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ABSTRACT 

Sariboz, Emrah , Spherical and stochastic co-clustering algorithms. Master of Science 
(Computing and Information Science), May, 2019, Sam Houston State University, 
Huntsville, Texas. 
 

Clustering, without a doubt, is a dominating area in data mining and machine 

learning field. Due to the wide range of the necessity to clustering algorithms, it has 

many applications in real-life problems, ranging from bioinformatics to personalized 

information delivery. Feature characteristics of the newly generated data lead us to new 

approaches to explore the nature of it. General single-sided (i.e. one-way) clustering 

algorithms such as k-means algorithm clusters either rows or columns of the data matrix. 

Co-clustering algorithm clusters both the instances and features of the data matrix 

simultaneously and thus, it is more suitable to discover the pattern(s) hidden in both row 

and column dimensions.  

Most existing co-clustering algorithms include inexplicit clustering steps for each 

dimension, separately. In this study, we developed two novel co-clustering algorithms, 

named as Spherical Co-clustering and Stochastic Co-clustering, which utilize the existing 

k-means framework, furthermore a specific data construction, and two specific data 

normalization was included as a pre-processing step. The co-clustering framework 

resembles one existing co-clustering algorithm, spectral co-clustering, as it first applies 

feature selection using singular value decomposition and utilizes one-way clustering to 

achieve co-clustering. Furthermore, we partially address a couple of practical well-known 

problem in clustering algorithm which include the cluster initialization, the degeneracy 

problem, a local minimum, and  a nan (not-a-number) condition in a Kullback-Leibler 

divergence.  
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The correctness and efficiency of the two algorithms were validated with publicly 

available benchmark dataset in terms of monotonicity of objective function value change 

and clustering accuracy. To be specific, we compared the accuracy performance of 

Euclidean k-means, stochastic k-means, spherical k-means, stochastic co-clustering and 

spherical co-clustering algorithms. 

KEY WORDS: Spherical, Clustering, Co-clustering algorithm, K-means 

algorithm, Bi-normalization, Stochastic co-clustering, Sinkhorn-Knopp Normalization, 

Kullback-Leibler Divergence 
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Introduction 

Data mining targets to discover information, relationships, changes, errors, and 

statistically significant information and values within the data (MacQueen, 1967). It can 

be defined as the exploration of the relationships in the large data set and the 

relationships that can be used to make predictions about the given data. Data usually are 

collected in the form of matrices for Machine Learning (ML) and Data Mining(DM)  

applications. Extracting meaningful and useful information hidden in the collected data 

matrix is a major task in a machine learning and data mining. Different characteristics of 

data require new approaches to explore the hidden patterns, which is one of the most 

critical difficulties to explore nature as well as the organization of data (whistworks.com, 

2015). 

One of the decisive methods representing a large branch of DM and attracting a 

lot of attention is the unsupervised learning, specifically clustering. Clustering is a data 

analysis tool for grouping data into several homogeneous groups (Jain, 2010). Objects, 

called as instances, tuples, and records,  are generally divided into a certain number of 

clusters.  While objects with the same characteristics are in the same group, objects with 

different characteristics are included in different groups. Therefore,  the purpose of 

clustering is to group similar objects into a coherent cluster, while different objects to 

separated clusters (Anna Huang, Similarity Measures). To find and interpret the 

connections among data points there is a need for data clustering algorithms in many 

disciplines therefore, it has usages from bioinformatics to personalized information 

delivery (Cho et al. 2014).   
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K-means clustering is unsupervised learning algorithm, which is applicable to 

unlabeled data (Wagstaff et al. , 2001). The main objective of a k-means clustering is to 

minimize the distance between each data point to closest cluster centroid. To find the 

closest centroid, it originally uses Euclidian distance as a distance metric. The k-means 

clustering is an iterative algorithm, where it iteratively assigns each data point closest 

cluster. It clusters the given data matrix either row wise or column wise (Zhao, 1970) 

thus, it is also known as one-way clustering.  

 On the other hand, co-clustering (i.e. block clustering) clusters both row 

and column of the given data matrix simultaneously, or vice versa. Unlike k-means 

clustering algorithms, it seeks for block structure of rows and column that are inter-

related (Cho and Dhillon, 2007). Although it is desirable over one-way clustering 

algorithm, it uses complex algorithm behind the scene. To address the problem, we 

developed two novel approaches to cluster given dataset in an efficient manner. To the 

best of our knowledge, spherical co-clustering and stochastic co-clustering have not been 

implemented by anyone yet. In this study, we apply both algorithms to two publicly 

available datasets: iris and seeds, to answer the following questions:  

(1) Whether it is possible to cluster both row and feature of the data matrix 

simultaneously using bi-normalizing and Sinkhorn-Knopp techniques;  

(2)  Whether both stochastic and spherical co-clustering is desirable over tradition 

one-way clustering algorithms; and  

(3) Whether it is possible to develop a co-clustering algorithm which uses 

traditional k-means clustering as a framework 
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Why co-clustering algorithm? In most cases, it is well known that co-clustering 

algorithms, a study of clustering of row and column of a given data matrix 

simultaneously, is desirable over a tradition one-way clustering algorithm from a number 

of perspectives: 

Discovering Latent Structure: K-means algorithm, which clusters the given data matrix 

by row or column. Thus, it may fail to obtain the potential patterns (Cho, 2008). On the 

other hand, co-clustering algorithms clusters both instance and the feature of a given data 

matrix simultaneously, thus it seeks for block structure in a matrix. Therefore, it has more 

potential to discover the hidden pattern. 

Dimensionality Reduction: One-way clustering algorithms can apply dimensionality 

reduction on only one side, either row or column; however, co-clustering can perform the 

dimensionality reduction at the same time (Cho and Dhillon, 2008). Co-Clustering 

algorithm can yield better quality clusters even when we apply one-way clustering since 

it shares column clustering information to row clustering information and vice versa.  

 As it can be understandable that the benefits of co-clustering make it desirable 

over traditional k-means clustering. However, current co-clustering algorithms uses 

complex ideas behind the scene. Due to crucial benefits over a one-way clustering 

algorithm, it has gained popularity across many fields, including, but limited to, gene 

expression, natural language processing, video, and product recommendation. Detailed 

review of the application areas of co-clustering algorithms can be found in the survey 

paper (Madeira and Oliveira, 2004). In this study, we develop two simple co-clustering 

algorithm that uses following specific strategies that can be directly applicable to k-



4 

 

means framework: feature construction, data normalization, and a special cluster label 

initialization. 

