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Abstract
Introduction: In the classification of Mass Spectrometry (MS) proteomics data, peak detection, 
feature selection, and learning classifiers are critical to classification accuracy. To better understand 
which methods are more accurate when classifying data, some publicly available peak detection 
algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data 
were recently compared; however, the issue of different feature selection methods and different 
classification models as they relate to classification performance has not been addressed. With the 
application of intelligent computing, much progress has been made in the development of feature 
selection methods and learning classifiers for the analysis of high-throughput biological data. The 
main objective of this paper is to compare the methods of feature selection and different learning 
classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis 
of MS proteomics data.

Results: We compared a well-known method of feature selection, Support Vector Machine 
Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave- 
one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also 
compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naive 
Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based 
quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric
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learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To 
compare, we conducted a comprehensive experimental study using three types of MALDI-MS data.

Conclusion: Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the 
learning classifiers, when classification models derived from the best training were compared, SVMs 
performed the best with respect to the expected testing accuracy. However, the distance metric 
learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such 
cases, the optimum classification model based on LMNN is worth investigating for future study.

Introduction
In proteome research, high-throughput mass spectrome­
try (MS) establishes an effective framework for biomedi­
cal diagnosis and protein identification [1]. A mass 
spectrum data sample includes a sequence of mass/charge 
(m/z) ratios. Two types of mechanisms, low resolution 
and high resolution, that typically contain more than 
10,000 data points ranging from 500 Da to 20000 Da, are 
used in mass spectrometry.

Mass spectrum data mining usually contains four steps: 
preprocessing, feature extraction or peak detection, fea­
ture selection and classification. Sometimes preprocessing 
and peak detection are merged as preprocessing. The main 
task in preprocessing is to purify the data and systemati­
cally represent the data for the following steps. The MS 
data contain two kinds of noise that damage the classifi­
cation result: electric noise and chemical noise. MS data is 
generated with chemical noise through matrix or ion over­
loading, and the noise usually shows up as a baseline 
along the spectrum. Baseline correction computes the 
local minimum value, draws a baseline represented as the 
background noise, and subtracts the baseline from the 
spectrum. Williams et al [2] proposed a robust algorithm 
for computing the baseline correction of MALDI-MS spec­
tra. Alternatively, because electronic noise is generated 
from the electronic instrument and is usually randomly 
distributed in the spectra, Chen et al [3] designed a wave­
let-based de-noising that applies wavelet transformation 
and removes a certain amount of lower value wavelet 
coefficients. The de-noised data are normalized to system­
atically represent the spectra. The next crucial step is to 
extract features from the spectra and then form the initial 
complete feature set. The simplest way is to extract every 
data point as a discriminative feature and generate a huge 
feature set including more than 15,000 features [4,5]. A 
more elaborate algorithm for peak detection and align­
ment is also available to perform an even more aggressive 
feature extraction [6-8].

To classify MALDI MS data, peak detection, feature selec­
tion, and classifier are generally important to obtain the 
final results. To compare public peak detection algo­
rithms, Yang et al. [9] recently conducted an experimental 
study using five single spectrum based peak detection 

algorithms including Cromwell [10], CWT [11], PROcess 
[12], LMS [13], and LIMPIC [14]. That study did not com­
pare feature selection and classifiers for MALDI-MS data. 
"The curse of dimensionality" in MS data requires a pow­
erful feature selection algorithm to choose the discrimina­
tive feature subset. While distance metric learning has 
drawn many researchers' attention, researchers recognize 
that different classifiers yield different results. Therefore, a 
comprehensive experimental study that compares these 
powerful methods of feature selection and different learn­
ing classifiers for the classification of MALDI-MS data has 
been sorely needed.

Support Vector Machine Recursive Feature Elimination 
(SVMRFE) [15] is a very popular method for feature selec­
tion based on the backward feature elimination that recur­
sively removes the least ranking feature. Originally 
proposed for microarray data analysis, it has been widely 
used for feature selection in different areas including MS 
data analysis [16]. Recently, Tang et al. designed a method 
of feature selection called the gradient based leave-one- 
out gene selection (GLGS) for classifying microarray data. 
The authors concluded that GLGS outperforms SVMRFE 
in microarray data analysis [17], a finding that our previ­
ous work corroborates in that we found that GLGS also 
effectively classified microarray data [18]. To reach a more 
definitive understanding of how methods compare, we 
evaluated two methods of feature selection as well as pop­
ular learning classifiers in an experimental study on 
MALDI-MS data.

