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Abstract
Mobile devices are increasingly being embraced 

by both organizations and individuals in today’s 
society. Specifically, Android devices have been the 
prominent mobile device OS for several years. This 
continued amalgamation creates an environment that 
is an attractive attack target. The heightened 
integration of these devices prompts an investigation 
into the viability of maintaining non-compromised 
devices. Hence, this research presents a preliminary 
investigation into the effectiveness of current 
commercial anti-virus, static code analysis and 
dynamic code analysis engines in detecting unknown 
repackaged malware piggybacking on popular 
applications with excessive permissions. The 
contribution of this paper is two-fold. First, it provides 
an initial assessment of the effectiveness of anti-virus 
and analysis tools in detecting malicious applications 
and behavior in Android devices. Secondly, it provides 
process for inserting code injection attacks to 
stimulate a zero-day repackaged malware that can be 
used in future research efforts.

1. Introduction

Mobile devices are rapidly becoming the dominant 
mode for voice and data communications in today’s 
globally networked environment. Market reports 
indicate smartphone sales reached 1.4 billion in 2015, 
they predict that the number of connected devices will 
expand to 6.4 billion in 2016 and that application 
downloads will hit 268 billion by 2017 [4, 11, 15]. The 
Android Operating System (OS) has been, by far, the 
dominant mobile device OS for several years making 
up 86.2% of the world mobile market in quarter 2 of 
2016 [6]. Hence, it is reasonable that attackers are not 
only refocusing targeting efforts from computers to 
mobile devices, they are focusing specifically on the 
Android OS.

The proliferation of the Android OS makes it a 
natural target for the distribution of malicious code 
that has the potential to impact individuals along with 

public and private sector organizations. A number of 
recent articles highlight the fact that malicious code 
has successfully bypassed market vendor security [1
3]. According to one article, recent adware/malware, 
referenced as Android/Clicker.G, that was available 
on the Play Store, targeted Russian speakers, 
implemented a six-hour delay prior to behaving badly 
and then proceeded to bombard the user with requests 
every two minutes [2]. Another article discusses 
phishing applications that pose as interface 
applications for online payment systems that were 
available on the Play Store [3]. Coupling this type of 
activity with the growth of the Internet of Things (IoT) 
introduces new opportunities for remote code 
execution, Distributed Denial of Service (DDoS) 
attacks and acquisition of personal information [8]. 
The impact of an increased attack surface escalates 
reoccurrence issues by stifling malicious software 
detection and eradication efforts.

Complicating matters, increases in sophisticated 
stealth techniques such as code virtualization, 
encryption, and transformation have made it even 
harder to detect malware. As noted by Zhou and Jiang 
[24], a popular approach in the distribution of malware 
is the injection of seemingly innocuous code into 
trusted android applications. They go on to state that 
out of 1260 malware samples that they collected, 86% 
were repackaged applications. This indicates that 
repacking popular applications with malicious code 
and distributing them through market vendors is a 
viable attack vector. Hence, it is advantageous for both 
individuals and industry professionals alike to acquire 
an understanding of the effectiveness of anti-virus, 
static and dynamic software solutions in detecting 
repackaged applications that contain malicious code. 
This environment prompted the hypothesis that 
commercial and open source tools will not detect a 
repackaged application with excessive permissions 
that contain malicious code. In order to address this 
hypothesis the following research questions were 
identified:
1. Do software solutions detect repackaged 

applications?
2. Do analysis tools detect malicious code activity?
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The contribution of our work is two-fold. First, we 
demonstrate that detecting repacked applications with 
malicious code is a significant issue with current 
commercial and open source software solutions that 
are currently available from the market. We developed 
new malware, inserted it into a reverse engineered 
application (app) that already contained extensive 
permissions and is currently available in the market. 
Once the malware had been successfully inserted into 
the application, the app was re-packaged and tested 
against 12 anti-virus solutions, three static analysis 
engines, two dynamic analysis engines and four 
engines that implement a combination of static and 
dynamic solutions. Second, we present a reverse 
engineering methodology that can be replicated to test 
detection solutions and used as a guide for future code 
investigations and research efforts.

