
NNMF IN GOOGLE TENSORFLOW AND APACHE SPARK: A COMPARISON STUDY

A Thesis

Presented to

The Faculty of the Department of Computer Science

Sam Houston State University

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science

by

Qizhao Li

August, 2019

NNMF IN GOOGLE TENSORFLOW AND APACHE SPARK: A COMPARISON STUDY

by

Qizhao Li

APPROVED:

Hyuk Cho, PhD
Thesis Director

Bing Zhou, PhD
Committee Member

Qingzhong Liu, PhD
Committee Member

John Pascarella, PhD
Dean, College of Science and Engineering
Technology

iii

ABSTRACT

Li, Qizhao , NNMF IN GOOGLE TENSORFLOW AND APACHE SPARK: A

COMPARISON STUDY. Master of Science (Computer Science), August, 2019, Sam
Houston State University, Huntsville, Texas.

Data mining is no longer a new term as it has been already pervasive in all aspects

of our lives. New computing platforms for specific usages are proposed continuously.

Therefore, the awareness of the characteristics and the capacity of existing and newly

proposed platforms becomes a critical task for researchers and practitioners, who want to

use existing algorithms and also develop new ones on the recent platforms.

Particularly, this thesis aims to implement and compare a set of popular matrix

factorization algorithms on recent computing platforms. Specifically, the three matrix

factorization algorithms, including classic Non-negative Matrix Factorization (NNMF),

CUR Matrix Decomposition, and Compact Matrix Decomposition (CMD), are

implemented on the two computing platforms, including Apache Spark and Google

TensorFlow.

As rank k approximation with Singular Value Decomposition (SVD) is an optimal

baseline, both CUR and CMD approximation are less accurate than the SVD

approximation. The experimental result shows that CMD in TensorFlow performs better

in terms of matrix approximation than the other two non-negative matrix factorization

algorithms (NNMF, and CUR) in the same experiment setup. Also, as the number of rows

or columns selected for CUR and CMD increases, the approximation error decreases.

KEY WORDS: TensorFlow, Apache Spark, Non-Negative Matrix Factorization, CUR
Matrix Decomposition, Compact Matrix Decomposition, Approximation Performance

iv

TABLE OF CONTENTS

Page

ABSTRACT ... iii

TABLE OF CONTENTS ... iv

LIST OF TABLES ... vi

LIST OF FIGURES .. vii

I INTRODUCTION .. 1

II BACKGROUND .. 3

Singular Value Decomposition (SVD) ... 3

Non-negative Matrix Factorization (NNMF).. 4

CUR Matrix Decomposition ... 6

Compact Matrix Decomposition (CMD) .. 9

Apache Spark .. 11

Google TensorFlow .. 13

III METHODOLOGY ... 16

Algorithms Implementation and Evaluation ... 16

Computing Platforms .. 18

Google Colab .. 19

IV EXPERIMENT RESULT ... 20

Experimental Setting ... 20

Approximation Performance within Platform .. 21

Approximation Performance between Platforms .. 23

Overall Approximation Performance .. 26

v

Running Time Performance .. 27

Approximation Performance over Varying k ... 28

Overall Approximation Performance over Varying k .. 30

V CONCLUSION & FUTURE WORK ... 31

Conclusion .. 31

Future Work .. 31

REFERENCES ... 33

APPENDIX ... 38

VITA ... 46

vi

LIST OF TABLES

Table Page

1 Multiplicative Update Rules [1].. 5

2 Initial Subspace Construction [7].. 8

3 CMD Subspace Construction [7]. ... 11

vii

LIST OF FIGURES

Figure Page

1 Rank k Approximation via SVD [43]. .. 3

2 CUR Decomposition [31]. .. 8

3 Performance Comparison of Three Algorithms in Space, Time and

Estimation Cost [7]. .. 10

4 Illustration of CMD Steps [32]. .. 10

5 Apache Spark Construction [39]. .. 12

6 TensorFlow Toolkit [38]. .. 14

7 Online Job Listing [28]. .. 15

8 New GitHub Activity [28]. ... 15

9 Illustration of (a) CUR and (b) CMD [7]. ... 16

10 Comparison in Apache Spark. .. 21

11 Comparison in Google TensorFlow. ... 22

12 Comparison of NNMF between TensorFlow and Spark. 23

13 Comparison of CUR between TensorFlow and Spark. ... 24

14 Comparison of CMD between TensorFlow and Spark. .. 25

15 Approximation Performance Comparison. ... 26

16 Running Time Performance Comparison. .. 27

17 Approximation Performance over Varying k in Spark. 28

18 Approximation Performance over Varying k in TensorFlow. 29

19 Approximation Performance over Varying k. ... 30

1

CHAPTER I

Introduction

Data mining is no longer a new term as it has already been implemented and used

in every aspect of our daily activities. New computing platforms for specific and general

propose are being proposed continuously to achieve effective and efficient computation.

Some disappeared after months, but others have been further developed more

comprehensively. Therefore, the awareness of the characteristics and capacity of those

existing platforms becomes a critical task for researchers and practitioners, who want to

use existing algorithms or develop new one on the state-of-the-art computing platforms.

 Among numerous computing algorithms, we focus on the three matrix

factorization algorithms: Non-Negative Matrix factorization [1], CUR Matrix

Decompositions [6], and Compact Matrix Decomposition [7]. We implement the three

algorithms on the two recently developed computing platforms: Apache Spark [3] and

Google TensorFlow [2]. Apache Spark and Google TensorFlow were released on May

2014 and November 2015, respectively. Both have been popular in the data mining,

machine learning, and data science communities and made a great contribution to both

research and real-life applications. For example, NNMF is widely used in astronomy, text

mining, spectral data analysis, bioinformatics, and nuclear imaging, etc. Uber uses Spark

Streaming, Kafka, and HDFS (Hadoop Distributed File System) for building a continuous

ETL (Extract Transform Load) pipeline [41]. GE Healthcare trained a neural network

using TensorFlow to identify anatomy on MRIs of the brain [40].

 The remaining chapters are organized as follow. Chapter II briefly discusses

fundamentals for the matrix factorization algorithms and the two state-of-the-art

2

computing platforms. Chapter III describes the algorithm implementation in Google

Colab environment. Chapter IV discusses the experimental setting and the matrix

approximation result. Chapter V concludes with future research direction.

3

CHAPTER II

Background

Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD) [42] is used as the standard optimal

baseline matrix factorization in the study. SVD is a factorization of a matrix in linear

algebra. It is the generalization of the eigendecomposition of a positive semidefinite

normal matrix.