The remainder of the study organized as follows. In Chapter 2, we talk about the 

related works in clustering fields. We explain the main idea behind the works. In Chapter 

3, we introduce a novel approach to the co-clustering field. In Chapter 4 and 5, we 

present the empirical results of the proposed algorithms and compare them to traditional 

one-way clustering algorithms. 
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CHAPTER II 

Related Works 

Clustering is an unsupervised algorithm where it groups similar objects together as 

clusters. The k-means (Hartigan, 1967) starts with initial cluster centers and assigns the 

cluster association for each data point to the closest centroid based on the Euclidian 

distance.   Unlike one-way clustering that looks for similarity between rows or columns, 

co-clustering searches for "blocks" (or "common sets") of interconnected rows and 

columns (Hartigan, 1967). Co-clustering is an unsupervised data mining algorithm where 

its clusters both columns and the rows of the data matrix simultaneously to discover the 

“latent structures”.  

The concept of similarity is not a clear information that can yield definitive 

results. Clustering algorithms require an accurate definition of the closeness between data 

points and cluster centroids, either the pair-wise similarity or distance (Huang, 2008). 

Meanwhile, the similarity is often considered in the aspect of similarity and dissimilarity. 

Although a variety of similarity of distance metrics have been proposed and adopted 

widely, in this section, we will briefly explain Euclidean distance and Cosine similarity. 

We also include the Kullback-Leibler divergence, which has been efficiently used in 

information theory-based clustering (Dhillon et al. , 2003). 

K-means Clustering Algorithm 

The co-clustering and k-means clustering algorithms have been developed parallelly. 

Both algorithms are unsupervised and serve clustering purposes. The core k-means 

algorithm has been implemented and reported and can be branched into two different 

application areas; single-pass, and parallel implementation (Forman & Zhang, 2000).  
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The metric on the k-means clustering algorithm is the usual Euclidian distance; which is 

used to measure the distance between each centroid and each data point. Firs we choose 

the K initial centroids, where K is a user specified parameter. Then each point is assigned 

to the closest centroid and assigned collection of points are now centroids. The centroid of 

each cluster is updated based on the number of points assigned to the cluster. We repeat 

this until we convergence, i.e. until the centroids are remain same.   

Table 1 

Pseudocode of k-Means clustering algorithm 

1. Initialize row (or column) assignments and statics 

2. repeat 

2.1. Update all row (or column) assignments using Euclidean distance  

2.2. Update all column (or row) statistics  

3. until convergence 

 
K-means Metrics 

The objective function, i.e., the cost function is a metrics that the applied 

algorithm wants to minimize or maximize according to the metric used. K-means 

algorithm uses the Euclidian distance as metrics to find the nearest cluster centroid to 

each point (Hartigan, 1979). In this case, we want to minimize the squared distance of 

each point to its closest centroid.  

𝑄𝑄�{𝜋𝜋}𝑗𝑗=1𝑘𝑘 � =  � ��𝑥𝑥 − 𝐶𝐶𝑗𝑗�2
2

𝑥𝑥∈𝜋𝜋𝑗𝑗

𝑘𝑘

𝑗𝑗=1
 

where x is a data point that belongs to cluster (or partition) 𝜋𝜋𝑗𝑗 and Cj is the cluster 

centroid of cluster j. 
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Note that both every data point and every centroid should be properly normalized for the 

new cluster assignment with each different metric. For example,  Euclidean distance 

requires no data normalization; Cosine similarity requires L2-norm; and KL divergence 

requires  L1-norm normalization. In what follows, we assume that both data points and 

centroids are properly normalized, unless otherwise mentioned. 

Euclidean Distance 

 Traditional k-means clustering algorithm uses Euclidean distance as a metric to 

compute the distance between the data point and cluster center.  

                      𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥 𝐶𝐶𝑖𝑖 =  �∑ (𝑥𝑥 −  𝐶𝐶𝑖𝑖)2𝑚𝑚
𝑖𝑖=1  , 

where 𝑥𝑥 is data point and 𝐶𝐶𝑖𝑖  is cluster centroid. The result of Euclidian distance ranges 

between 0 and positive infinity, where Euclidian 0 means both data points and cluster 

centroid are identical.  

Cosine Similarity 

Spherical K-means and spherical co-clustering algorithms uses cosine similarity 

as a metric.  

                       cos(𝑥𝑥,𝐶𝐶𝑖𝑖) =  𝑥𝑥𝑇𝑇𝐶𝐶𝑖𝑖
‖𝑥𝑥‖‖𝐶𝐶𝑖𝑖‖

 

 It defines either similarity or dissimilarity between data point and cluster centroid, 

where 𝑥𝑥 is data point and 𝐶𝐶𝑖𝑖 is cluster centroid. The result of Cosine similarity ranges 

between -1 to +1, -1 means the angle between the two vectors are 180 degree (i.e., 

complimentary); and 0 means 90 degree (i.e., orthogonal); and +1 means the angle 

between the two vectors is zero, therefore cosine value of 0 means vectors are identical. 
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Kullback-Leibler (KL) Divergence 

 In information theory-based clustering, KL measures the dissimilarity between 

two probability distribution (Kullback and Leibler, 1951) . Given two uncertain objects, 

in this case data point and cluster centroid, D (x || 𝐶𝐶𝑖𝑖) evaluates how probability 

distribution of x is differ from Ci,  

   𝐷𝐷(𝑥𝑥 |𝐶𝐶𝑖𝑖|) = −  ∑𝑃𝑃(𝑥𝑥) log �𝑥𝑥
𝐶𝐶𝑖𝑖
�, 

Where both 𝑥𝑥 (data point) and 𝐶𝐶𝑖𝑖 (cluster centroid) are L1 norm normalized probability 

vectors. The result of KL divergence ranges between 0 and positive infinity. The result of 

zero means the two probability distributions are identical. The KL measures the 

divergence between the two-probability distribution (Thomas and Cover, 2006). 

