
Proceedings of the 50th Hawaii International Conference on System Sciences | 2017

Exploitation and Detection of a Malicious Mobile Application

Thanh Nguyen
University of South Alabama

tnguye001@gmail.com

J. Todd McDonald
University of South Alabama

jtmcdonald@southalabama.edu

William Bradley Glisson
University of South Alabama
bglisson@southalabama.edu

Abstract
Mobile devices are increasingly being embraced

by both organizations and individuals in today’s
society. Specifically, Android devices have been the
prominent mobile device OS for several years. This
continued amalgamation creates an environment that
is an attractive attack target. The heightened
integration of these devices prompts an investigation
into the viability of maintaining non-compromised
devices. Hence, this research presents a preliminary
investigation into the effectiveness of current
commercial anti-virus, static code analysis and
dynamic code analysis engines in detecting unknown
repackaged malware piggybacking on popular
applications with excessive permissions. The
contribution of this paper is two-fold. First, it provides
an initial assessment of the effectiveness of anti-virus
and analysis tools in detecting malicious applications
and behavior in Android devices. Secondly, it provides
process for inserting code injection attacks to
stimulate a zero-day repackaged malware that can be
used in future research efforts.

1. Introduction

Mobile devices are rapidly becoming the dominant
mode for voice and data communications in today’s
globally networked environment. Market reports
indicate smartphone sales reached 1.4 billion in 2015,
they predict that the number of connected devices will
expand to 6.4 billion in 2016 and that application
downloads will hit 268 billion by 2017 [4, 11, 15]. The
Android Operating System (OS) has been, by far, the
dominant mobile device OS for several years making
up 86.2% of the world mobile market in quarter 2 of
2016 [6]. Hence, it is reasonable that attackers are not
only refocusing targeting efforts from computers to
mobile devices, they are focusing specifically on the
Android OS.

The proliferation of the Android OS makes it a
natural target for the distribution of malicious code
that has the potential to impact individuals along with

public and private sector organizations. A number of
recent articles highlight the fact that malicious code
has successfully bypassed market vendor security [1
3]. According to one article, recent adware/malware,
referenced as Android/Clicker.G, that was available
on the Play Store, targeted Russian speakers,
implemented a six-hour delay prior to behaving badly
and then proceeded to bombard the user with requests
every two minutes [2]. Another article discusses
phishing applications that pose as interface
applications for online payment systems that were
available on the Play Store [3]. Coupling this type of
activity with the growth of the Internet of Things (IoT)
introduces new opportunities for remote code
execution, Distributed Denial of Service (DDoS)
attacks and acquisition of personal information [8].
The impact of an increased attack surface escalates
reoccurrence issues by stifling malicious software
detection and eradication efforts.

Complicating matters, increases in sophisticated
stealth techniques such as code virtualization,
encryption, and transformation have made it even
harder to detect malware. As noted by Zhou and Jiang
[24], a popular approach in the distribution of malware
is the injection of seemingly innocuous code into
trusted android applications. They go on to state that
out of 1260 malware samples that they collected, 86%
were repackaged applications. This indicates that
repacking popular applications with malicious code
and distributing them through market vendors is a
viable attack vector. Hence, it is advantageous for both
individuals and industry professionals alike to acquire
an understanding of the effectiveness of anti-virus,
static and dynamic software solutions in detecting
repackaged applications that contain malicious code.
This environment prompted the hypothesis that
commercial and open source tools will not detect a
repackaged application with excessive permissions
that contain malicious code. In order to address this
hypothesis the following research questions were
identified:
1. Do software solutions detect repackaged

applications?
2. Do analysis tools detect malicious code activity?

URI: http://hdl.handle.net/10125/41911
ISBN: 978-0-9981331-0-2
CC-BY-NC-ND 6181

mailto:tnguye001@gmail.com
mailto:jtmcdonald@southalabama.edu
mailto:bglisson@southalabama.edu
http://hdl.handle.net/10125/41911

The contribution of our work is two-fold. First, we
demonstrate that detecting repacked applications with
malicious code is a significant issue with current
commercial and open source software solutions that
are currently available from the market. We developed
new malware, inserted it into a reverse engineered
application (app) that already contained extensive
permissions and is currently available in the market.
Once the malware had been successfully inserted into
the application, the app was re-packaged and tested
against 12 anti-virus solutions, three static analysis
engines, two dynamic analysis engines and four
engines that implement a combination of static and
dynamic solutions. Second, we present a reverse
engineering methodology that can be replicated to test
detection solutions and used as a guide for future code
investigations and research efforts.

The balance of the paper is structured in the
following manner. Section two presents relevant back
ground research. Section three presents the research
methodology along with a detailed experimental
design. Section four discusses the research results
along with providing relevant analysis. Section five
draws conclusions from the analysis and presents areas
of future work.

2. Background

The continued amalgamation of mobile devices
into businesses environments and personal activities
raises concerns about risk [16, 27]. Coupling this
concern with the growing impact that mobile device
residual data appears to be having in legal
environments escalates interest in understanding how
to mitigate this risk [10, 18]. Hence, the popularity of
the Android mobile platform has prompted increased
research interest in detecting malicious Android
applications. Existing research can be grouped into
three broad categories: static analysis, dynamic
analysis and Risk Analysis.