Methods
Preprocessing MALDI-MS data
Mass spectrum data has high dimensionality within a 
small sample size. Both chemical and electrical noises are 
involved in the signal, and the redundancy of the spectra, 
different reference points, and unaligned feature points 
increase the computational intensity and decrease the 
classification accuracy. In this section, we explain the pre­
processing methods, including spectra re-sampling, wave­
let de-noising, baseline correction, normalization, peak 
detection and alignment.
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Spectra re-sampling and wavelet de-noising
Mass spectrum data presents in a discrete format along 
intervals that are not equal in the whole spectrum. For 
high-resolution data, the high-frequency noise and redun­
dant data points harm the quality of the dataset. So, we 
have to set the common low-frequent mass value to every 
sample spectrum to have a unified representation. By 
using spline interpolation, we resample the data and con­
fine the interval to a unified size. Before re-sampling, the 
sample spectrum has little variation from the true spec­
trum. The data is re-sampled to a standard discrete data 
that could be analyzed in a frequency domain. The electri­
cal noise is generated in an almost randomly distributed 
way during the mass spectrum acquisition by the instru­
ment. The next step is to use discrete wavelet transform to 
eliminate the electrical noise. By applying a wavelet trans­
form, the original signal is decomposed into multi-level 
wavelet coefficients. By setting up a threshold value, given 
percentiles of lower value coefficients are removed. Then, 
we apply a polynomial filter of a second order to smooth 
the signal and improve data quality.

Baseline correction and normalization
Chemical contamination introduces the baseline effect 
and changes the true protein distribution. To minimize 
chemical noise, the baseline is subtracted from the spec­
trum. To obtain the baseline, the local minima are com­
puted by assigning a shifting window size of 30 and a step 
size of 30. Then, we use spline interpolation to fit the 
baseline. After smoothing, the baseline is subtracted from 
all spectra. To compare sample spectra, we need to nor­
malize the spectra using its total ion current to represent 
the data in a systematic scale.

Peak detection and qualification
The final feature acquisition of MS data is to obtain the 
peak position and its magnitude. Peak is the position of 
maximum intensity in a local area in spectrum, and par­
ticularly in mass spectrum, it refers to the mass location 
where ion count is the largest in a local m/z zone. The 
peak is identified where the first derivative is changing 
from a positive to a negative. In our mass spectrum exper­
iment, the peak detection method proposed by Coombes 
et al [19] is performed on a mean spectrum rather than 
individual spectra. We used the ad hoc method based on 
signal-to-noise ratio to select the large peaks based on the 
preprocessing method described in reference [6].

Feature selection
To address the "curse of dimensionality" problem, three 
strategies have been proposed: filtering, wrapper and 
embedded methods. Filtering methods select subset fea­
tures independently from the learning classifiers and do 
not incorporate learning. One of the weaknesses of filter­
ing methods is that they only consider the individual fea­

ture in isolation and ignore possible interactions. Yet, the 
combination of these features may have a combination 
effect that does not necessarily follow from the individual 
performances of the features in that group. One of the 
consequences of the filtering methods is that we may end 
up with many highly correlated features; yet, any highly 
redundant information will worsen the classification and 
prediction performance. Furthermore, a limit on the 
number of features chosen may preclude the inclusion of 
all informative features.