 

Monotonicity of Objective Function Value Change in Euclidean K-means  

Objective function of the k-means clustering is Sum of Squared Error (SSE) 

between every data point and each closest centroid, where its objective is to minimize it 

(Tan et al., 2018). 

SSE = ∑ ∑ ‖𝑥𝑥 − 𝐶𝐶𝑖𝑖‖22𝑋𝑋∈𝐶𝐶𝑖𝑖
𝐾𝐾
𝑖𝑖=1  , 

where 𝑥𝑥 = data point, 𝐶𝐶𝑖𝑖 𝑖𝑖′th cluster and K is number of clusters. The monotonicity of the 

SSE is proved in (Tan et al., 2018). Note that the first improvement of the objective 

function is obtained by the greedy cluster assignment ,and the second improvement is 

guaranteed by the process of computing the cluster centroid as follows:  

              𝜕𝜕
𝜕𝜕𝑐𝑐𝑘𝑘

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜕𝜕
𝜕𝜕𝑐𝑐𝑘𝑘

∑ ∑ (𝑥𝑥 − 𝐶𝐶𝑖𝑖)2𝑥𝑥∈𝐶𝐶𝑖𝑖
𝐾𝐾
𝑖𝑖=1  

                = ∑ ∑ 𝜕𝜕
𝜕𝜕𝑐𝑐𝑘𝑘

(𝑥𝑥 −  𝐶𝐶𝑖𝑖)2𝑥𝑥∈𝐶𝐶𝑖𝑖
𝐾𝐾
𝑖𝑖=1  
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                = ∑ 2 × (𝑥𝑥 −  𝐶𝐶𝑖𝑖)2 = 0𝑥𝑥∈𝐶𝐶𝑖𝑖  

Existing known open problems in clustering algorithm based upon the k-means 

framework.  

Initial Cluster Assignment 

K-means algorithm requires to have the initial cluster assignment. It is known that 

the result of the traditional k-means is sensitive to its initial cluster assignment. 

Traditionally, the following heuristics have been applied: 

• Random cluster label assignment. Randomly assign a cluster membership to 

every row (or) column. In this case, each initial centroid should be computed by 

taking an average of all the data points that belong to the corresponding cluster. 

• Random choice of k centroids from actual data. Randomly choose k data points 

and use them as initial k centroids. In this case, no initial centroid computation is 

needed as the randomly chosen k original (i.e., existing) data points are used as 

centroids. 

• Random generation of k centroids. Randomly generate k initial centroids. In this 

case, no initial centroid computation is needed. 

• Use of another clustering result as an initial seed. For example, the result of 

Hierarchical Agglomerative Clustering (HAC) is used as an initial cluster 

assignment (Cho and Dhillon, 2008). In this case, each initial centroid should be 

computed by taking an average as for the case of random assignment of the cluster 

membership to every row (or column). 
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Particularly, in this study, the co-clustering result from spectral co-clustering (Dhillon, 

2001) is suggested to use the initial clustering seed. Details of the proposed initialization 

approach and its performance are discussed in the experimental chapter. 

Update Cluster Assignment for Rows ( or Columns) 

Without loss of generality, we will discuss how to update the row cluster 

assignment. The column assignment can be applied in the same manner. For each row, 

first, compute the Euclidean distance to every cluster centroid and then update the row 

cluster assignment to the cluster membership (i.e., id) of the closest centroid. 

Convergence Test 

As the k-means algorithm (shown in Fig. 1) is an iterative algorithm, it will stop 

after some iteration. Conventionally, the following stopping criteria have been used. 

• Fixed number of iteration (e.g., 100) 

• Change of either absolute (i.e., |𝑂𝑂𝑂𝑂𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑛𝑛𝑛𝑛| ) or relative objective function 

 ( i.e. | (𝑂𝑂𝑂𝑂𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛𝑒𝑒𝑒𝑒)/ 𝑂𝑂𝑂𝑂𝑂𝑂𝑜𝑜𝑜𝑜𝑜𝑜| ) values between previous and current cluster 

assignments 

• Change of centroids between previous and current cluster assignments  

Note that the cluster centroids should be updated right after the row (or column) cluster 

assignment step. Otherwise, objective function value will not be changed.  It is proven 

that the objective values are monotonically non-increasing over iterations. 

Handling Empty Cluster Problem (i.e. Degeneracy Problem)    

One of a famous problem with Euclidean k means clustering is empty clustering, which 

occurs if no data points are allocated for a cluster.  
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• Replace an empty cluster with a single instance, which is the farthest instance from 

its centroid (k-means++) ( Arthur and Vassilvitskii, 2007) 

• Generate a new centroid by assigning a new instance, which is randomly generated 

with a specific number (e.g., 1’s). 

  Handling Not-a-Number in Computing KL Divergence  

To avoid nan problem in KL divergence, we add a specific prior (i.e., epsilon) to 

the original data (data = data + epsilon, where epsilon ranges from 2.220446049250313e-

16 to 100) as a data pre-processing step.  

Spherical K-means Clustering Algorithm 

Spherical k-means algorithm (Dhillon and Modha, 2001) brought a radically 

different perspective to clustering unlabeled documents. The intuition behind the 

algorithm is to remove the words that contain unique content from the document set and 

treat them as features and represent each document as a vector of certain weighted word 

frequencies in this property field. Finally, it uses the cosine similarity to find the 

similarity between vectors while as it is known, traditional k-means uses Euclidean 

distance to compare objects (Duda and Hart, 1973).   
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Table 4 

Pseudocode of Spherical k-means Clustering Algorithm 

1. Initialize row (or column) assignments and statics 

2. repeat 

2.1. Update all row (or column) assignments using Cosine Similarity 

2.2. Update all row(or column) statistics 

3. until convergence 

 

As we have seen previously, the Euclidian distance is used as an objective 

function which we want to minimize it. As a major difference from the k-means 

clustering algorithm, spherical k-means clustering algorithm uses cosine similarity, i.e. 

inner product, to measure the similarity of the vectors (Dhillon and Modha, 2001):  