Suppose A is an m x n matrix, which is the field of either real numbers or complex

numbers. The SVD of A exists and is a factorization of the form:

 𝐴 = 𝑈𝑆𝑉𝑇, (1)

where the columns of U are the left singular vectors, each of which is orthonormal, S has

singular values in its diagonal entries, and VT has rows that are the right singular vectors.

SVD is largely used in the mathematical area such as pseudo inverse, solving

homogeneous linear equations, and separable models. The SVD can be used for both

rectangular and square matrices.

Figure 1. Rank k Approximation via SVD [43].

4

 In order to have best approximate a matrix A by a rank k matrix, the SVD gives a

rigorously justified solution. As shown in Figure 1, the S is non-zero only on its diagonal

and the diagonal entries of S are sorted from high to low. The rank k approximation is

Ak = UkSkVk
T.

Today, singular value decomposition has spread through many branches of

science, in particular psychology and sociology, climate and atmospheric science, and

astronomy. It is also extremely useful in machine learning and in both descriptive and

predictive statistics.

Non-negative Matrix Factorization (NNMF)

In 1999, Lee and Seung introduced a new algorithm for machine learning: Non-

Negative Matrix Factorization(NNMF) [5]. For a given non-negative matrix V, NNMF

targets to find non-negative matrix factors, W and H, such that:

 𝑉 ≈ 𝑊𝐻 (2)

Given a set of multivariate m-dimensional data vectors, the vectors are placed in

the columns of an m x n matrix V, where n is the number of examples in the data set. The

given matrix V is then factorized into an m x r matrix W and an r x n matrix H. Usually r

is chosen to be smaller than n or m so that W and H are smaller than the original matrix V

[1]. NNMF aims at minimizing the Euclidian distance between V and WH and can be

used as an effective technique for dimension reduction and unsupervised clustering [12].

5

Table 1

Multiplicative Update Rules [1].

𝐻𝛼𝜇 ← 𝐻𝛼𝜇 (𝑊𝑇𝑉)𝛼𝜇(𝑊𝑇𝑊𝐻)𝛼𝜇
𝑊𝑖𝛼 ← 𝑊𝑖𝛼 (𝑉𝐻𝑇)𝑖𝛼(𝐻𝑇𝐻𝑊)𝑖𝛼

𝐻𝛼𝜇 ← 𝐻𝛼𝜇 ∑ 𝑖 𝑊𝑖𝛼𝑉𝑖𝜇/(𝑊𝐻)𝑖𝜇∑ 𝑘 𝑊𝑘𝛼
𝑊𝑖𝛼 ← 𝑊𝑖𝛼 ∑ 𝜇 𝐻𝛼𝜇𝑉𝑖𝜇/(𝑊𝐻)𝑖𝜇∑ 𝑣 𝑊𝐻𝛼𝑣

As shown in Table 1, NNMF consists of the two multiplicative update rules for

updating H and W. The Euclidean distance is invariant under these updates if and only if

W and H are at a stationary point of the distance [1].

Compared with SVD, the NNMF factors only positive entries. SVD factors can be

related to eigenfunction of a system when original matrix represented a system about

which one is interested in terms of signal processing perspective. NNMF can also be used

but the associating physical relationships are more indirect. Moreover, the SVD yields

unique factors whereas NNMF factors are non-unique, which makes NNMF more

suitable for the privacy protection algorithms.

NNMF has also been implemented and used in numerous applications. In

biological data mining, CloudNMF [12] and bioNMF [13] are developed with NNMF. In

text mining, a document-term matrix is constructed with the weights of various terms

from a set of documents. The matrix is factored into a term-feature and a feature-

document matrix. The features are derived from the contents of the documents, and the

feature-document matrix describes data clusters of related documents [30]. In astronomy,

6

NNMF is a promising method for dimensional reduction in the sense that astrophysical

signals are non-negative. NNMF has been applied to the spectroscopic observations [34]

and the direct imaging observations as a method to study the common properties of

astronomical objects and post-process the astronomical observations. In direct

imaging, various statistical methods have been adopted to reveal the faint exoplanets and

circumstellar disks from bright the surrounding stellar lights, which has a typical contrast

from 10⁵ to 10¹⁰ [35]. However, the light from the exoplanets or circumstellar disks are

usually over-fitted, where forward modeling has to be adopted to recover the true flux.

Forward modeling is currently optimized for point sources, not for extended sources,

especially for irregularly shaped structures such as circumstellar disks. In this situation,

NNMF has been an excellent method, being less over-fitting in the sense of the non-

negativity and sparsity of the NNMF modeling coefficients. Therefore, forward modeling

can be performed with a few scaling factors, rather than a computationally intensive data

re-reduction on generated models.

The NNMF on TensorFlow is implemented by eesungkim and available on

GitHub [11].

CUR Matrix Decomposition

 CUR Matrix Decomposition [6] was proposed by M. Mahoney and P. Drineas on

January 12, 2009. CUR matrix decomposition is a low-rank matrix decomposition, which

is explicitly expressed in terms of a small number of actual columns and actual rows of the

data matrix.

7

 The algorithm preferentially chooses actual columns and rows that exhibit high

“statistical leverage.” Thus, CUR in a very precise statistical sense, exerts a

disproportionately large effect on the best low-rank fit of the data matrix [6].

 𝐴 ≈ 𝐶𝑈𝑅 (3)

8

Figure 2. CUR Decomposition [31].

As illustrated in Figure 2, given an m x n matrix A, CUR algorithm decomposes it

as a product of three matrixes, C, U, and R, where C consists of a small number of actual

columns of A, R consists of a small number of actual rows of A, and U is a small carefully

constructed matrix that guarantees that the product CUR is “close” to the original matrix

A [6]. As described in Table 2, the algorithm carefully selects columns and rows and

constructs the subspace of C and R.

Table 2

Initial Subspace Construction [7].

Input: matrix 𝐴 ∈ ℝ𝑚 x 𝑛, sample size c

Output: 𝐶𝑑 ∈ ℝ𝑚 x 𝑛
1. for 𝑥 = 1 : 𝑛 [column distribution]
2. 𝑃(𝑥) = ∑ 𝐴(𝑖, 𝑥)2/ ∑ 𝐴(𝑖, 𝑗)2𝑖,𝑗𝑖

3. for i = 1 : c [sample columns]
4. Pick 𝑗 ∈ 1 : n based on distribution P(x)

5. Compute 𝐶𝑑(: , 𝑖) = 𝐴(: , 𝑗)/√𝑐𝑃(𝐽)

Compared with SVD, CUR decomposition is less accurate in terms of low-rank

approximation. However, it is unique in terms of constructing the factors as it takes the

9

actual columns and rows from a given non-negative matrix and constructs the

corresponding non-negative factor matrices.

