
USING KNOWLEDGE ELICITATION TECHNIQUES TO ESTABLISH A BASELINE OF

QUANTITATIVE MEASURES OF COMPUTATIONAL THINKING SKILL ACQUISITION

AMONG UNIVERSITY COMPUTER SCIENCE STUDENTS

A Dissertation

Presented to

The Faculty of the Department of Library Science and Technology

Sam Houston State University

In Partial Fulfillment

of the Requirements for the Degree of

Doctor of Education

by

M. Earnest Morrow

December, 2019

USING KNOWLEDGE ELICITATION TECHNIQUES TO ESTABLISH A BASELINE OF

QUANTITATIVE MEASURES OF COMPUTATIONAL THINKING SKILL ACQUISITION

AMONG UNIVERSITY COMPUTER SCIENCE STUDENTS

by

M. Earnest Morrow

APPROVED:

Li-Jen Lester, EdD
Dissertation Co-Director

Rebecca Robles-Piña, PhD
Dissertation Co-Director

Donggil Song, PhD
Committee Member

Gary W. Smith, PhD
Committee Member

Stacey L. Edmonson, PhD
Dean, College of Education

iii

DEDICATION

I have heard it said that teachers change the world one student at a time. Of

course, that does not imply that all students have the course of their lives altered by each

of their teachers. My observation suggests that such impactful experiences are rare. An

adult can consider themselves fortunate to have had one such encounter in their past: one

mentor who changed their life.

 This paper is dedicated to the three teachers most responsible for the life

changing interventions that have brought me to this point. These individuals, along with

my wife Gracie, allowed me to express my dreams, encouraged me to pursue them, and

enable my accomplishments.

 At a time before even pocket calculators were available, Carol Seljeseth, was the

middle school science teacher who took an active interest in my passion to learn about

computers. When I told her I was designing circuits for binary arithmetic but lacked

access to the hardware to build and test them, she talked Honeywell into sponsoring me

and providing an engineer as a tutor. The following summer she enrolled both of us in a

programming class at the University of Oklahoma, where the path to my professional

career in information technology was set.

 Ten years ago I retired from that professional career. I wondered if I could apply

my experience and knowledge to the field of Education. A little research led me to

SHSU, and with some trepidation I decided to approach a professor about my desire. Dr.

Li-Jen Lester welcomed me, unscheduled, into her office and listened to my ideas and

addressed my concerns. She assured me that there was a role for me in Education, and

encouraged me to begin my graduate studies. She also served for me as the role model of

iv

a professional able to integrate computer science and Education. I thank Dr. Lester for

always being willing to let me express my aspirations and for her constant

encouragement over these past ten years.

 Dr. Marilyn Rice has also always been very welcoming of my unscheduled stops

by her office. For the first few years we discussed her vision for a doctorate program that

would integrate technology and education. Her efforts and leadership to bring this

program into existence has enabled me and other cohort members to push ourselves to

exemplify leadership in educational technology. I am honored to have been one of her

guinea pigs.

 Finally, I also dedicate this work to my wife Gracie who not only encourages and

enables me in my pursuits, but has also provided unquestioned support through sickness

and health, through the highs and lows of professional and academic life, and shared the

seemingly unending burden of my having yet another paper to write for my graduate

studies.

 My life has forever been changed, and made better, by the personal interventions

of these four friends.

v

ABSTRACT

Morrow, M. Earnest, Using knowledge elicitation techniques to establish a baseline of
quantitative measures of computational thinking skill acquisition among university
computer science students. Doctor of Education (Instructional Systems Design and
Technology), December, 2019, Sam Houston State University, Huntsville, Texas.

Purpose

The purpose of this study was to establish a baseline of quantitative measures of

computational thinking skill acquisition as an aid in evaluating student outcomes for

programming competency. Proxy measures for the desired skill levels were identified that

reliably differentiate the conceptual representations of computer science students most

likely, from those least likely, to have attained the desired level of programming skill.

Insights about the development of computational thinking skills across the degree

program were gained by analyzing variances between these proxy measures and the

conceptual representations of cross-sections of participating students partitioned by levels

of coursework attainment, programming experience, and academic performance. Going

forward, similar measures can provide a basis for quantitative assessment of individual

attainment of the desired learning outcome.

Methodology

The voluntary participants for this study were students enrolled in selected

undergraduate computer science courses at the University. Their conceptual

representations regarding programming concepts were elicited with a repeated, open card

sort task and stimuli set as used for prior studies of computer science education. A total

of 135 students participated, with 124 of these providing 296 card sorts. Differences

between card sorts were quantified with the edit distance metric which provided a basis

for statistical analysis. Card sorts from cross-sections of participants were compared and

vi

contrasted using graph theory algorithms to calculate measures of average segment length

of minimum spanning trees (orthogonality), to identify clusters of highly similar card

sorts, and to reduce clusters down to individual exemplar card sorts. Variances in

distance between the card sorts of cross-sections of participants and the identified

exemplars were analyzed with one-way ANOVAs to evaluate differences in development

of conceptual representations relative to coursework attainment and programming

experience.