The balance of the paper is structured in the 
following manner. Section two presents relevant back 
ground research. Section three presents the research 
methodology along with a detailed experimental 
design. Section four discusses the research results 
along with providing relevant analysis. Section five 
draws conclusions from the analysis and presents areas 
of future work.

2. Background

The continued amalgamation of mobile devices 
into businesses environments and personal activities 
raises concerns about risk [16, 27]. Coupling this 
concern with the growing impact that mobile device 
residual data appears to be having in legal 
environments escalates interest in understanding how 
to mitigate this risk [10, 18]. Hence, the popularity of 
the Android mobile platform has prompted increased 
research interest in detecting malicious Android 
applications. Existing research can be grouped into 
three broad categories: static analysis, dynamic 
analysis and Risk Analysis.

2.1 Static analysis

Static analysis, in the context of android operating 
systems, is typically based on source code, manifest, 
or binary analysis that searches for strings and patterns 
that may match known malicious behaviors. These 
techniques are not limited to analyzing manifest 
permission requests from applications, but also control 
flow, signature-based detection, and static taint
analysis.

Felt, et.al., [26] developed Stowaway, a static 
analysis tool, that extracts manifest files and detects 
over-privilege requests during install. Stowaway’s 

main concern is detecting whether developers 
followed a least privilege guideline when setting up 
their permission requests. Stowaway analyzes the 
applications and determines the set of API calls that it 
uses. It then maps those API calls to permissions in 
order to detect overly privileged applications.

A severe limitation of current static analysis 
techniques is the reliance on permission-based 
requests in the Android manifest. Although 
permissions are a key factor in characterizing and 
detecting malware, the manifest contains much more 
information that might help detect malware. Feldman 
et al. [12] proposed Manilyzer, a tool that uses 
additional information found in the manifest file. It 
employs a machine learning algorithm that classifies 
an application as malicious or benign. Specifically, 
Manilyzer considers the following characteristics in 
the manifest file to be significant: 1) permission 
requests, 2) high priority receivers, 3) low version 
number, and 4) abused services. Based on profiling 
617 applications, they reported that the accuracy 
detection rate of the tool was at 90% with a false 
positive and false negative rate of only 10%.

Sanz et al. [13] proposed a method for malware 
detection using extracted strings from application files 
as a way to detect anomalies. The researcher’s 
methodology relies on readable string extraction from 
applications. The process involves the following steps: 
disassembly, tokenization of symbols, and term 
frequency. Disassembly involves using Android 
disassembler smali in order to extract the disassembly. 
The researchers search for const-string operational 
code within the disassembled code in order to obtain 
the strings. The tokenizer utilizes dot, comma, colon, 
semi-colon, and blank space in order to conform the 
string. Finally, the string is tested with a point in 
feature space for anomalies detection. The researchers, 
however, stated that their detection systems produced 
high error rates because of false positives, but they 
state that with more normalization the error rates will 
decrease. Furthermore, the authors state that this is 
only from a static stand-point and not a dynamic one 
where strings can be generated at run-time.

2.2 Dynamic Analysis

Dynamic analysis studies the run-time behavior of 
programs to classify them as malicious. Min et al. [19] 
propose a run time-based, behavioral analysis method 
for detecting malicious applications. They employ a 
customized emulator by applying API hook 
technology to the loadable kernel module. Thus, when 
an app is running through a customized emulator, all 
sensitive information is logged and sent to the analyzer 
via Logcat. Their log parser categorizes behavior into 

6182



the following categories: 1) application use of intent 
permission, 2) third part advertisement, 3) leakage of 
private data, and 4) sending SMS signatures. Based on 
the amount of information leakage, an application is 
classified as malicious or benign.

Burguera, et. al., [25] present a behavior-based 
malware detection system that uses similar dynamic 
analysis techniques. Their Crowdroid implements a 
monitor that invokes system calls in order to create a 
frequency table of system calls on the client side. They 
employ a K-means algorithm to detect malicious 
behavior on the server side.

Mahmood et al. [22] presented a scalable dynamic 
analysis framework for evaluating Android 
application by utilizing the cloud. The platform 
utilizes robotium test automation in order to perform 
fuzz and dynamic analysis on android applications. 
Specifically, the paper describes a program analysis 
technique capable of fuzzing an Android application 
using a large set of test cases. The downside to this 
project is that black-box testing by robotium requires 
that applications are signed; thus, resigned 
applications that are automatically generated may 
show a decrease in functionality or failure.