For a specific application of CUR, Intelligent Transportation Systems (ITSs) often

operate on large road networks, and typically collect traffic data with high temporal

resolution. Consequently, ITSs need to handle massive volumes of data, and methods to

represent that data in more compact representations are sorely needed [37]. CUR matrix

decomposition can lead to low-dimensional models where the components correspond to

individual links in the network and thus the resulting models can be easily interpreted and

can also be used for compressed sensing of the traffic network [37].

Compact Matrix Decomposition (CMD)

Compact Matrix Decomposition (CMD) [7] requires much less space and

computation time then CUR; thus, CMD is more efficient. Figure 3 illustrates the

performance comparisons among SVD, CUR, and CDM regrading to space, time, and

estimation cost. As shown in Figure 3, CMD has significantly outperformed CUR

decomposition and the singular value decomposition (SVD) of space requirement and

computational time.

10

Figure 3. Performance Comparison of Three Algorithms in Space, Time and

Estimation Cost [7].

Figure 4. Illustration of CMD Steps [32].

11

Table 3

CMD Subspace Construction [7].

Input: matrix 𝐴 ∈ ℝ𝑚 x 𝑛, sample size c

Output: 𝐶𝑑 ∈ ℝ𝑚x𝑛
1. Compute Cd using the initial subspace construction
2. Let 𝐶 ∈ ℝ𝑚 x 𝑐′be the unique columns of Cd
3. for i = 1 : c’
4. Let u be the number of C(: , i) in Cd

5. Compute 𝐶𝑠(: , 𝑖) ← √𝑢 ∙ 𝐶(: , 𝑖)

Table 3 shows how CMD algorithm constructs a low dimensional subspace

represented with a set of unique columns. Each column is selected by sampling the input

matrix A, and then scaling it up based on the square root of the number of times it is

selected [7]. Figure 4 illustrates the construction of smaller row and column components

by removing redundancy from each dimension.

Apache Spark

 Apache Spark [3] is a fast, open-source, in-memory data processing engine that

allows data workers to efficiently execute machine learning, streaming or SQL workloads

which require fast iterative access to datasets. Spark was originally developed at the

AMPLab (Algorithms Machines People Lab) at UC Berkeley. Later on, the Spark

codebase was donated to the Apache Software Foundation, which has maintained the

Spark since then.

Apache Spark has the following characteristics [4]. Spark introduced an

abstraction called resilient distributed datasets (RDDs). An RDD is a read-only

collection of objects separated across a set of machines that can be rebuilt if a partition is

12

lost. Users can explicitly cache an RDD in memory across machines and reuse it in

multiple MapReduce-like parallel operations. RDDs achieve fault tolerance through a

notion of lineage: if a partition of an RDD is lost, the RDD has enough information about

how it was derived from other RDDS to be able to rebuild that partition.

As shown in Figure 5, Apache Spark is contributed by five parts: Spark Core,

Spark SQL, Spark Streaming, Spark MLlib, and GraphX. Spark Core is the foundation of

the overall project. It provides distributed task-dispatching scheduling and basic I/O

functionalities. Spark SQL is a component on top of Spark Core that introduces a data

abstraction called DataFrames, which provides support for structured and semi-structured

data. Spark Streaming uses Spark Core’s fast scheduling capability to perform streaming

analytics. Spark MLlib is a distrusted machine learning framework on top of Spark Core

and GraphX is the graph processing framework on top of Apache Spark.

Figure 5. Apache Spark Construction [39].

13

Apache Spark is also be used in many companies such as Baidu, eBay Inc, IBM

Almaden, Yahoo!, etc. [29].

Google TensorFlow

Google TensorFlow [2] is an open source interface released by Google for

expressing and implementing data mining and machine learning algorithms. The

computation expressed using TensorFlow can be performed on a wide variety of

heterogeneous systems with little or small change. The range is from mobile devices,

such as phones and tablets, up to the large-scale distributed system of hundreds of

machines. TensorFlow can be characterized as a flexible system and can be used in a

wide variety of algorithms [2]. TensorFlow takes computations described using a

dataflow-like model and maps them in different devices. An operation has a name and

represents an abstract computation. An operation can also have attributes and all the

attributes must be provided or referred at graph-construction time in order to instantiate a

node to perform the operation. In a TensorFlow graph, each node has zero or more inputs

and zero or more outputs, and represents the instantiation of an operation. Values that

flow along normal edges in a graph are tensors [2]. A variable in TensorFlow is a special

kind of operation that returns a handle to persistent mutable tensor that survives across

executions of a graph.

TensorFlow provides a variety of different toolkits that allow users to construct

models at users’ preferred level of abstraction. As shown in Figure 6, users can use

lower-level APIs to build models by defining a series of mathematical operations.

14

Alternatively, users can use higher-level APIs, each of which is called tf.estimator, to

specify predefined architectures, such as linear regressors or neural networks.

Figure 6. TensorFlow Toolkit [38].

As TensorFlow is developed by Google, it has one of the largest developer

community. Therefore, TensorFlow is widely used among all kinds of big companies

such as Airbnb [22], Intel [23], Lenovo [24], PayPal [25], Twitter [26], Qualcomm [27],

etc. TensorFlow is also the most popular deep learning framework. As illustrated in

Figure 7 and Figure 8, TensorFlow has the most GitHub activity in each category and the

most mentioned skill in machine learning related job listing [28].

15

Figure 7. Online Job Listing [28].

Figure 8. New GitHub Activity [28].

16

CHAPTER III

Methodology

Algorithms Implementation and Evaluation

The input data for testing is a single standard tab-delimited text file which

contains the non-negative matrix with or without labels. In the experimental study, the

performance is measured as follows:

 1) The measurement of approximation performance. As discussed, CMD is an

improved version of CUR matrix decomposition. Particularly, compared with CUR, CMD

has significant improvement in terms of both storage and computing performance. CMD

carefully removes duplicate columns and row after sampling, and thus it reduces both the

storage space required as well as the computational effort. The key step of subspace

construction is to scale up the columns that are sampled multiple times while removing

the duplicates [7].

Figure 9. Illustration of (a) CUR and (b) CMD [7].

 As shown in Figure 9, CMD carefully removes duplicate columns and rows after

sampling. Intuitively, the directions of those duplicate columns are more important than

17

the other columns. Thus, the key step of subspace contraction is to scale up the columns

that are sampled multiple times while removing the duplicates [7]. As illustrated in Figure

9, each column is selected by sampling the input matrix A, and the scaling it up based on

the square root of the number of times it is selected.

