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ABSTRACT 

Li, Qizhao , NNMF IN GOOGLE TENSORFLOW AND APACHE SPARK: A 

COMPARISON STUDY. Master of Science (Computer Science), August, 2019, Sam 
Houston State University, Huntsville, Texas. 
 

Data mining is no longer a new term as it has been already pervasive in all aspects 

of our lives. New computing platforms for specific usages are proposed continuously. 

Therefore, the awareness of the characteristics and the capacity of existing and newly 

proposed platforms becomes a critical task for researchers and practitioners, who want to 

use existing algorithms and also develop new ones on the recent platforms.  

Particularly, this thesis aims to implement and compare a set of popular matrix 

factorization algorithms on recent computing platforms. Specifically, the three matrix 

factorization algorithms, including classic Non-negative Matrix Factorization (NNMF), 

CUR Matrix Decomposition, and Compact Matrix Decomposition (CMD), are 

implemented on the two computing platforms, including Apache Spark and Google 

TensorFlow. 

As rank k approximation with Singular Value Decomposition (SVD) is an optimal 

baseline, both CUR and CMD approximation are less accurate than the SVD 

approximation. The experimental result shows that CMD in TensorFlow performs better 

in terms of matrix approximation than the other two non-negative matrix factorization 

algorithms (NNMF, and CUR) in the same experiment setup. Also, as the number of rows 

or columns selected for CUR and CMD increases, the approximation error decreases.  

 

KEY WORDS: TensorFlow, Apache Spark, Non-Negative Matrix Factorization, CUR 
Matrix Decomposition, Compact Matrix Decomposition, Approximation Performance 
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CHAPTER I 

Introduction 

Data mining is no longer a new term as it has already been implemented and used 

in every aspect of our daily activities. New computing platforms for specific and general 

propose are being proposed continuously to achieve effective and efficient computation. 

Some disappeared after months, but others have been further developed more 

comprehensively. Therefore, the awareness of the characteristics and capacity of those 

existing platforms becomes a critical task for researchers and practitioners, who want to 

use existing algorithms or develop new one on the state-of-the-art computing platforms.  

 Among numerous computing algorithms, we focus on the three matrix 

factorization algorithms: Non-Negative Matrix factorization [1], CUR Matrix 

Decompositions [6], and Compact Matrix Decomposition [7]. We implement the three 

algorithms on the two recently developed computing platforms: Apache Spark [3] and 

Google TensorFlow [2]. Apache Spark and Google TensorFlow were released on May 

2014 and November 2015, respectively. Both have been popular in the data mining, 

machine learning, and data science communities and made a great contribution to both 

research and real-life applications. For example, NNMF is widely used in astronomy, text 

mining, spectral data analysis, bioinformatics, and nuclear imaging, etc. Uber uses Spark 

Streaming, Kafka, and HDFS (Hadoop Distributed File System) for building a continuous 

ETL (Extract Transform Load ) pipeline [41]. GE Healthcare trained a neural network 

using TensorFlow to identify anatomy on MRIs of the brain [40].  

 The remaining chapters are organized as follow. Chapter II briefly discusses 

fundamentals for the matrix factorization algorithms and the two state-of-the-art 
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computing platforms. Chapter III describes the algorithm implementation in Google 

Colab environment. Chapter IV discusses the experimental setting and the matrix 

approximation result. Chapter V concludes with future research direction.  
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CHAPTER II 

Background 

Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) [42] is used as the standard optimal 

baseline matrix factorization in the study. SVD is a factorization of a matrix in linear 

algebra. It is the generalization of the eigendecomposition of a positive semidefinite 

normal matrix.  

Suppose A is an m x n matrix, which is the field of either real numbers or complex 

numbers. The SVD of A exists and is a factorization of the form: 

                                         𝐴 = 𝑈𝑆𝑉𝑇,                                                     (1) 

where the columns of U are the left singular vectors, each of which is orthonormal, S has 

singular values in its diagonal entries, and VT has rows that are the right singular vectors. 

SVD is largely used in the mathematical area such as pseudo inverse, solving 

homogeneous linear equations, and separable models. The SVD can be used for both 

rectangular and square matrices.  

  

Figure 1. Rank k Approximation via SVD [43]. 
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 In order to have best approximate a matrix A by a rank k matrix, the SVD gives a 

rigorously justified solution. As shown in Figure 1, the S is non-zero only on its diagonal 

and the diagonal entries of S are sorted from high to low. The rank k approximation is  

Ak = UkSkVk
T.  

Today, singular value decomposition has spread through many branches of 

science, in particular psychology and sociology, climate and atmospheric science, and 

astronomy. It is also extremely useful in machine learning and in both descriptive and 

predictive statistics. 

 

Non-negative Matrix Factorization (NNMF)  

In 1999, Lee and Seung introduced a new algorithm for machine learning: Non-

Negative Matrix Factorization(NNMF) [5]. For a given non-negative matrix V, NNMF 

targets to find non-negative matrix factors, W and H, such that: 

                                           𝑉 ≈ 𝑊𝐻                                                       (2)       

Given a set of multivariate m-dimensional data vectors, the vectors are placed in 

the columns of an m x n matrix V, where n is the number of examples in the data set. The 

given matrix V is then factorized into an m x r matrix W and an r x n matrix H. Usually r 

is chosen to be smaller than n or m so that W and H are smaller than the original matrix V 

[1]. NNMF aims at minimizing the Euclidian distance between V and WH and can be 

used as an effective technique for dimension reduction and unsupervised clustering [12].  
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Table 1 

Multiplicative Update Rules [1]. 

