\qquad

1. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by $z=f(x, y)=x^{2} \sin y$.
(a.) Compute $f(0,0), f(\pi, \pi), f\left(2, \frac{\pi}{2}\right)$, and $f\left(3, \frac{\pi}{2}\right)$.
(b.) Suppose y is fixed to be equal to $\frac{\pi}{2}$. What is $z=f\left(x, \frac{\pi}{2}\right)$? What shape is this curve $z=f\left(x, \frac{\pi}{2}\right)$?
(c.) Suppose y is fixed to be a constant y_{0}. What is $z=f\left(x, y_{0}\right)$? What shape is the curve $z=f\left(x, y_{0}\right)$?
(d.) Suppose x is fixed to be a constant x_{0}. What is $z=f\left(x_{0}, y\right)$? What shape is the curve $z=f\left(x_{0}, y\right)$?
(e.) Back to the case of $y=\frac{\pi}{2}$. Let's find the tangent line at $x=3$. What is its slope?
(f.) In what plane does this tangent line live? Write the equation of this line in this plane.
(g.) Write a parameterization $\overrightarrow{r_{x}}(t)$ for this line in space.
(h.) Now, what if we fix $x=3$? Find a parameterization $\overrightarrow{r_{y}}(t)$ for the tangent line at $(x, y)=$ (3, $\frac{\pi}{2}$).
(i.) BONUS: Find the equation of the plane tangent to the graph of f at $(x, y)=\left(3, \frac{\pi}{2}\right)$.
2. Consider the function $g(x, y)=5 x^{2}-3 y^{2}$. Find parameterizations of two lines tangent to the graph of g at the point $(2,1,17)$.
[BONUS: Find the equation of the plane tangent to the graph at that point.]