 2) The matrix norm as a metric for matrix approximation measurement. In linear

algebra, a vector norm is a function that assigns a strictly positive length or size to each

vector in a vector space except for the zero vector, which is assigned a length of zero.

3) The performance in each computing platform. The usual matrix 2-norm of the

different between the original matrix and the approximated matrix by each matrix

decomposition is used to measure the reconstruction error. By the positivity property of

matrix norm, we know that the two inequalities (4) and (5) hold. Therefore, the other two

inequalities (6) and (7) are used to compare the approximation performance. As shown in

(6), if the left hand side (LHS) is greater than the right hand side (RHS), then the

approximation performance with CUR is worse than the one with CMD. Contrarily, as

shown in (7), if the LHS is less than the RHS, then the approximation performance with

CUR is better than the one with CMD.

 ||𝐴 − 𝐶𝑈𝑅||2 ≥ 0 (4)

 ||𝐴 − 𝐶𝑀𝐷||2 ≥ 0 (5)

 ||𝐴 − 𝐶𝑈𝑅||2 > ||𝐴 − 𝐶𝑀𝐷||2 (6)

 ||𝐴 − 𝐶𝑈𝑅||2 < ||𝐴 − 𝐶𝑀𝐷||2 (7)

4) The performance between Apache Spark and Google TensorFlow platforms.

The result of the approximation performance of different platforms, TensorFlow and

Spark, can be measured as follows. The reconstruction error ||𝐴 − 𝐶𝑈𝑅𝑠||2 is compared

18

with the reconstruction error ||𝐴 − 𝐶𝑈𝑅𝑇||2 to determine the performance of CUR

decomposition on different platforms. Similarly, ||𝐴 − 𝐶𝑀𝐷𝑆||2 is compared with ||𝐴 −𝐶𝑀𝐷𝑇||2. Note the subscripts, S and T, are used to denote Apache Spark platform and

Google TensorFlow platform, respectively.

Computing Platforms

The reason for selecting Apache Spark and Google TensorFlow as the test

platforms is because they are state-of-the-art data mining and machine learning

computing platforms in the market. Both are recently developed and actively maintained

by a wide range of open-source developer communities. Although other computing

platforms are available for data mining and machine learning societies, Spark and

TensorFlow are promising directions in the data mining and machine learning in terms of

both speed-up and scalability. Spark and TensorFlow do share some similarities in the

technical aspect. Both frameworks can perform distributed operations on large datasets.

They both take a set of input operations, compile these operations to a DAG (Directed

Acyclic Graph), and then ship the DAG to a pool of executors and execute the DAG on a

subset of the data.

However, with all the similarities, Spark and TensorFlow are still different. Spark

utilizes the RDD [8] primitive for distributing any map/reduce-like operation. Spark’s

framework is heavily optimized for caching distributed datasets and minimizing

communication between executors [10]. On the other hand, TensorFlow is a specialized

tool for performing numerical operations on data, utilizing a tensor as its primitive.

TensorFlow’s distributed master mode [9] is different from Spark’s in terms that it

19

partitions one DAG between multiple executors, sets up Remote Procedure Calls (RPCs)

between these executors at the graph partitions, launches a parameter server for executors

to read/write weight updates, and provides efficient implementations for CPU and GPU

executors. For specific numerical tasks such as minimization of an objective given a huge

volume of data, TensorFlow’s architecture is more efficient than Spark [10].

Currently, many existing data mining and machine learning algorithms and

applications have been implemented and used in numerous research and application

communities. For example, Apache MRQL [14] is a Spark-based query processing

deoptimization system for large-scale and distributed data analysis. RankBrain [15] is a

TensorFlow-based large-scale deployment of deep neural search ranking on Google.com.

Meanwhile, popular algorithms such as K-Nearest Neighbor (KNN) [16], K-means [17],

and Support Vector Machine (SVM) [18] have already been implemented on

TensorFlow. Although KNN is not implemented on Spark because Spark’s characteristic,

K-Means [19], SVM [20], and PageRank [21] are available on Spark. To best of our

knowledge, CUR and CMD algorithms have not been fully implemented on Spark and

TensorFlow as well as compared between the two computing platforms, yet.

Google Colab

Google Colab is a free cloud service based on Google Drive and Jupyter notebook

environment. It provides the free access to GPUs for users to develop their own

application using popular Apache Spark, Google TensorFlow, and Deep Learning

libraries such as Keras, TensorFlow, PytTorch, and OpenCV. Currently, it supports

Python 2.7 and 3.6, but not R and Scala, yet. Therefore, all the implemented algorithms

are executed in Google Colab environment.

20

CHAPTER IV

Experiment Result

Experimental Setting

The following hardware, software, and data are used for the experimental study.

CPU: Intel Core i7-6700k at 4.4 GHz.

Ram: 16GB.

GPU: Nvidia GeForce GTX 980ti.

Operating System: Windows 10 Pro 64-bit.

Dataset: The datasets used in the experiment are all non-negative symmetric

matrix from dimension 5 to dimension 50.

All the methods are tested in an identical environment on Google Colab with the

same input matrix and parameter values.

21

Approximation Performance within Platform

Apache Spark.

Figure 10. Comparison in Apache Spark.

Note that k is set as ‘input matrix dimension - 1’. With the growth of the input

matrices dimension in Apache Spark, the reconstruction errors for all the three

algorithms increase. Overall, CMD shows the better approximation performance than the

others.

22

Google TensorFlow.

Figure 11. Comparison in Google TensorFlow.

Note that k is set as ‘input matrix dimension - 1’. With the growth of the input

matrices dimension in Google TensorFlow, the reconstruction errors for all the three

algorithms increase. Overall, CMD shows the better approximation performance than the

others

23

Approximation Performance between Platforms

NNMF.

Figure 12. Comparison of NNMF between TensorFlow and Spark.

Note that k is set as ‘input matrix dimension - 1’. As before, with the growth of

the input matrices dimension, the reconstruction errors for NNMF increase. NNMF in

Google TensorFlow has better approximation performance than the one in Apache Spark.

24

CUR.

Figure 13. Comparison of CUR between TensorFlow and Spark.

Note that k is set as ‘input matrix dimension - 1’. As before, with the growth of

the input matrices dimension, the reconstruction errors for CUR increase. CUR in Google

TensorFlow has better approximation performance than the one in Apache Spark.

25

CMD.

Figure 14. Comparison of CMD between TensorFlow and Spark.

Note that k is set as ‘input matrix dimension - 1’. As before, with the growth of

the input matrices dimension, the reconstruction errors for CMD increase. CMD in

Google TensorFlow has better approximation performance than the one in Apache Spark.

26

Overall Approximation Performance

Figure 15. Approximation Performance Comparison.

