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ABSTRACT 

Madamba, Dorothy C., Effect of Ignatzshineria indica (Gammaproteobacteria: 
Xanthomonadales) on rate of decomposition in mice. Master of Science (Biology), 
December, 2017, Sam Houston State University, Huntsville, Texas. 
 

Microbes have a major role from the onset of and throughout decomposition. 

Studies show that a decomposing body supports a necrobiome (Pechal et al., 2013), a 

term coined to mean a community of living things associated with decomposition of 

remains, specifically with reference to microorganisms. The objective of the current 

study is to show how Ignatzschineria indica, a fly associated, and selected bacteria 

associated with a decomposing human body affect decomposition under controlled 

(laboratory) conditions. The work presented here is a laboratory experiment carried out at 

Sam Houston State University, Huntsville, Texas. To assess the effect of Ignatzschineria 

indica bacteria on decomposition, 3 batches of 90 mice were subjected to 9 different 

bacterial treatments involving 4 bacteria; A [Ignatzschineria indica], B [Escherichia 

coli], C [Bacillus licheniformis], D [Salmonella enterica], and combinations of 

Ignatzchineria indica and  other bacteria in the following manner BA, CA, DA, PC 

[positive control] and NC [negative control]. 270 mice were observed throughout their 

decomposition process. Results from this experiment showed that the initial bacteria 

composition in dead mice does not affect the rate of decomposition under laboratory-

controlled conditions of temperature and moisture, with the exclusion of vertebrate and 

invertebrate scavengers. Adding Ignatzchineria indica to dead mice specimens under 

laboratory controlled conditions does not significantly affect the rate of decomposition 

but instead affects the pathway of decomposition. This was evident from the different 

intensities of volatile organic compounds (VOCs) that were collected and assayed from 
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the different samples. The same experiment shows that at any given time the ambient 

temperature is significantly different from the subjects’ temperatures during 

decomposition. Our findings lead us to conclude that the adition of Ignatzschineria indica 

bacteria to decomposing mice does not significantly alter the rate of decomposition. It 

does alter the chemical pathways of decomposition as evidenced by variant VOCs 

composition. 

 

KEY WORDS: Decomposition, Ignatzchineria indica, Competitive exclusion, 
Accumulated Degree Days, Postmortem Interval 
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PREFACE 

A dead animal carcass in the wild interacts with a variety of factors as it decomposes. 

Environmental factors and a variety of scavengers, including microbes, act on it to release 

the rich nutrient resource back into the environment. Proteobacteria Ignatzschineria are 

present in flies’ oocytes, gut, and feet and are associated with myiasis. The same bacteria 

rise in population density after purge during cadaver decomposition and remain 

consistently high throughout wet decomposition relative to other bacteria until the dry 

phase of decomposition. We predict that Ignatzschineria indica bacteria increase the rate 

of decomposition in human cadavers. However, a continual drawback of using human 

cadavers is that we are limited in our ability to carry out controlled experiments with high 

numbers of replicates and therefore use mice as surrogates to study the role of 

Ignatzchineria indica in decomposition. 
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CHAPTER I 
 

INTRODUCTION 

Forensic investigations and PMI estimates 

The formula for calculating post mortem interval (PMI) is imperfect; the 

complexity lies in the multiplicity of factors affecting rate of decomposition. The more 

knowledge gained about the process, the more accurate the formula for PMI estimation 

and the prediction of time since death becomes (Vass, 2011; Maile et al., 2017). 

Therefore, more basic research in biological systems associated with the ecology of 

human decomposition is necessary for refinement of formulae for estimating the PMI. 

Forensic entomology employs knowledge of the basic biology of entomofauna, 

systematics, and ecology in estimating the PMI, but this comes with shortcomings, as the 

method is not always applicable (Benecke, 2001). For example, in cases of extreme 

weather conditions (i.e. cold) or other treatments that exclude insects such as enclosure or 

burial, the time between death and occupation of a cadaver is prolonged. In these 

instances, science must turn to organisms that are ever-present and less obvious: bacteria 

(Pechal et al., 2014).  

The Process of Decomposition 

One of the places you least expect to find life is on a dead body, yet cadavers 

represent a nutrient-rich ecosystem teeming with organisms (Carter et al., 2007; Pechal et 

al., 2013). Understanding the processes and roles of organisms associated with 

decomposition presents possibilities for more accurate reconstructions of perimortem and 

postmortem events. This knowledge can inform procedures, such as estimation of 



2 

 

postmortem interval by law enforcement, anthropologists, and pathologists (Pinheiro, 

2006; Goff, 1993; Love and Hamilton, 2011; Parsons, 2009).  

Decomposition is the chemical process by which the remains break down into 

elements for assimilation back into the ecosystem, and in forensic taphonomy, 

decomposition or putrefaction is the means by which a cadaver becomes a skeleton 

through destruction of soft tissue. The soft tissues are broken down through the action of 

bacteria, expelling gases, liquids, and smaller molecules (Pinheiro, 2006; Vass, 2001). 

Studies of forensic taphonomy are concerned with the postmortem processes of dead 

organisms’ remains and reconstruction of the biology, ecology, and circumstances of 

their death (Haglund & Sorg, 1997; Metcalf et al., 2013).  

The speed of reaction of chemical reactions and microbial actions occurs 

according to an accumulation of heat units and is calculated by the accumulated degree 

days (ADD). ADD is a measure of the function of time spent between the minimum and 

maximum heat units. The maximum and minimum demarcate the heat units at which all 

metabolism is still feasible (Hyde et al., 2014). The heat units are incremental and can be 

used to measure growth based on a 24-hour period (Gennard, 2012). The formula for 

ADD is 

 

Where T is the temperature, min is thermal minimum; max is the thermal maximum and 

base is the temperature below which metabolic function ceases. Our experiment used a 

standard base temperature of 0 °C in ADD calculations (Ames and Turner, 2003). 

A general and typical pattern of decomposition has been described based on 

studies of various types of remains, though the knowledge is far from complete. This 
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basic pattern is resultant from by both intrinsic and extrinsic factors (Wolff et al., 2001). 

Microbial metabolism may play a major role in the tempo and mode of decomposition, 

yet little is known on the mechanism of that activity on remains (Janaway, Percival & 

Wilson 2009; Vass 2001, Dickson et al., 2011). 

Approximately 4 minutes after a human body has been declared dead, internal 

temperature drops. Rigor mortis sets in and will persist until cellular autolysis initiates, 

which is the digestion of the body’s macromolecules by enzymes. At this point, 

decomposition begins and microbes start using the nutrients released during autolysis 

(Pinheiro, 2006; Vass 2001). Detectable changes occur on the body as it decomposes. 

These include visual cues such as color changes, texture changes, and expelled 

substances such as liquids (blood, water, and oils) and gases (Adlam and Simmons, 

2007). Remains ordinarily go through five major categories of decomposition. First is the 

fresh stage, marked by discoloration of the flesh. Early decomposition is next, which 

includes the onset and cessation of bacterially induced bloat. Advanced decomposition, 

also known as active decay (including purge that marks transition from early to late 

decomposition) follows.  

Post-decay, or late decomposition, is characterized by dry tissue and precedes 

skeletonization, the final stage. Transitions into these stages are not clearly demarcated 

(Hagnund & Sorg (ed), 1997; Megyesi et al., 2005, Hyde et al., 2014; Gennard, 2012; 

Byrd and Castner, 2010; Metcalf et al., 2013; Carter et al., 2007; Parkinson et al., 2009; 

Benbow et al., 2013). A single cadaver may show non-uniform decomposition rates on 

different body areas, (Pinheiro, 2006; Haglund & Sorg, 1997; Megyesi et al., 2005; Hyde 
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et al., 2014), which is a phenomenon that challenges established protocols for 

determining the PMI. 

Subcategories of the major classifications of decomposition are also observed. 

These do not necessarily follow the suggested order for all individuals, as each set of 

remains is known to show variant patterns of decomposition depending on micro-

environmental or ecological factors and other conditions. This leads to either decay or 

preservation. In forensic investigations, postmortem interval calculations have often been 

based on forensic entomology as a tool, which in turn depends on climate, geography, 

topography and the vertebrate and invertebrate biodiversity (Iancu et al., 2015). These 

differ from place to place and there are many factors affecting the pre-colonization 

interval (Metcalf et al., 2013).  

Arid conditions have been associated with mummification in cadavers. 

Mummification occurs when the skin turns leathery and hard due to desiccation although 

underlying skin may still be soft and continue to produce an odor. Mummification is 

typically a result of dehydration of inaccessible tissue, usually skin. Confinement or 

enclosure may result in saponification, a pattern divergent from the general pattern of 

decomposition and mummification. Saponification refers to hydrolysis of fat by 

anaerobic bacteria on a decomposition resulting in adipocere, a whitish “grave wax”. 

(Galloway, in Haglund and Sorg, 1997; Pinheiro, 2006; Vass 2001). 

The Ecology of the “Necrobiome”  

 Multiple factors and a variety of organisms are involved in the decomposition of 

human remains. Temperature, oxygen partial pressure, pH, and moisture are major 

factors affecting decomposition progression and rate (Vass, 2011). The same are major 
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factors influencing bacteria ecology (Slonczewski and Foster, 2017; Carter et al., 2008). 

A study on neonatal pigs arrived at a conclusion that temperature and rainfall records 

affect rate of decomposition significantly (Archer, 2004). Optimal conditions of high 

temperature and rainfall, for microbial metabolism as well as abiotic reactions on remains 

were present. The rate of decomposition and hence calculation of PMI have been 

associated with flies of forensic importance. The growth and development of larvae of 

these flies of forensic importance is directly affected by temperature (Slone & Gruner, 

2007; Heaton et al., 2014). In the same study, temperatures of maggot masses were 

completely independent of ambient temperatures and the higher the maggot volume, the 

higher the temperatures (Peters, 2003).  