2.1 Static analysis

Static analysis, in the context of android operating
systems, is typically based on source code, manifest,
or binary analysis that searches for strings and patterns
that may match known malicious behaviors. These
techniques are not limited to analyzing manifest
permission requests from applications, but also control
flow, signature-based detection, and static taint
analysis.

Felt, et.al., [26] developed Stowaway, a static
analysis tool, that extracts manifest files and detects
over-privilege requests during install. Stowaway’s

main concern is detecting whether developers
followed a least privilege guideline when setting up
their permission requests. Stowaway analyzes the
applications and determines the set of API calls that it
uses. It then maps those API calls to permissions in
order to detect overly privileged applications.

A severe limitation of current static analysis
techniques is the reliance on permission-based
requests in the Android manifest. Although
permissions are a key factor in characterizing and
detecting malware, the manifest contains much more
information that might help detect malware. Feldman
et al. [12] proposed Manilyzer, a tool that uses
additional information found in the manifest file. It
employs a machine learning algorithm that classifies
an application as malicious or benign. Specifically,
Manilyzer considers the following characteristics in
the manifest file to be significant: 1) permission
requests, 2) high priority receivers, 3) low version
number, and 4) abused services. Based on profiling
617 applications, they reported that the accuracy
detection rate of the tool was at 90% with a false
positive and false negative rate of only 10%.

Sanz et al. [13] proposed a method for malware
detection using extracted strings from application files
as a way to detect anomalies. The researcher’s
methodology relies on readable string extraction from
applications. The process involves the following steps:
disassembly, tokenization of symbols, and term
frequency. Disassembly involves using Android
disassembler smali in order to extract the disassembly.
The researchers search for const-string operational
code within the disassembled code in order to obtain
the strings. The tokenizer utilizes dot, comma, colon,
semi-colon, and blank space in order to conform the
string. Finally, the string is tested with a point in
feature space for anomalies detection. The researchers,
however, stated that their detection systems produced
high error rates because of false positives, but they
state that with more normalization the error rates will
decrease. Furthermore, the authors state that this is
only from a static stand-point and not a dynamic one
where strings can be generated at run-time.

2.2 Dynamic Analysis

Dynamic analysis studies the run-time behavior of
programs to classify them as malicious. Min et al. [19]
propose a run time-based, behavioral analysis method
for detecting malicious applications. They employ a
customized emulator by applying API hook
technology to the loadable kernel module. Thus, when
an app is running through a customized emulator, all
sensitive information is logged and sent to the analyzer
via Logcat. Their log parser categorizes behavior into

6182

the following categories: 1) application use of intent
permission, 2) third part advertisement, 3) leakage of
private data, and 4) sending SMS signatures. Based on
the amount of information leakage, an application is
classified as malicious or benign.

Burguera, et. al., [25] present a behavior-based
malware detection system that uses similar dynamic
analysis techniques. Their Crowdroid implements a
monitor that invokes system calls in order to create a
frequency table of system calls on the client side. They
employ a K-means algorithm to detect malicious
behavior on the server side.

Mahmood et al. [22] presented a scalable dynamic
analysis framework for evaluating Android
application by utilizing the cloud. The platform
utilizes robotium test automation in order to perform
fuzz and dynamic analysis on android applications.
Specifically, the paper describes a program analysis
technique capable of fuzzing an Android application
using a large set of test cases. The downside to this
project is that black-box testing by robotium requires
that applications are signed; thus, resigned
applications that are automatically generated may
show a decrease in functionality or failure.

Reina et al. [20] presents CopperDroid a dynamic
analysis tool that characterizes low-level OS-Specific
and high-level Android specific behaviors.
CopperDroid utilizes QEMU [29] to automatically
perform black-box dynamic analysis on Android
applications. The VM-based centric system utilizes
dynamic system call analysis in order to determine
Android behaviors. CopperDroid also has the ability
to determine whether a malware was initiated using
Java, JNI, or native code. Results showed that from
1,600 samples of malware, CopperDroid was able to
differentiate different behaviors.

In [23], Yan and Yin present DroidScope, an
analysis tool that utilizes a virtual-based system in
order to detect malware. Specifically, DroidScope
reconstructs both the kernel and system level
semantics in order to facilitate malware analysis.
Furthermore, DroidScope utilizes three tiers of APIs
to emulate an Android device. These three tiers
included: the hardware, OS, and Dalvik Virtal
Machine. Results indicates that the tool was affective
in assessing malware samples with low overhead.