Note that k is set as ‘input matrix dimension - 1’. As discussed before, with the

growth of the input matrices dimension, the reconstruction errors for all the algorithms

increase. As shown in Figure 15, the algorithms in Google TensorFlow perform better

than the ones in Apache Spark. Particularly, CMD in Google TensorFlow results in the

best approximation performance.

27

Running Time Performance

Figure 16. Running Time Performance Comparison.

Note that k is set as ‘input matrix dimension - 1’. The algorithms on Google

TensorFlow take less running/execution time than the ones on Apache Spark.

28

Approximation Performance over Varying k

Apache Spark.

Figure 17. Approximation Performance over Varying k in Spark.

Figure 17 shows the reconstruction errors of the four algorithms (NNMF, CUR,

CMD, and SVD) in Apache Spark. As the number (denoted as k) of vectors selected for

every algorithm increase, the reconstruction errors decreases. It is expected to get the best

matrix approximation with SVD as it is the optimal rank-k approximation algorithm.

Overall, CMD shows better approximation performance than the other two algorithms

(NNMF and CUR).

29

Google TensorFlow.

Figure 18. Approximation Performance over Varying k in TensorFlow.

Figure 18 depicts the reconstruction errors of the four algorithms (NNMF, CUR,

CMD, and SVD) in Google TensorFlow. As for the cases in Apache Spark, the

reconstruction errors with all the algorithms decrease with the increase of the number

(denoted as k) of vectors selected for every algorithm. Also, as expected, SVD results in

the best matrix approximation over all the considered range of k values. Overall, CMD

shows better approximation performance than the other two algorithms (NNMF and

CUR).

30

Overall Approximation Performance over Varying k

Figure 19. Approximation Performance over Varying k.

Figure 19 illustrates the approximation performance of all the four matrix

approximation algorithms (NNMF, CUR, CMD, and SVD) and the two computing

platforms (Apache Spark and Google TensorFlow). As discussed, SVD performs best.

Overall, CMD in Google TensorFlow shows better performance than the other cases

except the one with SVD.

31

CHAPTER V

Conclusion & Future Work

Conclusion

In this study, the three popular non-negative matrix factorization algorithms,

NNMF, CUR, and CMD are implemented in the two new computing platforms, Apache

Spark and Google TensorFlow. The approximation performance is measured by the usual

matrix 2-norm between the original matrix and the matrix reconstructed by each

algorithm. Along with the optimal approximation by SVD, the matrix approximation

performance by all the six cases are compared. Note that currently all the six cases result

in much less accurate approximation, compare with the optimal approximation by the

SVD. CMD in Google TensorFlow shows the best approximation performance among all

the six cases, which are from the three algorithms (NNMF, CUR, and CMD) and the two

platforms (Apache Spark and Google TensorFlow). The experimental result also shows

that the approximation improves in terms of the reconstruction error, as the number of

rows and columns selected for CUR and CMD.

Future Work

 Although it is the first that compares the three non-negative matrix factorization

algorithms together on the two computing platforms, this study should be considered

preliminary as more systematic and comprehensive study is necessary. Large-scale data

should be used to validate the correctness of algorithm implementation as well as the

characteristics of the algorithms with more comprehensive parameter setting.

 To be more specific, the following should be investigated in future study:

32

 For example, large scaled data in real-life problems

 Investigation of reconstruction error of each algorithm over exhaustive k values

 Minimization of the gap from SVD’s optimal rank-k approximation over the

whole range of the number of rows and columns selected for CUR and CMD

 Comparison of actual running time as well as storage requirements for every

algorithm

 Handling both dense and sparse matrices

 Section of different rows and columns instead of the fixed parameter value of k

for both the dimensions

 Comprehensive experimental study on the speed-up and the scalability of each

algorithm with large-scale data

33

REFERENCES

[1] D. D. Lee and H. S. Seung, ‘Algorithms for Non-negative Matrix

Factorization,’ Advances in Neural Information Processing Systems 13 (NIPS 2000),

pp. 535-541.

[2] M. Abadi et al, ‘TensorFlow: Large-Scale Machine Learning on Heterogeneous

Distributed Systems,’ Preliminary whtie Paper, November 9, 2015.

[3] ‘What is Apache Spark,’ Hortonworks, [Online]. Available:

https://hortonworks.com/apache/spark/ [Accessed: 2 Otc. 2018].

[4] M. Zaharia, M. Chowdhury et al, ‘Spark: Cluster Computing with Working Sets,’

USENIX Workshop on Hot Topics in Cloud Computing.

[5] D. D. Lee and H. S. Seung, ‘Learning the parts of objects by non-negative matrix

factorization,’ Nature, vol. 401, no. 6755, pp. 788–791, 1999.

[6] M. Mahoney and P. Drineas, ‘CUR matrix decompositions for improved data

analysis,’ PNAS, vol. 106, no.3, pp. 697-702, January 12, 2009.

[7] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos, ‘Less is more: compact matrix

decomposition for large sparse graphs,’ Statistical Analysis and Data Mining, vol.1,

pp.6-22, 2008.

[8] ‘RDD Programming Guide,’ [Online]. Available:

https://spark.apache.org/docs/latest/rdd-programming-guide.html, [Accessed: 8 Otc.

2018].

[9] ‘TensorFlow Architecture,’ [Online]. Available:

https://www.tensorflow.org/extend/architecture#distributed_master, [Accessed: 8 Otc.

2018].

34

[10] ‘Why do people intergrate Spark with TensorFlow even if there is a distributed

TensorFlow framwork,’ [Online]. Available: https://www.quora.com/Why-do-people-

integrate-Spark-with-TensorFlow-even-if-there-is-a-distributed-TensorFlow-

framework, [Accessed: 8 Otc. 2018].

[11] eesungkim _ ,[Online] Available: https://github.com/eesungkim/NMF-

Tensorflow/blob/master/nmf.py. [Accessed: 8 Otc. 2018].

[12] R. Liao, Y. Zhang, J. Guan, and S. Zhou, ‘CloudNMF: A MapReduce

Implementation of Nonnegative Matrix Factorization for Large-scale Biological

Datasets,’ Genomics, Proteomics & Bioinformatics, vol. 12, no. 1, pp. 48–51, 2014.

[13] E. Mejia-Roa, P. Carmona-Saez, R. Nogales, C. Vicente, M. Vazquez, X. Y. Yang, C.

Garcia, F. Tirado, and A. Pascual-Montano, ‘bioNMF: a web-based tool for

nonnegative matrix factorization in biology,’ Nucleic Acids Research, vol. 36, no.

Web Server, pp.523-528, 2008.