𝐻𝛼𝜇 ← 𝐻𝛼𝜇 (𝑊𝑇𝑉)𝛼𝜇(𝑊𝑇𝑊𝐻)𝛼𝜇 
𝑊𝑖𝛼 ← 𝑊𝑖𝛼 (𝑉𝐻𝑇)𝑖𝛼(𝐻𝑇𝐻𝑊)𝑖𝛼 

𝐻𝛼𝜇 ← 𝐻𝛼𝜇 ∑ 𝑖 𝑊𝑖𝛼𝑉𝑖𝜇/(𝑊𝐻)𝑖𝜇∑ 𝑘 𝑊𝑘𝛼  
𝑊𝑖𝛼 ← 𝑊𝑖𝛼 ∑ 𝜇 𝐻𝛼𝜇𝑉𝑖𝜇/(𝑊𝐻)𝑖𝜇∑ 𝑣 𝑊𝐻𝛼𝑣  

 

As shown in Table 1, NNMF consists of the two multiplicative update rules for 

updating H and W. The Euclidean distance is invariant under these updates if and only if 

W and H are at a stationary point of the distance [1]. 

Compared with SVD, the NNMF factors only positive entries. SVD factors can be 

related to eigenfunction of a system when original matrix represented a system about 

which one is interested in terms of signal processing perspective. NNMF can also be used 

but the associating physical relationships are more indirect. Moreover, the SVD yields 

unique factors whereas NNMF factors are non-unique, which makes NNMF more 

suitable for the privacy protection algorithms.  

NNMF has also been implemented and used in numerous applications. In 

biological data mining, CloudNMF [12] and bioNMF [13] are developed with NNMF. In 

text mining, a document-term matrix is constructed with the weights of various terms 

from a set of documents. The matrix is factored into a term-feature and a feature-

document matrix. The features are derived from the contents of the documents, and the 

feature-document matrix describes data clusters of related documents [30]. In astronomy, 
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NNMF is a promising method for dimensional reduction in the sense that astrophysical 

signals are non-negative. NNMF has been applied to the spectroscopic observations [34] 

and the direct imaging observations as a method to study the common properties of 

astronomical objects and post-process the astronomical observations. In direct 

imaging, various statistical methods have been adopted to reveal the faint exoplanets and 

circumstellar disks from bright the surrounding stellar lights, which has a typical contrast 

from 10⁵  to 10¹⁰  [35]. However, the light from the exoplanets or circumstellar disks are 

usually over-fitted, where forward modeling has to be adopted to recover the true flux. 

Forward modeling is currently optimized for point sources, not for extended sources, 

especially for irregularly shaped structures such as circumstellar disks. In this situation, 

NNMF has been an excellent method, being less over-fitting in the sense of the non-

negativity and sparsity of the NNMF modeling coefficients. Therefore, forward modeling 

can be performed with a few scaling factors, rather than a computationally intensive data 

re-reduction on generated models. 

The NNMF on TensorFlow is implemented by eesungkim and available on 

GitHub [11]. 

 

CUR Matrix Decomposition 

  CUR Matrix Decomposition [6] was proposed by M. Mahoney and P. Drineas on 

January 12, 2009. CUR matrix decomposition is a low-rank matrix decomposition, which 

is explicitly expressed in terms of a small number of actual columns and actual rows of the 

data matrix.  
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  The algorithm preferentially chooses actual columns and rows that exhibit high 

“statistical leverage.” Thus, CUR in a very precise statistical sense, exerts a 

disproportionately large effect on the best low-rank fit of the data matrix [6]. 

                                           𝐴 ≈ 𝐶𝑈𝑅                                                                  (3) 
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Figure 2. CUR Decomposition [31]. 

 
As illustrated in Figure 2, given an m x n matrix A, CUR algorithm decomposes it 

as a product of three matrixes, C, U, and R, where C consists of a small number of actual 

columns of A, R consists of a small number of actual rows of A, and U is a small carefully 

constructed matrix that guarantees that the product CUR is “close” to the original matrix 

A [6]. As described in Table 2, the algorithm carefully selects columns and rows and 

constructs the subspace of C and R. 

Table 2 

Initial Subspace Construction [7]. 

Input: matrix  𝐴 ∈ ℝ𝑚 x 𝑛, sample size c 

Output: 𝐶𝑑 ∈ ℝ𝑚 x 𝑛 
1. for 𝑥 = 1 : 𝑛   [column distribution]  
2.       𝑃(𝑥) =  ∑ 𝐴(𝑖, 𝑥)2/ ∑ 𝐴(𝑖, 𝑗)2𝑖,𝑗𝑖  

3. for i = 1 : c      [sample columns] 
4.       Pick   𝑗 ∈ 1 : n based on distribution P(x) 

5.       Compute 𝐶𝑑(: , 𝑖) = 𝐴(: , 𝑗)/√𝑐𝑃(𝐽) 

 

Compared with SVD, CUR decomposition is less accurate in terms of low-rank 

approximation. However, it is unique in terms of constructing the factors as it takes the 
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actual columns and rows from a given non-negative matrix and constructs the 

corresponding non-negative factor matrices.  

