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ABSTRACT 

Ekanayake, Dulamini I., Effect of Boron Trifluoride on the Transesterification of 
Boronate Esters. Master of Science (Chemistry), August, 2017, Sam Houston State 
University, Huntsville, Texas. 
 

Boronate ester-based materials have received interest and found utility in many 

applications. The preeminent goal of this research is to advance the field of boron-oxygen 

based porous materials. The formation of these materials has been predominantly 

facilitated by boron-oxygen dynamic covalent character. In an effort to understand and 

improve this process, we are investigating the effect of boron trifluoride, a well-known 

Lewis acid catalyst, on synthesis and exchange of dioxaboroles. From our previous 

studies, we have observed an increase in reaction rate as well as beneficial side reactions, 

which have driven the reaction equilibrium to unexpected products from the 

transesterification of phenyl pinacol boronate ester (PPB) in the presence of boron 

trifluoride.  

Initially, we studied the effect of boron trifluoride on the transesterification of 

different boronate esters (dioxaboroles) with catechol. Then, we synthesized bis boronate 

ester materials by combining the knowledge learned in the above-described work. Finally, 

we investigated the Lewis acid-catalyzed (boron trifluoride and para-toluene sulfonic acid) 

pinacol rearrangement of different diols (pinacol, hydrobenzoin, and benzpinacol).  

In the presence of boron trifluoride all transesterification reactions of boronate 

esters with catechol showed an improvement. Additionally, we were able to find a method 

to isolate catechol boronate ester on the gram scale.  

KEY WORDS: Boronate esters,  transesterification, boron trifluoride, pinacol 
rearrangement
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CHAPTER I 

INTRODUCTION 

Organic synthesis is an important field not only in chemistry but also to the 

public. Many of the materials we use on a daily basis are the results of the efforts of 

synthetic organic chemists. Conventionally, organic reactions are run under kinetically 

controlled conditions, where the bond formation is irreversible, and the experimental 

conditions should be chosen carefully to obtain a good yield of the desired product. 

Recently, dynamic covalent chemistry (DCC) has become an area of interest because it 

involves reactions that proceed under dynamic conditions, where the bond formation is 

reversible. This reversible nature allows for error checking or proof-reading phenomena 

during the reaction to achieve the most thermodynamically stable products.1  

Previously, supramolecular chemistry has been used to build up 2D and 3D 

materials. Self-assembly is a process that forms ordered aggregates spontaneously. 

Usually, self-assembly is reversible and involves non-covalent interactions such as 

hydrogen bonds and van der Waals forces.2 The reversible nature allows these reactions 

to proceed through several kinetic intermediates before reaching a final thermodynamic 

product. 

Self-assembly has been used to synthesize molecules or components, which have 

different sizes, structures, or functions. However, self-assembly involves weak 

interactions, and the assembly can be broken with a little energy. In contrast, DCC 

involves covalent bonds rather than noncovalent interactions, and the material, once 

formed, is typically more stable.  
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1.1 Dynamic Covalent Chemistry (DCC) 

DCC has been used to develop two-dimensional (2-D) macrocycles, and three-

dimensional (3-D) macromolecular cages which have many potential applications.3 2-D 

shape-persistent macrocycles have found utility in developing conducting molecular 

wires, sensors, and liquid crystals.4 3-D organic molecular cages have been studied for 

catalysis, gas adsorption, and small-molecule separation.4  

There are several types of dynamic covalent reactions (DCR), such as imine 

exchange, olefin metathesis, alkyne metathesis, disulfide exchange, and boronic acid 

condensation.5  

The imine exchange reaction involves the exchange of alkyl groups on the 

nitrogen (Figure 1).6 Imine exchange is widely used in the synthesis of covalent organic 

polyhedrons (COPs).5 The reversibility of imine base systems was first studied by 

Stoddart and co-workers.7 

 

 Figure 1. Imine exchange reaction.   
 

Metathesis reactions involve the exchange of substituents on atoms that are 

connected through single, double, or triple bonds. Olefin cross metathesis involves the 

interchange of carbon atoms between two double bonds (Figure 2).1 These reactions 

require special catalysts. There are several olefin metathesis-based oligomeric materials 

and shape-persistent macrocycles that have been reported.5,8,9  

R1NH2 + N
R2NH2 + N

R2 R1
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Figure 2. Olefin cross metathesis reaction.  
 

Alkyne metathesis deals with the breaking and forming of C–C triple bonds 

(Figure 3). Alkyne metathesis has been successfully used to develop shape-persistent 

molecular cages and macrocycles.5,10,11 

 

Figure 3. Alkyne metathesis reaction.  
 

Disulfide exchange (Figure 4) is another DCR which has been used to develop 

polymers and macrocycles.5 

 

Figure 4. Disulfide exchange reaction.  
 

Boronic acids can easily and reversibly undergo self-condensation at room  

temperature to form boroxine (Figure 5).  

 

Figure 5. Boronic acid-boroxine equilibrium.  
 

In addition, boronic acids react with simple alcohols, diols, diamines, etc., to form 

esters or boraza compounds (Figure 6).  

R3

R4

R1

R2

R1 R3
R2 R4+ +

R1 R1 R2 R2 R1

R2
R1

R2
+ +

+ +R1
S

S
R2 R3

S
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R4 R1
S

S
R4 R3

S
S

R2

BR
OH

OH
O

B
O

B

O
B

R

R R

3 H2O+

1.1 1.2
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Figure 6. (a) Boronic acid-diol equilibrium and (b) boronic acid-diamine equilibrium.  
 

 Recently, B-O and B-N based dynamic covalent bonds have gained interest in the 

field of shape-persistent molecular architectures. In this regard, our research focuses on 

developing macrocycles using B-O and B-N compounds, i.e., boronic acid, boronate ester 

(dioxaborole), diazaborole, and oxazaborole based macrocycles.  

 

1.2 Boronic acids 

 Boronic acids are organic acids, which have reactivity analogous to carboxylic 

acids. Unlike carboxylic acids, boronic acids do not exist in nature. They are synthesized 

from primary boron sources such as boric acid (Figure 7). However, like carboxylic 

acids, boronic acids can undergo esterification and transesterification. The boron atom in 

a boronic acid has a vacant P orbital. Therefore, boronic acids can also act as Lewis 

acids.12 Boron atoms can interact with variety of atoms and molecular motifs such as 

oxygen, nitrogen, hydrogen, simple alcohols, anions, etc.13 Boronic acid and diol 

interactions are important because the boron-diol interaction is covalent and reversible. 

This reversible nature allows the formation of the most thermodynamically stable 

products.14  

R B
OH

OH
R B

O

O
2 H2O

R B
OH

OH
R B

H
N

N
H

2 H2O

(a)

(b)

HO

HO

H2N

H2N

R , = alkyl or aryl

+ +

++
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Figure 7. Oxygenated boron compounds and boronate esters.  
 

1.3 Boronate esters 

The first cyclic boronate ester was reported by Kuivila and co-workers in 1954.15 

They found a new cyclic boronate ester by reacting phenylboronic acid (PBA) and a 

saturated solution of mannitol. In 1959, the first quantitative investigation of boronate 

ester synthesis from boronic acid and polyols was investigated by Lorand and Edward.16 

From their studies, they were also able to find that the conjugate base of phenylboronic 

acid has a tetrahedral structure rather than trigonal structure.  

Boronic acids can also interact with dicarboxylic acids, α-hydroxy carboxylic 

acids, and diols such as 1,2- and 1,3-diols. The latter two form five (dioxaborolanes) and 

six (dioxaborinanes) membered cyclic boronate esters, respectively. It has also been 

shown that dioxaborinanes are more stable than dioxaborolanes.14  

The formation of cyclic boronic esters has led to their applications in a number of 

areas due to the reversibility of this condensation reaction.12 Boronate esters 

(dioxaborole) have been explored for applications in organic and medicinal chemistry17 

and they have been used as protecting groups in carbohydrate chemistry,18 general 

O
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NHR
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O
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O
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O
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substrates in the Suzuki coupling,19 chiral derivatizing agents,17 and glucose-selective 

fluorescence sensors.20 

The reversible nature of the condensation reaction between boronic acids and 

diols opens the way towards the synthesis of bulky and complex compounds like 

boronate ester based macrocycles. To date, a considerable number of studies have been 

carried out to synthesize new classes of dioxaboroles, poly(dioxaborole)s, dioxaborole 

based macrocycles, and dioxaborole based COFs. 

 In 1961, Smolinsky synthesized four different derivatives of 1,3,2-dioxaborole 

(1.3) (Figure 8).21 It was observed that the phenyl substituent on the boron atom increased 

the stability toward air oxidation, the order of stability being 1.3a > 1.3c > 1.3b > 1.3d.  

 

Figure 8. Different derivatives of 1,3,2-dioxaborole compounds.  
 

1.4 Oligoboronate esters 

Lavigne and coworkers synthesized and characterized bis(dioxaborole)s 1.4 and 

1.5 based on 1,4- benzenediboronic acid and 1,2,4,5-tetrahydroxybenzene (THB), 

respectively (Figure 9).22 From this study, they found that the structural properties in the 

small molecule analogues could be used to identify the properties of the larger oligomeric 

systems. They also studied the substituent effects on the structure and supramolecular 

assembly of bis(dioxaborole)s derived from THB (Figure 10).23 The same group has 

synthesized fluorene-based bis(dioxaborole)s by the condensation reaction between 

fluorenyl diboronic acid and a 1,2-diol or THB (Figure 11).24 They also found that 

dioxaborole formation is reversible and cross-reactive.  

O

O
B

R

R

R1

a R, R1 = C6H5
b R = C6H5; R1 = CH(CH3)2
c R = CH3; R1 = C6H5
d R = CH3; R1 = CH(CH3)2

1.3
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Figure 9. Bis(dioxaborole)s 1.4 and 1.5.  
 