[14] [Online], available: https://wiki.apache.org/mrql. Accessed: [10 Otc. 2018].

[15] ‘Google RankBrain: The Defintive Guide,’ [online]. Available:

https://backlinko.com/google-rankbrain-seo. Accessed: [10 Otc. 2018].

[16] ‘Simplest TensorFlow examole(KNN),’ [online]. Available:

https://ensemblearner.github.io/blog/2017/04/01/knn. Accessed: [10 Otc. 2018].

[17] ‘tf.contrib.learn.KMeansClustering,’ [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/contrib/learn/KMeansClustering.

Accessed: [10 Otc. 2018].

35

[18] ‘tf.contrib.learn.SVM,’ [online]. Available:

https://www.tensorflow.org/api_docs/python/tf/contrib/learn/SVM. Accessed: [10

Otc. 2018].

[19] [Online], available: https://jaceklaskowski.gitbooks.io/mastering-apache-spark/spark-

mllib/spark-mllib-KMeans.html. Accessed: [10 Otc. 2018].

[20] [Online], available:

https://spark.apache.org/docs/2.2.0/api/python/pyspark.ml.html#pyspark.ml.classifica

tion.LinearSVC. Accessed: [10 Otc. 2018].

[21] [Online], Available: https://raw.githubusercontent.com/abbas-taher/pagerank-

example-spark2.0-deep-dive/master/SparkPageRank.scala. Accessed: [10 Otc. 2018].

[22] S. Yao, ‘Categorizing Listing Photos at Airbnb,’ Accessed: [Online], Available:

https://medium.com/airbnb-engineering/categorizing-listing-photos-at-airbnb-

f9483f3ab7e3. Accessed: [20 June 2019].

[23] ‘TensorFlow* Optimizations for the Intel® Xeon® Scalable Processor,’ [Online],

https://www.intel.ai/tensorflow-optimizations-intel-xeon-scalable-

processor/#gs.kffjdj. Accessed: [20 June 2019].

[24] [Online], https://www.lenovo.com/us/en/data-center/software/Lenovo-Intelligent-

Computing-Orchestration/p/WMD00000356. Accessed: [20 June 2019].

[25] [Online], https://medium.com/paypal-engineering. Accessed: [20 June 2019].

[26] ‘Ranking Tweets with TensorFlow,’ [Online],

https://medium.com/tensorflow/ranking-tweets-with-tensorflow-932d449b7c4.

Accessed: [20 June 2019].

36

[27] ‘TensorFlow machine learning now optimized for the Snapdragon 835 and Hexagon

682 DSP,’ [Online], https://www.qualcomm.com/news/onq/2017/01/09/tensorflow-

machine-learning-now-optimized-snapdragon-835-and-hexagon-682-dsp. Accessed:

[20 June 2019].

[28] J. Hale, ‘Which Deep Learning Framework is Growing Fastest?,’ [Online],

https://towardsdatascience.com/which-deep-learning-framework-is-growing-fastest-

3f77f14aa318. Accessed: [20 June 2019].

[29] [Online], https://spark.apache.org/powered-by.html. Accessed: [20 June 2019].

[30] S. Arora, R. Ge, and Y. Halperm, ‘A practical algorithm for topic modeling with

provable guarantees,’ in Proc. Int. Conf. Machine Learning, vol. 28, no. 2, 2013, pp.

280–288.

[31] M. Mahoney, [Online], https://web.stanford.edu/group/mmds/slides/mahoney-

mmds.pdf. Accessed: [20 June 2019].

[32] J. Sun, ‘Less is More: Compact Matrix Decomposition for Large Sparse Graphs,’

[Online], https://slideplayer.com/slide/5221432/. Accessed: [20 June 2019].

[33] [Online], https://research.google.com/colaboratory/faq.html. Accessed: [20 June

2019].

[34] O. Berné, C. Joblin, Y. Deville, J. D. Smith, M. Rapacioli, J. P. Bernard, J. Thomas,

W. Reach, A. Abergel. ‘Analysis of the emission of very small dust particles from

Spitzer spectro-imagery data using blind signal separation methods,’ Astronomy &

Astrophysics, vol. 469, pp.575-586, July II 2007.

[35] D. Lafrenière, C.Marois, and R. Doyon. ‘HST/NICMOS Detection of HR 8799 b in

1998.’ The Astrophysical Journal Letters, vol. 694, pp. 148-152, April 2009.

37

[36] B. Ren, L. Pueyo, and J. Debes. [2018]. ‘Non-negative Matrix Factorization: Robust

Extraction of Extended Structures,’ The Astrophysical Journal, vol. 852.

[37] N. Mitrovic, [Online], http://www.mit.edu/~jaillet/general/itsc13-cur.pdf. Accessed:

[24 June 2019].

[38] ‘First Steps with TensorFlow: Toolkit,’ https://developers.google.com/machine-

learning/crash-course/first-steps-with-tensorflow/toolkit. Accessed: [29 June 2019].

[39] [Online], https://hortonworks.com/apache/spark/. Accessed: [29 June 2019].

[40] [Online], https://medium.com/tensorflow/intelligent-scanning-using-deep-learning-

for-mri-36dd620882c4/. Accessed: [30 June 2019].

[41] [Online], https://intellipaat.com/tutorial/spark-tutorial/apache-spark-applications/.

Accessed: [29 June 2019].

[42] G.H. Golub and C.F.Van, ‘Matrix Computation (3rd Edition),’ Baltimore, Maryland:

The Johns Hopkins University Press. ISBN 978-0-8018-5414-9.

[43] T. Roughgarden and G. Valiant, ‘CS168: The Modern Algorithmic Toolbox Lecture

#9: The Singular Value Decomposition (SVD) and Low-Rank Matrix

Approximations,’ [Online], http://theory.stanford.edu/~tim/s15/l/l9.pdf. Accessed:

[29 June 2019].