2.3 Risk Analysis

Grace, et. al., [21] put forth a system called
RiskRanker which is designed to analyze apps for
dangerous behaviors. Specifically, RiskRanker
provides a proactive scheme in order to detect zero
day malware without relying on signature based
algorithms for detection. RiskRanker provides

scalability by automating behavior detection of
applications. The aim of the research was to reduce the
search space needed to detect malware. Thus, the
system was designed for scalability, efficiency, and
accuracy. The system uses a first-order and second-
order analysis to assess potentially dangerous behavior
in applications. First-order analysis is mainly designed
to quickly evaluate untrusted apps for high and
medium risk behaviors. High-risk behaviors exploit
the kernel for vulnerabilities. This includes any apps
that try to perform privilege escalation. Medium level
exploits are classified as application that attempts to
charge user money surreptitiously, upload sensitive
data, or send SMS messages. Second-order analysis
consisted of searching for encrypted native code in
application and unsafe bytecode loading. Results for
first-order analysis shows that out of 9877 applications
that contained native code, 24 was found to have
embedded rootkits ranging from 6 different malware
family. Medium level risk results indicate that 2374
applications exhibit SMS sending behaviors in the
background. Second-order results indicate that 315
samples were found to have encrypted native code
execution causing malware installation. Furthermore,
184 unsafe dalvik code loading applications were
found. In total, out of 118,318 applications from the
Android markets analyzed, 718 malware samples from
29 different families were found.

Crussell, et. al. [14] proposed AnDarwin, a
scalable framework that analyzes Android
applications for plagiarism. Specifically, semantic
information was used in order to detect repackaged
applications. Results indicate that out of 265,359
applications, AnDarwin was able to identify 36,106
repackaged or rebranded applications. Furthermore,
88 new variants of malware were found.

While there has been substantial work conducted
examining the detection of malicious code from static
and dynamic perspectives, there is minimal
substantive research that specifically investigates the
effectiveness of these solutions in a re-packaged zero
day app that already contains excessive permissions.

3. Methodology

To support the hypothesis proposed in the
introduction, the overall research was separated into
two high-level stages. The first stage utilizes an initial
iteration of a design science methodology as defined
by Peffers, et. al, [28] to develop and implement the
malicious code into an application. Any over
privileged application could have been chosen for this
experiment. As a matter of convenience, excessive
permission practice, large user base, and application

6183

size, Snapchat was chosen as the target application.
The second stage of this research utilizes the
modifications in the first part to conduct a controlled
experiment as defined by Sadish, et. al. [30]. The high-
level problem statement examines the effectiveness of
commercial and open source tools at detecting
malicious code that has been injected and repackaged
in a legitimate application.

3.1 Malicious Code

The first step in the design and development stage
investigated what could be achieved with existing
Snapchat permissions. Analysis of the
AndroidManifest.xml file reveals that Snapchat
requests 19 permissions from the user. The next step
ran the Quick Android Review Kit [9], a static
analyzer tool designed to look for security flaws and
vulnerabilities. The application found components that
were not protected by a permission. Specifically, the
following components in ‘com.snapchat.android.’
were identified as not being protected:

• AppInstallBroadcastReceiver;
• notification.GcmMessageReceiver;
• LandingPageActivity;
• deeplink.DeepLinkActivity
The malicious application we developed as a result

of the analysis is called AndroidTracker. It consists of
implanting a hidden service in the form of a botnet that
utilizes identified Snapchat permissions in order to
steal sensitive data. Furthermore, the application
utilizes a standard API to obtain sensitive data without
requiring root access. Remote commands are
communicated over WiFi, 3G, and/or 4G. It should be
noted that for the purposes of this experiment, the
malicious service was not obfuscated or packed when
injected.

Command and control is created based on Google
Cloud Messaging (GCM) by broadcasting messages to
the hidden service. One of the main reasons for this
choice is due to the amount of services and
applications that take advantage of GCM in order to
communicate notification and updates for products.
Snapchat is a prime example of this. GCM service is
embedded into the application easily by leveraging
Snapchat’s built-in GCM libraries. The GCM enables
the device to utilize common APIs and libraries that
normal applications would use in order to act as a
benign service. Additionally, GCM does not quickly
drain the battery of the device as normal sockets do.

The android devices selected for this experiment
are detailed in Table 1-Smartphone Attributes. The
devices were initialized in an attempt to remove
previous data interaction on the device. The

initialization process was repeated prior to the
execution of each experiment.

The following steps were conducted to initialize
the Android devices: First the device is turned off so
that it can be booted into recovery mode. Second, the
volume-down button is held down while holding the
power button in order to boot into advance startup.
Third, the volume-down button is used to scroll down
to recovery mode. The power button is used to select
this option. Fourth, the power button is held down
while pressing the volume up button once. The power
button is then released. Fifth, the wipe data/factory
reset option is selected similar to step three. The final
step is to reboot the system.

Table 1. Smart Mobile Device Attributes
Trait Asus

Nexus 4
Phone

Asus
Memo
Pad 7

Asus
Nexus 5
Tablet

LG Leon
H345

O.S. Android
KitKat

4.4

Android
Kitkat
4.4.2

Android
Lollipo
p 5.1

Android
Lollipop

5.0
Internal
Memory

16 GB 16 GB 16 GB 8GB

Memory
Card

Yes Yes Yes No

The device must then be configured to allow USB
debugging in order to use ADB to extract and install
applications. USB debugging is enabled by going to
the ‘Developer Options’ in the system menu of the
settings page.