To avoid the weakness in filtering methods, wrapper 
methods wrap around a particular learning algorithm that 
can assess the selected feature subsets in terms of the esti­
mated classification errors and then build the final classi­
fier [20]. Wrapper methods use a learning machine to 
measure the quality of the subsets of features. One recent 
well-known wrapper method for feature selection is SVM- 
RFE proposed by Guyon et al. [15], which refines the opti­
mum feature set by using the Support Vector Machine 
(SVM). The idea of SVMRFE is that the orientation of the 
separating hyper-plane found by the SVM can be used to 
select informative features. If the plane is orthogonal to a 
particular feature dimension, then that feature is informa­
tive, and vice versa. In addition to microarray classifica­
tion, SVMRFE has been widely used in other high- 
throughput biological data analysis including a proteom­
ics study [16] and non-bioinformatics areas involving fea­
ture selection and pattern classification situations [21]. 
The recursive elimination procedure of SVMRFE is listed 
as follows:

(1) Initial ranked feature set R = []; feature set S = [1,..., 
d];

(2) Repeat until all features are ranked

(a) Train a linear SVM with all the training data 
and variables in S;

(b) Compute the weigh vector;

(c) Compute the ranking scores for features in S;

(d) Find the feature with the smallest ranking 
score;

(e) Update R: R = R [e, R];

(f) Update S: S = S - [e];

(3) Output: Ranked feature list R.

Wrapper methods can noticeably reduce the number of 
features and significantly improve the classification accu­
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racy [22]. However, wrapper methods have the drawback 
of having a high computational load. With better compu­
tational efficiency and similar performance to wrapper 
methods, embedded methods simultaneously process fea­
ture selection with a learning classifier. To deal with the 
feature selection in microarray data classification, Tang et 
al. also proposed two gene selection methods: leave-one- 
out calculation sequential forward selection (LOOCSFS) 
and GLGS that is based on the calculation of the leave- 
one-out cross-validation error of LS-SVM [17]. The GLGS 
algorithm can be categorized as an embedded method 
that differs greatly from previous wrapper and embedded 
approaches because the GLGS optimizes the evaluation 
criterion derived in a supervised manner in a transformed 
space with significantly reduced dimensions compared to 
the original space as it selects genes from the original gene 
set based on the results of the optimization. According to 
presented experimental results, the GLGS method is more 
appealing given it has the lowest generalization error [17].

Based on the above explanation, we employed SVMRFE 
and GLGS algorithms for feature selection in our experi­
mental study.

Learning classifiers
Support vector machines
SVM [23] has been widely used in classification. It con­
structs an optimal hyperplane decision function in feature 
space that is mapped from the original input space by 
using kernels, briefly introduced as follows:

Let xi denote the ith feature vector in the original input 
space and zi denote the corresponding vector in the fea­
ture space, zi = ® (xi). Kernel function k(xi; xj) computes 
the inner product of two vectors in the feature space and 
defines the mapping function:

(3)

Distance metric learning
Depending on the availability of training examples, the 
algorithms of distance metric learning can be divided into 
two categories: supervised distance metric learning and 
unsupervised distance metric learning. With the given 
class labels for training samples, supervised distance met­
ric learning can be divided into global distance metric 
learning and local distance metric learning. The global 
learns the distance metric in a global sense, i.e., to satisfy 
all the pairwise constraints. The local approach is to learn 
the distance metric in a local setting, i.e., only to meet 
local pairwise constraints.

Unsupervised distance metric learning is also called man­
ifold learning. Its main idea is to learn an underlying low­
dimensional manifold whereby the geometric relation­
ships between most of the observed data are preserved. 
Every dimension reduction approach works by essentially 
learning a distance metric without label information. 
Manifold learning algorithms can be divided into global 
linear dimension reduction approaches, including Princi­
ple Component Analysis (PCA) and Multiple Dimension 
Scaling (MDS), global nonlinear approaches, for instance, 
ISOMAP [24], local linear approaches, including Locally 
Linear Embedding (LLE) [25] and the Laplacian Eigen- 
map [26].