A dead body represents a rich source of nutrients for many organisms; therefore, 

when a cadaver is decomposing, it is exposed to, and affected by a variety of elements in 

terrestrial ecosystems. The necrobiome is an umbrella term for the ecosystem of 

decomposition (Pechal et al., 2014). This includes organisms that make use of nutrients 

and release them into the environment. The necrobiome may include vertebrate 

scavengers such as birds (including vultures), carnivorous mammals, and other 

incidentals (Swift, Heal and Anderson, 1979; Lauber et al., 2014; Gennard 2012; Byrd & 

Castner, 2010). There are also invertebrate scavengers, primarily insects. It has been 

noted that the rate of carcass decomposition is conspicuously reduced when insects are 

excluded, making the presence or absence of insects the biggest influence on rate of 

decomposition (Simmons and Lynch-Aird, 2016; Benbow et al., 2013).  

Entomofauna of cadavers primarily include the orders Diptera and Coleoptera. 

(Lindgren et al., 2015; Moretti and Godoy 2013; Hyde et al., 2014; Tὸth et al. 2001, 
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Willey, Sherwood & Woolverton, 2008), but the intimate association between the 

cadaver and larval Diptera may be the most notable ecological interaction. Almost 

immediately after death, flies of the family Calliphoridae lay eggs in the moist orifices of 

the cadaver (Thompson et al., 2013; Hyde et al., 2014). It is because of this timing of 

colonization that the age of the maggot as recorded by accumulated degree-days and the 

time since death, or PMI, are correlated making maggot age an indispensable tool of 

forensic investigations.  

Entomofauna ecology and biology is highly dependent on climate, geography, 

topography and the biodiversity in a place (Iancu et al., 2015; Simmons and Lynch-Aird 

2016). Ecological factors differ from place to place.  

The role insects have in decomposition, is not limited to their feeding from soft 

tissues but also includes their role as carriers of microorganisms such as bacteria (Byrd 

and Castner, 2009; Crooks et al., 2016).  

These microbes are usually symbionts whether mutualistic, parasitic or 

protocooperants, and are significant in decomposition ecology (Hibbing et al., 2010; 

Willey, Sherwood & Woolverton, 2008). Dickson et al. (2011) suggested that marine 

microbial succession studies could provide information pertinent to PMI estimation of 

bodies at sea. Finley et al. (2015) also showed the potential of graveside microbes as a 

molecular clue for PMI estimation while Metcalf et al. (2015) suggests that more insight 

into microbial community assembly and metabolism has the potential to explain 

postmortem events of decomposition . Hyde et al. (2014) demonstrated for the first time 

that the microbiome of a human cadaver changes through time. Initial bacteria 

communities before purge are highly variable, but after purge and until the cadaver dries 
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out, fly-associated bacteria dominate the microbiome, and finally, once the cadaver is 

dehydrated, soil-associated bacteria dominate the microbiome (Hyde et al. 2014). 

Common during bloat and purge are two bacteria of the family Gammaproteobacteria, 

genus Ignatzschineria (Tóth et al., 2001; Tóth et al., 2006; Tóth et al., 2007), and genus 

Wohlfahrtiimonas (Tóth et al., 2008).  

The bacteria genus Ignatzschineria (homotypic synonym Schineria) was 

described based upon the type Ignatzschineria larvae by Tὸth and others (2001).  This 

group of bacteria uses chitin (Tὸth et al., 2007). Four strains of Schineria were originally 

extracted from the first and second larval stages of Wohlfahrtia magnifica (Diptera: 

Sarcophagidae). The same were also extracted from the gastrointestinal tract of adult 

flesh flies (Gupta et al., 2011).  

Under transmission electron microscopy (TEM), cells of Ignatzschineria appear 

as small single rods, non-motile, with gram-negative cell wall structure and some 

invaginations.  Ignatzchineria has three species: indica, ureiclastica, and larvae. 

Ignatzschineria indica colonies can be grown on Mueller Hinton (MH) agar at 37 °C, and 

are able to grow on nutrient agar (N/A), MacConkey agar, Salmonella Shigella agar, 

brain infusion agar, and King’s medium. They are positive for catalase, oxidase reactions, 

phosphatase activity and phenylalanine deaminase reaction (Gupta et al., 2011). 

Ignatzschineria ureiclastica colonies also grow on MH agar, are non-pigmented and 

entire, and grow on the same media as Ignatzschineria indica (Gupta et al., 2011).  

Several cases exist in the literature where bacteria of the genus Ignatzschineria 

were associated with flies of the family Calliphoridae, as well as in the laboratory with 

larvae of the family Sarcophagidae. In most cases, the bacteria have been extracted from 
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wounds with myiasis as well as the urinary tract of an unhygienic person (Gupta et al., 

2011; Le Brun et al., 2015; Barker et al. 2014). When the contents of guts of larval flesh 

flies were cultured in the laboratory, Ignatzschineria were very common (Gupta et al., 

2014; Tòth et al., 2005). Ignatzschineria have been extracted from the labellum, tarsi, and 

oocytes of female flesh flies and blowflies (Lynne-Bucheli Lab, in preparation).  

Vass (2001), in an experiment aimed at finding methods outside of entomology to 

estimate the time since death, turned to the role of microbes in decomposition. He 

concluded that this knowledge could not be used because of the vast diversity (hundreds) 

of microbes he identified during decomposition. According to him because of the many 

microbes, it was not possible to trace any pattern that could inform a microbial clock. In 

2010, Hibbing and others investigated bacterial interaction in vitro, which included 

Bacillus and E. coli that Vass had quoted previously as part of the hundreds of microbes 

of decomposition. Javan et al. (2016) explore the potential use of thanatomicrobiome, the 

microbiome already present in the body antemortem, in PMI estimation through 

microbial evidence. Follow up work by Hauther et al. (2015) profiles gut microbiome 

succession postmortem to identify any potential trends for use in PMI estimation. 

In a study, suggesting microbes had the potential to provide a more accurate 

method of PMI estimation, Metcalf et al. (2013) showed that Gammaproteobacteria 

composition increased significantly (seemingly at the expense of other families) right 

before rupture (purge) during decomposition and stayed high through active 

decomposition. This finding seemed to suggest two things: 1) that Gammaproteobacteria 

thrived better than other families during active decomposition, and 2) that the family 

Xanthomonadaceae composition changed rapidly around rupture. Hyde et al., (2014) 
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demonstrated that after purge and until the cadaver dries out, fly-associated 

Xanthomonadaceae bacteria, specifically Ignatzschineria, dominate the microbiome. 

Their findings showed that relative abundance of Ignatzschineria was inversely 

proportional to relative diversity of other bacteria species (Hyde et al., 2014). This 

seemed to suggest competitive exclusion occurs among decomposition microbes. 

In his thesis studies, Berry (2016), investigated the nature of competition among 

five bacteria types associated with decomposition: E. coli, Salmonella enterica, Bacillus 

licheniformis, and the fly-borne species Ignatzschineria indica. These bacteria were 

selected because of their association with the process of decomposition in the human 

body and the particular strains were picked according to availability. This investigation 

was in vitro through bacterial competition assays on agar plates. Berry (2016) 

hypothesized that Ignatzschineria bacteria would produce an exponentially higher rate of 

growth compared to other bacteria associated with human decomposition. In his thesis, 

Berry conducted competition assays of one-day growth experiments where the growth of 

two strains of Ignatzschineria (indica and ureiclastica), Bacillus licheniformis, 

Escherichia coli, and Salmonella enterica were plated on differential media. The growth 

rates estimated through colony counts. The findings suggested more growth as indicated 

by the number of colony forming units (CFUs), on plates where bacteria were in 

competition. These results suggested cooperation among the three bacteria as opposed to 

competitive exclusion. He concluded that the relationship between E. coli and 

Ignatzschineria ureiclastica and I. indica was commensalism as there was peak growth of 

both bacteria when grown together with Escherichia coli (Berry, 2016). Berry’s 2016 
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research prompted taking the study onto experimental subjects for a further look into 

bacterial interactions. 

My master’s research has investigated the role of Ignatzschineria indica in 

decomposition, expecting that the presence of Ignatzschineria has significant positive 

impact on the rate of decomposition. By introducing different strains of bacteria that have 

been recorded in association with human decomposition, I assessed the role that 

Ignatzschineria indica has in decomposition. I used Ignatzschineria indica bacteria, to 

test the impact of the Ignatzschineria community on the rate of decomposition. I 

hypothesize that adding the bacteria Ignatzschineria indica to mice remains will 

affect the rate of decomposition significantly.  

Results provided more insight into bacterial biology, and ecology during 

decomposition as we found out that in laboratory controlled conditions, and in the 

absence of vertebrate and invertebrate scavengers, the rate of mouse decomposition is not 

significantly affected by the bacterial treatments administered. Instead, the pathway of 

chemical reactions is altered, and this is indicated by different composition of the VOCs 

emitted and the significantly different subjects’ temperatures, which represent the 

optimum temperatures for bacteria metabolism. This experiment added to our knowledge 

on decomposition, which is a key component in estimating PMI during forensic 

investigations.  Knowing how bacteria composition affects subsequent VOCs produced is 

useful if we are to continue looking into a possibility of using the VOC succession 

pattern for estimating time since death. 
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CHAPTER II 

IGNATZSCHINERIA INDICA AND RATE OF DECOMPOSITION IN MICE 

 

Decomposition is an assortment of processes through which a freshly dead, 

nutrient rich organism is broken down through nutrient cycling processes (Vass 2001). 

End states of decomposition can vary but usually include mummification and /or 

skeletonization (Janaway, Percival & Wilson 2009). Decomposition is greatly influenced 

by microbial metabolism, yet little is known of the bacterial mechanism of this process 

on human remains (Dickson et al., 2011; Pinheiro, 2006). Specific roles that particular 

bacteria taxa play during decomposition are yet to be fully identified (Metcalf et al., 

2013). It has also been shown that environmental parameters affect community 

composition of most decomposers, but it is not clear how these affect the microbial 

community of decomposition (Hopkins, 2008; Mondor et al., 2012).  