3.2 Reverse Engineering & Injection Process

The AndroidTracker malware is coded as a service
intent. Our service intent has the ability to listen to
commands from an outside service in order to execute
commands. The commands include: 1) taking a
picture, 2) sending live GPS feed, 3) displaying
messages on the phone, and 4) sending notifications.
Figure 1 - Repackaging malware illustrates the attack
vector we implemented to modify the application.

Target App Repackaged App

Figure 1. Repackaging malware

6184

The injection process follows a structural
procedure. The specific steps implemented to inject
the code are as follows:
1. Initially, the latest Snapchat apk is pulled from the

phone using adb. The following command
identifies the exact location of the snapchat apk:
“adb shell pm list packages -f |grep snapchat”

2. Once the location of the apk was identified, the
apk was pulled using the following adb command:
“adb pull /data/app/com.snapchat.android-
1/base.apk”

3. Using apktool [7], we decompiled the current
version of Snapchat into smali byte code using the
following command:
“apktool d Snapchat.apk”

4. In addition, the apktool was used to decompile our
malicious service to obtain the malicious payload.
The main purpose of this step is to obtain the
actual payload in smali format. Furthermore, the
main activity onCreate function can be utilized
and copied into Snapchat’s function to startup the
activity. This step helps the reverse engineering
process since the smali bytecode does not have to
be completely coded by hand.

5. The manifest file, extracted from the disassembly
of Snapchat with the apktool, was utilized in order
to identify the startup activity payload injection
site:
com.snapchat.android.LandingPageActivity.
Notice that this was one of the components that
was listed as vulnerable based on the static
analysis tool. The payload utilizes the main
startup event from the startup activity.

6. Next, the service intent and broadcast receivers
that the hidden service used was injected into the
AndroidManifest. The Google Cloud Messaging
system’s receivers and services were utilized
using the original Snapchat’s permission.

7. The smali code obtained from AndroidTracker
was copied and extracted into the Snapchat smali
folder.

8. The main service activity from AndroidTracker’s
onCreate function was copied and pasted into the
main activity of Snapchat’s onCreate function.
The function was altered to utilize Snapchat’s
class to correctly initialize the service without the
application crashing. The placement is visible in
Figure 3-Injection Code to Start AndroidTracker.

9. Snapchat is recompiled using the following
command: “apktool b Snapchat”

10. Java’s keytool was used to generate a signature
with the following command: “keytool -genkey -
v -keystore apk-key.keystore -alias apk-key -
keyalg RSA -keysize 2048 -validity 10000”

11. Java’s jarsigner was used to sign the generated
apk from step nine using the following command:
“jarsigner -verbose -sigalg SHA1withRSA -
digestalg SHA1 -keystore apk-key.keystore
'Snapchat.apk’ apk-key”

12. Finally, the apk was deployed onto the Android
device using the following command: “adb install
‘Snapchat.apk’ -r”

Figure 3. Injection Code to Start
AndroidTracker

3.3 Controlled Experiments

With the growth of malware, an influx of anti-virus
solution can now be downloaded from the Android
Play Store. For this test, we chose a sample of the top
rated anti-virus apps by user from the store.
Furthermore, we evaluated popular anti-virus
solutions that currently have over one million
downloads. Based on these two criteria, we chose a list
of 12 anti-virus apps for our experiment. Furthermore,
case one studies anti-virus engines that are publicly
available online. Anti-virus engines are classified as
any scalable online detection engine utilizing multiple
suites of security tools.

Research tools were chosen with a web-based
interface from a list of scanners acquired from
research projects or papers. For online tools, we chose
those that had at least one of these criteria: 1) static
analysis, 2) dynamic analysis, or 3) combination of
static and dynamic analysis. Tools that are limited in
size are listed as well. For instance, Andrubis only
allows for scanning files under 8 MB. Based on the
tools selected, two experiments were conducted.

3.3.1 Experiment One. The first controlled
experiment utilizes a structured methodology to test
effectiveness of locally installed anti-virus and online
antivirus scanning engines. The following provides
overview for analysis of commercial anti-virus that
have been locally installed. First, the Android device
is initialized to the default states based on the steps in
the initialization process presented previously.

6185

Second, the commercial anti-virus is installed from the
Play Store. Third, the settings are configured to real
time monitoring where possible in the commercial
anti-virus software. Fourth, the repackaged snapchat is
installed with adb using the following command: “adb
install ‘Snapchat.apk’ -r”. The fifth step initiates a full
system scan. The sixth step initializes Snapchat to
ensure functionality of AndroidTracker. The final step
records the results and any warnings.

The online anti-virus engine suite follows a similar
methodology as the commercial anti-virus
applications. However, the online anti-virus engine
requires the user to upload the apk onto the server first.
The process then follows step six.