 

Figure 10. Synthesis of different aromatic bis(dioxaborole)s through dehydration.  
 

 

Figure 11. Fluorene-based bis(dioxaborole)s.  
 

In 2006, Lavigne and coworkers reported several novel poly(dioxaborole)s. The 

self-assembly of a conjugated poly(boronate ester)s (1.10) was facilitated by the 

condensation reaction between 9,9-dihexylfluorene-2,7-diboronic acid (1.11) and THB 

(Figure 12).25  
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Figure 12. Synthesis of conjugated poly(boronate ester) 1.10.  
 

They also prepared polymer (1.12) by the condensation reaction of benzene-1,4-

diboronic acid with THB in toluene and methanol (Figure 13).22 They confirmed 

poly(dioxaborole) formation using FTIR and NMR spectroscopy.  

 

Figure 13. Synthesis of poly(boronate ester) 1.12.  
 

1.5 Boronate ester-based macrocycles 

To date, the syntheses of several boronate ester based macrocycles have been 

reported. In 2004, the synthesis of dioxaborole based macrocycle (1.13) was reported by 

Severin and coworkers from a multi-component condensation reaction of 3-formylphenyl 

boronic acid, pentaerythritol, and 1,4-diaminobenzene.26 This multi-component reaction 

allows the synthesis of nanometer-sized macrocycles and cages from very simple starting 

materials. They confirmed the formation of macrocycle by X-ray crystallographic 

analysis. Macrocycle synthesis via [4+2+2] assembly is shown in Figure 14. The same 
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group has synthesized macrocycles using three and four component systems.27 In this 

study, the macrocycle was synthesized by Lewis acidic benzodioxaboroles, both in 

solution and in the solid-state.  

 

Figure 14. Synthesis of a boronate ester based macrocycle 1.13 from a [4+2+2] 

condensation.  
 

In 2007, Iwasawa and coworkers were able to obtain chiral macrocycles (1.14) 

from the condensation of 1,4-benzenediboronic acid and a chiral tetraol (1.15, Figure 

15).28 They used aromatic solvents such as toluene and benzene for this macrocycle 

synthesis, in order to understand whether π-π interactions between the component 

molecules would facilitate the formation of a supramolecular structure, and they found 

that there is an influence of these solvents on the size of the macrocycle. In 2009, the 

same group synthesized two diastereomeric cage compounds from racemic tetraol and 

1,3,5-benzenetri(boronic acid).29 

B
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Figure 15. Synthesis of boronate ester-based macrocycle 1.14.  
 

Lüning and coworkers found that 2,6-bis(alkenyloxy) substituted arylboronic 

acids can be cyclotrimerized with the help of a tetrol as a template (Figure 16).30 They 

reported the first synthesis of trimacrocycle 1.16 from a suitable template. This 

macrocycle consists of three boronic acids in the endo-positions. They stated that the 

endo-positions are good receptors for polyols and therefore suitable for testing in sensing 

devices.  

 

Figure 16. First reported trimacrocycle 1.16.  
 

In 2014, four different macrocycles were synthesized by Barba and coworkers 

from the multicomponent reaction of (3-aminophenyl)boronic acid, pentaerythritol, and 
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four different aldehyde derivatives.31 These macrocycles consist of both Lewis acids 

(boron) and bases (nitrogen and oxygen) and can be used for the identification of diprotic 

molecules. Macrocycle (1.17) synthesis via [2+1+1] multicomponent reaction is shown in 

Figure 17. 

 

Figure 17. Synthesis of macrocycle 1.17 by a [2+1+1] multicomponent reaction.  
 

More recently, Northrop and coworkers have reported several boronate ester 

based macrocycles. They have synthesized boronate ester based rectangles (1.18) from 

linear bis-catechols and 1,4-benzene diboronic acid (Figure 18).32 From the spectroscopic 

and computational analysis, they found that these macrocycles have extended π-

conjugation on the rectangles. 
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Figure 18. Formation of boronate ester rectangles 1.18.   
 

The same group developed a macrocycle (not shown) by [2+2] condensation 

reactions between 1,4-benzene diboronic acid and newly synthesized phenanthrene-based 

bis(catechol) derivatives (1.19-1.21) (Figure 19).33 
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Figure 19. Phenanthrene-based bis(catechol) derivatives.  
 

In 2016, Northrop and coworkers synthesized additional boronate ester-based 

macrocycles, which are analogues of 2D COFs (1.22a-1.22d) (Figure 20 and Figure 

21).34 Due to the hydrophobicity of these alkyl substituted macrocycles, they are 

hydrolytically more stable than the corresponding 2D COFs.  
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Figure 20. Synthesis of boronate ester based macrocycle 1.22.  
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Figure 21. Boronate ester macrocycles 1.22a-1.22d.  
 

1.6 Boronate ester-based covalent organic frameworks 

Oligoboronate esters have been extended to 3D materials by the incorporation of 

trifunctional monomers. The more ordered of these materials are known as covalent 

organic frameworks (COFs). Recently, porous materials have achieved great interest due 

to their outstanding performance and wide applications in areas such as gas storage, gas 

separation, super hydrophobic interfaces, catalysis, energy conversion, energy storage, 

and optoelectronics.35 Therefore, new classes of porous materials are continuously being 

developed. Among these porous materials, COFs have been the focus of a growing 

amount of research recently. COFs are thermally remendable porous polymers which are 

made by reversible dynamic covalent linkages like B-O, C-N, B-N, and B-O-Si, which 

provides a self-healing capability for the material formation.36 Since COFs consist of 

light elements, they have low mass densities. They also possess high thermal stabilities 
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and provide permanent porosity due to rigid building blocks. Because of these novel 

properties, COFs have found utility in the areas noted above. According to the building 

block dimensionality, COFs can be divided into two groups, two-dimensional (2D) and 

three-dimensional (3D) COFs.35 

To date, several B-O based COFs have been reported. The first COFs were 

reported by Yaghi and co-workers in 2005.37 They synthesized COF-1 by the self-

condensation of boronic acids to produce boroxine anhydride-based linkages in the form 

of B3O3 rings (Figure 22). COF-1 was prepared as a crystalline material by the self-

condensation of 1,4-benzenediboronic acid. The same group synthesized boronate ester 

based COF-5 by the condensation reaction of 1,4-benzenediboronic acid and 

hexahydroxytriphenylene (HHTP) (Figure 23). 

 

Figure 22. Synthesis of COF-1.  
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Figure 23. Synthesis of COF-5.  
 

In 2006, Lavigne and coworkers were able to synthesize COF-18Å from a 

trifunctional boronic acid and benzene tetraol (Figure 24).38 COF-18Å refers to the 

covalent organic framework which has 18 Å diameter pores.  
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Figure 24. Synthesis of COF-18Å.  
 

Recently, Dichtel and coworkers synthesized COF-5 and COF-10 by using 

polyfunctional boronic acids and acetonide-protected HHTP in the presence of a Lewis 

acid catalyst BF3OEt2 (Figure 25).39 The method they proposed was more convenient 

than conventional COF synthesis and it helped to overcome previous solubility issues. 

Through mechanistic studies, they found that boronic acid-BF3 complexes influence the 

rate of the boronate ester formation. The powder XRD, IR, and N2 adsorption isotherms 

studies confirmed these COFs have similar surface areas as previously reported COFs.  
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Figure 25. BF3OEt2 catalyzed synthesis of COF-5 and COF-10.  
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1.7 Aims of this work 

Previously, COFs have been synthesized from the reaction of boronic acids with 

diols. We are interested in using boronate esters because they are less polar, more stable, 

easier to isolate, and typically more soluble in organic solvents than boronic acids. 

Additionally, transesterification is one of the simplest and most convenient methods to 

synthesize boronate esters. One of the main goals of our research is to synthesize 

di/trifunctional monomers, which have the capability to self-assemble into larger 

materials, similar to the latter examples in the previous section, i.e., COFs. 

In our current work, we investigated the effect of boron trifluoride on the 

transesterification of boronate esters with catechol (chapter III). Catechol boronate esters 

are of interest due to the π-conjugation and have been used frequently in COF synthesis. 

The synthesis of stable boronate ester based monomers may allow for the straightforward 

synthesis of shape-persistent macrocyclic and COF materials. Then, we used this 

methodology to synthesize bis/oligomeric boronate ester materials and more complex 

dioxaboroles by combining the knowledge learned in the above-described work (chapter 

III). Separately, we studied the effect of Lewis acids on the dehydration/rearrangement of 

pinacol and other 1,2-diols (chapter IV). 
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CHAPTER II 

MATERIALS AND METHODS 

2.1 General Experimental 

The starting materials and reagents were purchased from commercial sources 

unless otherwise mentioned. The syntheses of the boronate ester starting materials used in 

chapter III are described below in sections 2.2 and 2.3. Some of the boronate esters were 

synthesized in situ (see section 2.2) and others were synthesized on a preparative (gram) 

scale using vacuum distillation or mixing in chloroform (see section 2.3). These esters 

were used without further purification for the experiments described in chapter III. 

Analytical thin-layer chromatography (TLC) was performed on Agela MF254 

pre-coated silica plates. Visualization was carried out with UV light (254 nm).  

1H-NMR spectra were taken on JEOL Eclipse 300+ spectrometer. Chemical shifts 

are reported in δ (ppm) relative to residual solvent protons (CDCl3: 7.26). Splitting 

patterns are designated as s (singlet); d (doublet); t (triplet); m (multiplet). The progress 

of the small-scale reactions was monitored by 1H-NMR spectroscopy. The equivalents of 

BF3OEt2, extent of esterification, and extent of transesterification were determined based 

on the 1H-NMR integrations of the relevant proton signals. 

 

2.2 In situ synthesis of boronate esters 

Boronic acid can readily react with diols to give cyclic boronate esters. 

