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Abstract

Background: Combining information from different studies is an important and useful practice in bioinformatics, 
including genome-wide association study, rare variant data analysis and other set-based analyses. Many statistical 
methods have been proposed to combine p-values from independent studies. However, it is known that there is 
no uniformly most powerful test under all conditions; therefore, finding a powerful test in specific situation is 
important and desirable.
Results: In this paper, we propose a new statistical approach to combining p-values based on gamma distribution, 
which uses the inverse of the p-value as the shape parameter in the gamma distribution.
Conclusions: Simulation study and real data application demonstrate that the proposed method has good 
performance under some situations.

Background
To combine information from individual studies, many 
statistical approaches have been proposed. For example, 
meta-analysis with fixed or random effects has been 
intensively used to combine information from separate 
relevant genome-wide association studies (GWASs). 
However, in practice sometimes it may not be able to get 
all the statistics that we need, such as odds ratio and its 
95% confidence interval; instead, only p-value from each 
study is available. In this case, combining p-values from 
independent studies should be used. In the literature, 
many statistical methods have been proposed to combine 
p-values [1-14]. For example, it has been shown that the 
Fisher test is more robust than the z-test and is com­
monly used for genetic data [15-26]. On the other hand, 
if the effects have the same direction and/or similar sizes, 
z-test is more powerful than the Fisher test. Some studies 
have shown that the weighted z-tests with weight equals
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to the sample size or the inverse of the standard error 
may perform better than the unweighted z-test under 
certain situations [27]. However, it has also been shown 
that there is no uniformly most powerful method [1]. 
Therefore, it is desirable to find a test which is more 
powerful than others for given situations. For instance, in 
GWAS meta-analysis, it is very common that the genetic 
effects of the same single-nucleotide polymorphism 
(SNP) from different studies are heterogeneous due to 
various environmental factors and study populations. 
Therefore, the fixed effect model cannot be applied and a 
p-value combining method is preferred.

Lancaster generalized Fisher test by giving certain 
degrees of freedom to individual studies when combine 
p-values based on the chi-square distribution. When the 
degrees of freedom (df) equal to two for each study, 
Lancaster’s test is identical to the Fisher test. Recently, 
Chen and Nadarajah have studied another special case 
of Lancaster’s test where the df is one for each study 
[14]. They have shown that their test can also be viewed 
as a weighted z-test with the “weight” equals to the esti­
mated effect, defined as the estimated mean difference 
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divided by the estimated standard error, which can be 
calculated by |$-1 (pi) |, where pi is the one-sided p-

 from the ith study and $ -1(.) is the inverse of the 
cumulative density function (CDF) of the standard nor­
mal distribution, N(0,1).

Methods based on the gamma distribution (GDM) are 
also available in the literature. In fact, Lancaster’s meth­
ods are special cases of GDMs. GDMs are more flexible 
and potentially can be more powerful in some situations 
when appropriate parameters (e.g., the shape parameter 
in the gamma distribution) are chosen. However, it is 
usually difficult to set appropriate parameters before we 
see the data. In this paper, we propose a GDM, which 
adaptively chooses the shape parameter of the gamma 
distribution for each individual study. We compare the 
performance of the proposed test with existing methods 
through simulation studies. We also use real data appli­
cation to illustrate the use of the new approach.

Methods
Suppose we have K independent studies and their asso­
ciated p-values pi (i = 1,2,...,K). Under the null hypoth­
esis that there is no effect for all studies, the p-values 
from individual studies are uniformly distributed 
between 0 and 1. The weighted z-tests are formulated as 
follows:

(1)

where wi is the weight for study i. When all wi =1, 
the above test is the unweighted z-test, also called the 
Stouffer test [5]. When wi = ni, where ni is the sample 
size for study i , it is called the Mosteller-Bush test [8]. 
Other researchers suggested the use of the square root 
of the sample size nno or the inverse of the estimated 
standard error 1/se as weight [27].

Other ways to combine p-values are based on the fol­
lowing property: if Y1, Y2, ..., YK are K independent 
random variables and each has a chi-square distribution 
with df equal to di, then their sum has a chi-square dis­
tribution with df equal to the sum of their df’s. Fisher 
[9] found that if K random variables X1 , X2, ... , XK are 
independent and identically uniformly distributed 
between 0 and 1, then each -2 log(Xi) has a chi-square 

k
distribution with df = 2 and their sum -2 log(Xi)

i=1
has a chi-square distribution with 2K df, X 2( df = 2 k). 
Based on this fact, Fisher used test statistic

and compared it to 
all p-value. Lancaster 
iving different di df fo

X 2(df =2k) to calcu- 
r [3] generalized Fish- 
or each study. The test

a e e overa p 
er’s test by giving d

where Fi-1 is the inverse of X2(df = di) .
Rather than the chi-square distribution, a more gener­

alized distribution, gamma distribution, can be used. 
The test statistic based on the gamma distribution can 
be written as:

Notice that since the gamma distribution with shape 
parameter ai and scale parameter 1 has expected value 
ai, a small p-value of pi results in a large expected 
value. Therefore, the proposed test gives larger “weights” 
to smaller p-values. In addition, since pi is a random 
variable, the proposed test doesn’t follow a gamma dis­
tribution any more. However, the p-value can be easily 
estimated by resampling method. Under the null 
hypothesis, pi is uniformly distributed between 0 and 1. 
For the given number of studies, K, we can generate K 
numbers from uniform distribution U(0,1) and then cal­
culate the statistic t defined in (4). We repeat this step 
N times (say, N = 108), then the null distribution of T 
can be approximated by those numbers and the p-value 
can be estimated by the proportion of the N values 
which are greater than the observed statistic.
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Results
Simulation study
To assess the performance of the proposed test, we con­
duct a simulation study by comparing it with some exist­
ing methods, including the z-test (denoted by Z), 
weighted z-tests with weights equal to the sample size 
(Z_n) or the estimated standard error (Z_se), the Chen- 
Nadarajah (CN) method, the Fisher test (Fisher). In the 
simulation study, we assume there are K independent 
studies, where K = 2, 10, or 100. For each study, we simu­
late data from two normal distributions: N(0, σ2), and 
N(^μ σ) with sample sizes n1 = n2 = n, respectively. Of 
the K studies, there are different numbers of studies that 
have none-zero effects (i.e., ^i =0 ), which may have dif­
ferent values among studies but their sum is a constant. 
We consider several conditions for allocating effect sizes 
among the K studies. We first consider sample sizes and 
variances are fixed. We then assume the sample size, or 
the variance, or both the sample size and the variance are 

randomly sampled from given distributions. For random 
sample size, we assume it follows a Poisson distribution, 
Poi(l); for random variances, we assume the standard 
deviation follows a gamma distribution with shape para­
meter a and scale parameter b, gamma(a, b). A p-value 
from a two-sample t-test to compare two group means 
for each study is obtained and is used to combine those 
K studies. When K is small (i.e., 2, and 10), we consider 
situations where there are 1 to K studies having none­
zero effects. For K = 100, we consider i (i = 1, 2,..., 10) 
studies having the same effect size while the remaining 
100-i studies having zero effect. We choose significance 
level 0.05 in the simulation study and use 105 replicates 
to estimate the type I error rate and the power.

Simulation results
All the methods can control type I error rate (data not 
shown). Figure 1 plots the power values for each method 
when there are only two studies (K = 2) with the sum of 

Figure 1 Power values for each method under six different conditions: the total effect size is 1 and the ratios of the K = 2 effect sizes 
between study 1 and study 2 are 0, 0.01, 0.05, 0.1, 0.5, and 1. (a) Sample sizes n = 20, and standard deviation σ = 1 for each study; (b) 
Same as (a), but the sample size n is a random sample from Poi(20); (c) Same as (a), but the standard deviation σ is a random sample from 
gamma(10, 0.1); (d) Same as (b), but the standard deviations s is a random sample from gamma(10, 0.1).
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the two effect sizes equals to 1. Six conditions are consid­
ered: the ratios of the effects sizes between study1 and 
study 2 are 0, 0.01, 0.05, 0.1, 0.5, and 1, respectively. 
Therefore, the heterogeneity of effects between the two 
studies decreases from condition 1 to condition 6. Figure 
1 (a) shows that the gamma-distribution based methods 
(Fisher, CN, and New) perform similarly, and all outper­
form the Z-based methods (Z, Z_n, Z_se) when the 
effects are not homogenous between the two studies 
(conditions 1 to 5). When the two studies have the same 
effect size (condition 6), the power values from all meth­
ods are close to each other. We have similar observations: 
when the sample size is randomly sampled from Poisson 
distribution Poi(20) (Figure 1 (b)), or when the standard 
deviation is randomly sampled from gamma distribution, 
gamma(10, 0.1) (Figure 1 (c)), or when both sample 
sizes and standard deviations are random samples as in 
Figure 1 (b) and 1(c) (Figure 1 (d)).