3.2.2 Experiment Two. The second controlled
experiment runs the repackaged application through
online scanner tools that are either static analyzer,
dynamic analyzer, or a combination of both. Risk
ranking scores are recorded based on the tool’s scoring
system. Thus, the risk ranking system can be either
numeric or descriptive. Furthermore, file size limits
are recorded to assess the scope of the scanner. Since
the modified version of Snapchat is 29 MB, if the
online engine cannot support the file size, then the tool
is deemed unsuccessful. Evidence of residual data is
marked successful if any sign of the hidden service
name is picked up from the results by manual analysis.
Repackage detection assesses whether or not the tool
was successfully able to identify a modified version of
Snapchat. Finally, the tool was deemed successful if it
was able to classify the malware.

4. Results and analysis

Injection of the repackaged app was successful in
all four different Android devices that were tested.
Each device was tested for functionality of Snapchat
and AndroidTracker to ensure successful code
injection. Snapchat was able to operate as normal on
all four devices. When the user started the modified
application, AndroidTracker was initialized in the
background as well. The background service
communicated with the central http command server
using Google Cloud Messaging in order to register
devices. In addition, the background service was
successful in storing the device data and information
in a remote SQL database. Querying of the commands
utilized GCM in order to send messages to the device.
Figure 4 displays the result of querying our Nexus 4
device for a live picture feed and GPS data. The live
picture feed accurately displayed the front camera
taking a screenshot of the desktop screen. The GPS

data was accurate in displaying the tablet current
location as well.

Furthermore, the hidden service was able to listen
to query commands including: message notification,
message toast, and turn off phone. This was conducted
to verify that the botnet was successfully built and
deployed using a common API to tests the
effectiveness of anti-viruses at differentiating between
benign and malicious API calls.

Figure 4. AndroidTracker http command
server

The installation and successful communication with
the HTTP remote server demonstrates that even
though common API calls and libraries were used, a
botnet was able to be created. Thus, signature based
algorithms have trouble determining if a function’s
signature is malicious or a false positive.

4.1 Experiment one

Results from experiment one indicate that current
anti-virus applications are not detecting the newly
repackaged malware. However, CM Security did give
a warning indicating that the application may be
leaking data. The data leakage warning was not
surprising as the Quick Android Review Tool pointed
out potential data leakage from components during the
development process. Our results show that all 12
popular anti-viruses did not properly detect our
sample. Table 1 - Anti-Virus Detection provides a
summary of the test results.

Similar results were displayed from the online apk
anti-virus scanners. No scanners were able to detect
the presence of malware in the modified Snapchat. It

6186

should be noted that each of the locally installed and
on-line anti-virus suites utilize a signature based
algorithm to check for malware. It is known that
signature based algorithms are prone to not being able
to affectively distinguish code variants [17]; the results
indicate that they also have problems detecting new
vulnerabilities in repackaged applications.

Table 1: Anti-Virus Detection
AV App Malware? Warnings
AVG Anti-Virus N N
CM Security N Y
Dr. Web Light N N
Avast N N
Norton Mobile N N
Kaspersky N N
Lookout N N
Malwarebyte N N
ESET Mobile Security N N
Avira Anti-Virus N N
NQ Security Anti-Virus N N
McAfee Mobile Security N N

While there is no holistic or heuritstic checks for
malware, it is interesting that no warnings were
displayed for any online anti-virus engine. Table 2
summarizes the results for online engines.

Table 2. Online Anti-Virus Engines Detection

File Size Limit

Successful
Detection of

Malware?
SandDroid 50 MB X
Andrototal 128 MB X
Virus Total Unlimited X
OPSWAT Unlimited X

4.2 Experiment two

The results from the second controlled experiment
were more promising in terms of overall detection.
The online tools that use anti-virus engines did not
classify our sample as malware. However, tools that
use either static analysis, dynamic analysis, or a
combination of both did give high risk scores or alerts
that the application may be malicious, although no
engine declared our sample to be malware. The tools
did provide risk scores which appear to be based
primarily on use of sensitive API calls and
permissions. Scores range from numerical values to
descriptive ratings. Furthermore, one of the main
constraints with some of the static, dynamic, and
combinational analysis tools was the file intake size.

Since the repackaged Snapchat was 29MB, some of
the tools were not able to handle a file that large.

The second controlled experiment was subdivided
into two separate experiments. The first looked at
Static analysis and the second looked at tools that
utilize a combination of static and dynamic analysis.
Dynamic analysis by itself was not included due to
limited information given and file size constraint.
Some dynamic results showed recording of the
applications simply just opening and closing without
any data generated while others simply displayed IP
address and Geolocations. Thus, work towards a better
scalable, automated dynamic engine for malware
analysis is needed. Android Static analysis provided
the most useful information compared to dynamic
analysis. One of the problems with dynamic analysis
is being unable to trigger the correct event for data
analysis. Since AndroidTracker required Google Play
Store to be installed, dynamic analysis utilizing
sandbox environments were not able to activate the
malicious conditions.