Commercially available phenylboronic acid (2.1) was reacted with different diols 2.2-2.9 

(Figure 26). All diols except 2.5, 2.8, and 2.9, were commercially available and used as 

received. The esterification reactions were carried out in NMR tubes using CDCl3 as the 
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solvent. An equimolar mixture of boronic acid 2.1 and diol (0.082 mmol each) was added 

to an NMR tube along with CDCl3 (0.7 mL). The reaction progress was monitored using 

1H-NMR spectroscopy. The extent of esterification was determined based on the 1H-

NMR integrations of the relevant proton signals (Figure 26 and Table 1). Most reactions 

were completed within minutes (before spectra could be recorded) and 100% 

esterification was observed (Figure 27). However, diol 2.4 took about 3 h to reach 

completion. This is likely due to the steric hindrance from the four methyl groups present 

in this diol. 
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Figure 26. a) Schematic representation of boronic acid-diol esterification, b) different 

diols studied 2.2-2.9, and c) boronate esters 2.10-2.17. 
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Table 1 

1H-NMR signals used to determine the percent esterification 

Reaction starting material product 

2.1 + 2.2 δ 7.70 ppm (2.1) δ 7.80 ppm (2.10) 

2.1 + 2.3 δ 7.70 ppm (2.1) δ 7.80 ppm (2.11) 

2.1 + 2.4 δ 1.23 ppm (2.4) δ 1.34 ppm (2.12) 

2.1 + 2.5 δ 7.70 ppm (2.1) δ 7.89 ppm (2.13) 

2.1 + 2.6 δ 7.70 ppm (2.1) δ 8.10 ppm (2.14) 

2.1 + 2.7 δ 7.70 ppm (2.1) δ 7.80 ppm (2.15) 

2.1 + 2.8 δ 7.70 ppm (2.1) δ 8.07 ppm (2.16) 

2.1 + 2.9 δ 7.70 ppm (2.1) δ 7.98 ppm (2.17) 

 

 

Figure 27. The reaction progress of phenyl boronic acid (2.1) with diols 2.2-2.9.  
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2.3 Preparative scale synthesis of boronate esters 

2.3.1 Preparation by vacuum distillation  

Boronate esters 2.10 and 2.12 were synthesized from diols 2.2 and 2.4, 

respectively, via vacuum distillation (Figure 28).  

 

Figure 28. Synthesis of boronate esters 2.10 and 2.12.  
 

2-Phenyl-1,3,2-dioxaborolane (2.10). Phenylboronic acid 2.1 (0.61 g, 5 mmol, 1 

equiv) and 1,2-ethanediol 2.2 (0.31 g, 5 mmol, 1 equiv) were heated and distilled under 

reduced pressure (35 ˚C, 120 mtorr, 25% power). A yellow oil (0.54 g, 73%) was 

obtained. 1H-NMR (CDCl3, 300 MHz) δ: 7.80 (d, 2H), 7.40-7.35 (m, 3H), 4.37 (s, 4H). 

4,4,5,5-Tetramethyl-2-phenyl-1,3,2-dioxaborolane (2.12). Phenylboronic acid 2.1 

(1.22 g, 10 mmol, 1 equiv) and pinacol 2.4 (1.18 g, 10 mmol, 1 equiv) were distilled 

under reduced pressure (55 ˚C, 220 mtorr, 34% power). White crystals (1.87 g, 92%) 

were obtained. 1H-NMR (CDCl3, 300 MHz) δ: 7.80 (d, 2H), 7.45-7.35 (m, 3H), 1.34 (s, 

12H). 

2.3.2 Preparation of dioxaborolanes in chloroform 

An equimolar amount of phenylboronic acid 2.1 and diol (2.3, 2.5, 2.8, or 2.9) 

were dissolved in CHCl3 (Figure 29). Simple evaporation of the solvent resulted in the 

isolation of esters 2.11, 2.13, 2.16, and 2.17, respectively. 
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Figure 29. Synthesis of different boronate esters.  
 

4-Methyl-2-phenyl-1,3,2-dioxaborolane (2.11). Phenylboronic acid 2.1 (1.60 g, 13 

mmol, 1 equiv) and 1,2-propanediol 2.3 (1.00 g, 13 mmol, 1 equiv) were mixed in CHCl3 

(5 mL) in a vial. The reaction mixture was stirred for 1 h at room temperature. Then, the 

solvent was removed under reduced pressure. A clear oil (1.63 g, 78%) was obtained. 1H-

NMR (CDCl3, 300 MHz) δ: 7.80 (d, 2H), 7.49-7.35 (m, 3H), 4.71-4.66 (m, 1H), 4.47 (t, 

1H), 3.89 (t, 1H), 1.42 (d, 3H). 

2,4-Diphenyl-1,3,2-dioxaborolane (2.13). Phenylboronic acid 2.1 (0.100 g, 0.82 

mmol, 1 equiv) and 1-phenyl-1,2-ethanediol 2.5 (0.113 g, 0.82 mmol, 1 equiv) were 

mixed in CHCl3 (5 mL) in a vial. The reaction mixture was stirred for 1 h at room 

temperature. Then, the solvent was removed under reduced pressure. A white solid (0.180 

g, 99%) was obtained. 1H-NMR (CDCl3, 300 MHz) δ: 7.93 (d, 2H), 7.54-7.33 (m, 8H), 

5.60 (t, 1H), 4.74 (t, 1H), 4.20 (t, 1H). 
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mg, 92%) was obtained. 1H-NMR (CDCl3, 300 MHz) δ: 8.04 (d, 2H), 7.61-7.46 (m, 3H), 

7.09-6.95 (m, 10H), 5.93 (s, 2H). 
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(1R,2R)-2,4,5-Triphenyl-1,3,2-dioxaborolane (2.17). Phenylboronic acid 2.1 (2.8 

mg, 0.023 mmol, 1 equiv) and d-hydrobenzoin 2.9 (5.0 mg, 0.023 mmol, 1 equiv) were 

mixed in CHCl3 (5 mL) in a vial. The reaction mixture was stirred for 1 h at room 

temperature. Then, the solvent was removed under reduced pressure. A white solid (6.6 

mg, 96%) was obtained. 1H-NMR (CDCl3, 300 MHz) δ: 8.00 (d, 2H), 7.57-7.34 (m, 

13H), 5.33 (s, 2H). 

2.3.3 Preparation of phenyl pinacol boronate esters   

2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.20) and 2-(4-

methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.21) were synthesized using 

similar conditions as above for 4-bromophenylboronic acid (2.18) and 4-

methoxyphenylboronic acid (2.19) with pinacol 2.4 (Figure 30). 

 

Figure 30. Synthesis of phenyl substituted pinacol boronate esters 2.20 and 2.21. 
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equiv) and 2.4 (8.9 mg, 0.075 mmol, 1 equiv) were mixed in CHCl3 (3 mL) in a vial. The 

reaction mixture was stirred for 1 h at room temperature. Then, the solvent was removed 

under reduced pressure. A white solid (13.2 mg, 75%) was obtained. 1H-NMR (CDCl3, 

300 MHz) δ: 7.74 (d, 2H), 6.88 (d, 2H), 3.82 (s, 3H), 1.33 (s, 12H). 

2.3.4 Preparation of bis-pinacol boronate esters in chloroform 

2,2'-(1,4-Phenylene)bis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (2.23) and 2,2'-

[1,1'-biphenyl]-4,4'-diylbis[4,4,5,5-tetramethyl-1,3,2-dioxaborolane] (2.25) were 

synthesized by the condensation of 1,4-benzenediboronic acid (2.22) and biphenyl-4,4’-

diboronic acid (2.24) with pinacol 2.4 (2 equiv) in CHCl3 (Figure 31).  

Initially, bisboronic acids 2.22 and 2.24 did not dissolve in CHCl3. Eventually, 

after adding pinacol (2.4) and heating the reaction mixture all starting materials dissolved 

and were converted to the corresponding esters 2.23 and 2.25, respectively. 

 

Figure 31. Synthesis of bisboronate esters 2.23 and 2.25.  
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compound was a white solid (22.3 mg, 93%). 1H-NMR (CDCl3, 300 MHz) δ: 7.79 (s, 

4H), 1.34 (s, 24H). 

2,2'-[1,1'-Biphenyl]-4,4'-diylbis[4,4,5,5-tetramethyl]-1,3,2-dioxaborolane (2.25). 

Commercially available 2.24 (18.0 mg, 0.074 mmol, 1 equiv) and 2.4 (17.7 mg, 0.15 

mmol, 2 equiv) were mixed in a vial in CHCl3 (10 mL). The reaction mixture was stirred 

and heated at 50 ˚C for 3 weeks to dissolve all the starting materials. After 3 weeks, the 

CHCl3 was removed under reduced pressure at room temperature. The resulting 

compound was a white solid (27.5 mg, 90%). 1H-NMR (CDCl3, 300 MHz) δ: 7.85 (d, 

4H), 7.62 (d, 4H), 1.34 (s, 24H). 
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CHAPTER III 

THE EFFECT OF BORON TRIFLUORIDE ON THE TRANSESTERIFICATION 

OF BORONATE ESTERS 

3.1 Background 

Transesterification may be a useful alternative esterification (of boronic acids and 

diols) for synthesis of boronate ester materials (Figure 32). In some cases, when boronate 

esters are not available in boronic acid form, transesterification would be more 

convenient than esterification. It is also known that boronate esters are less polar and 

easier to handle than boronic acids.  

 

Figure 32. Transesterification of boronate esters.  
 

Brown and coworkers studied the relative rates of transesterification of phenyl 

ethylene glycol boronate ester (PEB) with various diols to understand the factors 

affecting the relative stability of boronate esters.40 Of the diols studied, they found that 

boronate esters consisting of saturated bicyclic hydrocarbons (pinanediol boronic esters) 

are most stable and diisopropyl tartrate boronate esters are thermodynamically least 

stable (Figure 33). They also found that six-membered borinanes are relatively more 

stable than their corresponding five-membered borolanes.  
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Figure 33. Decreasing order of stability of various boronate esters.  
 