38

APPENDIX

The original NNMF[1] implemented in Google TensorFlow[5].

import numpy as np
import tensorflow as tf

class NMF:
 """Compute Non-negative Matrix Factorization (NMF)"""
 def __init__(self, max_iter=200, learning_rate=0.01,display_step=10, optimizer='mu',
initW=False):

 self.max_iter = max_iter
 self.learning_rate= learning_rate
 self.display_step = display_step
 self.optimizer = optimizer

 def NMF(self, X, r_components, learning_rate, max_iter, display_step, optimizer,
initW, givenW):
 m,n=np.shape(X)
 tf.reset_default_graph()
 V = tf.placeholder(tf.float32)

 initializer = tf.random_uniform_initializer(0,1)
 if initW is False:
 W = tf.get_variable(name="W", shape=[m, r_components], initializer=initializer)
 H = tf.get_variable("H", [r_components, n], initializer=initializer)
 else:
 W = tf.constant(givenW, shape=[m, r_components], name="W")
 H = tf.get_variable("H", [r_components, n], initializer=initializer)

 WH =tf.matmul(W, H)
 cost = tf.reduce_sum(tf.square(V - WH))

 if optimizer=='mu':
 """Compute Non-negative Matrix Factorization with Multiplicative Update"""
 Wt = tf.transpose(W)
 H_new = H * tf.matmul(Wt, V) / tf.matmul(tf.matmul(Wt, W), H)
 H_update = H.assign(H_new)

 if initW is False:
 Ht = tf.transpose(H)
 W_new = W * tf.matmul(V, Ht)/ tf.matmul(W, tf.matmul(H, Ht))
 W_update = W.assign(W_new)

 elif optimizer=='pg':

39

 """optimization; Projected Gradient method """
 dW, dH = tf.gradients(xs=[W, H], ys=cost)
 H_update_ = H.assign(H - learning_rate * dH)
 H_update = tf.where(tf.less(H_update_, 0), tf.zeros_like(H_update_), H_update_)

 if initW is False:
 W_update_ = W.assign(W - learning_rate * dW)
 W_update = tf.where(tf.less(W_update_, 0), tf.zeros_like(W_update_),
W_update_)

 with tf.Session() as sess:
 sess.run(tf.global_variables_initializer())
 for idx in range(max_iter):
 if initW is False:
 W=sess.run(W_update, feed_dict={V:X})
 H=sess.run(H_update, feed_dict={V:X})
 else:
 H=sess.run(H_update, feed_dict={V:X})
 if (idx % display_step) == 0:
 costValue = sess.run(cost,feed_dict={V:X})
 print("|Epoch:","{:4d}".format(idx), " Cost=","{:.3f}".format(costValue))
 return W, H

 def fit_transform(self, X,r_components, initW, givenW):
 """Transform input data to W, H matrices which are the non-negative matrices."""
 W, H = self.NMF(X=X, r_components = r_components,
learning_rate=self.learning_rate,
 max_iter = self.max_iter, display_step = self.display_step,
 optimizer=self.optimizer, initW=initW, givenW=givenW)
 return W, H

 def inverse_transform(self, W, H):
 """Transform data back to its original space."""
 return np.matmul(W,H)

def main():
 V = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
 model = NMF(max_iter=200,learning_rate=0.01,display_step=10, optimizer='mu')
 W, H = model.fit_transform(V, r_components=2, initW=False, givenW=0)
 print(W)
 print(H)
 print(V)
 print(model.inverse_transform(W, H))

if __name__ == '__main__':

main()

40

CUR_T.py

import numpy as np
from typing import Tuple
import tensorflow as tf
import pandas as pd
np.random.seed(0)

Matrix = np.ndarray
Vector = np.ndarray

M = np.array(
[[3, 4, 8, 9, 52, 12],
[4, 4, 9, 44, 26, 69],
[5, 5, 5, 15, 95, 26],
[4, 4, 5, 4, 36, 69],
[59, 5, 4, 99, 62, 36],
[5, 4, 43, 65, 86, 69]]

 , dtype=np.float64).T
print('CUR', M.shape)

def cur_decomposition(M: Matrix, r: int):

 m, n = M.shape
 r_probs, c_probs = probabilities(M)
 C, c_idx = select_C(M, r, c_probs)
 R, r_idx = select_R(M, r, r_probs)
 U = make_U(M, c_idx, r_idx)
 return C, U, R

def probabilities(M: Matrix):
 squared = np.square(M)
 row_sum = np.sum(squared, 1)
 col_sum = np.sum(squared, 0)
 denom = np.sum(row_sum)
 row_probs = row_sum / denom
 col_probs = col_sum / denom
 return row_probs, col_probs

def select_C(M, r, probs):
 return select_part(M, r, probs, 1)

def select_R(M, r, probs):
 return select_part(M, r, probs, 0)

41

def select_part(M: Matrix, r: int, probs: Vector, axis: int):

 size = M.shape[axis]
 idx = np.random.choice(size, size=r, p=probs)
 selected = np.take(M, idx, axis)
 scale = probs[idx]
 scale = np.sqrt(scale * r)
 scale = np.expand_dims(scale, axis - 1)
 return selected / scale, idx

def make_U(M: Matrix, c: Vector, r: Vector):
 W = select_W(M, c, r)
 x, e, y = np.linalg.svd(W)
 inv_e = psuedo_inverse(e)

 Us = np.matmul(y.T ,np.diag(np.square(inv_e)))
 U = np.matmul(Us, x.T)

 return U

def select_W(M: Matrix, c: Vector, r: Vector):
 return M[r, :][:, c]

def psuedo_inverse(sigma: Vector):
 zeros = sigma == 0
 # Get mask where 0's in sigma are 1
 num = (zeros) == 0
 # Replace zero with one
 denum = zeros + sigma
 # do inverse because 0 is now 0/1
 return num / denum

C1, U1, R1 = cur_decomposition(M,M.shape[1]-1)

C1 = np.divide(C1, C1.max())
U1 = np.divide(U1, U1.max())
R1 = np.divide(R1, R1.max())

C = tf.Variable(C1)
U = tf.Variable(U1)
R = tf.Variable(R1)

CU = tf.matmul(C, U)
CUR = tf.matmul(CU,R)

A_orig_df = pd.DataFrame(M)

42

A_df_masked = A_orig_df.copy()
np_mask = A_df_masked.notnull()

tf_mask = tf.Variable(np_mask.values)
A = tf.constant(A_df_masked.values)

#cost of Frobenius norm
cost = tf.reduce_sum(tf.pow(tf.boolean_mask(A, tf_mask) - tf.boolean_mask(CUR,
tf_mask), 2))

Clipping operation. This ensure that C, U, and R learnt are non-negative
clip_C = C.assign(tf.maximum(tf.zeros_like(C), C))
clip_U = U.assign(tf.maximum(tf.zeros_like(U), U))
clip_R = R.assign(tf.maximum(tf.zeros_like(R), R))
clip = tf.group(clip_C, clip_U, clip_R)

Learning rate
lr = 0.0001
Number of steps
train_step = tf.compat.v1.train.GradientDescentOptimizer(lr).minimize(cost)
init = tf.compat.v1.global_variables_initializer()