Reina et al. [20] presents CopperDroid a dynamic 
analysis tool that characterizes low-level OS-Specific 
and high-level Android specific behaviors. 
CopperDroid utilizes QEMU [29] to automatically 
perform black-box dynamic analysis on Android 
applications. The VM-based centric system utilizes 
dynamic system call analysis in order to determine 
Android behaviors. CopperDroid also has the ability 
to determine whether a malware was initiated using 
Java, JNI, or native code. Results showed that from 
1,600 samples of malware, CopperDroid was able to 
differentiate different behaviors.

In [23], Yan and Yin present DroidScope, an 
analysis tool that utilizes a virtual-based system in 
order to detect malware. Specifically, DroidScope 
reconstructs both the kernel and system level 
semantics in order to facilitate malware analysis. 
Furthermore, DroidScope utilizes three tiers of APIs 
to emulate an Android device. These three tiers 
included: the hardware, OS, and Dalvik Virtal 
Machine. Results indicates that the tool was affective 
in assessing malware samples with low overhead.

2.3 Risk Analysis

Grace, et. al., [21] put forth a system called 
RiskRanker which is designed to analyze apps for 
dangerous behaviors. Specifically, RiskRanker 
provides a proactive scheme in order to detect zero
day malware without relying on signature based 
algorithms for detection. RiskRanker provides 

scalability by automating behavior detection of 
applications. The aim of the research was to reduce the 
search space needed to detect malware. Thus, the 
system was designed for scalability, efficiency, and 
accuracy. The system uses a first-order and second- 
order analysis to assess potentially dangerous behavior 
in applications. First-order analysis is mainly designed 
to quickly evaluate untrusted apps for high and 
medium risk behaviors. High-risk behaviors exploit 
the kernel for vulnerabilities. This includes any apps 
that try to perform privilege escalation. Medium level 
exploits are classified as application that attempts to 
charge user money surreptitiously, upload sensitive 
data, or send SMS messages. Second-order analysis 
consisted of searching for encrypted native code in 
application and unsafe bytecode loading. Results for 
first-order analysis shows that out of 9877 applications 
that contained native code, 24 was found to have 
embedded rootkits ranging from 6 different malware 
family. Medium level risk results indicate that 2374 
applications exhibit SMS sending behaviors in the 
background. Second-order results indicate that 315 
samples were found to have encrypted native code 
execution causing malware installation. Furthermore, 
184 unsafe dalvik code loading applications were 
found. In total, out of 118,318 applications from the 
Android markets analyzed, 718 malware samples from 
29 different families were found.

Crussell, et. al. [14] proposed AnDarwin, a 
scalable framework that analyzes Android 
applications for plagiarism. Specifically, semantic 
information was used in order to detect repackaged 
applications. Results indicate that out of 265,359 
applications, AnDarwin was able to identify 36,106 
repackaged or rebranded applications. Furthermore, 
88 new variants of malware were found.

While there has been substantial work conducted 
examining the detection of malicious code from static 
and dynamic perspectives, there is minimal 
substantive research that specifically investigates the 
effectiveness of these solutions in a re-packaged zero
day app that already contains excessive permissions.

3. Methodology

To support the hypothesis proposed in the 
introduction, the overall research was separated into 
two high-level stages. The first stage utilizes an initial 
iteration of a design science methodology as defined 
by Peffers, et. al, [28] to develop and implement the 
malicious code into an application. Any over
privileged application could have been chosen for this 
experiment. As a matter of convenience, excessive 
permission practice, large user base, and application 
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size, Snapchat was chosen as the target application. 
The second stage of this research utilizes the 
modifications in the first part to conduct a controlled 
experiment as defined by Sadish, et. al. [30]. The high- 
level problem statement examines the effectiveness of 
commercial and open source tools at detecting 
malicious code that has been injected and repackaged 
in a legitimate application.