Our group has explored the transesterification of phenyl pinacol boronate ester 3.1 

with different diols using BF3OEt2 as a catalyst.41 From our previous studies, we 

observed 100% transesterification of ester 3.1 and catechol (3.2) to dioxaborole 3.3 and 

pinacol (3.4). Subsequent pinacol rearrangement resulted in the formation of pinacolone 

(3.5) (Figure 34). Boron triflouride not only changed the rate of the transesterification 

reaction but also affected the equilibrium by removing pinacol via the pinacol 

rearrangement. 

 

Figure 34. BF3OEt2 promoted transesterification between boronate ester 3.1 with diol 

3.2.  
 

Similar results were obtained with neopentyl glycol (3.6) in the presence of 

BF3OEt2 (Figure 35). However, the transesterification of ester 3.1 with ethylene glycol 

(3.8) in the presence of BF3OEt2 did not result in high conversion; only 10% of ester 3.9 
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was observed. It was hypothesized that transesterification of diol 3.8 may be low due to 

the coordination of BF3 with this diol instead of facilitating transesterification.41  

 

Figure 35. BF3OEt2 promoted transesterification between boronate ester 3.1 and diols 

3.6 and 3.8.  
 

3.2 Objectives 

First, we carried out further studies on the transesterification of boronate ester 3.1 

with diol 3.8 in the presence of BF3OEt2, in order to find the exact reason for the inefficient 

transesterification. 

Then, we investigated the effect of BF3OEt2 on the transesterification of various 

simple boronate esters and substituted pinacol boronate esters with catechol. Since we 

were able to find an efficient method to transesterify ester 3.1 into ester 3.3 in the 

presence of BF3OEt2, our next goal was to investigate a method to isolate ester 3.3. 

Catechol boronate ester (3.3) is an important monomer in synthesizing macrocycles and 

COF. Due to the π-conjugation of these boronate esters, it will likely have desirable 

properties (electric and electronic) when developing large molecular architectures. 

Finally, we focused on the effect of BF3OEt2 on synthesizing of bis/oligo-

boronate ester materials. Bis(dioxaborole)s are formed from the condensation reaction 

between diboronic acids with aromatic 1,2-diols or mono boronic acids with tetraols.  
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3.3 Results and Discussion 

3.3.1 Boron trifluoride-ethylene glycol interaction 

To begin, we wanted to better understand the nature of the interaction between 

ethylene glycol (3.8) and BF3OEt2. Therefore, diol 3.8 was mixed with BF3OEt2 in 

CDCl3 (Figure 36). A shift of the diol 3.8 peak was observed in the 1H-NMR spectrum 

(Figure 37). 

 

Figure 36. The reaction of diol 3.8 with BF3OEt2.  
 

 
Figure 37. 1H-NMR spectra of diol 3.8 with and without BF3OEt2.  
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3.3.2 Transesterification of dioxaborolanes in an NMR tube   

Next, we thought we could see if this complexation could be used to our 

advantage in the transesterification of ester 3.9 with catechol. Therefore, ester 3.9 was 

mixed with catechol (3.2) in CDCl3, and BF3OEt2 was added (Figure 38).  

 

Figure 38. The reaction between boronate ester 3.9 and diol 3.2 with BF3OEt2 in CDCl3.  
 

In the absence of BF3OEt2 there is only 27% transesterification of ester 3.9 to 

ester 3.3. However, after adding 10 equiv of BF3OEt2, 98% conversion of ester 3.9 to 

ester 3.3 was observed. Then, in a separate experiment 10 equiv of BF3OEt2 was added 

after ester 3.9 and catechol 3.2 were allowed to reach equilibrium. It showed 97% 

transesterification by the time NMR was obtained (<10 min). In Figure 39, the circles 

show the results of the first study and triangles show the results of the second study. 
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Figure 39. Transesterification of boronate ester 3.9 with diol 3.2 in the presence of 

BF3OEt2. 
 

Then, the same transesterification was carried out with the different equivalents of 

BF3OEt2 to investigate the relationship between the percent transesterification and the 

amount of BF3OEt2. Figure 40 shows the results of the transesterification of ester 3.9 

with catechol 3.2 in the presence of the different equivalents of BF3OEt2. The percent 

transesterification increased with an increasing amount of BF3OEt2. There was no 

significant difference in the transesterification with greater than 3.5 equivalents.  
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Figure 40. Transesterification of ester 3.9 with catechol 3.2 in the presence of five 

different equivalents of BF3OEt2.  
 

To extend the methodology from the previous experiment, the transesterification 

of 4-methyl-2-phenyl-1,3,2-dioxaborolane (3.12), 1,5-dihydro-3-phenyl-2,4,3-

benzodioxaborepin (3.13), and 2,4-diphenyl-1,3,2-dioxaborolane (3.14) with diol 3.2 

were investigated in the presence of different amounts of BF3OEt2 (Figure 41). These 

reactions were carried out in NMR tubes and the esters were made in situ by mixing 

phenylboronic acid with the corresponding diol in CDCl3 (see chapter II section 2). Then 

an equimolar amount of catechol 3.2 was added to the NMR tube, and the solution was 

titrated with different amounts of BF3OEt2 (Figure 42).  
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Figure 41. Reactions of boronate esters 3.12, 3.13, and 3.14 with catechol 3.2 in the 

presence of BF3OEt2. 

 

Figure 42. Transesterification of boronate esters 3.12, 3.13, and 3.14 with catechol 3.2 in 

the presence of varying amounts of BF3OEt2.  
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Without BF3OEt2, there was only about 17% and 15% transesterification of esters 

3.12 and 3.13, respectively. In contrast, 49% transesterification of ester 3.14 with 

catechol was observed. This reflects the fact that esters 3.14 and 3.3 have similar 

stabilities. With the higher equivalents of BF3OEt2, all the esters showed an increase in 

the transesterification with diol 3.2. With 5 equiv of BF3OEt2 there was 100% 

conversion of ester 3.14 into ester 3.3. However, the maximum attainable 

transesterification of esters 3.12 and 3.13 were about 91% and 87%, respectively.  

To avoid the effect of residual water from the in situ synthesis of boronate ester 

starting materials, the above described transesterification reactions were carried out with 

pre-synthesized boronate esters (see chapter II section 3). Therefore, the boronate esters 

were added to an NMR tube with catechol 3.2, CDCl3, and 5 equiv of BF3OEt2 (Figure 

43). This study also included esters 3.15 and 3.16. Table 2 shows the summary of the 

results.  



39 

 

 

Figure 43. The reaction of different boronate esters 3.12-3.16 with catechol 3.2 in the 

presence of BF3OEt2.  
 

Table 2 

Transesterification of different dioxaboroles with catechol  

Ester 

% Transesterification 

Time (h) Without 
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With 5 equiv 

BF3OEt2 

3.9 27% 90% 0.1 

3.12 16% 83% 0.1 

3.13 19% 92% 0.1 
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Ester 

% Transesterification 

Time (h) Without 

BF3OEt2 

With 5 equiv 

BF3OEt2 

3.14 49% 100% 0.1 

3.15 0% 98% 3 

3.16 5% 85% 11 

 

Without BF3OEt2, all esters underwent varying amounts of transesterification. In 

the presence of BF3OEt2, all boronate esters showed an improvement in 

transesterification. The reaction of boronate esters 3.9, 3.12, 3.13, and 3.14 reached 

equilibrium effectively instantaneously. On the other hand, esters 3.15 and 3.16 took 3 h 

and 11 h to reach equilibrium, respectively. At 0.1 h, there was only 66% and 45% 

transesterification of esters 3.15 and 3.16, respectively. These results indicate that 3.16 is 

more stable than ester 3.15, as well as the other esters studied. An additional observation 

from this study was that the co-product hydrobenzoins undergo a pinacol-type 

rearrangement in the presence of BF3OEt2 (see chapter IV for further evidence of this 

rearrangement). 

To investigate the effect of substituents on the phenyl ring, the transesterification 

of different substituted pinacol boronate esters with catechol was studied in the presence 

of 5 equiv of BF3OEt2 (Figure 44). The reaction progress was monitored by 1H NMR. 



41 

 

 

Figure 44. The reaction of different substituted pinacol boronate esters with catechol in 

the presence of BF3OEt2.  
 

Boronate esters 3.17a and 3.17b were synthesized in situ and separately by the 

condensation reaction between relevant phenylboronic acid and pinacol (3.4) (see chapter 

II), whereas esters 3.17c and 3.17d were purchased from commercial sources  

All boronate esters used for this study underwent 100% transesterification with 

catechol in the presence of 5 equiv of BF3OEt2. Bromo and methoxy pinacol boronate 

esters 3.17a and 3.17b showed slower transesterification with the separately synthesized 

pinacol esters than in situ synthesized pinacol esters. The lower rate of transesterification 

of esters 3.17c and 3.17d may be due to the difference in water content in the reaction 

medium. Therefore, we assumed water, formed from the condensation reaction between 

phenylboronic acid and pinacol, may increase the rate of the BF3OEt2-facilitated 

transesterification. To confirm this idea, pre-synthesized boronate esters 3.17a and 3.17b 

were dried under vacuum before subjecting them to transesterification with 3.2. Boronate 

ester 3.17b took 47 h to give 100% transesterification with 5 equiv BF3OEt2. Wherein, 

ester 3.17a gave only 76% transesterification with 5 equiv BF3OEt2 after 23 h of the 

reaction. The results of this study are summarized Table 3. 
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Table 3 

Summary of the transesterification of esters 3.1 and 3.17 with catechol 

Ester 

% Transesterification 

Time 

(h) 
Without 

BF3OEt2 

With 5 equiv 

BF3OEt2 

3.1⁕ 5% 100% 0.3 

3.17a‡ 0% 100% 14 

3.17a⁕ 0% 76% 23 

3.17b‡ 0% 100% 14 

3.17b⁕ 0% 100% 47 

3.17c† 0% 100% 48 

3.17† 0% 100% 51 

Note. ⁕pre-synthesized, ‡Synthesized in situ, †commercially available  
 

3.3.3 Preparative scale transesterification 

Next, the preparative scale transesterification of ester 3.1 with diol 3.2 in the 

presence of BF3OEt2 was investigated (Figure 45). The transesterification of ester 3.1 

was carried out with an equivalent of catechol 3.2 in the presence of 5 equiv of BF3OEt2 

in chloroform. After 24 h the solvent was removed under reduced pressure and complete 

conversion to ester 3.3 and pinacolone was observed using 1H NMR spectroscopy (Figure 

46). The sample was then heated under vacuum for 1 h. Subsequent NMR analysis 
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revealed that these conditions were sufficient enough to remove the pinacolone and allow 

the isolation of ester 3.3. 