Findings

Collections of structurally similar card sorts were found to align with

categorizations identified in earlier studies of computer science education. A logistic

regression identified two exemplar sorts representing deep factor categorizations that

reliably predicted those participants most, and least likely to have attained the desired

level of programming skill. Measures of proximal distance between participants' card

sorts and these two exemplars were found to decrease, indicating greater similarity, as

students attained progressive coursework milestones. This finding suggests that proximal

distances to exemplars of common categorizations for this stimuli set can effectively

differentiate conceptual development levels of students between, as well as within, cross-

sections selected by achievement of coursework milestones.

Measures of proximal distances to one exemplar of deep factor categorization

were found to increase, indicating less similarity, as participants’ levels of programming

experience increased. This finding was contrary to the theoretical framework for skill

acquisition. Further analysis found that variances in experience level as captured by the

study instrument were not equally distributed among the cross-sections. The

vii

preponderance of participants reporting greater levels of experience were degree majors

not required to enroll in the courses most likely to develop that specific

conceptualization. Therefore, for this deep factor categorization, instruction was found to

have a greater influence on conceptual development than programming experience.

However, it is possible that other categorizations, such as those related to software

engineering technology, may be found to be more influenced by experience.

The orthogonality of participant card sorts was found to increase with each

category of increase in academic performance, as in keeping with prior studies.

Orthogonality also increased with greater levels of programming experience as expected

by the theoretical framework. However, since experience was not equally distributed

across categories of coursework achievement, the relationship between the orthogonality

of participant card sorts and milestones of coursework achievement was not found to be

statistically significant overall.

Conclusions

Based on the findings, the researcher concludes that a baseline of quantitative

measures of computational thinking skills can be constructed based upon categorizations

of elicited conceptual representations and associated exemplar card sorts. Eleven

categorizations identified in a prior study of computer science seniors appear to represent

reasonable expectations for deep factor categorizations. Follow up research is

recommended (a) to identify for each categorization the exemplar card sorts that may be

specific to different degree majors, and (b) to identify which categorizations may be more

influenced by programming experience than by instruction.

viii

Given an elicitation tool that prompts for the specific categorizations and a set of

exemplar representations as proposed above, instructional programs can establish

expected ranges of proximal distance measures to specific exemplars. These exemplars

should be selected according to particular categorizations, degree majors, and coursework

milestones. These differentiated measures will serve as evidence that students are

meeting the instructional program learning objective for developing competency in the

design and implementation of computer-based solutions.

KEY WORDS: Computer science education, Skill acquisition, Dreyfus model,
Assessment, Programming, Computational thinking, Card sorts