3.1 Malicious Code

The first step in the design and development stage 
investigated what could be achieved with existing 
Snapchat permissions. Analysis of the 
AndroidManifest.xml file reveals that Snapchat 
requests 19 permissions from the user. The next step 
ran the Quick Android Review Kit [9], a static 
analyzer tool designed to look for security flaws and 
vulnerabilities. The application found components that 
were not protected by a permission. Specifically, the 
following components in ‘com.snapchat.android.’ 
were identified as not being protected:

• AppInstallBroadcastReceiver;
• notification.GcmMessageReceiver;
• LandingPageActivity;
• deeplink.DeepLinkActivity
The malicious application we developed as a result 

of the analysis is called AndroidTracker. It consists of 
implanting a hidden service in the form of a botnet that 
utilizes identified Snapchat permissions in order to 
steal sensitive data. Furthermore, the application 
utilizes a standard API to obtain sensitive data without 
requiring root access. Remote commands are 
communicated over WiFi, 3G, and/or 4G. It should be 
noted that for the purposes of this experiment, the 
malicious service was not obfuscated or packed when 
injected.

Command and control is created based on Google 
Cloud Messaging (GCM) by broadcasting messages to 
the hidden service. One of the main reasons for this 
choice is due to the amount of services and 
applications that take advantage of GCM in order to 
communicate notification and updates for products. 
Snapchat is a prime example of this. GCM service is 
embedded into the application easily by leveraging 
Snapchat’s built-in GCM libraries. The GCM enables 
the device to utilize common APIs and libraries that 
normal applications would use in order to act as a 
benign service. Additionally, GCM does not quickly 
drain the battery of the device as normal sockets do.

The android devices selected for this experiment 
are detailed in Table 1-Smartphone Attributes. The 
devices were initialized in an attempt to remove 
previous data interaction on the device. The 

initialization process was repeated prior to the 
execution of each experiment.

The following steps were conducted to initialize 
the Android devices: First the device is turned off so 
that it can be booted into recovery mode. Second, the 
volume-down button is held down while holding the 
power button in order to boot into advance startup. 
Third, the volume-down button is used to scroll down 
to recovery mode. The power button is used to select 
this option. Fourth, the power button is held down 
while pressing the volume up button once. The power 
button is then released. Fifth, the wipe data/factory 
reset option is selected similar to step three. The final 
step is to reboot the system.

Table 1. Smart Mobile Device Attributes
Trait Asus

Nexus 4
Phone

Asus 
Memo
Pad 7

Asus 
Nexus 5 
Tablet

LG Leon 
H345

O.S. Android 
KitKat 

4.4

Android 
Kitkat 
4.4.2

Android 
Lollipo 
p 5.1

Android 
Lollipop 

5.0
Internal 
Memory

16 GB 16 GB 16 GB 8GB

Memory 
Card

Yes Yes Yes No

The device must then be configured to allow USB 
debugging in order to use ADB to extract and install 
applications. USB debugging is enabled by going to 
the ‘Developer Options’ in the system menu of the 
settings page.

3.2 Reverse Engineering & Injection Process

The AndroidTracker malware is coded as a service 
intent. Our service intent has the ability to listen to 
commands from an outside service in order to execute 
commands. The commands include: 1) taking a 
picture, 2) sending live GPS feed, 3) displaying 
messages on the phone, and 4) sending notifications. 
Figure 1 - Repackaging malware illustrates the attack 
vector we implemented to modify the application.

Target App Repackaged App

Figure 1. Repackaging malware
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The injection process follows a structural 
procedure. The specific steps implemented to inject 
the code are as follows:
1. Initially, the latest Snapchat apk is pulled from the 

phone using adb. The following command 
identifies the exact location of the snapchat apk: 
“adb shell pm list packages -f |grep snapchat”

2. Once the location of the apk was identified, the 
apk was pulled using the following adb command: 
“adb pull /data/app/com.snapchat.android- 
1/base.apk”

3. Using apktool [7], we decompiled the current 
version of Snapchat into smali byte code using the 
following command:
“apktool d Snapchat.apk”

4. In addition, the apktool was used to decompile our 
malicious service to obtain the malicious payload. 
The main purpose of this step is to obtain the 
actual payload in smali format. Furthermore, the 
main activity onCreate function can be utilized 
and copied into Snapchat’s function to startup the 
activity. This step helps the reverse engineering 
process since the smali bytecode does not have to 
be completely coded by hand.