                                   𝑥𝑥𝑇𝑇𝑦𝑦 = ‖𝑥𝑥‖‖𝑦𝑦‖cos (𝜃𝜃), 

where x and y are given two column vectors, ‖𝑥𝑥‖ is the vector 2-norm of x, and 𝜃𝜃 

is an angle between x and y. Therefore, the overall objective function for the spherical k-

means algorithm is defined as follows: 

𝑄𝑄�{𝜋𝜋}𝑗𝑗=1𝑘𝑘 � =  � � 𝑥𝑥𝑇𝑇𝐶𝐶𝑗𝑗
𝑥𝑥∈𝜋𝜋𝑗𝑗

𝑘𝑘

𝑗𝑗=1
 

Co-Clustering 

As we have stated earlier, co-clustering has a wide spectrum of usage from gene 

expression to document clustering. In this section, we will give a brief survey of previous 

work on  co-clustering algorithms. 
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The initial idea of clustering both rows and columns were conceived under the name of 

"direct clustering" as a greedy algorithm which uses separation procedure to define the 

hierarchical block of columns and rows (Hartigan, 1967). One of the earliest application 

areas of the co-clustering has been used to cluster gene expression data analysis. The bi-

clustering algorithm proposed by Cheng and Church was applied to cluster gene expression 

data and it advocated the importance of simultaneous clustering of genes and conditions for 

exploring more consistent and meaningful clusters (Cheng and Church, 2004).  

Based on the squared residue formulated by the Cheng and Church (Cheng and 

Church, 2004), Minimum Sum-Squared Residue Co-clustering (MSSRCC) is introduced 

by Cho et al.  to cluster genes and conditions. They have implemented two effective k 

means like a clustering algorithm to cluster the gene expressions. MSSRCC discovers the 

k rows and l columns of the given matrix while decreasing the monotonic order of square 

frames using bi-normalization and deterministic spectral initialization techniques.  

The co-clustering algorithm was beneficial in grouping genes with similar functions 

under various conditions. Cho et al. proposed strategies to enhance the performance of 

MSSRCC algorithm. The enhanced MSSRCC algorithm has been used to the 

simultaneous exploration of the correlated samples of both genes and subsets. The 

algorithm has been applied to four publicly available microarray datasets. The accuracy 

measurement has been used to evaluate each subset (Cho et al., 2008). Co-clustering has 

been used in many areas including, but not limited to text mining, speech and video 

analysis and natural language processing (NLP).   
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The objective function of the MSSRCC algorithm is a 2-norm difference between A 

and Â; 

 �A − Â�
2
2
, 

where 

Â = 𝑅𝑅𝑅𝑅𝑇𝑇𝐴𝐴𝐴𝐴𝐶𝐶𝑇𝑇, 

where A is the input matrix, R is the row indicator matrix and C is column indicator 

matrix as explained below. This example adopted from Cho, 2008. 

Given a data matrix, A 

A = �

𝟏𝟏 𝟐𝟐 0 0
𝟕𝟕 𝟖𝟖 0 0
0 0 4 5
0 0 6 7

�  

We define a row cluster indicator matrix, 𝑅𝑅 ∈  𝑅𝑅𝑚𝑚×𝑘𝑘 and a column cluster indicator 

matrix, 𝐶𝐶 ∈  𝑅𝑅𝑛𝑛×𝑙𝑙 as follows: column r of R has 𝑚𝑚𝑟𝑟 non-zeros, each of which equals m  

√𝑚𝑚𝑟𝑟 , the non-zeros of C are defined similarly. For is example, we assume that the first 

two rows (i.e., rows 1 and 2) belong to row cluster 1 and the remaining two rows (i.e., 

rows 3 and 4) belong to row cluster 2. Similarly, the first two columns and the remaining 

two columns of A belong to column cluster 1 and column cluster 2, respectively. 

            𝑅𝑅 =  

⎣
⎢
⎢
⎡1/√2
1/√2

0
0

0
0

1/√2
1/√2⎦

⎥
⎥
⎤
 

                               𝐶𝐶 =  

⎣
⎢
⎢
⎡1/√2
1/√2

0
0

0
0

1/√2
1/√2⎦

⎥
⎥
⎤
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Compressed row cluster average and expanded row cluster average can be computed 

respectively by 𝐵𝐵𝑟𝑟 = 𝑅𝑅𝑇𝑇𝐴𝐴 (proper normalization necessary to get the row centroids) and 

𝐶𝐶𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑇𝑇𝐴𝐴 as follows. 

  

 

 

 

 

 

Similarly, column cluster average and expanded column cluster average can be obtained 

by 𝐵𝐵𝑐𝑐 = 𝐴𝐴𝐴𝐴 (proper normalization necessary to get the column centroids) and 𝐶𝐶𝑐𝑐 =

𝐴𝐴𝐴𝐴𝐶𝐶𝑇𝑇 as shown below. 

 

 

 

 

  

 

Finally, compressed co-cluster average and expanded co-cluster average can be 

calculated respectively by 𝐶𝐶𝑤𝑤 = 𝑅𝑅𝑇𝑇𝐴𝐴𝐴𝐴 (proper normalization necessary to get the co-

cluster centroid matrix) and 𝐶𝐶𝑤𝑤 = 𝑅𝑅𝑅𝑅𝑇𝑇𝐴𝐴𝐴𝐴𝐶𝐶𝑇𝑇 as follows. 

 

  









=

6500
0054

rB



















=

6500
6500
0054
0054

rC



















=

5.6
5.4

0
0

0
0
5.7
5.1

cB



















=

5.65.600
5.45.400

005.75.7
005.15.1

cC
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In summary  �A − Â�
2
2
 =  ‖A − 𝑅𝑅𝑅𝑅𝑇𝑇𝐴𝐴𝐴𝐴𝐶𝐶𝑇𝑇‖22 =  ‖A − 𝐶𝐶𝑤𝑤‖. Note: Objective function of 

usual k-means algorithms can be represented by 𝑄𝑄�{𝜋𝜋}𝑗𝑗=1𝑘𝑘 � =  ∑ ∑ �𝑥𝑥 − 𝐶𝐶𝑗𝑗�2
2

𝑥𝑥∈𝜋𝜋𝑗𝑗
𝑘𝑘
𝑗𝑗=1 =

 �A − Â�
2
2
, where Â =  𝑅𝑅𝑅𝑅𝑇𝑇𝐴𝐴. 