4.2.1 Static Analysis. The fully functional static
analysis tools included AVC UnDroid, MobiSec
Eacus, and Visual Threat. AVC UnDroid had a file
size limit of 7 MB; thus, it was insufficient for
dedicating malware. Static analysis results displayed
the following types of features such as permission
listing, website access strings, geolocation of
networks that the application is talking too, sensitive
API calls display, component analysis, and
certification analysis MobiSec showed unique
features since it was able to give a risk ranking score
in combination with detecting that the apk was
repackaged. Visual Threat gave a risk score of 55 out
of 100 due to the permission usage and type of
services associated with the application. None of the
three static analysis engines were able to detect
malware in the repackaged Snapchat. Table 3
summarizes the engines that we used and the results.
Overall, static analysis did provide useful information
for reverse engineering the malware.

Table 3: Static Analysis Engines Summary
AVC UnDroid MobiSec Eacus Visual Threat

File Size Limit 7 MB Not Specified Not Specified
Risk Ranking
Score/Scale X Low 55/100
Evidence of

Residual Data? X X √
Repackage
Detection? X √ X
Successful

Detection of
Malware? X X X

6187

4.2.2 combinational analysis. Like static and
dynamic analysis, combinational analysis faced issues
with file size limit as well. Andrubis and APK
Analyzer were not tested due to their 8 MB and 20 MB
limit respectively. SandDroid was able to display a
risk ranking score of 100. SandDroid defines 1)
connecting to the internet, 2) executing shell code, 3)
having unused permission, 4) getting GPS info, 5)
opening the camera, 6) recording audio, 7) getting
unique device id and IMEI, and 8) executing internal
requests as all risky behaviors [5]. The normal
application that we piggybacked off of uses all of these
permissions and behaviors non-maliciously and is
flagged as risky: thus, SandDroid also considered our
repackaged version risky. The dynamic analysis
portion simply displays a gif of the application starting
up and closing. No further details were provided for
dynamic analysis.

NVISO ApkScan file size limited was unlisted, but
it was able to successfully scan the repackaged
Snapchat. Results show that the application only
shows a medium level of risk since it marked the
application as suspicious out of the three options: no
malicious behavior, suspicious behavior, and
confirmed malicious. Dynamic analysis was
unsuccessful at providing any useful information.

Combinational analysis provided as much
information as static analysis. The dynamic analysis
did not provide useful information since no malicious
behaviors were triggered. In addition, none of the
engines were able to detect malware in the repackaged
Snapchat. Table 4 provides a summary of the results.

Table 4. Combination of Static and Dynamic
Analysis Engines Summary

File Size Limit
SandDroid

50 MB

Andrubis

8 MB

NVISO ApkScan

Not Specified

APK Analyzer

20 MB

Risk Ranking
Sccre/Scale 100/100 X Suspicious X

Evidence of

Residual Data? √ X √ X
Repackage

Detection? X X X X

Successful
Detection of

Malware? X X X X

4.3 Residual data analysis

The results for case three indicates that static
analyzers can trace and detect the actual service
registration and sensitive API calls. Figure 5 shows an
example of a static analysis tool indicating sensitive
API calls made by our malware sample with the threat
level associated with the call. Furthermore, the static
analysis tool was able to determine services started by

the application, including our hidden service.
SandDroid, specifically, was able to link permission
requests with API calls in order to produce threat level
evaluations. Furthermore, SandDroid was able to
display the receivers, services and remote server
address from AndroidTracker. NVISO ApkScan was
able to provide the same information as SandDroid,
but it was not able to provide the API call mapping that
SandDroid provided. Visual threat was only able to
provide residual data for services and remote server
address. NVISO ApkScan’s main advantages lies in its
ability to provide adb logcat dump from the dynamic
analysis run. However, no residual data was found in
the logcat file. The remaining static and dynamic
analysis tools were not able to provide any residual
data in their results.

Dynamic analysis did not produce actionable
results from any of the tools we tested. More than
likely, this was because conditions were not triggered
at runtime that executed maliciously inserted code.
Most sophisticated malware will trigger only when
correct timing conditions are met in order to avoid
detection.

While residual data are useful, they are very time
consuming to manually find. The experiments rely on
the fact that the services and receivers’ names were
known prior to injection. Thus, it was easy to manually
analyze the results to find the residual data.

6188

Figure 5. Static Analysis Trace of
Repackaged Malware

However, more sophisticated malware can blend
its name with the application into which it is injecting.
Additionally, obfuscation and packing of the Android
application by using the Dex class loader leads to
perplexing strings and function names. Thus, residual
data becomes increasingly hard to find. Table 5
provides a summary of the residual data that was
obtained in the experiment.

Table 5: Residual Data Obtained

Activities Leaked
Receivers

Leaked
Services
Leaked

Remote Server
Address Leaked

SandDroid √ √ √ √
Andrubis X X X X

NVISO ApkScan √ √ √ √
APK Analyzer X X X X

Tracedroid X X X X
AVC UnDroid X X X X

MobiSec Eacus X X X X
CopperDroid X X X X
Visual Threat X X √ √

5. Conclusions and future work

The popularity of mobile devices and the Android
operating system coupled with the continued
integration of these devices into all aspects of society
is generating an environment that is attractive to
attackers. For the purposes of this research, the
Snapchat application was chosen for modification due
to excessive use of permissions and services along
with its popularity.