Bacteria are found in and on living bodies with a diverse composition. It is well 

documented that host-associated microbial communities can drive disease due to their 

ability to differ between healthy and disease states (Goodrich et al., 2014). This normal 

combination of bacteria strains found in and on the living body is called the human 

microbiome. An earlier study by Hyde et al. (2014) echoes the suggestion that microbes, 

including the bacteria family Xanthomonadaceae, to which the genus Ignatzschineria 

belongs, are key contributors to decomposition as well and experience the greatest 

change in relative abundance during decomposition. 

Myiasis is a disease of vertebrate animals triggered by neglected open wounds, 

poor hygiene, and different fly larvae affecting the tissues and organs of these animals. 
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The etiology of myiasis is still being uncovered (Tὸth et al., 2001). From sequencing 

bacteria from myiasis wounds, species of Ignatzschineria have often been found to 

coexist (Thompson et al., 2013). The strains Ignatzschineria indica and I. ureiclastica 

were extracted from the necrotic wounds of a 69-year-old sick man in France (Le Brun et 

al., 2015), leading to the conclusion associating Ignatzschineria with necrotic wounds 

and maggot infestation. In this situation, the wound did not heal even after removing 

maggots and Ignatzschineria was still in the system hence the suggestion that the necrosis 

had more to do with the bacteria than the maggots. Three other patients in whom 

Ignatzschineria was found in the urinary tract, also had maggot infested wounds, 

supporting this hypothesis (Barker et al., 2014).  

A recent study by Berry (2016) suggests that peak growth of species of 

Ignatzschineria is obtained when they are grown together with Escherichia coli. This was 

investigated in vitro through bacterial competition assays on agar plates. In his thesis, 

Berry conducted competition assays of one-day growth experiments where the growth of 

two strains of Ignatzschineria (indica and ureiclastica), Bacillus licheniformis, 

Escherichia coli, and Salmonella enterica were plated on differential media. Growth rates 

were estimated through colony counts. The findings suggested more growth as indicated 

by the number of colony forming units (CFUs) on plates where bacteria were in 

competition. These results suggested cooperation among the three bacteria as opposed to 

competitive exclusion. These were possible outcomes as suggested by Majeed et al. 

(2011) He concluded that the relationship between E. coli and Ignatzschineria 

ureiclastica and I. indica was commensalism as there was peak growth of both bacteria 

when grown together with Escherichia coli (Berry, 2016).  
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I hypothesize that presence of the bacteria Ignatzschineria indica will affect 

the rate of decomposition significantly. An experiment was designed to answer the 

question, “Does Ignatzschineria bacteria affect the rate of decomposition in mice under 

laboratory controlled conditions?” To achieve this, mice were inoculated with different 

cocktails of bacteria and subsequently allowed to decompose. The rate of decomposition 

was assessed visually according to a standard visual scoring scale adapted from Megyesi 

et al., 2005 and Metcalf et al., 2013. Data were analyzed using repeated measures 

ANOVA and other analyses in SAS version 9.4. Results indicated that the rate of 

decomposition of mice remains is not significantly affected by the initial bacterial 

decomposition under laboratory conditions and in the absence of scavengers. 

Materials and Methods  

Test subjects 

To investigate the effect of Ignatzschineria indica bacteria on decomposition, a 

mouse model was selected to achieve replication standards for statistical analysis. 

Hairless, large frozen feeder mice (Mus musculus) were ordered online 

(www.rodentia.com) and thawed prior to the experiment. All mice were acquired from 

the same supplier and attempts were made to ensure the same range in size was 

maintained. To investigate the effect of the bacteria strains on rate of decomposition, the 

laboratory conditions were kept as constant and uniform as possible; the only differences 

intended were the bacterial treatment. The skin of all mouse subjects was swabbed with 

ethanol at the beginning of the experiment. 
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Muslin chambers 

Rectangular muslin bags were sewn using unbleached muslin cloth. They were 

designed to keep the mice free of exogenous bacteria and scavenging insects during the 

trial period and to prevent complete dehydration by limiting dry airflow. Each bag was 

fitted with a Velcro® closure to allow repeated access through time to visually assess 

stage of decomposition. Muslin chambers were labeled according to treatment. See 

APPENDIX 2. 

Muslin chambers were made to enclose completely two medium-sized VWR® 

Pour-Boats Weighing Dishes, with one inverted on top of the other. For each 

experimental unit one hairless feeder mouse was laid on its back on a sterilized weigh 

boat and held in place by the feet via sterile surgical tape. Each mouse was treated 

experimentally and covered with another weigh boat. Then each experimental unit was 

sealed in its respective labeled muslin chamber. 

Controls 

To create the positive control (PC), sterile flytraps baited with feeder mice were 

placed in the woods to attract flies native to the piney-woods ecoregion of southeast 

Texas. These traps also served as incubation chambers for eggs laid by collected female 

flies and the subsequent developing larvae. I prepared sterile fly incubation chambers by 

autoclaving sand and immersing the chamber and weigh boats in alcohol. These were 

stored in an incubator, which was enclosed in a humidifier at 37 ºC for the experiment. 

The negative controls (NC) were treated by inoculating the mice with phosphate buffered 

saline solution (PBS). 
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Experimental bacteria cultures 

Using standard microbiology laboratory techniques, four strains of bacteria, 

Ignatzschineria indica, Escherichia coli, Bacillus licheniformis, and Salmonella enterica, 

were cultured on individual Nutrient agar (N/A) plates for 24-36 hours, from existent pure 

culture stocks. The grown pure colonies were cultured in 20 mL Luria-Bertani (LB) broth, 

in 250 mL Erlenmeyer flasks, in an incubator shaker. The settings for the shaker were 150 

revolutions per minute (rpm) at 37 °C for 24 hours. Growth cultures were transferred to 

centrifuge tubes and centrifuged at 4,000 rpm for 4 minutes to pelletize. The supernatant 

was discarded and dilutions were made with PBS to achieve 300 mL of each solution. A 

spectrophotometer was used to determine a 0.5 optical density (OD) at a 650-nm 

wavelength.  

Trials 

On Day 0, placement day, frozen mice were thawed; their skin was sanitized with 

70% alcohol; and each was fastened onto weigh boats with sterile surgical tape. Flies 

were added to all PC treatments and left for an hour while bacteria dilutions were 

prepared. Flies were removed from the PC treatments an hour, long enough for 

inoculation without ovipositing. The rest of the treatments were also inoculated by 

pipetting a drop of the respective mixtures on each of the orifices to mimic egg-laying 

behavior in female flies: eyes, ears, mouth and anus. All weigh boats of inoculated mice 

were placed into their respective labeled muslin chambers or “body bags”.
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Figure 1. Experimental Design showing the set up for batches of mice decomposition 
assay. An experimental unit refers to one mouse in a weigh boat and enclosed in the 
muslin chamber as represented by the small numbered hexagons. N, the total number of 
experimental units is made up of nine “3 by 10” sets of mice subjects equal to 270. 

 

Due to space constraints, three batches (Batches 1, 2 and 3) of 90 subjects each 

were set up at different times. Batch 1 was set up on the 4th of February 2017. Batch 2 on 

the 24th of February 2017 and batch 3 on the 23rd of March 2017. Each batch had 10 

replicate subjects, bringing the total mice subjects for the whole study to 270 

decomposition assays. Each batch had nine experimental treatments; A, B, C, D, BA, CA, 

DA, and two controls (PC and NC). Treatment A contained Ignatzschineria indica. 
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Treatment B contained Escherichia coli only. Treatment C contained Bacillus 

licheniformis only. D contained Salmonella enterica only. BA was a homogenized 

mixture of equal volumes of treatments B and A, CA had equal volumes of treatments C 

and A, DA was a homogenized mixture of equal volumes of treatments D and A. All 

mixtures were suspended in phosphate buffered saline (PBS) solution at 0.5 OD. See 

Figure 1 for the experimental design, which is a repeated measures design (Hargrave et 

al., 2011). 

Data collection and sorting 

Subjects were visited every day for 15 days, the period of time shown in pilot 

studies in which subjects reached the mummification stage, where gross taphonomic 

changes become less noticeable due to an extremely slowed rate of decomposition. During 

observation periods, all conducted at 10am daily, pictures of each experimental unit were 

taken using the standardized set up shown in the pictures in Appendix 2. An assessment of 

the state of decomposition was noted each day in the comments section of the data sheet 

(see data sheet in Appendix I), for each experimental unit, which was based on three main 

observable visual cues in color, skin texture, and observable “exudates” at each stage. 

The rate of decomposition was quantified for each subject using a photographic 

time line of each of the 270 subjects (4,050 photographs were generated during the course 

of the experiment). I used a scoring system for the torso modified from the Megyesi et al. 

(2005), and Metcalf et al. 2013 systems. In this system, a series of descriptions of visual 

cues of decomposition are assigned a score with the early stage being one and increasing 

as decomposition progresses. 
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Temperature 

Measurements of the temperatures, of the laboratory (ambient) and each subject 

were taken at each observation.  

Bacteria swabs 

During the active phase of decomposition of the mice (first 5 days), abdominal 

swabs were taken during sampling times as well for future metagenomics analyses. 

Visual scoring system 

As the trial progressed, it was obvious that we would only have 3 major visual 

cues of decomposition in the mice. These include the color changes, the texture change in 

the skin and the observable exudates, gases or liquids released as the body decomposed 

Table 1.  