Cho et al. (2014) developed an online co-clustering algorithm that updates both row 

and column assignment simultaneously. The algorithm was proposed to handle the huge 

storage requirement for large-scale data as well as the incremental availability of certain 

data (i.e., online transaction data.  The biggest advantage is that it does not keep all the 

data in the main memory. However, the ordered data is processed one by one and only 

updates the affected data's statistics. In this way, the streaming data can be managed 

successfully. 

Spectral co-clustering (Dhillon, 2001) brings a novel approach to the bipartite graph 

partitioning problem. Before the spectral co-clustering, the existing algorithms were not 

able to cluster both documents and words. The proposed Spectral co-clustering modeled 

document collection as a bipartite graph to cluster both documents and words 

simultaneously. It was shown that the second left and right most singular matrix of a 

word-document matrix is an optimal solution to a real relaxation in bipartition problem.  

Below is the outline of spectral co-clustering. 

 









=

5.50
05.4

wB



















=

5.55.500
5.55.500

005.45.4
005.45.4

wC
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Table 2 

Spectral Co-Clustering 

Given A  ∈ R𝑚𝑚 𝑥𝑥 𝑛𝑛 

[RC, CC] = spectralCoclustering(A, k) 

(1) 𝐴𝐴𝑛𝑛 = 𝐷𝐷1
−1/2A 𝐷𝐷2

−1/2, 

  where 𝐷𝐷1 = diag(sum(A,2)) 

              𝐷𝐷2 = diag(sum(A,1)) 

(2) U, 𝛴𝛴,  𝑉𝑉𝑇𝑇 = SVD(𝐴𝐴𝑛𝑛 ) where,  

             𝑈𝑈𝐾𝐾 ∈ R𝑚𝑚 𝑥𝑥 𝑘𝑘  ,𝛴𝛴∈ R𝑘𝑘 𝑥𝑥 𝑘𝑘 ,  𝑉𝑉𝑘𝑘𝑇𝑇 ∈ R𝑘𝑘 𝑥𝑥 𝑛𝑛 

  

(3) E =�
𝐷𝐷1
−1/2𝑈𝑈1:𝑙𝑙

𝐷𝐷2
−1/2𝑉𝑉1:𝑙𝑙

� ∈ R(𝑚𝑚+𝑛𝑛) 𝑥𝑥 𝑙𝑙, 

               where 𝑙𝑙 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑙𝑙𝑙𝑙𝑙𝑙2(𝑘𝑘)).       

(4) [RC, CC] = k-means(E, k) 

 
 

First, the data matrix is normalized by both the square-root of its row sum and the 

square-root of its column sum. Secondly, the left singular vector matrix (U), the 

eigenvalue matrix (𝛴𝛴), and the right singular vector matrix (V) are obtained using singular 

value decomposition of the normalized matrix. Thirdly, the left singular vectors and the 

right singular vectors, again normalized by the square-root of its row sum and the square-

root of its column sum, respectively, are concatenated. Finally, the usual Euclidean k-
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Means clustering is applied to get both row and column clustering assignments with the 

resulting concatenated singular vector matrix as an input data. 

Following table summarizes the differences between the traditional K-means, Spherical 

K-means and Stochastic K-means clustering algorithms. 

Table 3 

K-means vs Spherical K-means vs Stochastic K-means 

 Clustering Normalization Metrics 

K-means Row (or Column) N/A Euclidean 

Spherical K-means Row (or Column) 2-norm Cosine 

Stochastic K-means Row (or Column) 1-norm KL-divergence 

 

The stochastic co-clustering and spherical co-clustering is a brand new approach which 

uses an original k-means framework, feature construction, and different normalization 

techniques.  

In the upcoming section, we show the methods used during the development of the co-

clustering algorithm and provide two practical examples of the algorithms. 
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CHAPTER III 

Proposed Work 

Feature Construction 

Feature construction is creation of additional features that discovers missing 

information. Stochastic co-clustering uses feature construction to add additional features 

to the data matrix. Given data matrix of m rows and n columns, where 𝑚𝑚 ≥ 𝑛𝑛, we append 

m-n one’s matrix to the data matrix horizontally (Motoda, and Liu, 2002). This process 

allows us to apply Sinkhorn-Knopp (SK) Normalization, which requires input data matrix 

to be square. After the SK normalization, the sum of each row and each column of data 

matrix is equal to 1 (Sinkhorn and Knopp, 1967). 

Normalization 

Raw data, which is an original form of the collected data, do not disclose the deviation 

from the central tendency (Cho, 2008). Thus, in many aspects of the Data Mining, it is the 

most crucial steps because the variation in the dataset will give an insight about the data.  

Data transformation is the process to transform the format of the data or its structure. 

Livne and Golub (2004) offer an iterative algorithm, called BIN for a square matrix and 

NBIN for a rectangular matrix, which scales all the rows and columns of a matrix to have 

L2-norm of the unit. Bi-normalization is one of the data transformation techniques which 

we chose to apply to proposed algorithm. The results for bi-normalization of a rectangular 

matrix as follow (Livne and Golub, 2004).  

 

� 𝑎𝑎′𝑖𝑖𝑖𝑖2 = 𝑛𝑛 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1, … ,𝑚𝑚
𝑛𝑛

𝑗𝑗=1
 

      and 
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� 𝑎𝑎′𝑖𝑖𝑖𝑖2 = 𝑚𝑚 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1, … ,𝑛𝑛
𝑚𝑚

𝑖𝑖=1
 

 

The usefulness of the bi-normalization on the co-clustering algorithm has been shown 

by Cho et al. They have implemented the MSSRCC algorithm which 6 different 

transformation techniques and obtained sufficient accuracy with NBIN normalization. 

 
The performance with different data transformation techniques was compared in Figure 

4 (Cho et al. 2008). To be more specific, the following strategies used for performance 

comparison. (1) no transition (NT), row/column standardization (RS/CS), double 

centering (DC) and bi-normalization (NBIN). The good performance MSSRCC with 

NBIN is encouraging as we target to embed NBIN into the proposed algorithm steps to 

achieve bi-spherical normalization.   