A repackaged malicious Snapchat was produced in
order to stimulate sophisticated zero-day malware.
Using a controlled experiment, we assessed the
effectiveness of current commercial anti-virus
products for Android against a repackaged application
that uses piggybacked API permissions. In addition,
static analysis, dynamic analysis, and combination of
static and dynamic analysis tool analysis were
assessed in their detection ability on zero-day
repackaged malware.

Detecting new repackaged zero-day malware
remains a hard problem in today’s environment.
Security, to a large extent, relies on the detection
abilities provided by markets to monitor published
apps. The initial investigation indicates that
commercial anti-virus software obtained from Google
Play Store may not provide additional protection for
such new threats as our contrived malware example.
In addition, online detection suites were not able to
detect the malware in the repackaged Snapchat.

Static analysis, dynamic analysis, and combination
of static and dynamic analysis engines were able to
provide better results and warnings for end-users.
SandDroid, NVISO ApkScan, and Visual Threat were
able to provide residual data that indicated that part or
all of our hidden service was initialized. Furthermore,
MobiSec Eacus was able to indicate that the apk was
repackaged. However, many of the static and dynamic
analysis engines were unable to provide any result due
to its file size limit. Thus, larger, popular applications
are not able to be processed through their engines for
results.

The initial research results indicate that the static,
dynamic, or combination analysis solutions used in

this experiment do not detect malware in repackaged
applications. They also indicate that analysis tools
used in this experiment provided minimal to no
indication of malicious code activity. These results
support the hypothesis that commercial and open
source tools will not detect a repackaged application
with excessive permissions that contain malicious
code. They also indicate that there are opportunities
for developing improvements in commercial anti
virus, static, and dynamic analysis tools in order to
provide better support for sophisticated zero-day
malware.

While the scope of this research focuses on the
identification of a reverse engineering methodology
that utilized dynamic and static analysis tools in
conjunction with zero day malware. Hence, future
research will focus on expanding the implementation
of the methodology to include injection non-zero day
malware into popular applications. This research will
also investigate the performance of market antivirus
and analysis solutions to determine practical malware
recognition. In addition, future research will
investigate effective obfuscation techniques along
with how these techniques perform when analyzed
with real-world detection tools. This effort will also
examine the development of effective algorithms that
detect obfuscated malware. A related stream of
research will investigate malware that utilizes the
cloud as a propagation mechanism along with
effective and efficient mitigation strategies.

6. References

[1] Mobile Security: Why App Stores Don’t Keep Users
Safe, http://www.darkreading.com/vulnerabilities—
threats/mobile-security-why-app-stores-dont-keep-users-
safe/a/d-id/1324829, accessed 05/23/, 2016.

[2] Sneaky Android Malware Makes Its Way on the Google
Play Store, Again,

accessed 05/23/, 2016.

 http://news.softpedia.com/news/sneaky-
malware-makes-its-way-on-the-google-play-store-again-
503691.shtml,

[3] Phishing Apps Posing as Popular Payment Services
Infiltrate Google Play,
http://www.pcworld.com/article/3063474/security/phishing
-apps-posing-as-popular-payment-services-infiltrate-
google-play.html, accessed 05/23, 2016.

[4] Press Release: Gartner Says Worldwide Smartphone
Sales Grew 9.7 Percent in Fourth Quarter of 2015,

accessed 05/19, 2016.http://www.gartner.com/newsroom/,

[5] Sanddroid - an Automatic Android Application Analysis
System, http://sanddroid.xjtu.edu.cn

6189

http://www.darkreading.com/vulnerabilities---threats/mobile-security-why-app-stores-dont-keep-users-safe/a/d-id/1324829
http://www.darkreading.com/vulnerabilities---threats/mobile-security-why-app-stores-dont-keep-users-safe/a/d-id/1324829
http://www.darkreading.com/vulnerabilities---threats/mobile-security-why-app-stores-dont-keep-users-safe/a/d-id/1324829
http://news.softpedia.com/news/sneaky-malware-makes-its-way-on-the-google-play-store-again-503691.shtml
http://news.softpedia.com/news/sneaky-malware-makes-its-way-on-the-google-play-store-again-503691.shtml
http://news.softpedia.com/news/sneaky-malware-makes-its-way-on-the-google-play-store-again-503691.shtml
http://www.pcworld.com/article/3063474/security/phishing-apps-posing-as-popular-payment-services-infiltrate-google-play.html
http://www.pcworld.com/article/3063474/security/phishing-apps-posing-as-popular-payment-services-infiltrate-google-play.html
http://www.pcworld.com/article/3063474/security/phishing-apps-posing-as-popular-payment-services-infiltrate-google-play.html
http://www.gartner.com/newsroom/
http://sanddroid.xjtu.edu.cn/

[6] Global Market Share Held by the Leading Smartphone
Operating Systems in Sales to End Users from 1st Quarter
2009 to 1st Quarter 2016,
http://www.statista.com/statistics/266136/global-market-
share-held-by-smartphone-operating-systems/, accessed
05/23, 2016.