For a specific application of CUR, Intelligent Transportation Systems (ITSs) often 

operate on large road networks, and typically collect traffic data with high temporal 

resolution. Consequently, ITSs need to handle massive volumes of data, and methods to 

represent that data in more compact representations are sorely needed [37]. CUR matrix 

decomposition can lead to low-dimensional models where the components correspond to 

individual links in the network and thus the resulting models can be easily interpreted and 

can also be used for compressed sensing of the traffic network [37]. 

 

Compact Matrix Decomposition (CMD) 

Compact Matrix Decomposition (CMD) [7] requires much less space and 

computation time then CUR; thus, CMD is more efficient. Figure 3 illustrates the 

performance comparisons among SVD, CUR, and CDM regrading to space, time, and 

estimation cost.  As shown in Figure 3, CMD has significantly outperformed CUR 

decomposition and the singular value decomposition (SVD) of space requirement and 

computational time.  
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Figure 3. Performance Comparison of Three Algorithms in Space, Time and 

Estimation Cost [7]. 
 
 

 

 

 

 

 

 

Figure 4. Illustration of CMD Steps [32].  
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Table 3 

CMD Subspace Construction [7]. 

Input: matrix  𝐴 ∈ ℝ𝑚 x 𝑛, sample size c 

Output: 𝐶𝑑 ∈ ℝ𝑚x𝑛 
1. Compute Cd  using the initial subspace construction 
2. Let 𝐶 ∈ ℝ𝑚 x 𝑐′be the unique columns of Cd 
3. for i = 1 : c’    
4.       Let u be the number of C(: , i) in Cd 

5.           Compute 𝐶𝑠(: , 𝑖) ← √𝑢 ∙ 𝐶(: , 𝑖 ) 

 

Table 3 shows how CMD algorithm constructs a low dimensional subspace 

represented with a set of unique columns. Each column is selected by sampling the input 

matrix A, and then scaling it up based on the square root of the number of times it is 

selected [7]. Figure 4 illustrates the construction of smaller row and column components 

by removing redundancy from each dimension. 

 

Apache Spark 

  Apache Spark [3] is a fast, open-source, in-memory data processing engine that 

allows data workers to efficiently execute machine learning, streaming or SQL workloads 

which require fast iterative access to datasets. Spark was originally developed at the 

AMPLab (Algorithms Machines People Lab) at UC Berkeley. Later on, the Spark 

codebase was donated to the Apache Software Foundation, which has maintained the 

Spark since then. 

Apache Spark has the following characteristics [4]. Spark introduced an 

abstraction called resilient distributed datasets (RDDs).  An RDD is a read-only 

collection of objects separated across a set of machines that can be rebuilt if a partition is 
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lost. Users can explicitly cache an RDD in memory across machines and reuse it in 

multiple MapReduce-like parallel operations. RDDs achieve fault tolerance through a 

notion of lineage: if a partition of an RDD is lost, the RDD has enough information about 

how it was derived from other RDDS to be able to rebuild that partition. 

As shown in Figure 5, Apache Spark is contributed by five parts: Spark Core, 

Spark SQL, Spark Streaming, Spark MLlib, and GraphX. Spark Core is the foundation of 

the overall project. It provides distributed task-dispatching scheduling and basic I/O 

functionalities. Spark SQL is a component on top of Spark Core that introduces a data 

abstraction called DataFrames, which provides support for structured and semi-structured 

data. Spark Streaming uses Spark Core’s fast scheduling capability to perform streaming 

analytics. Spark MLlib is a distrusted machine learning framework on top of Spark Core 

and GraphX is the graph processing framework on top of Apache Spark. 

 

Figure 5. Apache Spark Construction [39]. 

 



13 

 

Apache Spark is also be used in many companies such as Baidu, eBay Inc, IBM 

Almaden, Yahoo!, etc. [29]. 

 

Google TensorFlow 

Google TensorFlow [2] is an open source interface released by Google for 

expressing and implementing data mining and machine learning algorithms. The 

computation expressed using TensorFlow can be performed on a wide variety of 

heterogeneous systems with little or small change. The range is from mobile devices, 

such as phones and tablets, up to the large-scale distributed system of hundreds of 

machines. TensorFlow can be characterized as a flexible system and can be used in a 

wide variety of algorithms [2]. TensorFlow takes computations described using a 

dataflow-like model and maps them in different devices. An operation has a name and 

represents an abstract computation. An operation can also have attributes and all the 

attributes must be provided or referred at graph-construction time in order to instantiate a 

node to perform the operation. In a TensorFlow graph, each node has zero or more inputs 

and zero or more outputs, and represents the instantiation of an operation. Values that 

flow along normal edges in a graph are tensors [2]. A variable in TensorFlow is a special 

kind of operation that returns a handle to persistent mutable tensor that survives across 

executions of a graph. 

TensorFlow provides a variety of different toolkits that allow users to construct 

models at users’ preferred level of abstraction. As shown in Figure 6, users can use 

lower-level APIs to build models by defining a series of mathematical operations. 
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Alternatively, users can use higher-level APIs, each of which is called tf.estimator, to 

specify predefined architectures, such as linear regressors or neural networks. 

 

 

Figure 6. TensorFlow Toolkit [38]. 