In supervised global distance metric learning, the repre­
sentative work formulates distance metric learning as a 
constrained convex programming problem [27]. In local 
adaptive distance metric learning, many researchers pre­
sented approaches to learn an appropriate distance metric 
to improve a KNN classifier [28-32]. Inspired by the work 
on neighborhood component analysis [30] and metric 
learning with the use of energy-based models [33], Wein­
berger et al. proposed a distance metric learning for Large 
Margin Nearest Neighbor classification (LMNN). Specifi­
cally, the Mahanalobis distance is optimized with the goal 
that the k-nearest neighbors always belong to the same 
class while examples from different classes are separated 
by a large margin [34]. The LMNN has several parallels to 
learning in SVMs. For example, the goal of margin maxi­
mization and a convex objective function is based on the 
hinge loss. In multi-classification, the training time of 
SVMs scales at least linearly in the number of classes. By 
contrast, LMNN has no explicit dependence on the 
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Where [z]+= max(z,0) denotes the standard hinge loss and 
the constant C > 0. The first term penalizes large distances 
between each input and its target neighbors and the sec­
ond term penalizes small distances between each input 
and all other inputs that do not share the same label. The 
optimization of eq. (5) can be reformulated as an instance 
of semidefinite programming (SDP) [35] and the global 
minimum of eq. (5) can be efficiently computed. Maha- 
lanobis distance metric M = LTL, eq. (4) is

Other learning classifiers
Besides comparing learning classifiers LMNN and support 
vector machines with linear kernel (SVM_linear) and RBF 
kernel (SVM_rbf), we also applied several traditional clas­
sifiers including K-Nearest Neighbor Classifier (KNNC), 
Naive Bayes Classifier (NBC), Nearest Mean Scaled Classi­
fier (NMSC), Uncorrelated normal based quadratic Bayes 
Classifier recorded as UDC for the comparison study. The 
technical details about these learning classifiers can be 
found in reference [36].

Data sets and experiments
The following three mass spectrometry data sets have 
been tested in our experiment:

1. High resolution time-of-flight (TOF) mass spec­
trometry (MS) proteomics data set from surface- 
enhanced laser/desorption ionization (SELDI) Pro­
teinChip arrays on 121 ovarian cancer cases and 95 
controls. The data sources can be accessed by FDA-NCI 
Clinical Proteomics at   http://home.ccr.cancer.gov/
ncifdaproteomics/ppatterns.asp

2. The breast cancer QC SELDI spectra data set was 
studied by Pusztai et ai. [37]. Here, we utilized the data 
of 57 controls and 51 cases. The data set is available at: 

 http://bioinformatics.mdanderson.org/Supplements/
Datasets

3. Matrix-assisted laser desorption/ionization time-of- 
flight (MALDI-TOF) liver disease data set was collected 
by Ressom et ai. [38] for peak selection using ant col­
ony optimization. The data set consists of 78 hepato­
cellular carcinoma (HCC, also called malignant 
hepatoma, a primary malignancy cancer of the liver), 
51 cirrhosis (cirrhosis is a consequence of chronic liver 
disease characterized by replacement of liver tissue by 
fibrous scar tissue as well as regenerative nodules lead­
ing to progressive loss of liver function), and 72 nor­
mal. The spectra were binned with bin size of 100 
ppm, and the dimension was reduced from 136,000 
m/z values to 23846 m/z bins. Since the two liver dis­
eases have similar symptoms but different treatments, 
our effort is focused on the classification of these two 
different diseases, or the identification of HCC and cir­
rhosis.

We process the data sets according to the methods 
described previously for peak detection and apply the 
SVMRFE and GLGS algorithms to the detected peak spec­
tra data. The learning classifiers, listed in Table 1, are used 
for the training data and the testing data consisting of the 
feature sets chosen by SVMRFE and GLGS. In each experi­
ment, 80% samples are randomly chosen for training, and 
the remaining 20% samples are tested. We ran the experi-
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Table 1: Expected testing accuracy and standard errors (mean ± standard error, %) with classification models derived from best 
training, with the use of GLGS and SVMRFE feature selection algorithms and seven learning classifiers. Following the use of each 
feature selection algorithm on each data set, the best result as well as the classifier is highlighted in bold.