 

Figure 45. The reaction of ester 3.1 and catechol 3.2 in the presence of BF3OEt2 in 

chloroform.  

  

Figure 46. 1H NMR spectra (in CDCl3) of the transesterification of ester 3.1 and catechol 

3.2 in the presence of 5 equiv of BF3OEt2 in chloroform.  
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that point, the toluene was removed under reduced pressure at 45 °C and NMR analysis 

in CDCl3 confirmed 100% transesterification of ester 3.1 into ester 3.20 (Figure 48).  

 

Figure 47. The reaction of ester 3.1 and tetraol 3.19 in the presence of BF3OEt2.  
 

 

Figure 48. 1H NMR spectrum of the transesterification product 3.20.  
 

The same reaction was examined in chloroform, which resulted in the same 

product. However, deborylation of ester 3.1 occurs if the reaction mixture is heated or if 

the reaction time is extended (Figure 49). 

 

Figure 49. Deborylation of boronate ester 3.1.  
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studies, where we found that neopentyl glycol gives 100% conversion of ester 3.1 to the 

neopentyl glycol boronate ester with 5 equiv of BF3OEt2.  

Then, bis(dioxaborole) 3.21 and diol 3.2 (2 equiv) were mixed in CDCl3 in an 

NMR tube (Figure 50). There was no evidence of transesterification even after 24 h. 

Then, BF3OEt2 (10 equiv) was added and the sample was analyzed periodically (Figure 

51). With time, crystals formed in the NMR tube and the NMR signals decreased in 

intensity (Figure 52). 

 

Figure 50. The reaction of ester 3.21 and catechol 3.2 in the presence of BF3OEt2.  
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Figure 51. The aromatic region of the 1H NMR spectrum of the reaction between ester 

3.21 and catechol 3.2 in the presence of BF3OEt2 in CDCl3.  
 
 

 

Figure 52. The zoomed in aromatic region of the 1H NMR spectrum after 20 h of the 

reaction between ester 3.21 and catechol 3.2 in the presence of BF3OEt2 in CDCl3.  
 

After 20 h of reaction time, the crystals were isolated and analyzed separately 

using 1H NMR in CDCl3. According to the 1H NMR spectrum, the formation of bis-

catechol ester 3.22 was confirmed (Figure 53).  
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Figure 53. 1H NMR spectrum of isolated bis-catechol ester 3.22 in CDCl3. 
 

Ester 3.23 and catechol 3.2 (2 equiv) were added to an NMR tube with BF3OEt2 

(10 equiv) and CDCl3 (Figure 54). Initially, there was no evidence of transesterification 

between ester 3.23 and catechol 3.2. However, after adding BF3OEt2 (10 equiv), crystals 

formed with time in the NMR tube and the NMR signals decreased in intensity (Figure 

55). 

 

Figure 54. Reaction of ester 3.23 and catechol 3.2 in the presence of BF3OEt2.  
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Figure 55. The aromatic region of the 1H NMR spectrum of the reaction between ester 

3.23 and catechol 3.2 in the presence of BF3OEt2. 
 

Then, after 24 h the crystals (mp: 299 °C -300 °C) were isolated and analyzed 

separately by 1H NMR in CDCl3. Formation of bis-catechol ester 3.24 was supported by 

the signals observed in the NMR spectrum (Figure 56). 

 

Figure 56. 1H NMR spectrum of isolated bis-catechol ester 3.24 in CDCl3.  
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As a final example of bis-pinacol ester transesterification, commercially available 

fluorene-based ester 3.25 and catechol 3.2 (2 equiv) were mixed in CDCl3 in an NMR 

tube (Figure 57). The reaction progress was monitored by NMR spectroscopy and there 

was no evidence of transesterification. However, 53 h after adding 10 equiv of BF3OEt2 

100% transesterification was observed (Figure 58).  

 

Figure 57. The reaction of fluorene-based ester 3.25 and catechol 3.2 in the presence of 

BF3OEt2.  
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Figure 58. The aromatic region of the 1H NMR spectrum of the reaction between 

fluorene-based ester 3.25 and catechol 3.2 a) without BF3OEt2, b-i) with BF3OEt2.  
 

3.3.5 Transesterification with benzene tetraol  

The transesterification of ester 3.1 with tetrahydroxybenzene 3.27 was studied in 

the presence of BF3OEt2 (Figure 59). However, this transesterification was partially 

successful with only about 40% transesterification. The major concern with this reaction 

was to find a better solvent. Tetraol 3.27 is sparingly soluble in most organic solvents. 

The transesterification reaction was carried out in toluene. After three days of adding 

BF3OEt2 all the starting materials dissolved. At that point, the toluene was removed 

under reduced pressure at 45 °C and an NMR spectrum was obtained in CDCl3 (Figure 

60).  
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Figure 59. Reactions of ester 3.1 and tetraol 3.27 in toluene in the presence of BF3OEt2.  
 

 

Figure 60. 1H NMR spectrum of ester 3.1 and tetraol 3.27 in the presence of BF3OEt2 in 

toluene.  
 

The transesterification of ester 3.1 with tetraol 3.27 was also studied in CDCl3 

(Figure 61). However, it took five days to dissolve all the starting materials and 

eventually deborylation of ester 3.1 was observed (Figure 62).  

 

Figure 61. Reaction of ester 3.1 and tetraol 3.27 in CDCl3 in the presence of BF3OEt2.  
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Figure 62. 1H NMR spectrum of ester 3.1 and tetraol 3.27 in the presence of BF3OEt2 in 

CDCl3.  
 

3.3.6 Attempted esterification with HHTP 

Then, we tried to use the effect of BF3OEt2 on the formation of tris boronate 
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carried out in order to attempt to synthesize tris boronate ester 3.30. The hexaol 3.29 is 

sparingly soluble in most organic solvents. First, ester 3.1 and hexaol 3.29 were subjected 

to reaction in chloroform (Figure 63). However, even after adding 15 equiv of BF3OEt2, 

hexaol 3.29 did not dissolve. 
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Figure 63. Reaction of ester 3.1 and hexaol 3.29 in the presence of BF3OEt2 in CDCl3 or 

CHCl3.  
 

Then, the reaction was carried out under similar conditions which were used in 

the synthesis of COF-5 and COF-10.39 Instead of mesitylene/dichloroethane solvent 

mixture used by Dichtel and coworkers, xylene/dichloroethane was used (Figure 64). The 

reaction mixture was heated at 50 °C for 6 days. Although the starting materials dissolved 

after 6 days, it did not give the desired product. The harsh conditions may cause 

deborylation of ester 3.1. 

 

Figure 64. Reaction of 3.1 and 3.29 in the presence of BF3OEt2.  
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transesterification of boronate esters 3.12-3.14, 1,2-propane diol, 1-phenyl-1,2-ethane 

diol, and 1,2-benzenedimethanol coordinate with BF3OEt2, which causes an increase in 

the transesterification of boronate esters 3.12-3.14 with catechol 3.2. In addition, the 

transesterification of hydrobenzoins (3.15 and 3.16) seems to be facilitated by 

coordination followed by rearrangement.  

Boron trifluoride also facilitated transesterification reactions of substituted 

pinacol boronate esters 3.17a-3.17d with catechol 3.2. The results indicate that there is 

little effect from substituent groups on the activity of BF3OEt2. However, the amount of 

water present in the reaction mixture influences the rate of transesterification. 

Boronate ester 3.3, which formed from the transesterification of ester 3.1 and 

catechol 3.2 in the presence of BF3OEt2, was successfully isolated. Finally, BF3OEt2 

was successfully used for the synthesis of several bis(dioxaborole)s. However, the 

complete formation of bis(dioxaborole) 3.28 has yet to be achieved. 

 

3.5 Experimental 

3.5.1 The effect of boron trifluoride on the transesterification of boronate 

esters. 

Diol 3.8 was commercially available and it was dried with Na2SO4. Diol 3.8 (4 

mL) was dried using Na2SO4 (2 g) for 6 h.  

The transesterification reactions of ester 3.9 with catechol 3.2 were carried out in 

NMR tubes using CDCl3 as the solvent. An equimolar mixture of boronate ester 3.9 (8.6 

mg, 0.058 mmol, 1 equiv) and catechol 3.2 (6.4 mg, 0.058 mmol, 1 equiv) in CDCl3 (0.7 

mL) was subjected to different equivalents (1 drop: 1 equiv, 3 drops: 3 equiv, 5 drops: 5 
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equiv, 10 drops: 10 equiv) of BF3OEt2. The equivalents of BF3OEt2 were determined 

based on the 1H-NMR integrations of the relevant proton signals (Table 4). 