 

 

As TensorFlow is developed by Google, it has one of the largest developer 

community. Therefore, TensorFlow is widely used among all kinds of big companies 

such as Airbnb [22], Intel [23], Lenovo [24], PayPal [25], Twitter [26], Qualcomm [27], 

etc. TensorFlow is also the most popular deep learning framework. As illustrated in 

Figure 7 and Figure 8, TensorFlow has the most GitHub activity in each category and the 

most mentioned skill in machine learning related job listing [28].  
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Figure 7. Online Job Listing [28]. 

 

 

 

Figure 8. New GitHub Activity [28]. 
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CHAPTER III 

Methodology 

Algorithms Implementation and Evaluation  

The input data for testing is a single standard tab-delimited text file which 

contains the non-negative matrix with or without labels. In the experimental study, the 

performance is measured as follows: 

 1) The measurement of approximation performance. As discussed, CMD is an 

improved version of CUR matrix decomposition. Particularly, compared with CUR, CMD 

has significant improvement in terms of both storage and computing performance. CMD 

carefully removes duplicate columns and row after sampling, and thus it reduces both the 

storage space required as well as the computational effort. The key step of subspace 

construction is to scale up the columns that are sampled multiple times while removing 

the duplicates [7]. 

 

 

Figure 9. Illustration of (a) CUR and (b) CMD [7]. 

 

  
 As shown in Figure 9, CMD carefully removes duplicate columns and rows after 

sampling. Intuitively, the directions of those duplicate columns are more important than 
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the other columns. Thus, the key step of subspace contraction is to scale up the columns 

that are sampled multiple times while removing the duplicates [7]. As illustrated in Figure 

9, each column is selected by sampling the input matrix A, and the scaling it up based on 

the square root of the number of times it is selected. 

 2) The matrix norm as a metric for matrix approximation measurement. In linear 

algebra, a vector norm is a function that assigns a strictly positive length or size to each 

vector in a vector space except for the zero vector, which is assigned a length of zero.  

3) The performance in each computing platform. The usual matrix 2-norm of the 

different between the original matrix and the approximated matrix by each matrix 

decomposition is used to measure the reconstruction error. By the positivity property of 

matrix norm, we know that the two inequalities (4) and (5) hold. Therefore, the other two 

inequalities (6) and (7) are used to compare the approximation performance. As shown in 

(6), if the left hand side (LHS) is greater than the right hand side (RHS), then the 

approximation performance with CUR is worse than the one with CMD. Contrarily, as 

shown in (7), if the LHS is less than the RHS, then the approximation performance with 

CUR is better than the one with CMD. 

                                           ||𝐴 − 𝐶𝑈𝑅||2 ≥ 0                                                  (4) 

                                           ||𝐴 − 𝐶𝑀𝐷||2 ≥ 0                                                 (5) 

                                           ||𝐴 − 𝐶𝑈𝑅||2 > ||𝐴 − 𝐶𝑀𝐷||2                             (6)                                 

                                           ||𝐴 − 𝐶𝑈𝑅||2 < ||𝐴 − 𝐶𝑀𝐷||2                             (7)                             

4) The performance between Apache Spark and Google TensorFlow platforms. 

The result of the approximation performance of different platforms, TensorFlow and 

Spark, can be measured as follows. The reconstruction error ||𝐴 − 𝐶𝑈𝑅𝑠||2 is compared 
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with the reconstruction error ||𝐴 − 𝐶𝑈𝑅𝑇||2 to determine the performance of CUR 

decomposition on different platforms. Similarly, ||𝐴 − 𝐶𝑀𝐷𝑆||2 is compared with ||𝐴 −𝐶𝑀𝐷𝑇||2. Note the subscripts, S and T, are used to denote Apache Spark platform and 

Google TensorFlow platform, respectively. 

 

Computing Platforms 

The reason for selecting Apache Spark and Google TensorFlow as the test 

platforms is because they are state-of-the-art data mining and machine learning 

computing platforms in the market. Both are recently developed and actively maintained 

by a wide range of open-source developer communities. Although other computing 

platforms are available for data mining and machine learning societies, Spark and 

TensorFlow are promising directions in the data mining and machine learning in terms of 

both speed-up and scalability. Spark and TensorFlow do share some similarities in the 

technical aspect. Both frameworks can perform distributed operations on large datasets. 

They both take a set of input operations, compile these operations to a DAG (Directed 

Acyclic Graph), and then ship the DAG to a pool of executors and execute the DAG on a 

subset of the data. 

However, with all the similarities, Spark and TensorFlow are still different. Spark 

utilizes the RDD [8] primitive for distributing any map/reduce-like operation. Spark’s 

framework is heavily optimized for caching distributed datasets and minimizing 

communication between executors [10]. On the other hand, TensorFlow is a specialized 

tool for performing numerical operations on data, utilizing a tensor as its primitive. 

TensorFlow’s distributed master mode [9] is different from Spark’s in terms that it 
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partitions one DAG between multiple executors, sets up Remote Procedure Calls (RPCs) 

between these executors at the graph partitions, launches a parameter server for executors 

to read/write weight updates, and provides efficient implementations for CPU and GPU 

executors. For specific numerical tasks such as minimization of an objective given a huge 

volume of data, TensorFlow’s architecture is more efficient than Spark [10]. 