Figure 2 plots the estimated power values for each 
method when there are i (i = 1,2,..., 10) studies having 
none-zero effects and the sum of those effect sizes is 2. 
For those i studies with none-zero effects, we assume the 
mean of the second group equals to 2/i. Figure 2 (a) 
shows that when only a few studies have none-zero 
effects (e.g., i = 1, 2, 3) the gamma-distribution based 
methods, including the proposed test perform better 
than those Z-based methods. However, when the effects 
among those studies become more homogenous, the pro­
posed test has slightly lower power values. The sample 
size n = 20 and standard deviation σ = 1 are assumed for 
each study in Figure 2 (a). We have similar observations 
when sample size n is a random sample from Poi(20) 
(Figure 2 (b)), or when standard deviation σ is randomly 
sampled from a gamma(10, 0.1) (Figure 2 (c)), or when 
both sample size and standard deviation are random 
samples as in Figure 2 (b) and 2(c) (Figure 2 (d)).

Figure 2 Power values for each method under 10 different conditions: for situation i, there are i out of K = 10 studies each has the 
same effect size 2/i and the remaining 10-i studies have zero effect. (a) Sample size n = 20, and standard deviation σ = 1 for each study; 
(b) Same as (a), but the sample size n is a random sample from Poi(20); (c) Same as (a), but the standard deviation σ is a random sample from 
gamma(10, 0.1); (d) Same as (b), but standard deviation σ is a random sample from gamma(10, 0.1).
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Figure 3 plots the power values for each method when 
there are 100 independent studies but only i(i = 1, 2,..., 
10) studies have none-zero effect sizes. For those i stu­
dies with none-zero effects, we assume the mean for the 
second group equals to 2/i. In Figure 3 (a) we set sam- 
plesizen=20ands = 1 for each study. When there 
are only one or two studies having none-zero effects, 
the proposed test has much higher power values than 
the Fisher test and the CN method, which in turn are 
more powerful than the Z, Z_n, and Z_se tests. When 
the number of significant studies increases, all of the 
methods have close power values. The same pattern can 
be observed when n is random samples from Poi(20) 
(Figure 3 (b)), or when σ is randomly sampled from a 
gamma(10, 0.1) (Figure 3 (c)), or when both sample size 
and standard deviation are random samples as in Figure 
3 (b) and 3(c) (Figure 3 (d)).

Real data application
We apply the proposed approach to a meta-analysis of 
Genome-wide association study (GWAS). The data 
include 5 independent case-control studies where we 
wanted to test whether there is an association between 
the SNP rs17110747-A and major depression [28]. 
Table 1 is the count data from these studies. The 5 p- 
values are 0.94, 0.0015, 0.97, 0.79, and 0.81. The overall 
p-values from the Z, Z_n, Z_se, Fisher, CN, and the 
proposed test are 0.84, 0.53, 0.29, 0.17, 0.062, and 
0.0081, respectively. Only the proposed test has p-value 
less than 0.05.

Discussion and conclusions
Combining information from individual studies is an 
important and useful tool, especially for set-based 
approaches. For example, in studying the effect of rare

Figure 3 Power values for each method under 10 different conditions: for situation i, there are i out of K = 100 studies each has the 
same effect size 2/i and the remaining 100-i studies have zero effect. (a) Sample size n = 20, and standard deviation σ = 1 for each study;
(b) Same as (a), but the sample size n is a random sample from Poi(20); (c) Same as (a), but the standard deviation σ is a random sample from 
gamma(10, 0.1); (d) Same as (b), but the standard deviation σ is a random sample from gamma(10, 0.1).
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Table 1 Count data from the five independent studies 
investigating the association between SNP rs17110747-A 
and major depression
study case control

event total event total

1 11 270 25 630

2 244 1016 282 926

3 49 234 35 166

4 79 600 76 600

5 71 290 86 340

variants on diseases, a set of rare variants are tested 
simultaneously, and their p-values are combined to test 
for the association between the rare variants and the 
disease [29]. However, most of the rare variants may 
have no or little effects while a few of them may have 
large effects. In this case, the proposed test will be more 
powerful than other methods if combining p-value 
methods are used. However, it should be pointed out 
that, the rare variants from a set (e.g., gene) maybe corre­
lated, and the proposed test needs to be modified accord­
ingly. A permutation-based test can be applied to 
estimate the p-value. We first calculate the statistic based 
on the proposed test (4). Then we permute the disease 
status (case or control); for each permutation, we use the 
proposed test to calculate a statistic. After a large number 
of permutations, the p-value will be estimated as the pro­
portion of the statistics from the permutations excessing 
the observed statistic from the original data. To assess 
the performance of the proposed test in rare variant asso­
ciation studies, real data are needed. This will be a topic 
of our future research.

As mentioned earlier, no method is uniformly most 
powerful when combing p-values. However, based on 
our simulation studies, the proposed test is more power­
ful when the effects among the studies are more hetero­
geneous. When the effects are homogeneous, perhaps 
the Z-based tests are more powerful. Without the infor­
mation about the effect sizes, robust methods, such as 
the CN and Fisher tests are recommended.
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