5. The manifest file, extracted from the disassembly 
of Snapchat with the apktool, was utilized in order 
to identify the startup activity payload injection 
site:
com.snapchat.android.LandingPageActivity.
Notice that this was one of the components that 
was listed as vulnerable based on the static 
analysis tool. The payload utilizes the main 
startup event from the startup activity.

6. Next, the service intent and broadcast receivers 
that the hidden service used was injected into the 
AndroidManifest. The Google Cloud Messaging 
system’s receivers and services were utilized 
using the original Snapchat’s permission.

7. The smali code obtained from AndroidTracker 
was copied and extracted into the Snapchat smali 
folder.

8. The main service activity from AndroidTracker’s 
onCreate function was copied and pasted into the 
main activity of Snapchat’s onCreate function. 
The function was altered to utilize Snapchat’s 
class to correctly initialize the service without the 
application crashing. The placement is visible in 
Figure 3-Injection Code to Start AndroidTracker.

9. Snapchat is recompiled using the following 
command: “apktool b Snapchat”

10. Java’s keytool was used to generate a signature 
with the following command: “keytool -genkey - 
v -keystore apk-key.keystore -alias apk-key - 
keyalg RSA -keysize 2048 -validity 10000”

11. Java’s jarsigner was used to sign the generated 
apk from step nine using the following command: 
“jarsigner -verbose -sigalg SHA1withRSA - 
digestalg SHA1 -keystore apk-key.keystore 
'Snapchat.apk’ apk-key”

12. Finally, the apk was deployed onto the Android 
device using the following command: “adb install 
‘Snapchat.apk’ -r”

Figure 3. Injection Code to Start 
AndroidTracker

3.3 Controlled Experiments

With the growth of malware, an influx of anti-virus 
solution can now be downloaded from the Android 
Play Store. For this test, we chose a sample of the top 
rated anti-virus apps by user from the store. 
Furthermore, we evaluated popular anti-virus 
solutions that currently have over one million 
downloads. Based on these two criteria, we chose a list 
of 12 anti-virus apps for our experiment. Furthermore, 
case one studies anti-virus engines that are publicly 
available online. Anti-virus engines are classified as 
any scalable online detection engine utilizing multiple 
suites of security tools.

Research tools were chosen with a web-based 
interface from a list of scanners acquired from 
research projects or papers. For online tools, we chose 
those that had at least one of these criteria: 1) static 
analysis, 2) dynamic analysis, or 3) combination of 
static and dynamic analysis. Tools that are limited in 
size are listed as well. For instance, Andrubis only 
allows for scanning files under 8 MB. Based on the 
tools selected, two experiments were conducted.

3.3.1 Experiment One. The first controlled 
experiment utilizes a structured methodology to test 
effectiveness of locally installed anti-virus and online 
antivirus scanning engines. The following provides 
overview for analysis of commercial anti-virus that 
have been locally installed. First, the Android device 
is initialized to the default states based on the steps in 
the initialization process presented previously. 

6185



Second, the commercial anti-virus is installed from the 
Play Store. Third, the settings are configured to real 
time monitoring where possible in the commercial 
anti-virus software. Fourth, the repackaged snapchat is 
installed with adb using the following command: “adb 
install ‘Snapchat.apk’ -r”. The fifth step initiates a full 
system scan. The sixth step initializes Snapchat to 
ensure functionality of AndroidTracker. The final step 
records the results and any warnings.

The online anti-virus engine suite follows a similar 
methodology as the commercial anti-virus 
applications. However, the online anti-virus engine 
requires the user to upload the apk onto the server first. 
The process then follows step six.

3.2.2 Experiment Two. The second controlled 
experiment runs the repackaged application through 
online scanner tools that are either static analyzer, 
dynamic analyzer, or a combination of both. Risk 
ranking scores are recorded based on the tool’s scoring 
system. Thus, the risk ranking system can be either 
numeric or descriptive. Furthermore, file size limits 
are recorded to assess the scope of the scanner. Since 
the modified version of Snapchat is 29 MB, if the 
online engine cannot support the file size, then the tool 
is deemed unsuccessful. Evidence of residual data is 
marked successful if any sign of the hidden service 
name is picked up from the results by manual analysis. 
Repackage detection assesses whether or not the tool 
was successfully able to identify a modified version of 
Snapchat. Finally, the tool was deemed successful if it 
was able to classify the malware.