Currently, many existing data mining and machine learning algorithms and 

applications have been implemented and used in numerous research and application 

communities. For example, Apache MRQL [14] is a Spark-based query processing 

deoptimization system for large-scale and distributed data analysis. RankBrain [15] is a 

TensorFlow-based large-scale deployment of deep neural search ranking on Google.com. 

Meanwhile, popular algorithms such as K-Nearest Neighbor (KNN) [16], K-means [17], 

and Support Vector Machine (SVM) [18] have already been implemented on 

TensorFlow. Although KNN is not implemented on Spark because Spark’s characteristic, 

K-Means [19], SVM [20], and PageRank [21] are available on Spark. To best of our 

knowledge, CUR and CMD algorithms have not been fully implemented on Spark and 

TensorFlow as well as compared between the two computing platforms, yet. 

Google Colab 

Google Colab is a free cloud service based on Google Drive and Jupyter notebook 

environment. It provides the free access to GPUs for users to develop their own 

application using popular Apache Spark, Google TensorFlow, and Deep Learning 

libraries such as Keras, TensorFlow, PytTorch, and OpenCV. Currently, it supports 

Python 2.7 and 3.6, but not R and Scala, yet. Therefore, all the implemented algorithms 

are executed in Google Colab environment. 
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CHAPTER IV 

Experiment Result  

Experimental Setting  

The following hardware, software, and data are used for the experimental study. 

CPU: Intel Core i7-6700k at 4.4 GHz. 

Ram: 16GB. 

GPU: Nvidia GeForce GTX 980ti. 

Operating System: Windows 10 Pro 64-bit. 

Dataset: The datasets used in the experiment are all non-negative symmetric 

matrix from dimension 5 to dimension 50. 

All the methods are tested in an identical environment on Google Colab with the 

same input matrix and parameter values. 
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Approximation Performance within Platform 

Apache Spark.   

 

Figure 10. Comparison in Apache Spark. 

 

 
Note that k is set as ‘input matrix dimension - 1’. With the growth of the input 

matrices dimension in Apache Spark, the reconstruction errors for all the three 

algorithms  increase. Overall, CMD shows the better approximation performance than the 

others. 
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Google TensorFlow.  

 

Figure 11. Comparison in Google TensorFlow. 
 

Note that k is set as ‘input matrix dimension - 1’. With the growth of the input 

matrices dimension in Google TensorFlow, the reconstruction errors for all the three 

algorithms increase. Overall, CMD shows the better approximation performance than the 

others 
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Approximation Performance between Platforms  

NNMF. 

 

Figure 12. Comparison of NNMF between TensorFlow and Spark. 
 

Note that k is set as ‘input matrix dimension - 1’. As before, with the growth of 

the input matrices dimension, the reconstruction errors for NNMF increase. NNMF in 

Google TensorFlow has better approximation performance than the one in Apache Spark. 
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CUR.  

 

Figure 13. Comparison of CUR between TensorFlow and Spark. 
 

Note that k is set as ‘input matrix dimension - 1’. As before, with the growth of 

the input matrices dimension, the reconstruction errors for CUR increase. CUR in Google 

TensorFlow has better approximation performance than the one in Apache Spark. 
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CMD.   

 

Figure 14. Comparison of CMD between TensorFlow and Spark.  
 
 
Note that k is set as ‘input matrix dimension - 1’. As before, with the growth of 

the input matrices dimension, the reconstruction errors for CMD increase. CMD in 

Google TensorFlow has better approximation performance than the one in Apache Spark.  
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Overall Approximation Performance 

 

Figure 15. Approximation Performance Comparison. 
 

Note that k is set as ‘input matrix dimension - 1’. As discussed before, with the 

growth of the input matrices dimension, the reconstruction errors for all the algorithms 

increase. As shown in Figure 15, the algorithms in Google TensorFlow perform better 

than the ones in Apache Spark. Particularly, CMD in Google TensorFlow results in the 

best approximation performance. 
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Running Time Performance  

 

Figure 16. Running Time Performance Comparison. 
 

Note that k is set as ‘input matrix dimension - 1’. The algorithms on Google 

TensorFlow take less running/execution time than the ones on Apache Spark. 
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Approximation Performance over Varying k 

Apache Spark.  

 

Figure 17. Approximation  Performance over Varying k in Spark.  
 
 
Figure 17 shows the reconstruction errors of the four algorithms (NNMF, CUR, 

CMD, and SVD) in Apache Spark. As the number (denoted as k) of vectors selected for 

every algorithm increase, the reconstruction errors decreases. It is expected to get the best 

matrix approximation with SVD as it is the optimal rank-k approximation algorithm. 

Overall, CMD shows better approximation performance than the other two algorithms 

(NNMF and CUR). 
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Google TensorFlow.  

 

Figure 18. Approximation  Performance over Varying k in TensorFlow. 
 

 
Figure 18 depicts the reconstruction errors of the four algorithms (NNMF, CUR, 

CMD, and SVD) in Google TensorFlow. As for the cases in Apache Spark, the 

reconstruction errors with all the algorithms decrease with the increase of the number 

(denoted as k) of vectors selected for every algorithm. Also, as expected, SVD results in 

the best matrix approximation over all the considered range of k values. Overall, CMD 

shows better approximation performance than the other two algorithms (NNMF and 

CUR). 
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Overall Approximation Performance over Varying k 

 

Figure 19. Approximation  Performance over Varying k. 
 

