody competitively 

bound to the GRP78/BiP in the sample, or the GRP78/BiP that was conjugated to HRP.  

HRP substrate was added and generated a colored product.  The resulting color was 

quantified by spectrophotometry and was inversely proportional to the amount of 

GRP78/BiP in the protein sample. 

GRP78/BiP is a chaperone protein found in the ER.  In response to ER stress, 

GRP78/BiP dissociates from IRE1α, and PERK thereby activating the unfolded protein 

response.  One consequence of the unfolded protein response is an increase in the amount 

of GRP78/BiP in the ER.  GRP78/BiP was used as an indicator of ER stress, because it is 

the chaperone protein that binds the activating proteins for all three arms of the UPR.  

Cells were treated with 5µg/ml tunicamycin as a positive control, because tunicamycin 

induces the UPR by inhibiting N-linked glycosylation.   

STATISTICAL ANALYSIS 

 This experiment consists of three replicate cultures done in parallel.  Results (e.g. 

GRP78/BiP expression levels, degree of Oil Red O staining) were subjected to a two-way 

ANOVA using an F-distribution and a post-hoc pairwise Tukey test to determine 

statistical significance. 
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CHAPTER III 

Results and Discussion 

OIL RED O STAIN 

Qualitative Analysis 

Lipid droplets were evenly distributed between cells, but there is no qualitative 

difference between the doses at 96 hours (Figure 6), 48 hours (Figure 7), or at 6 hours 

(Figure 8). 

 

Fig. 6. Oil Red O stain 96 hours. Lipid droplets were evenly distributed between cells. 
Cells were treated with 0 (A), 10-9 (B),10-8 (C),10-7 (D),10-6 (E), 10-5 (F) and 10-4 (G) 

mol/L BPS  
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Fig. 7. Oil Red O stain 48 hours. Lipid droplets were evenly distributed between cells. 
Cells were treated with 0 (A), 10-9 (B),10-8 (C),10-7 (D),10-6 (E), 10-5 (F) and 10-4 (G) 

mol/L BPS   
 

 

Fig. 8. Oil Red O stain 6 hours. Lipid droplets were evenly distributed between cells. 
Cells were treated with 0 (A), 10-9 (B),10-8 (C),10-7 (D),10-6 (E), 10-5 (F) and 10-4 (G) 

mol/L BPS   
 
Quantitative Analysis 

After 48 hours, all absorbance readings dropped compared to 6 hours.  By 96 

hours however, all absorbance readings were back up to, or slightly higher than, the 

readings at 6 hours.  Overall, variations in dose response were very slight.  However, 



17 

 

every concentration of BPS tested showed a higher absorbance at 96 hours than serum 

free did (Figure 9)  The results of the Oil Red O staining showed a significant effect of 

time F (2, 55) = 4.13, p = 0.025, but there was no significant effect of dose F (6, 55) = 

0.06, p = 0.999.  There was no significant interaction between dose and time F (12, 55) = 

0.04, p = 1.000.  A post hoc Tukey test found that the 96 and 48 hour sets were 

significantly different from one another, but neither was significantly different from the 6 

hour set. 

 

Fig. 9. Relative absorbance of Oil Red O stain. The results of the Oil Red O staining 
showed a significant effect of time F (2, 55) = 4.13, p = .025, but there was no significant 
effect of dose F (6, 55) = .06, p = .999.  There was no significant interaction between 
dose and time F (12, 55) = .04, p = 1.000. 
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PROTEIN QUANTIFICATION 

Total protein from each sample was quantified using a BCA assay (Figure 10) so 

that exactly 30ug of protein could be loaded into each well of the ELISA.  In general, the 

48 and 96 hour timepoints had a higher amount of total protein than the 6 hour timepoint. 

 

Fig. 10. BCA Assay. There was little variation in protein concentration between doses of 
BPS. 

 
 

ACC and p-ACC ELISA 

At 6 hours, the ratio of p-ACC to ACC was low.  It rose up at 48 hours, and then 

fell back down at 96 hours, but remained higher than at 6 hours.  Although there was no 

statistically significant effect of dose on the ratio of p-ACC to ACC, the ratio was higher 

for almost every concentration of BPS tested than for the serum free control at the same 

timepoint.   This suggests that there could be an effect of dose on the ratio (Figure 11).  