Table 4 

Pseudocode of Spherical Co-Clustering Algorithm 

1. Horizontal extension of a given data matrix with one’s matrix. 

2. Apply bi-normalization 

3. Vertical Concatenation of an output of bi-normalization with its transpose 

4. Apply k-means clustering algorithm using Cosine similarity as a distance metric 

 
Sinkhorn-Knopp(SK) is another data transformation technique where it takes a square 

matrix A and finds Diagonal Matrices D1 and D2 so that D1 A D2 is a doubly stochastic, 

i.e., the sum of each row and column is equal to 1 (Sinkhorn et al., 1964). In the stochastic 

co-clustering algorithm, we apply SK normalization after feature construction, i.e., the 

horizontal extension of a given dataset.  
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�𝑎𝑎𝑖𝑖𝑖𝑖 
𝑖𝑖

 =  �𝑎𝑎𝑖𝑖𝑖𝑖
𝑗𝑗

= 1 

As shown in the algorithm definition, the output after SK normalization, the sum of each 

row and column is equal to one.  

Table 5 

Pseudocode of Stochastic Co-Clustering Algorithm 

1. Horizontal extension of a given data matrix with one’s matrix. 

2. Apply SK Normalization 

3. Vertical Concatenation of an output of SK normalization with its transpose 

4. Apply k-means clustering algorithm using KL divergence to the final matrix 

 

In general, the clustering algorithm can be divided into three major sections. The 

first section is the Data Preparation where it is crucial to receive desired success. In this 

step, we modify/normalize the dataset according to needs. In our case, we did not make any 

modification on an Iris Dataset. The second section is initialization which we have 

experienced the importance during the application process. We initially used random 

initialization for k-means clustering. Then, we changed the initialization techniques to the 

Spectral initialization.  

Stochastic and Spherical Co-clustering 

Given data matrix 𝐴𝐴 where   𝐴𝐴 ∈  𝑅𝑅𝑚𝑚×𝑛𝑛 where 𝑚𝑚 ≥ 𝑛𝑛, whose 𝑖𝑖, 𝑗𝑗 element is 

devoted by 𝑎𝑎𝑖𝑖𝑖𝑖  is defined as follows: 
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𝐴𝐴 =  �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22

⋯ 𝑎𝑎1𝑛𝑛
⋯ 𝑎𝑎2𝑛𝑛

⋮ ⋮
𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2

⋮ ⋮
⋯ 𝑎𝑎𝑚𝑚𝑚𝑚

� 

 

For example, for an Iris dataset can be defined as a data matrix. In that case, rows of the 

data matrix will be instances, and column of the data matrix would be features. 

In this section, we explain each step of the both Stochastic and Spherical Co-clustering in 

depth.  

Feature construction is essential part in data mining where its purpose is to covert 

data matrix into a desired representation to make it work with the algorithm (Brank et al., 

2011). The first step is a feature construction where we concatenate one’s matrix to the 

original data matrix. If a constructed data matrix is not a square matrix, its required to 

apply a feature construction, i.e., adding new features to the data matrix, to make it 

square. We implement feature construction to form a square matrix where it will be 

plausible to extend the data matrix with its transpose. Here is an example of a feature 

construction.  

 

       𝐴𝐴 ∈  𝑅𝑅𝑚𝑚×𝑛𝑛, where 𝑚𝑚 ≥ 𝑛𝑛 
                                                                                             n 

• Given data matrix, 𝐴𝐴:                    m 

⎣
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎤

 

 
                                        n                m-n 



23 

 

• Extended Column, 𝐴𝐴’:                  m  

⎣
⎢
⎢
⎢
⎢
⎡ 1 1

1 1
1 1
1 1
1 1
1 1⎦

⎥
⎥
⎥
⎥
⎤

 

 
As it can be seen, extended data matrix, 𝐴𝐴′  , is now ready for a normalization. Second 

step in a stochastic co-clustering, we use SK normalization where it normalizes each row 

and column of a data matrix to L1 norm unit. As a result of SK normalization, sum of 

each row and column of a data matrix is equal to one (Sinkhorn and Knopp, 1967).  

We use bi-normalization, i.e. NBIN, where it normalized each row and column of a data 

matrix to L2 norm unit.  The purpose behind the normalization is to scale each attribute 

in a range of 0 and 1.   

Traditional co-clustering algorithms uses complex scheme behind the scene. In 

this study, our primary goal is to provide a simple co-clustering algorithm where it uses 

traditional k-means clustering framework without developing complicating traditional co-

clustering algorithm steps. For this purpose, we are extending the normalized square 

matrix with its transpose.  

Extended and normalized data matrix, 𝐸𝐸 where 𝐸𝐸 ∈  𝑅𝑅𝑚𝑚×𝑚𝑚  is extending by its 

transpose vertically 𝐸𝐸;𝐸𝐸T . The resulted matrix, 𝐸𝐸′  𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝐸𝐸′ ∈ 𝑅𝑅2𝑚𝑚×𝑚𝑚 is now ready for 

a traditional one-way clustering.  

 

        𝐵𝐵 ∈ 𝑅𝑅2𝑚𝑚×𝑚𝑚 
 

                                                                        m 
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m 

⎣
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎤

 

      m 

⎣
⎢
⎢
⎢
⎢
⎡

⎦
⎥
⎥
⎥
⎥
⎤

 

 

When we apply one-way clustering, i.e., either row or column clustering, we would 

actually apply co-clustering to the data matrix. Since we extended the original data matrix, 

resulted matrix B, is a result of both instances and features of a data matrix.  

In what follows, we provide the pseudocode for each of the proposed stochastic and the 

spherical co-clustering algorithms with a toy example. 