Statistical Analysis 

A series of statistical analyses were employed in this study. To determine whether 

there was any batch effect on our results, we used 2-sample t-tests comparing means 

among batches 1, 2, and 3 in SAS. Once it was established that there was no batch effect 

among the samples, a repeated measures ANOVA was carried out on the total body score 

(TBS), and partial body scores for head and torso (PBS), while also considering whether 

it was wet decomposition (day 0 to 7) or dry decomposition (day 8 to 15). See 

APPENDICES V to VII for procedures and results. 
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Table 1. Visual Cues in mice decomposition 

COLOUR TEXTURE EXUDATES 

Fresh pink Normal Blood and liquids purged 

Pale color Stretched Gases released 

Marbling Saggy Oils released 

Green Sinking  

Gray Sunken but soft  

Black Dry and hardened  

Note. A description of visual cues observed during decomposition of mice under 
laboratory controlled conditions 
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Table 2.  Visual scoring system for the torso. 

A. Fresh  

(1pt) 1. Fresh, no discoloration 

B. Early Decomposition 

(2pts)  1. Pink-white appearance (slippage/ boil-like spots) marbling (deep red blood like appearance due to 
veins showing) 

(3pts) 2. Gray to green discoloration: some flesh relatively fresh 

(4pts) 3. Bloating with green discoloration and purging of fluids 

(5pts) 4. Post-bloating following release of abdominal gases. Discoloration change from green to black. 

C. Advanced decomposition 

(6pts) 1. Decomposition of tissue producing sagging of flesh; caving in of abdominal cavity 

(7pts) 2. Drying Out with moisture loss, abdomen still soft on the inside, sometime more gray than black 

(8pts) 3. Mummification with no bone exposure (moisture loss and hardening) 
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Table 3.  Visual Scoring system for the head. 

Fresh  

(1pt) Fresh, no discoloration 

B. Early Decomposition 

(2pts)  Discoloration 

(3pts) Bloating of neck and/face 

(4pts) Purging of decomposition fluids out of eyes, nose mouth ears 

C. Advanced Decomposition 

(5pts) Decomposition of tissue producing sagging of flesh 

(6pts) Sinking of flesh 

(7pts) Caving in of flesh 

(8pts) Mummification 
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 Results 

Overview 

Total body scores for each experimental unit ranged from 2 (fresh) to 16 

(mummified) See Figure 2, showing an example of the photos during decomposition for 

treatment A. On each day, the photos showed different states of decomposition that 

varied among individuals and among the batches. Figure 3 shows the differences in 

distribution of scores among the different treatments daily. The mode total body score per 

day per treatment was used to determine the stage of decomposition for a given 

treatments on a given day and the series of photographs most representative of this 

progression were used to make the series of photographs represented by Figure 3. Photo 

examples for each treatment are included in Appendix III. Total body scores (TBS) were 

calculated for all 270 mice subjects throughout the 15-day decomposition period. 

Appendix IV shows a pullout of the table of raw TBS data. The series of photographs 

below show the state of decomposition for each of the different treatments at 

corresponding log (ADD) and for each day throughout the decomposition experiment.  
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Figure 2. Progression of decomposition in mice inoculated with Ignatzschineria indica (A) under laboratory conditions over 15 days. 
Showing the progress of decomposition of one mouse with Ignatzschineria indica treatment as an example. 
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Figure 3. Distribution of TBS per log ADD for 30 specimens each of treatments A, PC and NC.  
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Overall rates of decomposition 

Table 4 shows the number of days it took for decomposition states to change for 

each treatment as a means of comparing the rate of decomposition among the treatments 

at each stage of decomposition as shown on the scoring system. It generally took 2 days 

for every treatment to reach purge, with the exception of treatment DA (a combination of 

Ignatzschineria indica and Salmonella enterica), which prolongs the stage to day 3. Little 

else is noteworthy except the record that sample D seemed slower than the rest as by Day 

1 progressing one visual score stage while A, C and CA had progressed 2 visual score 

stages in decomposition and then progressed to visual score stage 3 within 24 hours. The 

rest progressed to later stages in 24 hours. This visualization of the results prompts 

testing the significance of the viewed differences. 
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Table 4. Timeline for the progression of decomposition showing for each treatment and the day each treatments moved to the 
next stage. 

Decomposition 
stage 

 
Description of the visual cues according to the scales A B C D BA CA DA NC PC 

 
 
Fresh 

A1 A1 Head Fresh, no discoloration. Torso  Fresh, no discoloration  0 0 0 0 0 0 0 0 0 

B1 B1 Head Discoloration  Torso  Pink-white appearance (slippage/ boil-
like spots) marbling (deep red blood like appearance due to veins 
showing) 

   
1 

     

B1 B2 Head Discoloration Torso Gray to green discoloration: some flesh 
relatively fresh 

 
1 1 

 
1 

 
1 1 1 

B2 B2 Head Bloating of neck and/face Torso Gray to green discoloration: 
some flesh relatively fresh  

1 
 

1 
  

1 
   

 B2 B3 Head Bloating of neck and/face Torso Bloating with green 
discoloration and purging of fluids 

2 
   

2 
 

2 
 

2 

Early B3 B3 Head Purging of decomposition fluids out of eyes, nose mouth ears 
Torso Bloating with green discoloration and purging of fluids 

2 2 2 2 
 

2 3 2 
 

 C1 B3 Head Decomposition of tissue producing sagging of flesh Torso 
Bloating with green discoloration and purging of fluids 

   
3 3 3 

 
3 3 

 C1 B4 Head Decomposition of tissue producing sagging of flesh Torso Post-
bloating following release of abdominal gases. Discoloration change 
from green to black. 

3 3 3 4 4 4 4 4 4 

 C1 B4 Head Decomposition of tissue producing sagging of flesh Torso Post-
bloating following release of abdominal gases. Discoloration change 
from green to black. 

4 4 4 4 4 4 4 4 4 

Advanced C2 B4 Head Sinking of flesh Torso Post-bloating following release of 
abdominal gases. Discoloration change from green to black. 

4 
 

4 
     

5 

 C2 B4 Head Sinking of flesh Torso Post-bloating following release of 
abdominal gases. Discoloration change from green to black. 

5 
 

5 
     

5 

 C2 C1 Head Sinking of flesh Torso Decomposition of tissue producing 
sagging of flesh; caving in of abdominal cavity  

6 6 6 6 6 6 6 5 6 

 C2 C1 Head Sinking of flesh Torso Decomposition of tissue producing 
sagging of flesh; caving in of abdominal cavity  

    
7 

  
6 6 

(continued) 
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Decomposition 
stage 

 
Description of the visual cues according to the scales A B C D BA CA DA NC PC 

 C2 C2 Head Sinking of flesh Torso Drying Out with moisture loss, abdomen 
still soft on the inside, sometime more gray than black 

  
7 

 
7 

    

 C3 C1 Head Caving in of flesh Torso Decomposition of tissue producing 
sagging of flesh; caving in of abdominal cavity 

      
7 

 
7 

Late C3 C2 Head Caving in of flesh Torso Drying Out with moisture loss, 
abdomen still soft on the inside, sometime more gray than black 

7 7 8 7 8 7 8 7 8 

 C3 C2 Head Caving in of flesh Torso Drying Out with moisture loss, 
abdomen still soft on the inside, sometime more gray than black 

8 8 9 8 9 8 9 8 9 

 C3 C2 Head Caving in of flesh Torso Drying Out with moisture loss, 
abdomen still soft on the inside, sometime more gray than black 

9 
   

10 9 10 9 
 

 C3 C2 Head Caving in of flesh Torso Drying Out with moisture loss, 
abdomen still soft on the inside, sometime more gray than black 

     
10 

   

 C4 C2 Head Mummification Torso Drying Out with moisture loss, abdomen 
still soft on the inside, sometime more gray than black 

10 9 10 9 11 
 

11 10 10 

 C4 C2 Head Mummification Torso Drying Out with moisture loss, abdomen 
still soft on the inside, sometime more gray than black 

11 10 11 10 11 
 

11 11 11 

 C4 C2 Head Mummification Torso Drying Out with moisture loss, abdomen 
still soft on the inside, sometime more gray than black 

 
11 

 
11 11 

 
11 

 
12 

Post-decay C4 C3 Head Mummification Torso Mummification with no bone exposure 
(moisture loss and hardening) 

     
11 

   

 C4 C3 Head Mummification Torso Mummification with no bone exposure 
(moisture loss and hardening) 

12 12 12 12 12 12 12 12 12 

 C4 C3 Head Mummification Torso Mummification with no bone exposure 
(moisture loss and hardening) 

13 13 13 13 13 13 13 13 13 

 C4 C3 Head Mummification Torso Mummification with no bone exposure 
(moisture loss and hardening) 

14 14 14 14 14 14 14 14 14 

 C4 C3 Head Mummification Torso Mummification with no bone exposure 
(moisture loss and hardening) 

15 15 15 15 15 15 15 15 15 
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Two partial body scores were obtained from scoring the head and torso of each 

subject separately each day through the sampling period. Total body scores were 

calculated for each day by combining the two partial body scores for each of the 270 

specimens. A total of 4 320 data points were generated. Before assessing the rate of 

decomposition, a two-sample t-test was done to test the hypothesis that there is no 

significant effect between batches for the scores obtained since the experiment was 

carried out in 3 identical batches due to limits of space and manpower. Results of this 

series of t-tests are shown in Appendix V. 

Based on Pr (t) values we conclude that there is minimal batch effect. Most of the 

treatments did not have a significant difference [Pr (t) >0.05]. To note however, is the 

significant difference between Batch 1 and 3 in Samples BA (Pr (t) =0.041332), and 

Batch 2 and 3 in Samples DA [Pr (t) =0.030087]. Results of this test justified adjusting 

from a multifactorial repeated measures design shown in Figure 1 to a simple repeated 

measures ANOVA as shown in Figure 4.  
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Figure 4. Experimental design as analyzed using ANOVA. Note the absence of batches 
so sample size n=30.  

 
 

Investigating the effect of bacteria treatments on decomposition 

Repeated Measures ANOVA using Total body scores (TBS). 

To test for the significance of the differences in TBS with ADD among the batch 

samples, a Repeated Measures analysis of variance (ANOVA) was carried out, the null 

hypothesis being that results from all 9 treatments A, B, C, D, BA, CA, DA, NC, and PC, 
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are not different from each other. See data tables, SAS codes and raw results for this 

section in Appendix VI. 