Figure 19 illustrates the approximation performance of all the four matrix 

approximation algorithms (NNMF, CUR, CMD, and SVD) and the two computing 

platforms (Apache Spark and Google TensorFlow). As discussed, SVD performs best. 

Overall, CMD in Google TensorFlow shows better performance than the other cases 

except the one with SVD. 
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CHAPTER V 

Conclusion & Future Work 

Conclusion 

In this study, the three popular non-negative matrix factorization algorithms, 

NNMF, CUR, and CMD are implemented in the two new computing platforms, Apache 

Spark and Google TensorFlow. The approximation performance is measured by the usual 

matrix 2-norm between the original matrix and the matrix reconstructed by each 

algorithm. Along with the optimal approximation by SVD, the matrix approximation 

performance by all the six cases are compared. Note that currently all the six cases result 

in much less accurate approximation, compare with the optimal approximation by the 

SVD. CMD in Google TensorFlow shows the best approximation performance among all 

the six cases, which are from the three algorithms (NNMF, CUR, and CMD) and the two 

platforms (Apache Spark and Google TensorFlow). The experimental result also shows 

that the approximation improves in terms of the reconstruction error, as the number of 

rows and columns selected for CUR and CMD. 

 

Future Work 

 Although it is the first that compares the three non-negative matrix factorization 

algorithms together on the two computing platforms, this study should be considered 

preliminary as more systematic and comprehensive study is necessary. Large-scale data 

should be used to validate the correctness of algorithm implementation as well as the 

characteristics of the algorithms with more comprehensive parameter setting. 

 To be more specific, the following should be investigated in future study: 
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 For example, large scaled data in real-life problems 

 Investigation of reconstruction error of each algorithm over exhaustive k values 

 Minimization of the gap from SVD’s optimal rank-k approximation over the 

whole range of the number of rows and columns selected for CUR and CMD 

 Comparison of actual running time as well as storage requirements for every 

algorithm 

 Handling both dense and sparse matrices 

 Section of different rows and columns instead of the fixed parameter value of k 

for both the dimensions  

 Comprehensive experimental study on the speed-up and the scalability of each 

algorithm with large-scale data 
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APPENDIX 

The original NNMF[1] implemented in Google TensorFlow[5]. 
 
import numpy as np 
import tensorflow as tf 
 
class NMF: 
    """Compute Non-negative Matrix Factorization (NMF)""" 
    def __init__(self, max_iter=200, learning_rate=0.01,display_step=10, optimizer='mu', 
initW=False): 
 
        self.max_iter = max_iter 
        self.learning_rate= learning_rate 
        self.display_step = display_step 
        self.optimizer = optimizer 
 
    def NMF(self, X, r_components, learning_rate, max_iter, display_step, optimizer, 
initW, givenW ): 
        m,n=np.shape(X) 
        tf.reset_default_graph() 
        V = tf.placeholder(tf.float32)  
 
        initializer = tf.random_uniform_initializer(0,1) 
        if initW is False: 
            W =  tf.get_variable(name="W", shape=[m, r_components], initializer=initializer) 
            H =  tf.get_variable("H", [r_components, n], initializer=initializer) 
        else: 
            W =  tf.constant(givenW, shape=[m, r_components], name="W") 
            H =  tf.get_variable("H", [r_components, n], initializer=initializer) 
 
        WH =tf.matmul(W, H) 
        cost = tf.reduce_sum(tf.square(V - WH)) 
         
        if optimizer=='mu': 
            """Compute Non-negative Matrix Factorization with Multiplicative Update""" 
            Wt = tf.transpose(W) 
            H_new = H * tf.matmul(Wt, V) / tf.matmul(tf.matmul(Wt, W), H) 
            H_update = H.assign(H_new) 
 
            if initW is False: 
                Ht = tf.transpose(H) 
                W_new = W * tf.matmul(V, Ht)/ tf.matmul(W, tf.matmul(H, Ht)) 
                W_update = W.assign(W_new) 
 
        elif optimizer=='pg': 
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            """optimization; Projected Gradient method """ 
            dW, dH = tf.gradients(xs=[W, H], ys=cost) 
            H_update_ = H.assign(H - learning_rate * dH) 
            H_update = tf.where(tf.less(H_update_, 0), tf.zeros_like(H_update_), H_update_) 
 
            if initW is False: 
                W_update_ = W.assign(W - learning_rate * dW) 
                W_update = tf.where(tf.less(W_update_, 0), tf.zeros_like(W_update_), 
W_update_) 
 
        with tf.Session() as sess: 
            sess.run(tf.global_variables_initializer()) 
            for idx in range(max_iter): 
                if initW is False: 
                    W=sess.run(W_update, feed_dict={V:X}) 
                    H=sess.run(H_update, feed_dict={V:X}) 
                else: 
                    H=sess.run(H_update, feed_dict={V:X}) 
                if (idx % display_step) == 0: 
                    costValue = sess.run(cost,feed_dict={V:X}) 
                    print("|Epoch:","{:4d}".format(idx), " Cost=","{:.3f}".format(costValue)) 
        return W, H 
 