ix

TABLE OF CONTENTS

Page

DEDICATION ... iii

ABSTRACT .. v

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

CHAPTER .. 1

I INTRODUCTION .. 1

Background ... 1

Statement of the Problem .. 3

Theoretical Framework ... 5

Definition of Terms... 12

Purpose of the Study ... 20

Significance of the Study .. 21

Research Questions ... 23

Null Hypotheses .. 24

Delimitations ... 24

Limitations .. 26

Assumptions .. 27

Organization of the Study ... 28

II REVIEW OF LITERATURE ... 29

Defining Programming Competencies .. 29

x

Assessing CT Competencies ... 31

Post-secondary Experiences with Programming Competencies 33

Computational Practices as Acquired Skills ... 36

Attaining Problem-solving Competency ... 37

Problem-solving Competencies in Computer Science .. 42

Summary ... 47

III METHODOLOGY ... 52

Research Questions ... 53

Null Hypotheses .. 54

Research Design.. 54

Selection of Participants ... 55

Instrumentation ... 58

Procedures ... 65

Data Analysis .. 69

Summary ... 78

IV RESULTS ... 81

Introduction ... 81

Research Questions ... 81

Null Hypotheses .. 82

Data Collection Results... 83

Data Derivations and Transformations ... 84

RQ1 - Analysis of Relationship between Orthogonality and Categories of

Achievement ... 91

xi

RQ 2 - Identification of Card Sorts that Exemplify the Desired Level of

Conceptual Development .. 94

RQ3 - Analysis of Variances between Proximity to Exemplar Sorts by

Coursework Attainment .. 108

RQ 4 - Analysis of Variances Between Proximity to Exemplar Sorts by

Programming Experience .. 114

Summary of Findings .. 119

V DISCUSSION AND CONCLUSION .. 122

Introduction ... 122

Discussion ... 126

Conclusion .. 141

REFERENCES ... 147

APPENDIX A ... 158

APPENDIX B ... 163

APPENDIX C ... 167

APPENDIX D ... 171

APPENDIX E ... 186

APPENDIX F.. 203

APPENDIX G ... 220

APPENDIX H ... 224

APPENDIX I .. 230

APPENDIX J .. 231

APPENDIX K ... 238

xii

APPENDIX L ... 242

APPENDIX M .. 245

APPENDIX N ... 248

APPENDIX O ... 251

VITA ... 253

xiii

LIST OF TABLES

Table Page

1 Computer Science Courses to be Solicited for Student Participation in the

Study ... 57

2 Computer Science Cross-Section Details ... 58

3 Two Example Sorts ... 71

4 Transformation of Sort A to be Identical to Sort B .. 72

5 Pair-wise Edit Distances Among Four Sorts. ... 73

6 Logistic Regression Coefficients for Proximity to Exemplars 6 and 21 103

7 NMST by Performance Quartile as Reported in the McCauley et al. (2005)

Study ... 128

8 Mean NMST Values for Introductory Students Versus Non-Introductory

Students Categorized by GPA Ranking .. 131

xiv

LIST OF FIGURES

Figure Page

1 Hypothesized framework for computational thinking skill acquisition. 11

2 Stimuli set consisting of 26 single word programming terms for card sort use. .. 61

3 Initial screen display of card sort task... 62

4 Card sort task underway.. 63

5 Example topological graph of a collection of four sorts with the edit distances

between each pair of sorts displayed. ... 73

6 Illustration of minimum spanning tree. ... 74

7 Greater differentiation of sorts represented by NMST measure. 75

8 Box plot of sort proximity to a probe.. 77

9 Bar chart of frequency counts from cross-tabulation of card sorts by

coursework achievement category and category of orthogonality. 92

10 Illustration of multiple step process used to identify exemplar sorts of deep

factor categorization for research question 2. ... 95

11 Participant characteristics for collection 13. ... 96

12 Display of sort Id 4 from collection 13. .. 98

13 Clique analysis results for collection 13 showing d values of 7 and 8. 100

14 Exemplar 6, representing the Know / Don't Know criterion. 105

15 Exemplar 201, from the Concrete / Abstract CAG. .. 106

16 Exemplar 185, an intermediate Types of Programming Terms CAG example. . 107

17 Exemplar 21, an advanced Types of Programming Terms CAG example. 107

18 Surface factor sort grouping alphabetically (top) and by length (bottom). 108

xv

19 Box and whiskers plots of proximities to each exemplar sort by categories of

coursework attainment. ... 110

20 Comparison of group means for proximity to exemplar sort 185. 112

21 Comparison of group means for proximity to exemplar sort 21. 113

22 Box and whiskers plots of proximities to each exemplar sort by categories of

purposeful programming experience. ... 116

23 Comparison of group means for proximity to exemplar sort 185. 117

24 Comparison of group means for proximity to exemplar sort 21. 118

25 Bar chart of frequency counts from cross-tabulation of card sorts by

coursework achievement category and category of orthogonality. 129

26 Bar chart of NMST means by category of GPA ranking (n = 68). 130

27 Comparison of mean NMST of introductory and non-introductory

participants categorized by programming experience (left) and by prior

instruction (right). ... 132

28 Distribution (by percentage) of participants among the categories for

programming experience and prior instruction between the introductory and

non-introductory groups.. 132

29 Percentages of programming experience categories per coursework

achievement category (n = 124). ... 138

30 Percentage of experience level by intended majors. ... 138

31 Percentage of intended majors for categories of coursework achievement. 139

32 Proximal distances to Exemplars 21 and 185 (all participants). 140

33 Proximal distances to Exemplars 21 and 185 (Introductory group). 140

xvi

34 Exemplar sort 21 for the Types of Programming Terms categorization. 141

1

CHAPTER I

Introduction

Computer programming is coming to be widely regarded as a desirable skill for

current students and future workers. Coding is being referred to as the new literacy

(Campbell, 2016), a notion that has been echoed by Bill Gates and Marc Prensky (Paul,

2016). It has also been claimed that by learning to code, students develop a cognitive skill

set, known as computational thinking, which has benefits beyond programming (Wing,

2006). Consequently, a number of popular initiatives, such as the non-profit organizations

Code.org, Girls Who Code, and Code2College, have emerged to promote the vision that

computer science classes should be as available to all students as those for math and

science (Code2College.org, 2017; Code.org, 2018a; GirlsWhoCode.com, n.d.). In

recognition of this need, in the United States, the STEM Education Act of 2015 included

computer science as an element of the science, technology, engineering, and mathematics

curriculum for secondary education (Guzdial & Morrison, 2016).