Algorithm 1: Stochastic Co-clustering 
 

Stochastic Co-clustering (A, k) 
input: Data matrix A ∈  𝑅𝑅𝑚𝑚×𝑛𝑛  and cluster number k, where we assume 𝑚𝑚 ≥ 𝑛𝑛 
 
                                                                     𝑛𝑛 

 Given data matrix:               𝐴𝐴 =       m �
1 0
1 1
0 1

� 

 
                     n    m-n 

1) Extend Column:               𝐴𝐴′ =      m  �
1 0 𝟏𝟏
1 1 𝟏𝟏
0 1 𝟏𝟏

� 

 
 

                  
2) Apply bi-stochastic normalization using the Sinkhorn-Knopp’s algorithm 

(Sinkhorn and Knopp, 1967):        
 

𝐸𝐸 =  �
0.61802575 0.38196286 0

0 0.38196286 0.61802575
0.38197425 0.23607427 0.38197425

�, 
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        where ∑𝐴𝐴𝑖𝑖. = ∑𝐴𝐴. 𝑗𝑗 = 1,  1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑚𝑚 

 
                                                                                                    

3) Concatenate normalized matrices:  
       B = (E; 𝐸𝐸′T ), which results in 

  m 

   m �
0.61802575 0.38196286 0

0 0.38196286 0.61802575
0.38197425 0.23607427 0.38197425

�   

   m �
0.61802575 0 0.38197425
0.38196286 0.38196286 0.23607427

0 0.61802575 0.38197425
�     

 
     
      4)  Apply K-means clustering with KL divergence to B, where B ∈  𝑅𝑅2𝑚𝑚×𝑚𝑚. 
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Algorithm 2: Spherical Co-clustering 
 

Stochastic Co-clustering (A, k) 
input: Data matrix A ∈  𝑅𝑅𝑚𝑚×𝑛𝑛  and cluster number k, where we assume 𝑚𝑚 ≥ 𝑛𝑛 

                                                                              
                    n 

          Given data matrix                𝐴𝐴  =        m �
1 0
1 1
0 1

� 

 
                       n    m-n 

1) Extended Column:             𝐴𝐴′ =      m  �
1 0 𝟏𝟏
1 1 𝟏𝟏
0 1 𝟏𝟏

� 

 
 

                  
2) Apply bi-normalization using the NBIN((Livne and Golub, 2004): 

 

𝐸𝐸 = �
1.3617 0 1.0705
1.0705 1.0705 0.8415

0 1.3617 1.0705
�, 

  
 
where ‖𝐴𝐴𝑖𝑖.‖ = �𝐴𝐴. 𝑗𝑗� =  √𝑚𝑚      1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑚𝑚 

 
                                                                                                     

3) Concatenerate normalizaed matrices: 
 B = (E; 𝐸𝐸′T ) , which results in 
           m 

              m �
1.3617 0 1.0705
1.0705 1.0705 0.8415

0 1.3617 1.0705
�   

              m �
1.3617 1.0705 0

0 1.0705 1.3617
1.0705 0.8415  1.0705

�     

 
 

     
      4)  Apply K-means clustering using Cosine similarity to B, where B ∈ R 2m x m   
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 In summary, we have used four different normalization (including one-norm, two-

norm, SK and nbin), data extension, and three different metrics (including Euclidean 

distance, cosine similarity and KL divergence). Table 7 summarizes all the mentioned 

algorithm strategies.  

Table 6 

Summarization of the Clustering Algorithms 

Algorithm Normalization Data Extension Distance Metric 

K-means Clustering N/A N/A Euclidean Distance 

Spherical Clustering Cosine Normalization N/A Cosine Similarity 

Stochastic Clustering 1-norm  N/A KL Divergence 

Spectral Co-clustering Square-root of 1-norm Yes Euclidean Distance 

Stochastic Co-Clustering SK Normalization Yes KL Divergence 

Spherical Co-Clustering Bi-normalization Yes Cosine Similarity 

Note. Summarization of the Algorithms we have studied in our research 
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CHAPTER IV 

Experiments 

Development and Experiment Environments 

The six different clustering algorithms, including the existing four algorithms (k-

means with Euclidean distance, Cosine similarity, and KL-divergence, respectively, as 

well as spectral co-clustering) and the two proposed algorithms (stochastic co-clustering 

and spherical co-clustering). 

 Python script language (version 3.7) on a Spyder IDE (version 3.3.1) was used as 

the main development and experiment environment. Furthermore, Bi-normalization was 

implemented in MATLAB. However, SK normalization package available online and 

installed using package-management system(PIP) normalize the matrix bi-stochastically. 

All the algorithm development and the experiments were conducted on Windows 

10 operation system. 

Dataset 

In this study, we used two different datasets to apply proposed algorithms. Both 

datasets are publicly available for academic purposes. 

1) Iris Dataset 

Iris is one of the famous datasets created by Ronald Fisher in his research. Iris 

dataset contains 150 instances and 5 features where the features are petal length, petal 

width, sepal length, sepal width and species respectively. We applied 5 different 

algorithms to Iris dataset and created a model accuracy table (Fisher, 1936) 

2) Seeds Dataset 

Dataset contains geometrical properties of three different varieties of wheat: 

Kama, Rosa and Canadian.  Seed dataset contains 210 instances and 7 features where 
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features are area, perimeter, compactness, length and width of kernel, asymmetry 

coefficient, and length of kernel groove respectively (Charytanowicz et al., 2010). 

Visualization of the kernel structure obtained by the usage of X-ray techniques.  

Cluster Label Initialization 

K-means clustering does not guarantee identical clusters because random 

initialization of the data points leads to a different cluster each time. Hence, it is a crucial 

problem in DM and ML to choose stable initialization (i.e. seed) for data points.  

Through our experiment, we have used two different initialization method for the 

initial label assignment. As we already explained in section 2, there are a couple of ways 

to initialize the cluster label for k-means clustering. The first initialization technique we 

used was random initialization, where we assigned the cluster label to each row (or 

column) randomly. However, we did not receive the expected efficiency from it due to 

the local minimum. K-means clustering algorithm’s objective is to minimize the distance 

between each data point and cluster centroid, however; bad initial seed assignment leads 

to local minimum trap (Khan and Ahmad, 2004).   

As we could not get the expected results, we have decided to use spectral 

initialization. Spectral co-clustering, which denoted in table 2, results in row cluster (RC) 

and column cluster (CC). When we use RC to initialize the cluster label for data points, 

the accuracy of the clusters has been improved, as it is more stable then k-means 

clustering (Meila, 2015).  
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Figure 1. Summarization of major experimental steps.  
 



31 

 

CHAPTER V 

Results & Discussion 

In this chapter, we present empirical results that shows the usefulness of the 

created algorithms. We perform 5 different clustering algorithms (Euclidean k-means, 

spherical k-means, stochastic k-means, spherical co-clustering, stochastic co-clustering) 

to the both Iris and Seed datasets. Each algorithm is summarized in table 2. 