    def fit_transform(self, X,r_components, initW, givenW): 
        """Transform input data to W, H matrices which are the non-negative matrices.""" 
        W, H =  self.NMF(X=X, r_components = r_components, 
learning_rate=self.learning_rate,  
                    max_iter = self.max_iter, display_step = self.display_step,  
                    optimizer=self.optimizer, initW=initW, givenW=givenW  ) 
        return W, H 
 
    def inverse_transform(self, W, H): 
        """Transform data back to its original space.""" 
        return np.matmul(W,H) 
 
def main(): 
    V = np.array([[1, 1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]]) 
    model = NMF(max_iter=200,learning_rate=0.01,display_step=10, optimizer='mu') 
    W, H = model.fit_transform(V, r_components=2, initW=False, givenW=0) 
    print(W) 
    print(H) 
    print(V) 
    print(model.inverse_transform(W, H)) 
 
if __name__ == '__main__': 

main() 
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CUR_T.py 
 
import numpy as np 
from typing import Tuple 
import tensorflow as tf 
import pandas as pd 
np.random.seed(0) 
 
Matrix = np.ndarray 
Vector = np.ndarray 
 
M = np.array( 
[[3, 4, 8, 9, 52, 12], 
[4, 4, 9, 44, 26, 69], 
[5, 5, 5, 15, 95, 26], 
[4, 4, 5, 4, 36, 69], 
[59, 5, 4, 99, 62, 36], 
[5, 4, 43, 65, 86, 69]] 
 
    , dtype=np.float64).T 
print('CUR', M.shape) 
 
def cur_decomposition(M: Matrix, r: int): 
 
    m, n = M.shape 
    r_probs, c_probs = probabilities(M) 
    C, c_idx = select_C(M, r, c_probs) 
    R, r_idx = select_R(M, r, r_probs) 
    U = make_U(M, c_idx, r_idx) 
    return C, U, R 
 
def probabilities(M: Matrix): 
    squared = np.square(M) 
    row_sum = np.sum(squared, 1) 
    col_sum = np.sum(squared, 0) 
    denom = np.sum(row_sum) 
    row_probs = row_sum / denom 
    col_probs = col_sum / denom 
    return row_probs, col_probs 
 
def select_C(M, r, probs): 
    return select_part(M, r, probs, 1) 
 
def select_R(M, r, probs): 
    return select_part(M, r, probs, 0) 
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def select_part(M: Matrix, r: int, probs: Vector, axis: int): 
 
    size = M.shape[axis] 
    idx = np.random.choice(size, size=r, p=probs) 
    selected = np.take(M, idx, axis) 
    scale = probs[idx] 
    scale = np.sqrt(scale * r) 
    scale = np.expand_dims(scale, axis - 1) 
    return selected / scale, idx 
 
def make_U(M: Matrix, c: Vector, r: Vector): 
    W = select_W(M, c, r) 
    x, e, y = np.linalg.svd(W) 
    inv_e = psuedo_inverse(e) 
 
    Us = np.matmul(y.T ,np.diag(np.square(inv_e))) 
    U = np.matmul(Us, x.T) 
     
    return U 
 
def select_W(M: Matrix, c: Vector, r: Vector): 
    return M[r, :][:, c] 
 
def psuedo_inverse(sigma: Vector): 
    zeros = sigma == 0 
    # Get mask where 0's in sigma are 1 
    num = (zeros) == 0 
    # Replace zero with one 
    denum = zeros + sigma 
    # do inverse because 0 is now 0/1 
    return num / denum 
 
C1, U1, R1 = cur_decomposition(M,M.shape[1]-1) 
 
C1 = np.divide(C1, C1.max()) 
U1 = np.divide(U1, U1.max()) 
R1 = np.divide(R1, R1.max()) 
 
C = tf.Variable(C1) 
U = tf.Variable(U1) 
R = tf.Variable(R1) 
 
CU = tf.matmul(C, U) 
CUR = tf.matmul(CU,R) 
 
A_orig_df = pd.DataFrame(M) 



42 

 

A_df_masked = A_orig_df.copy() 
np_mask = A_df_masked.notnull() 
 
tf_mask = tf.Variable(np_mask.values) 
A = tf.constant(A_df_masked.values) 
 
#cost of Frobenius norm 
cost = tf.reduce_sum(tf.pow(tf.boolean_mask(A, tf_mask) - tf.boolean_mask(CUR, 
tf_mask), 2)) 
 
# Clipping operation. This ensure that C, U, and R learnt are non-negative 
clip_C = C.assign(tf.maximum(tf.zeros_like(C), C)) 
clip_U = U.assign(tf.maximum(tf.zeros_like(U), U)) 
clip_R = R.assign(tf.maximum(tf.zeros_like(R), R)) 
clip = tf.group(clip_C, clip_U, clip_R) 
 
# Learning rate 
lr = 0.0001 
# Number of steps 
train_step = tf.compat.v1.train.GradientDescentOptimizer(lr).minimize(cost) 
init = tf.compat.v1.global_variables_initializer() 
 
#tensorflow 
steps = 1000 
with tf.compat.v1.Session() as sess: 
    sess.run(init) 
    for i in range(steps): 
        sess.run(train_step) 
        sess.run(clip) 
         
    learnt_C = sess.run(C) 
    learnt_U = sess.run(U) 
    learnt_R = sess.run(R) 
 
pred_CU = np.dot(learnt_C, learnt_U) 
pred = np.dot(pred_CU, learnt_R) 
pred_df = pd.DataFrame(pred) 
 