According to the manufacturer’s instructions, 10 minute treatment with 10mM H2O2 

phosphorylates ACC to be detected by the Phospho-Acetyl-CoA ELISA kit, without 

affecting the total ACC. 
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The ELISA’s for ACC and p-ACC showed a significant effect of time F (2, 57) = 

32.52, p < 0.01, but not dose F (6, 57) = 1.92, p = .104.  There was no significant 

interaction between time and dose F (12, 57) = 1.54, p = 0,155 (Figure 9). A post hoc 

Tukey test showed that the 48 hour set was significantly different from the 96 and 6 hour 

sets, and that the 96 and 6 hour sets were not significantly different from one another.  

The positive H2O2 control was 43% higher than the negative serum free control.    

 

 

Fig. 11. Relative ratio of p-ACC to ACC. The ELISA’s for ACC and p-ACC showed a 
significant effect of time F (2, 57) = 32.52, p < 0.01, but not dose F (6, 57) = 1.92, p = 
.104.  There was no significant interaction between time and dose F (12, 57) = 1.54, p = 
0,155 
 

 
GRP78/BIP ELISA 

There was little variation between doses at the 6 hour timepoint.  At 48 hours, all 

of the low doses of BPS showed a higher amount of GRP78/BiP than the serum free 

control.  At 96 hours BPS at 10-4, 10-5, and 10-6mol/L were higher than the serum free 

control. The GRP78/BiP ELISA showed no significant effect of time F (2, 62) = .53, p = 
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0.591, or dose F (6, 62) = 0.46, p = 0.835.  There was also no significant interaction 

between dose and time F (12, 62) = 0.47, p = 0.919 (Figure 12). 

 

Fig. 12. Relative Concentration of GRP78/BiP. The GRP78/BiP ELISA showed no 
significant effect of time F (2, 62) = .53, p = 0.591, or dose F (6, 62) = 0.46, p = 0.835.  
There was also no significant interaction between dose and time F (12, 62) = 0.47, p = 
0.919 

 

DISCUSSION 

Although BPS had no significant effect on measures of lipid biology and ER 

stress in HepG2 cells, there are still interesting patterns. For example, after 48 hours of 

exposure to BPS at all doses tested below 10-4mol/L, there was an increase in GRP78/BiP 

relative to serum free media.  This suggests that BPS exposure may affect ER stress.  

After 48 hours of exposure at all concentrations of BPS, there was an increase in the ratio 

of p-ACC to ACC, relative to serum free media, but then at 96 hours of exposure there 

was an increase in absorbance measured by the ORO stain, relative to serum free media.  

This suggests that the increase in lipid levels was not caused by de novo lipid synthesis.  

The ORO stain shows that there was an increase in lipid levels, but at the same time, the 
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increased ratio of inactive p-ACC to active ACC actually suggests a decrease in de novo 

lipid synthesis.  This trend of increasing lipid levels is simmilar to a study by Héliès-

Toussaint et. all (2014).  Taken together, these findings suggest that BPS exposure may 

affect both ER stress and lipid accumulation, but more research is needed to confirm.   

Regardless of treatment, the amount of lipid staining observed was lower at 48 

hours of exposure than after 6 hours of exposure, but it did increase again at 96 hours.  In 

fact, the levels seen at 96 hours tended to be higher in the BPS-treated cells relative to 6 

hours of exposure whilethe level of ORO staining in the serum free control was relatively 

unchanged.  This suggests that any changes in ORO staining are a result of BPS exposure  

 The changes in lipid levels across all treatments at each timepoint could instead 

be a result of the cells adapting to the serum free conditions.  At the 48 hour timepoint 

every condition tested saw a spike in the ratio of p-ACC to ACC, compared to 6 hours, 

and at 96 hours the ratio fell back down.  By every measure, all conditions tested were 

similar at 6 hours, there was more varriation at the 48 and 96 hour timepoints.  

Interestingly, the results for GRP78/BiP show a similar pattern to the lipid data.  There is 

little variation at 6 hours, but at 48 hours GRP78/BiP is higher than serum free for every 

concentration of BPS other than 10-4 mol/L.  Taken together these results tell a story of 

cells becoming stressed after spending 48 hours in serum free conditions, with cells that 

have been exposed to BPS responding more strongly to the stressful conditions.   

While more research is needed, the results paint a picture of one mode of BPS 

toxicity.  Previous studies have linked BPA to the accumulation of triglycerides, and 

induction of ER stress mouse and rabbit livers [13].  Fatty acid accumulation, and ER 

stress can lead to non alchoholic fatty liver disease (NAFLD), wich is linked to obesity 
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and type II diabetes, some of the greatest health challenges of our time [2-4].  The 

structural similarity between BPA and BPS suggests that they could have many of the 

same effects, and indeed in vitro studies have found a small increase in lipid content in 

HepG2 cells exposed to BPS although they did not identify a mechanism for the increse 

in lipid content [10]. Concerns about the effects of BPS are especially relevant as a 2012 

study by Liao et al. found BPS in 78% of urine samples from 100 American adults, a 

number that will likely rise as BPS becomes more frequently used to replace BPA. 