Results of this repeated measures test conducted in Statistical Analysis Software 

(SAS) version 9.4 on mice total body scores (TBS), suggest that the value of log (ADD) 

has a significant effect on the state of decomposition as described by the scores (p < 

0.0001). There was also a significant interaction between treatment and log (ADD) (Pr 

(F) = 0.0133). There was not a significant main effect of bacteria treatments on 

decomposition, [Pr (F) = 0.7943]; failure to reject H0 indicates that at any given time 

point, the average state of decomposition among the differently treated samples is not 

significantly different under these laboratory controlled conditions. Table 4. 

Repeated Measures ANOVA using Partial body scores (heads) 

Separate analyses were conducted on head and torso scores and wet and dry 

decomposition stages. Overall the 9 different bacterial treatments do not show a 

significant difference in rate of decomposition of the heads whether throughout the entire 

observation period or during wet or dry decomposition periods only, as indicated by P(F) 

of more than 0.05 shown in Tables 4, 5 and 6. The same analyses however, show that the 

interaction between bacterial treatments and log ADD shows a significant difference with 

time hence the mice subjects PBS of heads changes with change in log ADD. Knowing 

that different regions of the body decompose at different rate, we analyzed the head 

scores and torso scores separately in search of any possible trends in rate of 

decomposition, among the different bacteria treatments. 

Repeated Measures ANOVA using torsos PBS. 

Tables 9-11 show results of repeated measures on partial body scores. 
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Results from these tests indicate that bacterial treatments; A, B, C, D, BA, CA, DA, PC 

and NC, show rate of decomposition that is not significantly different whether throughout 

the whole observation period or during wet and dry decomposition of the torsos, as 

shown by the F probabilities greater than 0.05. The same results show that log ADD 

affects the rate of decomposition, a confirmation of the known fact that energy units’ 

accumulation is directly proportional to rate of decomposition. 

One Way ANOVA using the time taken to reach purge for each subject 

A different way of measuring rate of decomposition was applied to the same data 

set to verify the results obtained from the repeated measures ANOVA. For each or the 270 

mice subjects, we recorded the time taken to reach purge for the head and for the torso.  

We subjected the two resultant data sets to a One-Way ANOVA to test the hypothesis that 

the different bacterial treatments do not affect the time taken to reach purge for the subjects 

in Statistical Analysis System (SAS) procedure general linear model. (Vass, 1992; Megyesi 

et al. 2005; Simmons, Adlam and Moffatt, 2010). Appendix VII. 

Analysis of time until purge of heads 

The F statistic for a One-Way ANOVA was 1.02 p=0.4245 for heads PBS. We fail to 

reject H0 and conclude that the treatments have no significant effect on time until purge 

of the heads (Figure 5).  

Analysis of time until purge of torsos 

Figure 6 shows mean distributions among the 9 treatments, the null hypothesis 

that there are no significant differences among the means of the 9 treatments for the 

torsos. The F statistic for a One-Way ANOVA was 1.26 p=0.2648 for torsos. 
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Table 5. Results of between and within subjects’ effect repeated measures ANOVA 
on TBS of 270 Mice subjects’ decomposition assays. 

Source F Value p 

Bacterial treatments 0.58 0.7943 

log ADD 6774.93 <.0001 

log ADD* Bacterial 
treatments 

1.32 0.0133 

 

Table 6. Results of between and within subjects’ effect repeated measures ANOVA 
on PBS on heads of 270 Mice subjects’ decomposition assays. 

Source F Value p 

Bacterial treatments 1.48 0.1654 

log ADD 4280.04 <.0001 

log ADD* Bacterial 
treatments 

1.85 <.0001 

 

Table 7. Results of repeated measures ANOVA on head PBS during wet 
decomposition 

Source F Value p 

Bacterial treatments 1.24 0.2760 

log ADD 3756.27 <.0001 

log ADD* Bacterial 
treatments 

1.68 0.0014 

 

Table 8. Results of repeated measures ANOVA on head PBS during dry 
decomposition 

Source F Value p 

  Bacterial treatments 1.92 0.0593 

log ADD 313.09 <.0001 

log ADD* Bacterial 
treatments 

1.69 0.0013 
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Table 9. Results of repeated measures ANOVA on torsos PBS. 

Source F Value p 

Bacterial treatments 1.02 0.4202 

log ADD 6237.75 <.0001 

log ADD* Bacterial 
treatments 

1.23 0.0477 

 

Table 10. Results of repeated measures ANOVA on torsos PBS (during wet 
decomposition) 

Source F Value p 

Bacterial treatments 1.02 0.4245 

log ADD 1977.00 <.0001 

log ADD * Bacterial 
treatments 

1.18 0.1915 

 

Table 11. Results of repeated measures ANOVA on torsos PBS (during dry 
decomposition) 

Source F Value p 

Bacterial treatments 1.38 0.2035 

log ADD 376.37 <.0001 

l log ADD * Bacterial 
treatments 

1.04 0.3971 
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Figure 5. The distribution of sample means of time until purge in the samples across all treatments in the heads.  
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Figure 6. Showing the distribution of sample means of time until purge in the samples across all treatments in the torsos.  
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Overall rates of decomposition 

In the two-sample t-tests that we subjected our scoring data initially, there was an 

anomaly, i.e. the significant difference between Batch 1 and 3 in Samples BA (Pr (t) 

=0.041332), and Batch 2 and 3 in Samples DA (Pr (t) =0.030087). This is possible if any 

one of the batches had a contaminated bacteria sample. 

Overall, visual scores and odors did not appear the same during sampling, leading 

us to expect rates of decomposition to be different across the bacterial treatments, but the 

statistical tests gave a different result. 

Repeated Measures ANOVA results 

Results of all repeated measures ANOVA agreed on the result of the time effect 

as represented by log ADD, rejecting the H0 that at different log ADD, the TBS or PBS 

means are the same. It has been shown in previous studies that as thermal heat units 

(ADD) accumulate, the total body score increases (Megyesi et al., 2005; Slone and 

Gruner 2007; Metcalf et al., 2013). Decomposition is largely driven by bacteria and 

arthropod process, each of which are dependent on accumulated heat units (as well as 

other factors). All repeated measures ANOVA results support the result that the 

differential bacterial treatments DO NOT affect the change in the visual decomposition 

score with time and change in ADD. This answered our research hypothesis because it 

allows us to conclude that at uniform laboratory controlled conditions, introducing 

bacteria to a dead mouse does not alter the rate of decomposition in any significant 

way. However, this was unexpected because we could observe differences visually 

during the experiments like time until mummification differences. This led to the idea 

that maybe a visual score may not be the best method of estimating the rate of 
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decomposition, hence a follow up One-Way ANOVA was implemented using the time 

until purge. 

One Way ANOVA using the time taken to reach purge 

The null hypothesis for this test was that there is no significant difference in time 

until purge among the 9 treatments. We failed to reject this null and concluded that the 

different treatments produced similar time until purge. This failure to reject null may be 

due to a possibility that bacteria composition may not be responsible for the rate at which 

decomposition takes place. This may be the most plausible explanation. Since all other 

factors affecting decomposition were held constant except the bacterial composition, we 

may conclude that bacteria composition affects the path taken by decomposition. This 

conclusion ties in with the different odors detected from the differently treated samples. 

The smells are from volatile organic compounds (VOCs), which escape as gaseous bi-

products of the action of bacteria on decomposing material. This finding is further 

discussed in Chapter III. 
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 CHAPTER III 

VOLATILE ORGANIC COMPOUNDS AND DECOMPOSITION ODOURS  

Introduction 

Volatile organic compounds (VOCs), produced during bacterial metabolism, are 

responsible for many unpleasant odors given off antemortem (i.e., body odor) or 

postmortem (i.e. decomposition) (Brown, 2012). Scientists have explored the utility of 

VOCs during forensic investigations. A classic example is the Casey Anthony case where 

VOCs were used to trace the previous location of a dead body that had been 

discovered.  Forensic investigator Vass found evidence that the dead body had been placed 

inside a car and hence associated a suspect with the murder because of traces of 5 human 

cadaver associated VOCs discovered on a piece of carpet from the trunk of that car 

(Ensminger, Ferguson and Papet, 2016). Microorganisms are the main producers of VOCs 

on human remains through metabolic processes including fatty acid fermentation, amino 

acid fermentation, and other forms of anaerobic fermentation (Brown, 2012). For VOCs to 

be used in locating human remains and identification of the stage of decomposition, it is 

critical to know how bacteria affect their composition (Deyne, 2016). 

VOCs are part of the chemical communication signals used by invertebrates to 

locate suitable food or other ecological necessities (Mathis & Philpott, 2012) An 

established composition of common mammalian VOCs is responsible for attracting 

necrophagous entomofauna to dead bodies (Kasper, Mumm, and Ruther, 2012; Forbes, 

2012). The bi-products of microbial metabolism and therefore the chemical attractants of 

flies may be affected by many factors including the antemortem diet of the deceased. 

Patterns of arthropod succession on a decomposing cadaver can be matched with 
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combinations of VOCs present during the different stages of decomposition (Paczkowski 

and Schutz, 2014). Because of this succession pattern observes in VOCs, a profile of VOCs 

may be useful in predicting PMI.  

During this research, as the decomposition assays progressed, noticeably distinct 

odors emanated from each of the treatments. These odors prompted me to question their 

origin and the degree to which it may be due to differences in the bacteria treatments. To 

explore this question further, an experiment was designed to test qualitatively the volatile 

organic compounds exuded during the wet decomposition stage for each of the 

experimental treatments. This experiment was designed to test the hypothesis that 

experimental treatment administered affects VOC composition during the active wet 

decomposition stage; however, at no point were the results tested statistically.  