4. Results and analysis

Injection of the repackaged app was successful in 
all four different Android devices that were tested. 
Each device was tested for functionality of Snapchat 
and AndroidTracker to ensure successful code 
injection. Snapchat was able to operate as normal on 
all four devices. When the user started the modified 
application, AndroidTracker was initialized in the 
background as well. The background service 
communicated with the central http command server 
using Google Cloud Messaging in order to register 
devices. In addition, the background service was 
successful in storing the device data and information 
in a remote SQL database. Querying of the commands 
utilized GCM in order to send messages to the device. 
Figure 4 displays the result of querying our Nexus 4 
device for a live picture feed and GPS data. The live 
picture feed accurately displayed the front camera 
taking a screenshot of the desktop screen. The GPS 

data was accurate in displaying the tablet current 
location as well.

Furthermore, the hidden service was able to listen 
to query commands including: message notification, 
message toast, and turn off phone. This was conducted 
to verify that the botnet was successfully built and 
deployed using a common API to tests the 
effectiveness of anti-viruses at differentiating between 
benign and malicious API calls.

Figure 4. AndroidTracker http command 
server

The installation and successful communication with 
the HTTP remote server demonstrates that even 
though common API calls and libraries were used, a 
botnet was able to be created. Thus, signature based 
algorithms have trouble determining if a function’s 
signature is malicious or a false positive.

4.1 Experiment one

Results from experiment one indicate that current 
anti-virus applications are not detecting the newly 
repackaged malware. However, CM Security did give 
a warning indicating that the application may be 
leaking data. The data leakage warning was not 
surprising as the Quick Android Review Tool pointed 
out potential data leakage from components during the 
development process. Our results show that all 12 
popular anti-viruses did not properly detect our 
sample. Table 1 - Anti-Virus Detection provides a 
summary of the test results.

Similar results were displayed from the online apk 
anti-virus scanners. No scanners were able to detect 
the presence of malware in the modified Snapchat. It 
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should be noted that each of the locally installed and 
on-line anti-virus suites utilize a signature based 
algorithm to check for malware. It is known that 
signature based algorithms are prone to not being able 
to affectively distinguish code variants [17]; the results 
indicate that they also have problems detecting new 
vulnerabilities in repackaged applications.

Table 1: Anti-Virus Detection
AV App Malware? Warnings
AVG Anti-Virus N N
CM Security N Y
Dr. Web Light N N
Avast N N
Norton Mobile N N
Kaspersky N N
Lookout N N
Malwarebyte N N
ESET Mobile Security N N
Avira Anti-Virus N N
NQ Security Anti-Virus N N
McAfee Mobile Security N N

While there is no holistic or heuritstic checks for 
malware, it is interesting that no warnings were 
displayed for any online anti-virus engine. Table 2 
summarizes the results for online engines.

Table 2. Online Anti-Virus Engines Detection

File Size Limit

Successful 
Detection of 

Malware?
SandDroid 50 MB X
Andrototal 128 MB X
Virus Total Unlimited X
OPSWAT Unlimited X

4.2 Experiment two

The results from the second controlled experiment 
were more promising in terms of overall detection. 
The online tools that use anti-virus engines did not 
classify our sample as malware. However, tools that 
use either static analysis, dynamic analysis, or a 
combination of both did give high risk scores or alerts 
that the application may be malicious, although no 
engine declared our sample to be malware. The tools 
did provide risk scores which appear to be based 
primarily on use of sensitive API calls and 
permissions. Scores range from numerical values to 
descriptive ratings. Furthermore, one of the main 
constraints with some of the static, dynamic, and 
combinational analysis tools was the file intake size.

Since the repackaged Snapchat was 29MB, some of 
the tools were not able to handle a file that large.

The second controlled experiment was subdivided 
into two separate experiments. The first looked at 
Static analysis and the second looked at tools that 
utilize a combination of static and dynamic analysis. 
Dynamic analysis by itself was not included due to 
limited information given and file size constraint. 
Some dynamic results showed recording of the 
applications simply just opening and closing without 
any data generated while others simply displayed IP 
address and Geolocations. Thus, work towards a better 
scalable, automated dynamic engine for malware 
analysis is needed. Android Static analysis provided 
the most useful information compared to dynamic 
analysis. One of the problems with dynamic analysis 
is being unable to trigger the correct event for data 
analysis. Since AndroidTracker required Google Play 
Store to be installed, dynamic analysis utilizing 
sandbox environments were not able to activate the 
malicious conditions.