Learning classifier GLGS SVMRFE

Ovarian cancer Breast cancer Liver disease Ovarian cancer Breast cancer Liver disease

KNNC 87.4 ± 5.8% 74.1 ± 6.9 80.9 ± 6.6 93.6 ± 3.8 82.8 ± 6.9 89.8 ± 3.9
NBC 78.9 ± 5.8 73.3 ± 8.5 87.1 ± 6.0 90.2 ± 4.5 74.1 ± 9.3 92.8 ± 4.1

NMSC 81.8 ± 5.2 76.2 ± 9.1 90.8 ± 4.9 92.2 ± 3.9 80.5 ± 8.0 94.3 ± 4.1
UDC 82.1 ± 5.6 76.9 ± 8.0 89.5 ± 5.9 91.8 ± 4.3 81.1 ± 7.4 90.4 ± 6.0

SVM_linear 89.6 ± 4.9 85.6 ± 8.3 95.8 ± 3.8 97.9 ± 2.0 89.9 ± 6.0 98.2 ± 2.7
SVM_rbf 90.4 ± 4.3 85.3 ± 7.9 96.4 ± 3.3 98.2 ± 1.8 90.5 ± 6.1 97.5 ± 3.1

LMNN 88.0 ± 4.9 75.5 ± 6.7 88.6 ± 4.7 97.4 ± 1.6 77.4 ± 5.8 91.6 ± 3.2

ments 50 times for each combination of feature selection 
and learning classifiers, with the feature numbers from 5 
to 100.

Results
Average testing under each dimension
Figure 1 shows the average testing accuracy by using the 
seven classifiers for the feature sets chosen by GLGS and 
SVMRFE, with the feature numbers from 5 to 100. Regard­
ing feature selection, SVMRFE is superior to GLGS in the 
testing of each type of MS data. In the testing for ovarian 
cancer data set, on average, LMNN is the best, followed by 
the SVM classifiers with linear kernel and rbf kernel. In the 
testing of the breast cancer data set, KNNC performs the 
best, followed by SVM classifiers with linear kernel and rbf 
kernel. In the testing of the liver disease data set, SVM clas­
sifiers outperformed other classifiers. Spanning over these 
three types of MS data, overall, SVM classifiers performed 
the best according to an evaluation of the testing accuracy 
and the stabilization. Worth mentioning is that, although 
LMNN has the best performance in testing the ovarian 
cancer data set, it did not fare well on the breast cancer 
and liver disease data sets, given the average from the fea­
ture dimension from 5 to 100. However, if we compare 
the testing accuracy of the feature sets with the number of 
features around 20 chosen by SVMRFE, LMNN delivered 
the most promising performance.

Expected testing performance under best training
Besides comparing the average testing accuracy under 
each feature dimension from 5 to 100, we also compared 
the testing accuracy with the use of the classification mod­
els that are based on the best training. Figure 2 shows the 
box-plots of 50 expected testing accuracy values for each 
learning classifier with the feature selection methods of 
GLGS and SVMRFE, respectively. Table 1 lists the mean 
value and the standard error of the expected testing accu­
racy with the classification models derived from the best 
training. By comparing the box-plots on the left sub-fig­
ures and on the right sub-figures in Figure 1 and compar­

ing the results shown in Table 1, we concluded that the 
SVMRFE outperformed GLGS and SVM classifiers showed 
remarkable advantages over other classifiers.

Best testing performance under best training
We also compared the best testing accuracy with the use of 
the classification models derived from the best training. 
Figure 3 shows the box-plots of 50 best testing accuracy 
values for each learning classifier with the feature selec­
tion methods of GLGS and SVMRFE, respectively. Table 2 
lists the mean value and the standard error of the best test­
ing accuracy with the classification models derived from 
the best training in each experiment. The results shown in 
Figure 3 and Table 2 demonstrated that SVMRFE is supe­
rior to GLGS, and that the LMNN delivered the best per­
formance.

Discussion
If we compare the results shown in Table 1 and Table 2, 
we found that the results obtained by using SVMs are the 
same in both tables, but the results of using other classifi­
ers are different. In each experiment, with the use of other 
classifiers, there are multiple classification models, 
derived from the best trainings with different feature 
numbers. In this case, we calculated the average or 
expected testing value for Table 1 and obtained the best 
testing value for Table 2, respectively. On the other hand, 
by using SVM, we obtained a unique classification model 
derived from unique best training in each experiment; 
therefore, the results in Tables 1 and 2 are the same with 
the use of SVMs.