The bigger question in this case is if pattern of succession of VOCs changes with 

changes in initial bacteria composition. For the purposes of this study, we sought to 

investigate any potential differences in VOC abundance in three different treatments (A, 

PC and NC), during the active stage of decomposition on day 6 of the decomposition 

assays. In our setup, mice of similar weight, size, age and antemortem diet were held under 

the same controlled laboratory conditions to standardize the experiment such that the only 

noticeable difference was the treatment (Goodrich et al., 2014). Previous literature suggests 

that the differences would affect the composition of VOCs but that the composition of 

insect attractants would still be comparable for each stage (Kasper, Mumm, and Ruther, 

2012). 



40 
 

 

Materials and Methods 

During the third batch of the decomposition assays, on day 6, six subjects were 

sampled for volatile organic compounds. These were from two replicate samples of each 

of the following experimental treatments; Ignatzschineria indica (A), the positive control 

(PC), and the negative control (NC). The second set of three samples was set up the same 

way as the experiment described in chapter II, as extras, but the mice were not disturbed or 

opened from set up day until day 6 when sampling of VOCs occurred.  We adopted the 

sampling regime to ensure a stronger VOC intensity based on a thesis study by Deyne 

(2016). We used solid-phase micro extraction (SPME) in this laboratory experiment in a 

headspace extraction. This method was selected because of its ease and speed of use 

(Deyne, 2016; Frederickx et al., 2012). 

Polydimethylsiloxane/divinylbenzene (PDMS/DVB) SPME fibres (65 m coating) 

in field samplers were used for VOC sampling. Conditioning of SPME fibres, i.e. heating 

them to purge packaging contaminants, was carried out for 30 minutes. The quantity of 

analyte extracted is proportional to its sample rations (Mester et al., 2000), allowing us to 

assess the relative abundance of different volatile substances in the sample. During the 30 

to 40-minute extraction phase, the SPME fibre was inserted into the sample set up and 

suspended in the air trapped between the two weigh boats, without touching any solid 

material for 30 minutes at room temperature, 21 °C. See illustration of experimental set up 

in Figure 7. 

The fibre was drawn back into the protective case and covered for transportation to 

the Texas Research Institute for Environmental Studies (TRIES) laboratory.  
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Figure 7. A. Experimental set-up for VOC sampling; B. Schematic diagram showing 
experimental set up.  

 
 

The fibres from the 6 samples were individually inserted into the GC Mass 

spectrometer for analysis. The GC/MS was an Agilent Technologies 7890A GC with a 

5975C mass-selective detector. The GC had a HP5/MS capillary column that was 30 m in 

length with a 0.25 mm inner diameter and 0.25 m film thickness. The injection port was 

lined with a 0.75 mm inner diameter SPME injection port liner and was held at a constant 

250 C. The carrier gas was hydrogen. The GC oven was initially held at 30C for three 

minutes, increased to 80 C at 3 C per minute, then to 120 C at 10 C per minute, and 

finally to 320 C at 40 C per minute. At each time point, the mass spectrum was collected 

from m/z 20 to 600.  

A link to raw data is provided in the results section.  The numerical equivalent for 

the abundance, i.e. the area under the wave peaks, was used to qualitatively assess the 
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differences among samples from Ignatzschineria indica (A), negative control (NC) and the 

positive control (PC). 

Results 

During analysis of the compounds adsorbed to the fibres, a library search report 

was generated using the National Institute of Standards and Technology (NIST) Mass 

Spectral library. Various volatile organic compounds were observed from the selected 

samples. A full report on all results from the analysis, including some test samples, are 

accessible online1. 

 Qualitative assessment of the results of these peaks showed variable intensity across 

the three samples; hence, we singled out 15 compounds for further assessment. The 

resulting normalized peak area represented a relative amount of each compound of interest 

and this figure was used in plotting the bar graphs used for a qualitative assessment. From 

the resultant assessment, only about 24 of them varied interestingly across samples A, NC 

and PC and 15 were selected for further qualitative analysis.  

Figure 8 describes some of the differences. Especially striking in terms of strong 

pattern and presumably resulting from anaerobic fermentation of glucose, amino acids, 

fatty acids by microbes were: 3-octanol, indole, xylene, pentanoic acid ethyl ester, 

“Possibly Pentanoic acid, 2−hydroxy−4−methyl−, methyl ester”, methionol, and phenethyl 

alcohol. (Brown, 2012; Forbes & Perrault, 2014). They map very strongly to PC samples 

as shown by the bigger peaks under the rectangle to the extreme right of figure 8 around 

the 25th minute. Some compounds like 3-octanol and xylene appear to be lower in PC 

samples than in the others so profiling them would help us diagnose what is happening in 

                                                 
1 https://github.com/DonovanHaines/MadambaThesis 
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each sample in terms of the chemical reactions occurring at that point of sampling. Other 

compounds with interesting patterns included toluene, 2,-3-butanediol, 2-butanone, 2-

pentanol, benzene acetaldehyde, hexane and naphthalene. See Figure 9 for additional 

supporting evidence.  

 

 



 
 

 

44 

 

Figure 8. Qualitative assessment of gas chromatogram peaks across samples A, NC and PC. Note the different peaks in each sample 
under the boxed regions indicating the different compounds composition for each sample. 
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Figure 9. Relative abundance of notable VOCs across the three samples A, NC, and PC.  
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Profile of selected VOCs collected in the samples 

A qualitative assessment of the similarities and differences among the peaks from 

the different peaks in samples A, NC and PC was made. Figure 10 shows the relative 

abundance of some of the VOCs represented in each of the treatments. The qualitative 

assessment influenced a literature search to profile some of the compounds of interest. 

Table 4. 3-octanol is a known fly attractant. In our samples it was lowest in PC where we 

added flies. 2-butanone and 2,3-butanediol are both products of glucose fermentation by 

bacteria and they exhibit the same pattern of composition in all 3 samples. 1- pentanol, a 

product of yeast fermentation showed its highest composition in PC and least in A. If any 

such trends can be further analyzed for any statistical significance, they may inform the 

tracing back of events of chemical decomposition and the action of bacteria during 

decomposition. 

The results demonstrate fluctuations in VOCs composition likely influenced by 

community composition and abundance of living organisms (bacteria or fungi) on 

decomposing material hence the difference in odors (Perrault, Stuart and Hobbs, 2014). 

Profiles of the VOCs produced during decomposition vary according to the 3 treatments 

investigated (A, NC, and PC) suggesting that bacteria community structure plays a role in 

odor emanation during the decomposition process.  

2-Butanone (methyl ethyl ketone) C4H8O 

This pungent, colorless volatile liquid compound is also called methyl ethyl 

ketone, a natural product of some trees and fruits. It is used as a solvent and exposure to 

nose and eyes produces irritation. In our results, the PC had a very high peak for 2-

butanone while the least peak was in the NC, with almost a quarter of the relative 
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abundance shown in PC. It is a glucose fermentation product known to have been 

detected during active decay in pigs (Brown, 2012; PubChem website). 

1-Hexanol CH3 (CH2)5OH 

Listed in literature among the volatiles of postmortem vertebrate decomposition. 

(Paczkowski & Schutz, 2011, Vass, 2008) In our results, A has the highest peak while PC 

lowest has the lowest. 

2, 3 Butanediol C4H10O2 

A product of microbial glucose fermentation by Klebsiella oxytoca, Bacillus 

subtilis, Aeromonas hydrophilia and several species of Serratia (Brown, 2012). In our 

experiment, this compound peaked the highest in the PC and the lowest in the NC. 

2-Pentanol C5H12O 

This product is a by-product of microbial breakdown of the amino acids 

threonine, leucine, isoleucine, and valine (Brown, 2012). In our experiment, 2-pentanol 

peaked in the PC but A had the smallest peak. 

3-Octanol C₈H₁₈O 

This gas is a product of linoleic acid (octadecanoic acid) breakdown, which is an 

essential fatty acid component of cell membranes. Mathis and Philpott (2011) associate 

the compound with attraction of flies in the family Phoridae hence suggesting a possible 

role in host location and acceptance by the fly. In our experiment, 3-octanol was most 

abundant in treatment A, followed by NC, and least in PC. Perhaps in the presence of 

invertebrate scavengers, one sample (possibly A) is likely to attract more scavengers than 

the others therefore resulting in a higher rate of decomposition. 

Toluene C7H8 
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Vass et al. (2008) listed toluene as a product of decomposition burial events. In our 

experiment, the compound peaks highest in A, and the least in the positive control. Toluene 

was identified by Vass et al., 2008 as one of 30 compounds most important in human 

decomposition. 

Naphthalene C10H8 

Vass et al. (2008) also identified naphthalene the 30 burial gases generated during 

human decomposition. In this experiment, naphthalene peaks highest in treatment A, 

although it is almost uniformly represented in all three samples. 

Indole C8H7N 

Indole was identified by Vass et al in 2008 as one of 30 compounds most 

important in human decomposition and is known to regulate bacteria physiology. This 

compound markedly peaks in PC and is almost negligible in A and NC.  

Xylene (xylol or dimethylbenzene) (CH3)2C6H4 and Pentanoic acid ethyl ester 

Information related to decomposition on these two VOCs was hard to find but 

both had notable trends across the samples. Xylene, a common solvent, was least 

abundant in the PCs and most abundant in NC while pentanoic acid ethyl ester is 

abundant in both A and PC and almost absent in NC. Pentanoic acid ethyl ester is an ester 

associated with active decay (Forbes & Perrault, 2014). 
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Figure 10. Relative Abundances of selected VOCs showing variations among treatments A, PC, and NC. 
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Table 12.  Profile and trends for selected VOCs recorded during the experiment and bibliography. 

Identifier IUPAC  
Functional 
Group and 
priorities 

FAF AAF GF YF
  

IA MCP Observations on peaks Reference 

2-Butanone  
(Methyl ethyl 
ketone) 

Ketone  Yes 
*alkanes 

   Highest peak in PC, lowest in 
NC 

[1] [2] [3] 

1-Hexanol Alcohol Yes  *fungal 
degradation 

  Highest peak in A, lowest in PC 
and NC in between. 