The transesterification reaction of esters 3.12, 3.13, and 3.14 with catechol 3.2 

were carried out in NMR tubes using CDCl3 as the solvent. An equimolar mixture of 

boronate esters (8.6 mg, 0.058 mmol, 1 equiv) and catechol 3.2 (6.4 mg, 0.058 mmol, 1 

equiv) in CDCl3 (0.7 mL) was subjected to reactions using different equivalents (1 drop: 

1 equiv, 3 drops: 3 equiv, 5 drops: 5 equiv, 10 drops: 10 equiv) of BF3OEt2 as the 

catalyst. The equivalents of BF3OEt2 were determined based on the 1H-NMR 

integrations of the relevant proton signals (Table 4). 

The transesterification reaction of esters 3.12, 3.13, 3.14, 3.15, and 3.16 with 

catechol 3.2 were carried out in NMR tubes using CDCl3 as the solvent. An equimolar 

mixture of boronate esters (8.6 mg, 0.058 mmol, 1 equiv) and catechol 3.2 (6.4 mg, 0.058 

mmol, 1 equiv) in CDCl3 (0.7 mL) was subjected to reactions. BF3OEt2 (5 drops, 0.29 

mmol, 5 equiv) was added and reaction progress was monitored by 1H NMR 

spectroscopy. The percent transesterification was determined based on the 1H NMR 

integrations of the relevant proton signals (Table 4). 

 

2-(4-Bromophenyl)-1,3,2-benzodioxaborole (3.18a). An equimolar amount of 

boronate ester 3.17a (3.3 mg, 0.0116 mmol, 1 equiv) and diol 3.2 (1.3 mg, 0.0116 mmol, 

1 equiv) were mixed in NMR tube in CDCl3 (0.7 mL). BF3OEt2 (1 drop, 0.0580 mmol, 5 

equiv) was added and reaction progress was monitored by 1H NMR spectroscopy. The 

percent transesterification was determined based on the 1H NMR integrations of the 

B
O

O
Br

3.18a
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relevant proton signals (Table 4). 1H-NMR (CDCl3, 300 MHz) δ: 7.93 (d, 2H), 7.63 (d, 

2H), 7.31-7.27 (m, 4H), 7.13-7.10 (m, 4H). 

 

2-(4-Methoxyphenyl)-1,3,2-benzodioxaborole (3.18b). An equimolar amount of 

boronate ester 3.17b (2.7 mg, 0.0116 mmol, 1 equiv) and diol 3.2 (1.3 mg, 0.0116 mmol, 

1 equiv) were mixed in NMR tube in CDCl3 (0.7 mL). BF3OEt2 (1 drop, 0.0580 mmol, 5 

equiv) was added and reaction progress was monitored by 1H NMR spectroscopy. The 

percent transesterification was determined based on the 1H NMR integrations of the 

relevant proton signals (Table 4). 1H-NMR (CDCl3, 300 MHz) δ: 8.04 (d, 2H), 7.02 (d, 

2H), 7.11-7.09 (m, 4H), 7.29-7.28 (m, 4H), 3.87 (s, 3H). 

 

2-(4-Chlorophenyl)-1,3,2-benzodioxaborole (3.18c). An equimolar amount of 

boronate ester 3.17c (2.8 mg, 0.0116 mmol, 1 equiv) and diol 3.2 (1.3 mg, 0.0116 mmol, 

1 equiv) were mixed in NMR tube in CDCl3 (0.7 mL). BF3OEt2 (1 drop, 0.0580 mmol, 5 

equiv) was added and reaction progress was monitored by 1H NMR spectroscopy. The 

percent transesterification was determined based on the 1H NMR integrations of the 

relevant proton signals (Table 4). 1H-NMR (CDCl3, 300 MHz) δ: 8.04 (d, 2H), 7.48 (d, 

2H), 7.32-7.28 (m, 4H), 7.14-7.11 (m, 4H). 
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4-(1,3,2-Benzodioxaborol-2-yl)-benzaldehyde (3.18d). An equimolar amount of 

boronate ester 3.17d (2.7 mg, 0.0116 mmol, 1 equiv) and diol 3.2 (1.3 mg, 0.0116 mmol, 

1 equiv) were mixed in NMR tube in CDCl3 (0.7 mL). BF3OEt2 (1 drop, 0.0580 mmol, 5 

equiv) was added and reaction progress was monitored by 1H NMR spectroscopy. The 

percent transesterification was determined based on the 1H NMR integrations of the 

relevant proton signals (Table 4). 1H-NMR (CDCl3, 300 MHz) δ: 10.09 (s, 1H), 8.29 (d, 

2H), 8.04 (d, 2H), 7.36-7.32 (m, 4H), 7.17-7.14 (m, 4H). 

Table 4 

1H-NMR signals used to determine the percent transesterification 

Reaction starting material product 

3.1 + 3.2 δ 7.80 (3.1) δ 8.10 (3.3) 

3.9 + 3.2 δ 7.80 (3.9) δ 8.10 (3.3) 

3.12 + 3.2 δ 7.79 (3.12) δ 8.10 (3.3) 

3.13 + 3.2 δ 7.90 (3.13) δ 8.10 (3.3) 

3.14 + 3.2 δ 7.76 (3.14) δ 8.10 (3.3) 

3.15 + 3.2 δ 8.00 (3.15) δ 8.10 (3.3) 

3.16 + 3.2 δ 7.99 (3.16) δ 8.10 (3.3) 

3.17a + 3.2 δ 7.60 (3.17a) δ 7.90 (3.18a) 

3.17b + 3.2 δ 7.75 (3.17b) δ 8.00 (3.18b) 

3.17c + 3.2 δ 7.70 (3.17c) δ 8.00 (3.18c) 
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Reaction starting material product 

3.17d + 3.2 δ 7.96 (3.17d) δ 8.30 (3.18d) 

 

3.5.2 Isolation of dioxaborole 3.3 

Ester 3.1 (0.1 g, 0.49 mmol, 1 equiv) and diol 3.2 (0.054 g, 0.49 mmol, 1 equiv) 

were mixed in CHCl3 (15 mL) in a vial. Chloroform was washed with distilled water 

(3×30 mL) before using it for the reaction. Then, BF3OEt2 (0.3 mL, 2.45 mmol, 5 equiv) 

was added and the reaction mixture was stirred for 24 h at room temperature. The product 

was concentrated by removing the solvent under reduced pressure. The collected product 

was heated at 50 ˚C under vacuum (20 torr) for 1 h.  

3.5.3 Effect of BF3OEt2 on the oligo(dioxaborole) formation   

The reaction progress was monitored by 1H NMR spectroscopy. The percent 

transesterification was determined based on the 1H NMR integrations of the relevant 

proton signals (Table 5). 

Table 5 

1H-NMR signals used to determine the percent transesterification 

Reaction starting material product 

3.1 + 3.19 δ 7.80 ppm (3.1) δ 7.79 ppm (3.20) 

3.1 + 3.21 δ 7.79 ppm (3.21) δ 8.19 ppm (3.22) 

3.1 + 3.23 δ 7.88 ppm (3.23) δ 8.18 ppm (3.24) 

3.1 + 3.25 δ 7.90 ppm (3.25) δ 8.20 ppm (3.26) 
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Reaction starting material product 

3.1 + 3.27 δ 7.90 ppm (3.1) δ 8.20 ppm (3.28) 

 

 

3,9-Bis(phenyl)-2,4,8,10-tetraoxa-3,9-diboraspiro[5.5]undecane (3.20). Tetraol 

3.19 (1.6 mg, 0.0116 mmol, 1 equiv) and ester 3.1 (4.7 mg, 0.0232 mmol, 2 equiv) were 

mixed in toluene-d8 (0.7 mL) in an NMR tube. Then, BF3OEt2 (2 drops, 0.1160 mmol, 

10 equiv) was added. It took 3 days to dissolve all the starting materials. After 3 days of 

the reaction, 1H NMR was obtained. 1H-NMR (CDCl3, 300 MHz) δ: 7.79 (d, 4H), 7.44-

7.35 (m, 6H), 4.06 (s, 8H). 

 

2,2'-(1,4-Phenylene)bis-1,3,2-benzodioxaborole (3.22). Ester 3.21 (3.8 mg, 

0.0116 mmol, 1 equiv) and catechol 3.2 (2.5 mg, 0.0232 mmol, 2 equiv) were mixed in 

CDCl3 (0.7 mL) in an NMR tube. Then, BF3OEt2 (2 drops, 0.1160 mmol, 10 equiv) was 

added and the reaction progress was monitored by 1H NMR spectroscopy. 1H-NMR 

(CDCl3, 300 MHz) δ: 8.20 (s, 4H), 7.35-7.33 (m, 4H), 7.16-7.13 (m, 4H). 

 

2,2'-[1,1'-Biphenyl]-4,4'-diylbis-1,3,2-benzodioxaborole (3.24). Ester 3.23 (3.8 

mg, 0.0058 mmol, 1 equiv) and catechol 3.2 (1.3 mg, 0.0116 mmol, 2 equiv) were mixed 
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in CDCl3 (0.7 mL) in an NMR tube. Then, BF3OEt2 (1 drops, 0.0580 mmol, 10 equiv) 

was added and the reaction progress was monitored by 1H NMR spectroscopy. 1H-NMR 

(CDCl3, 300 MHz) δ: 8.20 (d, 4H), 7.80 (d, 4H), 7.35-7.32 (m, 4H), 7.16-7.13 (m, 4H). 

 

2,2'-(9,9-Dimethyl-9H-fluorene-2,7-diyl)bis[1,3,2-benzodioxaborole] (3.26). 

Ester 3.25 (5.2 mg, 0.0116 mmol, 1 equiv) and catechol 3.2 (2.5 mg, 0.0232 mmol, 2 

equiv) were mixed in CDCl3 (0.7 mL) in an NMR tube. Then, BF3OEt2 (2 drops, 0.1160 

mmol, 10 equiv) was added and the reaction progress was monitored by 1H NMR 

spectroscopy. 1H-NMR (CDCl3, 300 MHz) δ: 8.19 (s, 2H), 8.12 (d, 2H), 7.92 (d, 2H), 

7.35-7.32 (m, 4H), 7.15-7.12 (m, 4H). 