Regarding the expected testing performance under the 
best training, SVMs outperformed other classifiers. As for 
the best testing under best training, the best performance 
was associated with the learning classifier LMNN, which 
implies that distance metric learning is very promising for 
the classification of the MALDI-MS data., In these situa­
tions, it is the optimum classification model that delivers
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KNNC NBC --------- NMSC -----------UDC SVM Jinear ----------SVM rbf LMNN

Figureae1toesrtitinhgmascocunroacvyaraiaftnercanpcpelyrin(rgoswev1e)n, lberaeransitngcacnlacsesrifi(erroswto2)t,haenfdealitvuerredsiestesasceho(rsoenwb3y) tdhaetaGsLeGtsS, r(leesfpt)eacntidvetlhye SVMRFE 
Average testing accuracy after applying seven learning classifiers to the feature sets chosen by the GLGS (left) 
and the SVMRFE (right) algorithms on ovarian cancer (row 1), breast cancer (row 2), and liver disease (row 3) 
data sets, respectively.

the best testing under the best training and, as such, is 
worthy of future investigation.

In comparison with the SVMRFE method, the GLGS fea­
ture selection method delivered a comparable and/or bet­
ter performance in classifying microarray data; however, 
our experimental results showed that it does not perform
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Figuree 2 esting accuracy with classification models derived from best training
Average testing accuracy with classification models derived from best training. In each sub-figure, the results 
shown in column 1 to column 7 are obtained by using KNNC, NBC, NMSC, UDC, SVM_linear, SVM_rbf, and LMNN classifi­
ers, respectively.
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Figures3ng accuracy with classification models derived from best training
Best testing accuracy with classification models derived from best training. In each sub-figure, the results shown in 
column 1 to column 7 are obtained by using KNNC, NBC, NMSC, UDC, SVM_linear, SVM_rbf, and LMNN classifiers, respec­
tively.
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Table 2: Best testing accuracy and standard errors (mean ± standard error, %) with classification models derived from best training, 
with the use of GLGS and SVMRFE feature selection algorithms and seven learning classifiers. By using each feature selection 
algorithm on each data set, the best result as well as the classifier is highlighted in bold.

Learning classifier GLGS SVMRFE

Ovarian cancer Breast cancer Liver disease Ovarian cancer Breast cancer Liver disease

KNNC 88.0 ± 5.8% 80.5 ± 8.6 88.3 ± 6.3 96.6 ± 2.9 87.9 ± 7.0 95.3 ± 3.4
NBC 79.9 ± 5.3 75.8 ± 9.0 90.8 ± 5.6 90.9 ± 4.5 76.0 ± 9.1 96.5 ± 3.7

NMSC 82.6 ± 5.1 77.8 ± 9.1 92.1 ± 4.4 92.6 ± 3.8 81.8 ± 7.6 96.5 ± 4.0
UDC 82.7 ± 5.4 78.0 ± 8.0 91.3 ± 5.6 92.5 ± 4.4 82.4 ± 7.7 91.7 ± 5.8

SVM_linear 89.6 ± 4.9 85.6 ± 8.3 95.8 ± 3.8 97.9 ± 2.0 89.9 ± 6.0 98.2 ± 2.7
SVM_rbf 90.4 ± 4.3 85.3 ± 7.9 96.4 ± 3.3 98.2 ± 1.8 90.5 ± 6.1 97.5 ± 3.1
LMNN 93.1 ± 4.4 88.3 ± 7.4 97.4 ± 3.2 99.2 ± 1.1 91.7 ± 4.5 99.0 ± 1.8

as well as SVMRFE in classifying MALDI-MS data. This 
phenomenon is very interesting. In our opinion, it is 
caused by the difference between microarray data and MS 
data. Microarray data have a huge number of variables. It 
has a complicated correlation/interaction among genes as 
well as high redundancy. MALDI-MS data consist of mass/ 
charge ratio values, after peak detection, correlation/inter- 
action among peaks are generally not as complicated and 
much less redundancy exists. In such cases, SVMRFE is 
better than GLGS for classifying MS peak data.
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