[2] [3] 

Dodecane Alkane  Yes     Highest peak in A, low in both 
PC and NC 

[1] [3] 

1-Pentanol Alcohol  Yes  Yes   PC had the highest peak. A, had 
the lowest (1/15 of PC). NC was 
about 1/5 of PC.   

[1] [3] 

3-Methyl-1-
butanol  
(Isoamyl 
alcohol) 

Alcohol  Yes  Yes   The highest peak was in PC 
Lowest in A (1/18 of pc) NC 
peak was about 1/5 of PC.  

[3] 

3-octanol 
 

Alcohol Yes   Yes Highest peak in A, NC peak 
slightly lower than A but much 
higher than PC, PC very low 

[5] [3] [2] 

Indole 
 

Amine Yes     Highest in PC but negligible in 
A and NC. 

[4] 

Xylene 
(xylol or 
dimethyl 
benzene) 

     Highest peak in NC, lowest in 
PC, Slightly lower than NC 
much higher than PC 

 

(continued) 
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Identifier IUPAC  
Functional 
Group and 
priorities 

FAF AAF GF YF
  

IA MCP Observations on peaks Reference 

Pentanoic 
acid ethyl 
ester 

Ester Yes Yes Yes Yes   Almost absent in NC but almost 
equal amounts in A and PC. 

[3] 

2−hydroxy−4
−methyl ester 

Ester Yes Yes Yes Yes   PC about 5X higher than both A 
and NC. Lowest in NC. 

 

Phenethyl 
alcohol 

 

Alcohol     Most abundant in PC, A about 
1/12 of PC, NC the least, about 
1/20 of PC 

 

Toluene Reagent     Highest in A, NC about half of 
A, PC slightly lower than NC 

[4] [3] 

2, 3 
Butanediol 

 YES    Most abundant in PC almost 
10X NC which is the least, A has 
about a 12th of PC 

[1] [3] 

2-Butanone acetone     Highest in PC, A was almost 
half of PC and lowest in NC 
almost half of A.  

 

Benzene 
acetaldehyde 

Aldehyde     

Hexanal  
 

Aldehyde     Highest in A, almost 2X NC, 
lowest in PC 

 

Naphthalene      Highest in A lowest in PC [7] [4] 

FAF: Fatty Acid Fermentation AAF: Amino Acid Fermentation GF: Glucose fermentation YF: Yeast Fermentation IA: Insect Attractant MCP: Maggot Cuticle 
Product. [1]Kim et al., 2015; [2] Forbes and Perrault, 2014; [3] Brown, 2012; [4] Vass et al., 2008; [5] Mathis and Philpott, 2012; [6] Paczkowski & Schütz, 
2011[7] Deyne, 2016; [8] Boumba, 2008; 
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CHAPTER IV 

TEMPERATURE VARIATIONS DURING MICE DECOMPOSITION WITHIN 

AND AMONG BACTERIA TREATMENTS  

Introduction 

Temperature changes impact bacteria activity and consequently the progression of 

decomposition (Campobasso et al., 2001).  They also directly affect ADD or the 

accumulated heat units within a 24-hour period. At low temperatures, decomposition 

occurs at a slower pace than it does at high temperatures. During the course of this 

experiment, there was difference between ambient and subject temperatures daily. 

Although not the focus of the research, this observation drew our attention and sparked 

curiosity regarding the effects of the added bacterial treatments relative to predictable 

temperature trends. We recorded the temperatures of each subject through time. 

Temperature of ambience was recorded. We set out to test the hypothesis that daily 

temperatures of subjects among different bacterial treatments varied.  

Materials and Methods 

In the same experimental design, temperature of ambience was recorded every 

day before recording the decomposition data using a mercury bulb thermometer. 

Additionally, temperatures of each subject were recorded using a handheld infra-red laser 

thermometer. 

Statistical Analysis 

Subjects temperature data were subjected to repeated measures ANOVA for 

significant differences among means as affected by the bacteria treatment. This test was 

conducted in SAS version 9.4. See APPENDIX IX for procedure and results. 
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Results 

The ambient temperature fluctuated slightly (with no statistical significance) 

around an average of 21.5°C. Ambient temperature was lower than subjects’ 

temperatures at all times. The daily average subjects’ temperatures all differed 

significantly from each other depending on treatment (p<0.001). For all treatments and 

for all days, the differences among the daily average subjects temperature among 

treatments were statistically significant, i.e. different stages of decomposition showed 

differences in the daily subjects’ temperature among all treatments (Table 13). 

When comparing the daily average temperatures of the subjects per treatment, 

average temperatures for the PCs were generally the highest of the nine treatments, while 

CA had the lowest daily average temperatures (Figure 12). Of treatments A, PC, and NC, 

treatment A had the lowest daily averages, while PC had the highest at most times. The 

temperatures of the subjects, though higher than the ambience, seem to follow the general 

pattern of change as recorded in the ambient temperatures, as indicated by the similar 

patterns of all graphs. 
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Figure 11. Average temperatures of subjects in all 9 experimental treatments through time.  
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Results of the repeated measures ANOVA on subjects’ temperatures. 

Table 13. Results of Repeated Measures ANOVA analysis on subjects’ temperature 
data. 

Source p 
Bacterial treatments day 1-day 15 <.0001 
Time <.0001 
Time* Bacterial treatments day 1-15 <.0001 

 

Interpretation of Results 

 The temperature of the subject is always higher than the ambient temperature in 

our experiment. This suggests that heat units (ADD) are not only accumulating from the 

environment but also from the metabolic reactions occurring on the subject, this 

observation requires further testing. Different compositions of bacteria are undergoing 

different chemical reactions of metabolism and therefore have different temperatures as 

indicated by the significantly different means for the subjects’ temperatures of  the nine 

bacteria treatments. 
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CHAPTER V 

DISCUSSION 

Ignatzschineria and Rate of Decomposition 

Method development and preliminary studies  

Decomposition is a complex multifactorial process and takes different pathways 

depending on antemortem and postmortem conditions. Different parts of the same body 

may show different stages or levels of decomposition at any given time due to 

antemortem and postmortem factors. Before carrying out this research, a trial experiment 

was conducted during the summer of 2015. Several observations were made during these 

trial experiments, leading to fine tuning of several aspects of the methodology as well as 

development of a key for visually scoring decomposition that was specific to mice under 

local experimental conditions.  

Why a 15-day experiment? Determining the end point. 

When Megyesi et al. (2005) established the visual scoring system for 

decomposing bodies, they used data from different human bodies. When Metcalf et al. 

(2013) conducted experiments on grave soils using mice in the laboratory, they were 

hydrated from time to time and hence the entirety of decomposition took 42 days. The 

decision to exclude soil in this experiment was based on Lauber et al. (2014) observation 

that soil microbiome affects decomposition rate. In the preliminary experiment, several 

bodies under laboratory conditions were observed from the onset to the cessation of 

decomposition, in the absence of scavengers, additional moisture and humidity, and with 

greatly reduced microbial communities. I was able to establish a general pattern of 

decomposition. In my experiment, I observed that decomposition always resulted in 
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mummification rather than soft tissue removal. This preservation consistently happened 

by day 15. To verify that no additional changes happened to the bodies after day 15, the 

first batch was kept and observed for 50 days. There were no further observable changes 

on the bodies so for the sake of time, 15 days was the experimental end-point. 

Visual decomposition scoring system 

The visual scoring system for the mice bodies shown in Table 2 was adapted 

from the Megyesi et al. (2005) system with the assessment of skeletonization omitted. I 

did not observe skeletonization as the mice subjects were not exposed to scavengers and 

bacteria were limited. This general trend was made with comparison to observations on 

mice left in the field for fly collection liquefy as they were exposed to weather conditions 

and invertebrates. 

The head scoring scale was adapted from Metcalf et al. (2013). Our experiment 

showed that bloat of neck and face occurred before the purge of liquids from eyes and 

ears justifying the use of two stages in the evaluations as shown in Table 3. In this key, 

the stages are in order and the stages progress in one direction, with no stage recurring. 

In this experiment, the application of the scoring system was necessarily 

subjective. To overcome this challenge, the scores applied were the average taken from 

three researchers assessing the same picture (Dabbs et al., 2016).   

In applying the Megyesi et al. (2005) system, the experiment echoes sentiments 

from earlier researchers that the system is not a “one size fits all” scoring system but 

tends to require adjustments depending on the subject and the conditions of 

decomposition (Keough et al., 2017). The scoring system presented in this study applies 

to dead mice under laboratory-controlled condition, in the absence of soil and any 
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additional moisture. I observed a predictable pattern in the stages of decomposition in this 

scenario, which led to the scoring system presented. I also confirmed that even in small 

vertebrates like mice, rate of decomposition was not uniform across the body. We 

focused on the head and the torso; limbs were excluded because of the difficulty in 

detecting visual cues of decomposition from them.  

About decomposition 

Factors involved in decomposition include, but are not limited to, the composition 

of the substrate, bacterial community structure, presence of fungi, vertebrate and 

invertebrate scavengers, weather elements like temperature and rainfall, and condition of 

placement. In this study, the condition of the initial substrate was controlled, mice were 

ordered from the same supplier, and therefore reared under the same conditions.  They 

were likely fed and watered according to a standardized method. All mice selected for the 

experiment were of similar in weight and age as well (Easton and Smith, 1970). 

All subjects were swabbed with alcohol to reduce and standardize the initial skin 

bacteria populations before adding treatments. The initial composition of bacteria in the 

mice bodies was assumed to be uniform because of the uniform treatment as well as the 

uniform diet and living environment. The only major difference among the mice subjects 

was the 9 different treatments administered to them. From an in-vitro study by Berry 

(2016), when Escherichia coli and Ignatzschineria bacteria were grown in the same petri 

dish, they both showed higher growth than when separated.  