[7] Apktool, http://ibotpeaches.github.io/Apktool/

[8] Keep the Iot in Check with Penetration Testing,

accessed
http://www.iotevolutionworld.com/iot/articles/421263-
keep-iot-check-with-penetration-testing.htm,
05/19, 2016.

[9] Quick Android Review Kit (Qark),
https://github.com/linkedin/qark

[10] Berman, K., W. B. Glisson, and L. M. Glisson,
"Investigating the Impact of Global Positioning System
(Gps) Evidence in Court Cases", Hawaii International
Conference on System Sciences (HICSS-48), 2015

[11] Press Release: Gartner Says 6.4 Billion Connected
"Things" Will Be in Use in 2016, up 30 Percent from 2015,

accessed 05/19, 2016.http://www.gartner.com/newsroom/,

[12] Feldman, S., D. Stadther, and B. Wang, "Manilyzer:
Automated Android Malware Detection through Manifest
Analysis", IEEE, 2014, pp. 767-772.

[13] Sanz, B., I. Santos, X. Ugarte-Pedrero, C. Laorden, J.
Nieves, and P. G. Bringas, "Anomaly Detection Using String
Analysis for Android Malware Detection", Springer, 2014,
pp. 469-478.

[14] Crussell, J., C. Gibler, and H. Chen, "Andarwin:
Scalable Detection of Semantically Similar Android
Applications": Computer Security-Esorics 2013, Springer,
2013, pp. 182-199.

[15] Press Release: Gartner Says Mobile App Stores Will
See Annual Downloads Reach 102 Billion in 2013,

accessed 05/19, 2016.http://www.gartner.com/newsroom/,

[16] Glisson, W. B., and T. Storer, "Investigating
Information Security Risks of Mobile Device Use within
Organizations ", Americas Conference on Information
Systems (AMCIS), 2013

[17] Kamarudin, I. E., S. a. M. Sharif, and T. Herawan, "On
Analysis and Effectiveness of Signature Based in Detecting
Metamorphic Virus", International Journal of Security and
Its Applications, 7(4), 2013, pp. 375-384.

[18] Mcmillan, J., W. B. Glisson, and M. Bromby,
"Investigating the Increase in Mobile Phone Evidence in
Criminal Activities", Hawaii International Conference on
System Sciences (HICSS-46), 2013

[19] Min, L. X., and Q. H. Cao, "Runtime-Based Behavior
Dynamic Analysis System for Android Malware Detection",
Trans Tech Publ, 2013, pp. 2220-2225.

[20] Reina, A., A. Fattori, and L. Cavallaro, "A System Call
Centric Analysis and Stimulation Technique to
Automatically Reconstruct Android Malware Behaviors",
EuroSec, April, 2013,

[21] Grace, M., Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
"Riskranker: Scalable and Accurate Zero-Day Android
Malware Detection", ACM, 2012, pp. 281-294.

[22] Mahmood, R., N. Esfahani, T. Kacem, N. Mirzaei, S.
Malek, and A. Stavrou, "A Whitebox Approach for
Automated Security Testing of Android Applications on the
Cloud", IEEE, 2012, pp. 22-28.

[23] Yan, L. K., and H. Yin, "Droidscope: Seamlessly
Reconstructing the Os and Dalvik Semantic Views for
Dynamic Android Malware Analysis", 2012, pp. 569-584.

[24] Zhou, Y., and X. Jiang, "Dissecting Android Malware:
Characterization and Evolution", IEEE, 2012, pp. 95-109.

[25] Burguera, I., U. Zurutuza, and S. Nadjm-Tehrani,
"Crowdroid: Behavior-Based Malware Detection System for
Android", ACM, 2011, pp. 15-26.

[26] Felt, A. P., E. Chin, S. Hanna, D. Song, and D. Wagner,
"Android Permissions Demystified", ACM, 2011, pp. 627
638.

[27] Glisson, W. B., T. Storer, G. Mayall, I. Moug, and G.
Grispos, "Electronic Retention: What Does Your Mobile
Phone Reveal About You?", International Journal of
Information Security, 10(6), 2011, pp. 337-349.

[28] Peffers, K., T. Tuunanen, M. Rothenberger, and S.
Chatterjee, "A Design Science Research Methodology for
Information Systems Research", J. Manage. Inf. Syst., 24(3),
2007, pp. 45-77.

[29] Bellard, F., "Qemu, a Fast and Portable Dynamic
Translator", 2005, pp. 41-46.

[30] Shadish, W. R., T. D. Cook, and D. T. Campbell,
Experimental and Quasi-Experimental Designs for
Generalized Causal Inference, Wadsworth Publishing,
2001.

6190

http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
http://ibotpeaches.github.io/Apktool/
http://www.iotevolutionworld.com/iot/articles/421263-keep-iot-check-with-penetration-testing.htm
http://www.iotevolutionworld.com/iot/articles/421263-keep-iot-check-with-penetration-testing.htm
https://github.com/linkedin/qark
http://www.gartner.com/newsroom/
http://www.gartner.com/newsroom/