L2norm = np.linalg.norm(pred_df.round()-A_orig_df) 
print('\n2-Norm', L2norm) 
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CMD_T.py 

import numpy as np 
from typing import Tuple 
import tensorflow as tf 
import pandas as pd 
np.random.seed(0) 
 
Matrix = np.ndarray 
Vector = np.ndarray 
 
M = np.array(  
[[3, 4, 8, 9, 52, 12], 
[4, 4, 9, 44, 26, 69], 
[5, 5, 5, 15, 95, 26], 
[4, 4, 5, 4, 36, 69], 
[59, 5, 4, 99, 62, 36], 
[5, 4, 43, 65, 86, 69]] 
    , dtype=np.float64).T 
 
print('CMD', M.shape) 
 
def cur_decomposition(M: Matrix, r: int): 
    m, n = M.shape 
    r_probs, c_probs = probabilities(M) 
    C, c_idx = select_C(M, r, c_probs) 
    R, r_idx = select_R(M, r, r_probs) 
    U = make_U(M, c_idx, r_idx) 
    return C, U, R 
 
def probabilities(M: Matrix): 
    squared = np.square(M) 
    row_sum = np.sum(squared, 1) 
    col_sum = np.sum(squared, 0) 
    denom = np.sum(row_sum) 
    row_probs = row_sum / denom 
    col_probs = col_sum / denom 
    return row_probs, col_probs 
 
def select_C(M, r, probs): 
    return select_part(M, r, probs, 1) 
 
def select_R(M, r, probs): 
    return select_part(M, r, probs, 0) 
 
def select_part(M: Matrix, r: int, probs: Vector, axis: int): 
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    size = M.shape[axis] 
    idx = np.random.choice(size, size=r, p=probs) 
    selected = np.take(M, idx, axis) 
    scale = probs[idx] 
    scale = np.sqrt(scale * r) 
    scale = np.expand_dims(scale, axis - 1) 
    return selected / scale, idx 
 
def make_U(M: Matrix, c: Vector, r: Vector): 
    W = select_W(M, c, r) 
    x, e, y = np.linalg.svd(W) 
    inv_e = psuedo_inverse(e) 
 
    Us = np.matmul(y.T ,np.diag(np.square(inv_e))) 
    U = np.matmul(Us, x.T) 
     
    return U 
 
def select_W(M: Matrix, c: Vector, r: Vector): 
    return M[r, :][:, c] 
 
def psuedo_inverse(sigma: Vector): 
    zeros = sigma == 0 
    # Get mask where 0's in sigma are 1 
    num = (zeros) == 0 
    # Replace zero with one 
    denum = zeros + sigma 
    # do inverse because 0 is now 0/1 
    return num / denum 
 
C1, U1, R1 = cur_decomposition(M,M.shape[1]-1) 
 
C2 = np.array(list(set([tuple(t) for t in C1]))) 
R2 = np.array(list(set([tuple(t) for t in R1]))) 
 
C2 = np.divide(C2, C2.max()) 
R2 = np.divide(R2, R2.max()) 
 
temp_U = np.random.randn(C2.shape[1], R2.shape[0]).astype(np.float64) 
U2 = np.divide(temp_U, temp_U.max()) 
 
C = tf.Variable(C2) 
U = tf.Variable(U2) 
R = tf.Variable(R2) 
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CU = tf.matmul(C, U) 
CUR = tf.matmul(CU,R) 
 
A_orig_df = pd.DataFrame(M) 
A_df_masked = A_orig_df.copy() 
#A_df_masked.iloc[0,0]=np.NAN 
np_mask = A_df_masked.notnull() 
 
tf_mask = tf.Variable(np_mask.values) 
A = tf.constant(A_df_masked.values) 
 
#cost of Frobenius norm 
cost = tf.reduce_sum(tf.pow(tf.boolean_mask(A, tf_mask) - tf.boolean_mask(CUR, 
tf_mask), 2)) 
 
# Clipping operation. This ensure that C, U, and R learnt are non-negative 
clip_C = C.assign(tf.maximum(tf.zeros_like(C), C)) 
clip_U = U.assign(tf.maximum(tf.zeros_like(U), U)) 
clip_R = R.assign(tf.maximum(tf.zeros_like(R), R)) 
clip = tf.group(clip_C, clip_U, clip_R) 
 
# Learning rate 
lr = 0.0001 
# Number of steps 
train_step = tf.compat.v1.train.GradientDescentOptimizer(lr).minimize(cost) 
init = tf.compat.v1.global_variables_initializer() 
 
#tensorflow 
steps = 1000 
with tf.compat.v1.Session() as sess: 
    sess.run(init) 
    for i in range(steps): 
        sess.run(train_step) 
        sess.run(clip)      
    learnt_C = sess.run(C) 
    learnt_U = sess.run(U) 
    learnt_R = sess.run(R) 
 
pred_CU = np.dot(learnt_C, learnt_U) 
pred = np.dot(pred_CU, learnt_R) 
pred_df = pd.DataFrame(pred) 
 
L2norm = np.linalg.norm(pred_df.round()-A_orig_df) 
print('\n2-Norm', L2norm) 
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