4.2.1 Static Analysis. The fully functional static 
analysis tools included AVC UnDroid, MobiSec 
Eacus, and Visual Threat. AVC UnDroid had a file 
size limit of 7 MB; thus, it was insufficient for 
dedicating malware. Static analysis results displayed 
the following types of features such as permission 
listing, website access strings, geolocation of 
networks that the application is talking too, sensitive 
API calls display, component analysis, and 
certification analysis MobiSec showed unique 
features since it was able to give a risk ranking score 
in combination with detecting that the apk was 
repackaged. Visual Threat gave a risk score of 55 out 
of 100 due to the permission usage and type of 
services associated with the application. None of the 
three static analysis engines were able to detect 
malware in the repackaged Snapchat. Table 3 
summarizes the engines that we used and the results. 
Overall, static analysis did provide useful information 
for reverse engineering the malware.

Table 3: Static Analysis Engines Summary
AVC UnDroid MobiSec Eacus Visual Threat

File Size Limit 7 MB Not Specified Not Specified
Risk Ranking
Score/Scale X Low 55/100
Evidence of

Residual Data? X X √
Repackage
Detection? X √ X
Successful

Detection of
Malware? X X X
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4.2.2 combinational analysis. Like static and 
dynamic analysis, combinational analysis faced issues 
with file size limit as well. Andrubis and APK 
Analyzer were not tested due to their 8 MB and 20 MB 
limit respectively. SandDroid was able to display a 
risk ranking score of 100. SandDroid defines 1) 
connecting to the internet, 2) executing shell code, 3) 
having unused permission, 4) getting GPS info, 5) 
opening the camera, 6) recording audio, 7) getting 
unique device id and IMEI, and 8) executing internal 
requests as all risky behaviors [5]. The normal 
application that we piggybacked off of uses all of these 
permissions and behaviors non-maliciously and is 
flagged as risky: thus, SandDroid also considered our 
repackaged version risky. The dynamic analysis 
portion simply displays a gif of the application starting 
up and closing. No further details were provided for 
dynamic analysis.

NVISO ApkScan file size limited was unlisted, but 
it was able to successfully scan the repackaged 
Snapchat. Results show that the application only 
shows a medium level of risk since it marked the 
application as suspicious out of the three options: no 
malicious behavior, suspicious behavior, and 
confirmed malicious. Dynamic analysis was 
unsuccessful at providing any useful information.

Combinational analysis provided as much 
information as static analysis. The dynamic analysis 
did not provide useful information since no malicious 
behaviors were triggered. In addition, none of the 
engines were able to detect malware in the repackaged 
Snapchat. Table 4 provides a summary of the results.

Table 4. Combination of Static and Dynamic 
Analysis Engines Summary

File Size Limit
SandDroid

50 MB

Andrubis

8 MB

NVISO ApkScan 

Not Specified

APK Analyzer

20 MB

Risk Ranking
Sccre/Scale 100/100 X Suspicious X

Evidence of

Residual Data? √ X √ X
Repackage

Detection? X X X X

Successful
Detection of

Malware? X X X X

4.3 Residual data analysis

The results for case three indicates that static 
analyzers can trace and detect the actual service 
registration and sensitive API calls. Figure 5 shows an 
example of a static analysis tool indicating sensitive 
API calls made by our malware sample with the threat 
level associated with the call. Furthermore, the static 
analysis tool was able to determine services started by 

the application, including our hidden service. 
SandDroid, specifically, was able to link permission 
requests with API calls in order to produce threat level 
evaluations. Furthermore, SandDroid was able to 
display the receivers, services and remote server 
address from AndroidTracker. NVISO ApkScan was 
able to provide the same information as SandDroid, 
but it was not able to provide the API call mapping that 
SandDroid provided. Visual threat was only able to 
provide residual data for services and remote server 
address. NVISO ApkScan’s main advantages lies in its 
ability to provide adb logcat dump from the dynamic 
analysis run. However, no residual data was found in 
the logcat file. The remaining static and dynamic 
analysis tools were not able to provide any residual 
data in their results.