As we have mentioned in the Chapter 1, the objective function is a metrics that 

the applied algorithm wants to minimize or maximize according to the metric used.  

When we use Euclidean as a distance metric for the k-means clustering, we expect 

it to monotonically decrease. When we use cosine as a distance metric spherical 

clustering, we expect it to increase. The monotonicity of the cosine similarity has been 

proved in Spherical K-means Clustering (Dhillon and Modha, 2001). We applied 5 

algorithms with two different cluster label initiation technique: random and spectral. As 

we mentioned earlier, the KL divergence calculates the divergence between two probably 

distribution, thus, its objective is to minimize it. The convergence of the algorithm has 

been proved in Clustering with Bregman Divergences (Banerjee et al., 2004).  

Random Cluster Label Initialization 

Following results has been generated using random initialization for each data 

points.   
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Figure 2. Objective function value change over an iteration.  
The above figure generated using k-means clustering on an iris dataset for 100 

iteration. Since we have used random initialization each time, the objective function 
shows versatality.  

 
 

 

Figure 3. Objective function change over iteration for Spherical Clustering  
The above figure generated using spherical clustering on an iris dataset for 100 

iteration. Since we have used random initialization each time, the objective function 
shows versatality. 
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Figure 4. Objective function change over iteration for Stochastic Clustering. 
  
The above figure generated using stochastic clustering on an iris dataset for 100 

iteration. Since we have used random initialization each time, the objective function 
shows versatality. 

 
 

 

Figure 5. Objective function change over iteration for Spherical Co-Clustering.  The 
above figure generated using Spherical Co-clustering on an iris dataset for 100 iteration. 
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Since we have used random initialization each time, the objective function shows 
versatality. 
 

 

Figure 6. Objective function change over iteration for Spherical Co-Clustering. The 
above figure generated using Stochastic Co-clustering on an iris dataset for 100 iteration. 
Since we have used random initialization each time, the objective function shows 
versatality.  

 
As it can be seen from the above objective function change over iteration, the 

monotonicity of the both spherical and stochastic co-clustering algorithms are validated. 

Accuracy 

The step after applying the algorithm to the given dataset is a performance evaluation of 

the model. Although there are different types of metrics to achieve the performance, we will 

use the accuracy metrics. The confusion matrix itself is not a performance measurement 

metric (medium.com, 2017), but the accuracy metric is calculated using the number from it.  

The confusion matrix is a table with two and columns that summarizes the number of false 

positive (FP), false negative (FN), true positive (TP) and true negative (TN). The accuracy 

value can be calculated using the following formula: 
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𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎 (%) =  𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

× 100. 

As all the algorithms include the randomness in cluster initialization, we compute the 

mean accuracy for every algorithm over 100 random runs. Note that spectral co-

clustering algorithms also generate different clustering result as it utilizes the usual 

Euclidean k-means with random initialization. We first form a confusion matrix of the 

total samples and then maximize the diagonal of the confusion matrix because cluster 

labels are permuted.  

 

 

Figure 7. Comparison of 5 approach over accuracy mean and std deviation.  
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Spectral Initialization 

We have applied same algorithms using the output of Spectral Co-clustering 

(RC), as an initial seed. Following figures has been generated:  

 

 

Figure 8. Objective function value change over an iteration.  
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Figure 9. Objective function value change over an iteration. 
The above figure generated using spherical clustering on an iris dataset for an iteration 

 

 

Figure 10. Objective function value change over an iteration.  
The above figure generated using stochastic clustering on an iris dataset for an iteration 
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Figure 11. Objective function value change over an iteration.  
The above figure generated using spherical co-clustering on an iris dataset for an iteration 
 

 

Figure 12. Objective function value change over an iteration.  
The above figure generated using stochastic co-clustering on an iris dataset for an 
iteration 

 



39 

 

 

Figure 13. Comparison of 5 approach over accuracy.  
 
Conclusion 

In this study, we have created two different co-clustering algorithms, stochastic 

and spherical co-clustering, which uses unique data transformation, normalization 

techniques, and traditional k-means clustering, to cluster both instance and feature of a 

data matrix simultaneously. Our main objective in this study was to use primary k-means 

clustering structure instead of a complex traditional co-clustering algorithm.   

To summarize, we first applied feature construction (i.e., adding new features), to 

make the data matrix square. Given data matrix A, where A ∈  𝑅𝑅𝑚𝑚×𝑛𝑛  , we concatenated 

one's matrix, where ∈  𝑅𝑅𝑚𝑚 × 𝑚𝑚−𝑛𝑛  .  Next, we applied specific data normalization 

techniques to normalize the data matrix. We used bi-normalization and Sinkhorn-Knopp 

normalization algorithms for Spherical and Stochastic Co-Clustering. Un-normalized data 
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matrix does not reveal the natural tendency of the data. When we normalize the given 

data matrix, we set each element to a specific range. 

The next step is to concatenate the normalized data matrix with its transpose. In 

this case, resulted data matrix has both row and column information in it. Finally, we 

apply a one-way clustering algorithm to cluster row (or column) vise. 

Using publicly available dataset, Iris, we applied 5 algorithms ( Euclidean k-

means, spherical k-means, stochastic k-means, spherical co-clustering, stochastic co-

clustering) to compare the accuracy. As we explained earlier, the last step of the proposed 

algorithms is k-means clustering. K-means clustering requires initial cluster assignment 

of each data point. Initially, we used a random initialization technique to assign each data 

point to cluster randomly. Unfortunately, generated algorithms did not show the expected 

accuracy rate due to local minimum trap. Random initialization of each data point results 

in different cluster assignment on each iteration thus, each cluster assignment was not 

identical. To overcome the issue, we used a more stable data initialization technique, 

spectral initialization, for the label assignment. Spectral initialization on a stochastic co-

clustering has shown successful accuracy percentage over a Euclidean k-means 

clustering.   

Finally, we compare the accuracy performance of the five different algorithms 

using both spectral and random initialization on Iris dataset. Our empirical results show 

that a stochastic co-clustering shows better accuracy over the traditional one-way k-

means clustering.  
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