#tensorflow
steps = 1000
with tf.compat.v1.Session() as sess:
 sess.run(init)
 for i in range(steps):
 sess.run(train_step)
 sess.run(clip)

 learnt_C = sess.run(C)
 learnt_U = sess.run(U)
 learnt_R = sess.run(R)

pred_CU = np.dot(learnt_C, learnt_U)
pred = np.dot(pred_CU, learnt_R)
pred_df = pd.DataFrame(pred)

L2norm = np.linalg.norm(pred_df.round()-A_orig_df)
print('\n2-Norm', L2norm)

43

CMD_T.py

import numpy as np
from typing import Tuple
import tensorflow as tf
import pandas as pd
np.random.seed(0)

Matrix = np.ndarray
Vector = np.ndarray

M = np.array(
[[3, 4, 8, 9, 52, 12],
[4, 4, 9, 44, 26, 69],
[5, 5, 5, 15, 95, 26],
[4, 4, 5, 4, 36, 69],
[59, 5, 4, 99, 62, 36],
[5, 4, 43, 65, 86, 69]]
 , dtype=np.float64).T

print('CMD', M.shape)

def cur_decomposition(M: Matrix, r: int):
 m, n = M.shape
 r_probs, c_probs = probabilities(M)
 C, c_idx = select_C(M, r, c_probs)
 R, r_idx = select_R(M, r, r_probs)
 U = make_U(M, c_idx, r_idx)
 return C, U, R

def probabilities(M: Matrix):
 squared = np.square(M)
 row_sum = np.sum(squared, 1)
 col_sum = np.sum(squared, 0)
 denom = np.sum(row_sum)
 row_probs = row_sum / denom
 col_probs = col_sum / denom
 return row_probs, col_probs

def select_C(M, r, probs):
 return select_part(M, r, probs, 1)

def select_R(M, r, probs):
 return select_part(M, r, probs, 0)

def select_part(M: Matrix, r: int, probs: Vector, axis: int):

44

 size = M.shape[axis]
 idx = np.random.choice(size, size=r, p=probs)
 selected = np.take(M, idx, axis)
 scale = probs[idx]
 scale = np.sqrt(scale * r)
 scale = np.expand_dims(scale, axis - 1)
 return selected / scale, idx

def make_U(M: Matrix, c: Vector, r: Vector):
 W = select_W(M, c, r)
 x, e, y = np.linalg.svd(W)
 inv_e = psuedo_inverse(e)

 Us = np.matmul(y.T ,np.diag(np.square(inv_e)))
 U = np.matmul(Us, x.T)

 return U

def select_W(M: Matrix, c: Vector, r: Vector):
 return M[r, :][:, c]

def psuedo_inverse(sigma: Vector):
 zeros = sigma == 0
 # Get mask where 0's in sigma are 1
 num = (zeros) == 0
 # Replace zero with one
 denum = zeros + sigma
 # do inverse because 0 is now 0/1
 return num / denum

C1, U1, R1 = cur_decomposition(M,M.shape[1]-1)

C2 = np.array(list(set([tuple(t) for t in C1])))
R2 = np.array(list(set([tuple(t) for t in R1])))

C2 = np.divide(C2, C2.max())
R2 = np.divide(R2, R2.max())

temp_U = np.random.randn(C2.shape[1], R2.shape[0]).astype(np.float64)
U2 = np.divide(temp_U, temp_U.max())

C = tf.Variable(C2)
U = tf.Variable(U2)
R = tf.Variable(R2)

45

CU = tf.matmul(C, U)
CUR = tf.matmul(CU,R)

A_orig_df = pd.DataFrame(M)
A_df_masked = A_orig_df.copy()
#A_df_masked.iloc[0,0]=np.NAN
np_mask = A_df_masked.notnull()

tf_mask = tf.Variable(np_mask.values)
A = tf.constant(A_df_masked.values)

#cost of Frobenius norm
cost = tf.reduce_sum(tf.pow(tf.boolean_mask(A, tf_mask) - tf.boolean_mask(CUR,
tf_mask), 2))

Clipping operation. This ensure that C, U, and R learnt are non-negative
clip_C = C.assign(tf.maximum(tf.zeros_like(C), C))
clip_U = U.assign(tf.maximum(tf.zeros_like(U), U))
clip_R = R.assign(tf.maximum(tf.zeros_like(R), R))
clip = tf.group(clip_C, clip_U, clip_R)

Learning rate
lr = 0.0001
Number of steps
train_step = tf.compat.v1.train.GradientDescentOptimizer(lr).minimize(cost)
init = tf.compat.v1.global_variables_initializer()

#tensorflow
steps = 1000
with tf.compat.v1.Session() as sess:
 sess.run(init)
 for i in range(steps):
 sess.run(train_step)
 sess.run(clip)
 learnt_C = sess.run(C)
 learnt_U = sess.run(U)
 learnt_R = sess.run(R)

pred_CU = np.dot(learnt_C, learnt_U)
pred = np.dot(pred_CU, learnt_R)
pred_df = pd.DataFrame(pred)

L2norm = np.linalg.norm(pred_df.round()-A_orig_df)
print('\n2-Norm', L2norm)

46

VITA

EDUCATION

Master of Science student in Computer Science at Sam Houston State University,
September 2017 - present. Thesis title: “NNMF in Google TensorFlow and Apache
Spark: A Comparison Study.”

Bachelor of Science (May 2017) in Computer Science at Sam Houston State University,
Huntsville, Texas.

ACADEMIC EMPLOYMENT

Graduate Teaching Assistant, Department of Computer Science, Sam Houston State
University, September 2017 – present.

ACADEMIC AWARDS

Academic Affairs Scholars, Sam Houston State University, May 2014.

	NNMF IN GOOGLE TENSORFLOW AND APACHE SPARK: A COMPARISON STUDY
	NNMF IN GOOGLE TENSORFLOW AND APACHE SPARK: A COMPARISON STUDY
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	Introduction
	CHAPTER II
	Background
	Singular Value Decomposition (SVD)
	Non-negative Matrix Factorization (NNMF)
	CUR Matrix Decomposition
	Compact Matrix Decomposition (CMD)
	Apache Spark
	Google TensorFlow

	CHAPTER III
	Methodology
	Algorithms Implementation and Evaluation
	Computing Platforms
	Google Colab

	CHAPTER IV
	Experiment Result
	Experimental Setting
	Approximation Performance within Platform
	Apache Spark.
	Google TensorFlow.

	Approximation Performance between Platforms
	NNMF.
	CUR.
	CMD.

	Overall Approximation Performance
	Running Time Performance
	Approximation Performance over Varying k
	Apache Spark.
	Google TensorFlow.

	Overall Approximation Performance over Varying k

	CHAPTER V
	Conclusion & Future Work
	Conclusion
	Future Work

	REFERENCES
	APPENDIX
	VITA