Dynamic analysis did not produce actionable 
results from any of the tools we tested. More than 
likely, this was because conditions were not triggered 
at runtime that executed maliciously inserted code. 
Most sophisticated malware will trigger only when 
correct timing conditions are met in order to avoid 
detection.

While residual data are useful, they are very time 
consuming to manually find. The experiments rely on 
the fact that the services and receivers’ names were 
known prior to injection. Thus, it was easy to manually 
analyze the results to find the residual data.
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Figure 5. Static Analysis Trace of 
Repackaged Malware

However, more sophisticated malware can blend 
its name with the application into which it is injecting. 
Additionally, obfuscation and packing of the Android 
application by using the Dex class loader leads to 
perplexing strings and function names. Thus, residual 
data becomes increasingly hard to find. Table 5 
provides a summary of the residual data that was 
obtained in the experiment.



Table 5: Residual Data Obtained

Activities Leaked
Receivers 

Leaked
Services 
Leaked

Remote Server
Address Leaked

SandDroid √ √ √ √
Andrubis X X X X

NVISO ApkScan √ √ √ √
APK Analyzer X X X X

Tracedroid X X X X
AVC UnDroid X X X X

MobiSec Eacus X X X X
CopperDroid X X X X
Visual Threat X X √ √

5. Conclusions and future work

The popularity of mobile devices and the Android 
operating system coupled with the continued 
integration of these devices into all aspects of society 
is generating an environment that is attractive to 
attackers. For the purposes of this research, the 
Snapchat application was chosen for modification due 
to excessive use of permissions and services along 
with its popularity.

A repackaged malicious Snapchat was produced in 
order to stimulate sophisticated zero-day malware. 
Using a controlled experiment, we assessed the 
effectiveness of current commercial anti-virus 
products for Android against a repackaged application 
that uses piggybacked API permissions. In addition, 
static analysis, dynamic analysis, and combination of 
static and dynamic analysis tool analysis were 
assessed in their detection ability on zero-day 
repackaged malware.

Detecting new repackaged zero-day malware 
remains a hard problem in today’s environment. 
Security, to a large extent, relies on the detection 
abilities provided by markets to monitor published 
apps. The initial investigation indicates that 
commercial anti-virus software obtained from Google 
Play Store may not provide additional protection for 
such new threats as our contrived malware example. 
In addition, online detection suites were not able to 
detect the malware in the repackaged Snapchat.

Static analysis, dynamic analysis, and combination 
of static and dynamic analysis engines were able to 
provide better results and warnings for end-users. 
SandDroid, NVISO ApkScan, and Visual Threat were 
able to provide residual data that indicated that part or 
all of our hidden service was initialized. Furthermore, 
MobiSec Eacus was able to indicate that the apk was 
repackaged. However, many of the static and dynamic 
analysis engines were unable to provide any result due 
to its file size limit. Thus, larger, popular applications 
are not able to be processed through their engines for 
results.

The initial research results indicate that the static, 
dynamic, or combination analysis solutions used in 

this experiment do not detect malware in repackaged 
applications. They also indicate that analysis tools 
used in this experiment provided minimal to no 
indication of malicious code activity. These results 
support the hypothesis that commercial and open 
source tools will not detect a repackaged application 
with excessive permissions that contain malicious 
code. They also indicate that there are opportunities 
for developing improvements in commercial anti
virus, static, and dynamic analysis tools in order to 
provide better support for sophisticated zero-day 
malware.

While the scope of this research focuses on the 
identification of a reverse engineering methodology 
that utilized dynamic and static analysis tools in 
conjunction with zero day malware. Hence, future 
research will focus on expanding the implementation 
of the methodology to include injection non-zero day 
malware into popular applications. This research will 
also investigate the performance of market antivirus 
and analysis solutions to determine practical malware 
recognition. In addition, future research will 
investigate effective obfuscation techniques along 
with how these techniques perform when analyzed 
with real-world detection tools. This effort will also 
examine the development of effective algorithms that 
detect obfuscated malware. A related stream of 
research will investigate malware that utilizes the 
cloud as a propagation mechanism along with 
effective and efficient mitigation strategies.
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