The next step of this project could be to repeat the study with larger sample sizes.  

The effects of endocrine disruptors like BPA and BPS tend to be of low magnitude [5], 

therfore it could be helpful to use a larger sample size for more statistical power. 

Additionally, it would be interesting to repeat the study with primary hepatocytes.  

HepG2 cells are an imortalized cell line and therefore could have differences from 

normal hepatocytes.  Primary hepatocytes, howerver, are difficult to derive, do not 

proliferate well, and are only good for about a week in culture.  HepG2 cells remain one 

of the best in vitro models of liver function [25].  One other option would be to use whole 

mice to do this study in vivo.  

Additionally using a broader range of markers would be informative.  Observing 

the three arms of the UPR independently by measuring IRE1α, PERK, and ATF6; could 

give a more detailed picture than GRP78/BiP alone.  The UPR is a process that alleviates 

stress on the ER.  Durring ER stress GRP78/BiP dissociates from IRE1α, PERK, and 

ATF6, causing them to be activated.  PERK inhibits protein synthesis by phosphorylating 

and inactivating eukaryotic initiation factor 2α (eIF2α).  This results in a reduced protein 

load on the ER.  IRE1α regulates the splicing of mRNA encoding X-box binding protein 
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1(XBP1) thereby activating it, and transcribing additional chaperones to increase the 

ER’s protein folding capacity [1-4].  ATF6 activates the transcription of several ER 

proteins including GRP78/BiP to increase the capacity of the ER, and Derlin-3 which 

enhances ER associated degradation and reduces the amount of misfolded protein in the 

ER [1-4].  If normal protein folding is restored, PERK, IRE1α, and ATF6 can again be 

bound by GRP78/BiP, the UPR can end, and the cell can resume normal function. 

A study by Asahi et al. (2010), found an increase in GRP78/BiP and in CHOP 

after exposing NCTC Clone 1469, non-parenchymal hepatocytes derrived from mice, to 

100µM BPA.  They also saw an increase in reactive oxygen species (ROS).  Taken 

together these results indicate that BPS could also cause ER stress.  Yin et al. (2017) 

found the UPR to be generally upregulated in mouse spermatocytes, and that knocking 

down PERK protected against BPA induced apoptosis.  This shows that the PERK arm of 

the UPR may be the most useful target for a future experiment. 

A broader look at lipid metabolism would also be helpful.  Muramugi et al. 

(2011) observed the livers of mice exposed to BPA, and saw an increase in genes 

involved in de novo fatty acid synthesis including ACCα, ACCβ, FASN and ATP citrate 

lyase (Acly). A 2015 study by Feng et al. also saw an upreglation of genes involved in 

fatty acid synthesis in vivo in rabbits.  Both of these studies suggest that BPS exposure 

could cause an increase in fatty acid synthesis, and indeed, a later study by Héliès-

Toussaint et al. (2014) found a small increase in lipid content in HepG2 cells, consistent 

with the results of this study.  This contrasts with an earlier study by Peyre et al. (2014) 

which found a modest increase in lipid content in hepatocytes exposed to BPA, but no 

increase in hepatocytes exposed to BPS.  Furthermore, they saw no increase in expression 
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of fatty acid synthase (FASN) or perilipin (PLIN).  These conflicting studies demand a 

more thurough examination of the effects of BPS exposure on lipid synthesis. 

Finally, a broad transcriptomic and proteomic approach would be helpful.  BPS 

and other endocrine disruptors can exert their effects through a variety receptors and 

mechanisms, therefore it is difficult to assess their effects using only a few markers.  

With a larger budget, one could do large scale proteomic and transcriptomic analyses of 

multiple tissue types in an animal model.  Searching for relationships between the 

differentally expressed genes could elucide mechanisms of action formed from many 

small changes working in concert.    

While the results of this study did not rise to the level of statistical significance, 

they still hint at an interesting story.  There does seem to be a pattern of increased lipid 

content and ER stress as a result of exposure to low doses of BPS.  This study and 

another by Peyre et al. (2014) found no significant of BPS exposure on lipid levels in 

HepG2 cells, while another study by Héliès-Toussaint et al. (2014) found only a small 

increase compared to BPA.  Taken together, these studies suggest that BPS is a safer 

alternative to BPA in terms of liver function, however, the prevelance of BPS and its 

association with such diseases as obesity, diabetes, NAFLD continues to make BPS 

worthy of investigation.   
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