 

2,6-Diphenyl-benzo[1,2-d;4,5-d']bis[1,3,2]dioxaborole (3.28). Tetraol 3.27 (1.6 

mg, 0.0116 mmol, 1 equiv) and ester 3.1 (4.7 mg, 0.0232 mmol, 2 equiv) were mixed in 

toluene (3 mL) in a vial. Then, BF3OEt2 (2 drops, 0.1160 mmol, 10 equiv) was added. 

After 3 days of the reaction, toluene was removed under reduced pressure (45 °C). 1H 

NMR spectroscopy of the product was obtained in CDCl3. 

Tetraol 3.27 (1.6 mg, 0.0116 mmol, 1 equiv) and ester 3.1 (4.7 mg, 0.0232 mmol, 

2 equiv) were mixed in CDCl3 (0.7 mL) in an NMR tube. Then, BF3OEt2 (2 drops, 

0.1160 mmol, 10 equiv) was added and the 1H NMR was obtained after 3 days. 
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Attempted synthesis of 2,7,12-triphenyl-triphenyleno[2,3-d:6,7-d':10,11-

d'']tris[1,3,2]dioxaborole (3.30). Hexaol 3.29 (3.8 mg, 0.0116 mmol, 1 equiv) and ester 

3.1 (7.1 mg, 0.0348 mmol, 3 equiv) were mixed in CHCl3 (3 mL) in a vial. Then, 

BF3OEt2 (3 drops, 0.1740 mmol, 15 equiv) was added.  

Hexaol 3.29 (1.6 mg, 0.0116 mmol, 1 equiv) and ester 3.1 (4.7 mg, 0.0232 mmol, 

3 equiv) were mixed in CDCl3 (0.7 mL) in an NMR tube. Then, BF3OEt2 (3 drops, 

0.1740 mmol, 15 equiv) was added and the 1H NMR was obtained after 3 days. 

Hexaol 3.29 (3.8 mg, 0.0116 mmol, 1 equiv) and ester 3.1 (7.1 mg, 0.0348 mmol, 

3 equiv) were mixed in xylene (1 mL) and dichloroethane (3 mL) solvent mixture in a 

vial. Then, BF3OEt2 (3 drops, 0.1740 mmol, 15 equiv) was added. The reaction mixture 

was heated at 50 °C for 6 days. 
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CHAPTER IV 

PINACOL REARRANGEMENT 

4.1 Background 

In chapter III we showed that the addition of BF3OEt2 to transesterification 

reactions facilitated conversion to the product esters. In some of those reactions the 

subsequent rearrangement of pinacol caused a shift in equilibrium by removing pinacol 

via the pinacol rearrangement. The pinacol rearrangement is an acid catalyzed 

transformation which converts 1,2-diols to ketones (Figure 65). Here BF3OEt2 acts as a 

Lewis acid, which facilitates the rearrangement.41 

 

Figure 65. Acid catalyzed rearrangement reaction of 1,2-diols. 
 

The rearrangement proceeds through a positively charged intermediate, which 

undergoes a 1,2-alkyl shift. Mechanistically, the hydroxyl group gets protonated in the 

presence of a Bronsted acid or coordinated by a Lewis acid. Next, a relatively stable 

carbocation is formed after the removal of a water molecule. Then, a rearrangement takes 

place as the alkyl group shifts to the positively charged carbon generating an even more 

stable carbocation. Finally, a proton is removed to generate the pinacolone product 

(Figure 66). 
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Figure 66. Mechanism of the Bronsted acid catalyzed pinacol rearrangement.  
 

To date, many studies regarding the pinacol rearrangement have been reported 

using different acid catalysts or dehydrating agents. In 1988, Kakimoto and group 

investigated the pinacol rearrangement of various diols with polyphosphoric acid 

trimethylsilyl ester (PPSE) under mild conditions (80 °C).42 They observed the formation 

of tetraphenylethylene oxide (4.2) in addition to benzpinacolone (4.3) during the 

rearrangement of benzpinacol (4.1) (Figure 67). However, at 150 °C benzpinacolone was 

the only product. 

 

Figure 67. Benzpinacol rearrangement in the presence of PPSE.  
 

Yamamoto and coworkers studied the benzpinacol rearrangement with 4-

methylpyridine N-oxide SbCl5 (1:1) complex (complex A) and pyridine N-oxide-SbCl5 

(1:1) (complex B).43 They observed the formation of benzpinacolone along with a small 

amount of tetraphenylethylene oxide with complex A and B (Figure 68).  
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Figure 68. Benzpinacol rearrangement in the presence of complex A and B.  
 

Robinson and coworkers used a dehydrating agent, diethoxytriphenylphosphoran 

(DTPP).44 In their study, they experienced cis and trans epoxide formation of meso- or d-

1,2-diphenylethane-1,2-diol with DTPP (Figure 69).  

 

Figure 69. Meso- and d-1,2-diphenylethane-1,2-diol reaction with DTPP.  
 

Sands has used BF3OEt2 for the rearrangement of various cyclic diols (Figure 

70).45 This method gave the ketone as the major product instead of the expected diene 

formation which occurs in H2SO4.46  
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Figure 70. The reaction of cyclic diols with BF3OEt2.  
 

Walsh and coworkers experienced a pinacol-type rearrangement of R-hydroxy 

cyclopropyl carbinols while they were trying diastereoselective synthesis of cis- and 

trans-2,3-disubstituted cyclobutanone.47 The rearrangement of cyclopropane diol with 

sulfonyl chlorides in pyridine (py) and with a series of Lewis and Brønsted acids (Figure 

71). Methanesulfonyl chloride (MsCl) and mesitylene sulfonyl chloride (MesSO2Cl) in 

pyridine, both favoring the trans diastereomer. The major product with catalytic p-

toluenesulfonic acid (PTSA) was trans-2,3-disubstituted cyclobutanone and BF3·OEt2 

favors the cis product.  

 

Figure 71. Reaction of cyclopropane diol with Lewis and Brønsted acids.  
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4.2 Objective 

Study the effect of Lewis acids on the dehydration/rearrangement of pinacol and 

various 1,2-diols. 

 

4.3 Results and Discussion 

Toward this goal, the rearrangement of benzpinacol, pinacol, meso-hydrobenzoin, 

and d-hydrobenzoin was studied with common organic soluble Lewis acid catalysts, para-

toluene sulfonic acid (PTSA) and boron trifluoride diethyl etherate (BF3OEt2) (Figure 72). 

 

Figure 72. The acid catalysts used in the current study.  
 

4.3.1 Pinacol rearrangement with PTSA 

To begin, the rearrangement of benzpinacol, pinacol, meso-hydrobenzoin, and d-

hydrobenzoin was studied using PTSA as the catalyst and toluene as the solvent.  

The rearrangement of benzpinacol (4.1) was investigated in toluene with catalytic 

amounts (10 mol %) of PTSA at different temperatures. 1H NMR analysis revealed the 

formation of two products, tetraphenylethylene oxide (4.2) and benzpinacolone (4.3) 

(Figure 73). The results are summarized in Table 6. These results are similar to that of 

Yamamoto.43 

 

Figure 73. The reaction of benzpinacol and PTSA. 
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Table 6 

Summary of the extent of benzpinacol (4.1) rearrangement in the presence of PTSA  

Entry 
4.1 
mM 

PTSA 
mol% 

Condition Composition (%) 

Temp. (°C) Time (h) 4.1 4.2 4.3 

1 0.06 10% 22 44 100 ND ND 

2 0.06 10% 120 24 ND 31 69 

3 0.06 10% 110 1 ND 100 ND 

4 0.06 10% 80 1.5 ND 100 ND 

5 0.05 10% 50 20 40 60 ND 

6 0.06 1% 80 6 94 ND 6 

7 0.06 5% 80 4.5 ND 61 39 

8 0.06⁕ 10% 80 6 ND 59 41 

9 0.05⁕ 10% 80 1.5 ND 85 15 

10 0.05⁕ 10% 80 3.5 4 95 1 

11 0.05⁕ 10% 80 1 42 55 3 

12 0.05⁕ 10% 80 20 ND 46 54 

Note. ND: Not Detected, reactions were run using 5 mL toluene, ⁕50 mL scale reaction 
 

At room temperature, there was no rearrangement. At 80 °C, the complete 

conversion of diol 4.1 into epoxide 4.2 after 90 min with 10 mol% of PTSA was observed 

(entry 4). The formation of epoxide 4.2 starts with time. At 50 °C, the formation of 
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ketone 4.3 was not observed (entry 5). However, similar results on a large-scale (1 g of 

diol 4.1) study could not be obtained. This may be because large-scale reactions were 

carried out in a 100 mL round bottom flask instead of 25 mL round bottom flask, and it 

was heated in an 80 °C oil bath. The temperature through the whole reaction mixture may 

not be continuous. The stirring speed may also affect the rate of the reaction. In 

conclusion, the rearrangement of benzpinacol with PTSA depends on the amount of the 

PTSA, and temperature has higher influence for the formation of ketone 4.3. We 

identified product epoxide 4.2 as the kinetic product and product 4.3 as the 

thermodynamic product. The mechanism for the benzpinacol rearrangement with PTSA 

is shown in Figure 74. This reaction proceeds through a carbocation intermediate. 

Epoxide 4.2 forms by donating the lone pair of electrons on the oxygen of hydroxyl 

group to the carbocation and this reaction is reversible. With high temperature and time, 

the epoxide converts into the carbocation intermediate. Finally, the ketone product 4.3 is 

obtained after the aryl shift.  
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Figure 74. The proposed mechanism for the reaction: (a) to form epoxide 4.2 and (b) to 

form ketone 4.3.  
 