All vertebrate and invertebrate scavengers were excluded from subjects with the 

exception of the positive control where there was 1-hour exposure to adult flies found in 

Southeast Texas or their larval stages. Because this was laboratory work, the temperature 
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was kept constant and there was no exposure to water. This was done in an effort to 

observe the effect of adding only Ignatzschineria indica bacteria on the rate of 

decomposition of a body with additional complications as limited as possible. Rate of 

decomposition refers to a measure of the advancement of decomposition of a mouse 

through time (Lynch-Aired et al., 2015). 

Bacteria Interactions 

The main hypothesis and question of this study was to investigate the role of 

Ignatzschineria indica in decomposition. Having observed a noticeable increase in 

Ignatzschineria during the active stage of decomposition, (Hyde et al., 2014), I assumed 

that these bacteria must play an important role in decomposition, which should thereby 

influence the rate of decomposition as measured by a body score, total or partial, relative 

to accumulated heat units. From our experimental results, Ignatzchineria does have an 

important role but this role does not translate to significantly increasing the rate of 

decomposition, compared to other common bacteria.  

 We thought we might detect a different pattern from the torsos of the mice during 

both wet and dry decomposition, so we carried out three tests whose results are shown in 

Tables 9, 10 and 11. These results again showed no significant influence of bacterial 

treatment on rate of decomposition. This may mean that the initial composition of 

bacteria does not have a significant impact on how fast the decomposition progresses 

especially in this laboratory controlled experiment where we have excluded vertebrate 

and invertebrate scavengers. We have left the decomposition process to a number of 

anaerobic fermentation processes that seem to progress at similar rates regardless of what 

the initial composition of bacteria was. 
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The mixed treatments BA, CA and DA were to investigate whether we would 

have the same effect on actual mice subjects. Our statistical tests show that there is no 

significant increase in rate of decomposition in these treatments. On the plates, we count 

number of colony forming units (CFU) in a period of 36 hours whereas in decomposition 

on mice, we are waiting for the visual effect of the breaking down of macromolecules on 

the body then we score it and watch the change with time. We are unable to measure the 

rate of bacteria growth on our mice subjects and therefore cannot make comparisons 

between the bacteria growth experiments and the decomposition assays. 

Volatile Organic Compounds 

Statistical tests revealed that decomposition in mice takes about the same time to 

reach the end point under laboratory controlled conditions whether one adds bacterial 

treatments or not. These results support findings from other studies that show the 

important role that scavengers, especially invertebrates play during decomposition (Payne 

1965; Gennard, 2012). From the different composition of VOCs, it is possible that if 

invertebrates were included in the experiment, one treatment could have attracted more 

than the other resulting in faster breakdown of the remains due to mechanical action and 

additional microbes. 

The non-uniformity of decomposition on the same body may be linked to the 

different tissue composition ratios on each body part as well as the different microbial 

composition. Brown (2012) extracted VOCs from different parts or tissue of pigs and 

though there were common VOCs across all, there were some that seemed specific to 

muscle tissue for example. This difference is probably because of the different chemical 

pathways involved in breaking down macromolecules of the different tissues, and 
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variation in rate and the end-point of decomposition. Initial bacteria composition did not 

affect rate of decomposition however but affected the pathway of chemical 

decomposition by microbes. 

Temperature findings 

While ANOVA results showed there was no significant difference in the rate of 

decomposition among the different mice using total body scores for all mice subjects in 

all bacteria treatments, it was visually evident that samples with different bacterial 

treatments looked and smelled different especially during the wet stages of 

decomposition. This study is the first to show consistent and statistically significant 

differences among subjects’ temperatures during decomposition, that they vary  with 

different bacterial treatments. Sharma et al. (2013) suggest an effect of the maggot mass 

on decomposition; that the size of a maggot mass is proportional to its temperature. This 

experiment supports the above findings by suggesting that the action of bacteria 

associated with these maggots is responsible for the temperature increases. Microbes 

contribute to a localized temperature increase on the body, which in turn may affect ADD 

value. Therefore, we may need to factor in localized temperatures where possible to get a 

better estimate of PMI. 

In our ADD calculation quoted in Chapter 1, Tmin and Tmax both refer to ambient 

temperatures. According to our results, the more localized the temperatures, the closer we 

get to a more refined PMI. For example, instead of using a very general weather site for 

Texas temperatures for example, temperatures from a local weather station closer to the 

area of study would be more accurate, better still if it is an experiment, the subject’s 

temperature may give a better representation of ADD. 
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The study agrees with findings that ADD is directly proportional to rate of 

decomposition (Megyesi et al., 2005). The results indicated for all treatments that the 

higher the total ADD, the more decomposition occurred.  

Future directions 

In the absence of vertebrate and invertebrate scavengers and weather elements, 

fungi and bacteria are the main driving force behind decomposition. Our experiment was 

no exception as shown by the fungal growth in Figure 13. Fungal growth on a cadaver 

can provide evidence that contributes towards calculation of PMI (Al Na’imi, 2007). The 

composition of fungi on a body depends also on the bacteria and fly population present. 

These can contribute to the composition of fungi present. A possible experiment here 

would be to have one sample exposed to flies as a treatment as in PC, another as a control 

not exposed to flies as in NC, and then observe the fungi species and their abundance.  

In our experiment, some samples developed mold growth and some were 

completely covered by it as the experiment progressed. It is possible that we may have 

had species specific to certain to a particular treatment but that is subject to further 

investigation. The exclusion of scavengers had a huge role to play in this finding and a 

follow up experiment must include scavengers especially flies. A different result is 

expected when flies are introduced because of the dynamics among fungi, bacteria and 

flies in the ecosystem. More research is required to gain better understanding and be 

better able to predict the timeline of events.  
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Figure 12. Fungal growth on a mouse body showing decomposition days 3, 7, 10 and 15.  
 
 

Conclusions 

 The rate of decomposition among treatments was measured through two 

methods, time until purge and the visual scoring system. Neither test resulted in a 

significant difference in rate of decomposition among the treatments under laboratory-

controlled conditions. In a different light, this result highlights the huge impact that the 

mechanical action of scavengers both vertebrate and invertebrate have on the rate of 

decomposition. However, I have demonstrated that there are consistent and statistically 

significant differences between ambient and subjects’ temperatures during 

decomposition, also varying with different bacterial treatments.  

When using the Megyesi et al. (2005) methods for predicting PMI range, ADD 

plays an important role. The currently used temperature in calculating ADD is the 

temperature of ambience. My study has demonstrated that there is need to design an 
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experiment to look into the possibility that the ambient temperature is significantly lower 

than the subjects’ temperature and therefore may not fully capture the accumulation of 

heat units. This experiment would be aimed at suggesting that given an option between 

general temperatures and localized temperatures, the localized temperatures may give a 

closer estimation of what is happening. 

VOC readings from this experiment established that VOC composition is 

dependent on bacteria composition (Dekeirsschieter et al., 2009). This is important 

knowledge as it demonstrates that once we come up with a microbial clock for 

decomposition, a VOCs clock may subsequently follow as well 
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APPENDIX I:  Data sheet for Photography, Temperature and Scoring Notes for 

Mice Decomposition Assays. 

Recorder(s) ___________________________________________________________ 

Date______________________________________Time_______________________ 

Batch 
No. 

Unit 
ID 

Photo Ambient 
temperature 
°C 

Subject’s 
temperature 
°C 

Swab Comments/notes 
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APPENDIX II:  Experimental Procedure in pictures 
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APPENDIX III:  Mice Daily progression of Decomposition per treatment examples 

 

 

Picture represents treatment A 
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APPENDIX IV: Table of Partial and Total Body Scores 

This data is available online at the URL provided below: 

https://github.com/Dorothy-Madamba/Masters-Thesis-Appendices 
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APPENDIX V:  t-test results 

Are batches 1 2 and 3 TBS significantly different from each other for the different 

treatments? 

a. Ignatzschineria samples (A) 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.845507 
 

not significant 

2vs3 0.496196 
 

not significant 

1vs3 0.627308 
 

not significant 

b. Escherichia coli samples (B) 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.158938 
 

not significant 

2vs3 0.938459 
 

not significant 

1vs3 0.147955 
 

Not significant 

c. Bacillus licheniformis samples (C) 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.094106 
 

not significant 

2vs3 0.863076 
 

Not significant 

1vs3 0.06933 
 

Not significant 

d. Salmonella enterica samples (D) 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.336669 
 

not significant 

2vs3 0.770692 
 

Not significant 

1vs3 0.210886 
 

Not significant 
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e. Samples BA 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.94467 not significant 

2vs3 0.054536 
 

Not significant 

1vs3 0.041332 
 

significant 

f. Samples CA 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.611006 
 

not significant 

2vs3 0.203415 
 

Not significant 

1vs3 0.435813 
 

Not significant 

g. Samples DA 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.781455 
 

not significant 

2vs3 0.030087 
 

significant 

1vs3 0.055341 
 

Not significant 

h. Samples NC 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.614162 
 

not significant 

2vs3 0.475313 
 

Not significant 

1vs3 0.207171 
 

Not significant 

i. Samples PC 

Groups tested Pr (t) unpaired conclusion (unpaired) 

1vs 2 0.559531 
 

not significant 

2vs3 0.342559 
 

Not significant 

1vs3 0.697881 
 

Not significant 
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APPENDIX VI: Repeated Measures ANOVA results for rate of decomposition 

based on bacteria treatments 

This data is available online at the URL provided below: 

https://github.com/Dorothy-Madamba/Masters-Thesis-Appendices 
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APPENDIX VII:  SAS input for One Way ANOVA 

This data is available online at the URL provided below: 

https://github.com/Dorothy-Madamba/Masters-Thesis-Appendices 
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APPENDIX VIII: VOCs results 

This data is available online at the URL provided below: 

https://github.com/DonovanHaines/MadambaThesis 
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APPENDIX IX: Repeated Measures ANOVA for temperatures 

This data is available online at the URL provided below: 

https://github.com/Dorothy-Madamba/Masters-Thesis-Appendices 
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