Next, the rearrangement of pinacol (4.4) was studied with a catalytic amount of 

the PTSA in toluene. There was no rearrangement of pinacol with 10% PTSA in toluene 

at room temperature (Figure 75). Further, rearrangement was not observed even after 

refluxing the reaction mixture for 24 h. This may be because alkyl substituents are a less 

strong electron-donating group than aryl substituents. 

 

Figure 75. The reaction of pinacol with PTSA.  
 

To support the notion that aryl substituted diols help to facilitate the 

rearrangement, meso-hydrobenzoin (4.6) was studied with a catalytic amount of the 

PTSA in toluene. There was no rearrangement of these diols with 10% PTSA in toluene 

at room temperature. However, after refluxing in toluene for 24 h with 10% PTSA 
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product was obtained (Figure 76). According to 1H-NMR analysis, the reaction mixture 

contained ketone (4.8), aldehyde (4.7), and epoxide (4.9) (Figure 77). The proposed 

mechanism is shown in Figure 78. 

 

Figure 76. The reaction of diol 4.6 with PTSA.  
 

 

Figure 77. 1H NMR spectra of a) meso-hydrobenzoin and b) reaction of diol 4.6 with 

PTSA.  
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Figure 78. The proposed mechanism for the reaction of diol 4.6 with PTSA.  
 

The rearrangement of d-hydrobenzoin (4.10) was studied with a catalytic amount 

of the PTSA in toluene. Again, there was no rearrangement with 10% PTSA in toluene at 

room temperature. The reaction mixture was refluxed in toluene for 24 h with 10% PTSA 

(Figure 79). After 24 h, toluene was removed under reduced pressure and NMR of the 

product was obtained. According to the NMR spectrum, the rearrangement of diol 4.10 

resulted in three major products (Figure 80). 
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Figure 79. The reaction of diol 4.10 with PTSA.  
 

 

Figure 80. 1H NMR spectra of a) d-hydrobenzoin and b) reaction of diol 4.10 with PTSA.   
 

4.3.1 Pinacol rearrangement with BF3∙OEt2   

Next, BF3∙OEt2 was investigated for the rearrangement of benzpinacol, pinacol, 

meso-hydrobenzoin, and d-hydrobenzoin (Figure 81). All reactions were carried out in an 

NMR tube in CDCl3. First, the rearrangement of benzpinacol 4.1 with 0.3, 2.5, and 7 

equiv of BF3OEt2 was studied. The results are shown in Figure 82. 

 

Figure 81. The reaction of benzpinacol with BF3OEt2.  
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Figure 82. Benzpinacol rearrangement with the different equivalents of BF3OEt2.  
 

The reactions were monitored for 5 h. There was only 44% benzpinacolone with 

0.3 equiv of the catalyst. Wherein, there was no big difference in the rearrangement with 

2.5 and 7 equiv of BF3OEt2 with having 94% and 96% rearrangement, respectively. This 

rearrangement reaction may have reached 100% conversion. Since the percent conversion 

was calculated using the integration values of relevant 1H NMR signals, which may have 

been overlapping with solvent signals. 

Then, rearrangement of pinacol 4.4 with six different equivalents of BF3OEt2 was 

studied (Figure 83). The results are shown in Figure 84. 

 

Figure 83. The reaction of pinacol with BF3OEt2.  
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Figure 84. Pinacol rearrangement with six different equivalents of BF3OEt2.  
 

After 5 h, the highest rearrangement of pinacol was observed with 3 equiv of 

BF3OEt2. With 0.4 and 1.6 equiv of BF3OEt2 there were only 9% and 15% pinacolone, 

respectively. By increasing the amount of BF3OEt2 to more than 3 equiv, the rate and the 

amount of rearrangement decreased.  

 

Figure 85. The proposed mechanism of the pinacol rearrangement in the presence of 

BF3OEt2.   
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The rearrangement of meso-hydrobenzoin (4.6) was studied with 0.5, 1, 3, 5, 7, 

and 10 equiv BF3OEt2 (Figure 86). The reaction was monitored over 7 h using 1H NMR 

(Figure 87). 

 

Figure 86. The reaction of diol 4.6 with BF3OEt2.  
 

 

Figure 87. 1H NMR spectra of a) meso-hydrobenzoin 4.6, b) with 5 equiv BF3OEt2, and 

c) with 10 equiv BF3OEt2.   
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According to the 1H NMR spectra, BF3OEt2 catalyzed the rearrangement of diol 

4.6. It formed different products with time and with the different equivalents of BF3OEt2. 

The major product was aldehyde 4.7. NMR spectra (Figure 87) show the different 

product formation of diol 4.6 with the different equivalence of BF3OEt2. However, with 

7 equiv of BF3OEt2, it formed only its aldehyde 4.7 (Figure 88). 

 

Figure 88. 1H NMR spectrum of the rearrangement reaction of diol 4.6 with 7 equiv of 

BF3OEt2. 
 

The rearrangement hydrobenzoin (4.10) with 5 and 10 equiv of BF3OEt2 was 

studied (Figure 89). 

 

Figure 89. The reaction of diol 4.10 with BF3OEt2.  
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Figure 90. 1H NMR spectra of a) d-hydrobenzoin 4.10, b) with 5 equiv BF3OEt2, and c) 

with 10 equiv BF3OEt2.   
 

4.4 Conclusions 
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transesterification reactions of the boronate esters in chapter III. See table 7 for a 

summary of pinacol rearrangement products. 

Table 7 

Different rearrangement products of pinacol, benzpinacol, and hydrobenzoin 

1,2-diol PTSA BF3OEt2 

benzpinacol (4.1) 

  

pinacol (4.4) No rearrangement 

 

meso-hydrobenzoin (4.6) 

 

 

hydrobenzoin (4.10) 

 

 

 

4.5 Experimental 

Rearrangement of 1,1,2,2-tetraphenylethane-1,2-diol (benzpinacol, 4.1) with 

PTSA. Small scale and large scale reactions were carried out in 25 mL and 100 mL round 

bottom flasks, respectively. Diol 4.1 and PTSA (1–13 mol %) were mixed in toluene. The 
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reaction mixture was heated in an oil bath. The reaction mixtures were monitored by TLC 

(ethyl acetate: hexane (1:4)) until completion and then by 1H –NMR spectroscopy. 

Rearrangement of 2,3-dimethylbutane-2,3-diol (pinacol, 4.4) with PTSA. Diol 4.4 

(20 mg, 0.093 mmol) was mixed with toluene (5 mL) and PTSA (10 mol %) in a 25 mL 

round bottom flask. The reaction mixture was refluxed using an oil bath set to 110 °C. 

Rearrangement of (1R,2S)-1,2-diphenylethane-1,2-diol (meso-hydrobenzoin, 4.6) 

with PTSA. Diol 4.6 (20 mg, 0.093 mmol) was mixed with toluene (5 mL) and PTSA (10 

mol %) in a 25 mL round bottom flask. The reaction mixture was refluxed in an oil bath. 

Rearrangement of (1R,2R)-1,2-diphenylethane-1,2-diol (d-hydrobenzoin, 4.10) 

with PTSA. Diol 4.10 (100 mg, 0.85 mmol) was mixed with toluene (5 mL) and PTSA 

(10 mol %) in a 25 mL round bottom flask. The reaction mixture was refluxed in an oil 

bath. 

The rearrangement reactions with BF3OEt2 were carried out in NMR tubes using 

CDCl3 as the solvent and the reaction progress was monitored by 1H-NMR spectroscopy. 

The equivalence of BF3OEt2 and the extent of rearrangement were determined based on 

the 1H-NMR integrations of the relevant proton signals (Table 8). 

Table 8 

1H-NMR signals used to determine the percent rearrangement 

Reaction starting material product 

4.1 + PTSA δ 7.33-7.26 ppm (4.1) 
δ 7.68 ppm (4.3) 

δ 7.14- 7.05 ppm (4.2) 

4.4 + PTSA δ 1.3 ppm (4.4) δ 2.3 + 1.13ppm  
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Reaction starting material product 

4.1 + BF3OEt2 δ 7.33-7.26 ppm (4.1) δ 7.68 ppm (4.3) 

4.4 + BF3OEt2 δ 1.3 ppm (4.1) δ 2.3 + 1.13ppm  

 

Rearrangement of 1,1,2,2-tetraphenylethane-1,2-diol (4.1) with BF3OEt2. Diol 

4.1 (0.0311 g, 0.085 mmol) was reacted with five different equivalence (1 drop: 0.3 

equiv, 3 drops: 1 equiv, 6 drops: 2.5 equiv, 12 drops: 7 equiv, 20 drops: 14 equiv) of 

BF3OEt2 in CDCl3 (0.6 mL).  

Rearrangement of 2,3-dimethylbutane-2,3-diol (4.4) with BF3OEt2. Diol 4.4 (0.01 

g, 0.085 mmol) was reacted with six different equivalence (1 drop: 0.4 equiv, 1.5 drops: 

1.6 equiv, 6 drops: 3 equiv, 10 drops: 5 equiv, 18 drops: 8 equiv, 22 drops: 10 equiv) of 

BF3OEt2 in CDCl3 (0.6 mL).  

Rearrangement of (1R,2S)-1,2-diphenylethane-1,2-diol (4.6) with BF3OEt2. Diol 

4.6 (2.5 mg, 0.016 mmol) was reacted with five different equivalence (0.5 equiv, 1 equiv, 

3 equiv, 5 equiv, 10 equiv) of BF3OEt2 in CDCl3 (0.7 mL).  

Rearrangement of (1R,2R)-1,2-diphenylethane-1,2-diol (4.10) with BF3OEt2. 

Diol 4.10 (2.5 mg, 0.016 mmol) was reacted with two different equivalence (5 equiv, 10 

equiv) of BF3OEt2 in CDCl3 (0.7 mL). 
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