Background

There are several specific motivations for this increasing demand for teaching and

learning computer science. At the national level, educators, business leaders, and policy

makers observe other nations placing an emphasis on teaching programming skills and

suggest that the United States needs to do likewise to remain competitive in world

markets (Campbell, 2016; Paul, 2016). Advocates for underrepresented populations seek

to expand inclusion of these populations among those with programming skills (Adams &

Reed, 2015; Google, n.d.). They view the field of computer science as a socioeconomic

escalator providing opportunity for upward mobility (Campbell, 2016). At the individual

2

level, students and their parents, concerned with changing trends in the workforce, view

computer-related jobs as more desirable and as offering better salaries than most other

opportunities (Code.org, 2018b).

Among educators, the act of programming computers has a recognized pedagogic

value. Papert (1980) viewed programming as a means for implementing constructionist

theories of learning. The act of programming is one means of moving the learner from the

passive role of consuming knowledge to an active role of creating and manipulating

knowledge. The software environment is malleable to the needs of the learner and the

learner develops an interactive relationship with the programming environment as the

code is tested and debugged. Debugging is a constructionist process of repeatedly

building, testing, and modifying an artifact and one’s knowledge until specific objectives

are met (Burleson, 2005).

Through influential essays by Jeanette Wing (2006, 2008) the pedagogic benefits

ascribed to learning to program computers have become encapsulated as a learning

objective for computational thinking. While a precise and widely accepted definition for

computational thinking remains elusive (Denning, 2017; Selby, 2015), one common

definition is that computational thinking is the set of mental processes used to formulate

problems in such a way that they can be solved computationally (Czerkawski & Lyman,

2015). Computational solutions are defined as a specification of algorithms and

procedural steps that can be implemented by a particular abstract model of computation

(Aho, 2012). As a learning objective, computational thinking remains an active focus for

research and discussion into appropriate methods of developing students’ computational

mental processes and of assessing their resulting computational solutions.

3

Statement of the Problem

At the post-secondary level, computational thinking is one desired learning

outcome for computer science education. The Accreditation Board for Engineering and

Technology (ABET) refers to this specific outcome, ABET Student Outcome 2, as the

ability to develop computer-based solutions to meet specified requirements (ABET,

2019). That is, graduates of computer science degree programs should demonstrate

competence in development of computational solutions and code implementations.

This desired learning outcome requires students to assimilate new conceptual

knowledge while also acquiring complex cognitive skills (Guzdial & Morrison, 2016) for

the transfer of this knowledge to the computational solution of authentic problems.

Anecdotal and empirical evidence suggest that some portion of computer science students

fail to attain this desired outcome (Casperson, Larsen, & Bennedsen, 2007; Dehnadi &

Bornat, 2006; McCartney, Boustedt, Eckerdal, Sanders, & Zander, 2017) while a variety

of causes for this failure continue to be debated (Ahadi & Lister, 2013; Patitsas, Berlin,

Craig, & Easterbrook, 2016; Robins, 2010). Valid and reliable instruments for assessing

student attainment of the desired level of competency in computational problem solving

are required. However, multiple studies offer conflicting evaluations of frequently

utilized methods (Lister, 2011; McCartney et al., 2013; McCracken, 2001). In a recent

essay reviewing the current practices for assessing computational thinking skills,

Denning (2017) summarizes the problem facing computer science educators: after a

decade of research and academic discussion into computational thinking, “we have no

consensus on what constitutes the skill and our current assessment methods are unreliable

indicators” (p. 36).

4

Other fields of study at the post-secondary level have similar expectations and

challenges regarding student competency with domain related problem-solving abilities.

Research has been conducted into the acquisition of these skills in the domains of

physics, chemistry, and biology (Bissonnette et al., 2017; Chi, Feltovich, & Glaser, 1981;

Irby et al., 2016; Krieter, Julius, Bush, Scott, & Tanner, 2016). These studies have

identified significant differences in the cognitive representations of domain knowledge

between novices and those who have demonstrated competency in that field’s required

abilities (Bissonnette et al., 2017; Chi et al., 1981; Irby et al., 2016; Krieter et al., 2016).

In the most recent of these studies, researchers have been able to hypothesize conceptual

representations that they then validated as reliable indicators of expert-like problem-

solving ability (Bissonnette et al., 2017; Krieter et al., 2016). The implication of these

studies is that comparison of a student’s conceptual representation of domain knowledge

against these expert-like indicators can serve as a proxy measure of their degree of

attainment of problem-solving competency.

Denning (2017) suggests computer science education follow a similar approach in

his call to establish “guidelines for different skill levels of computational thinking to

support” (p. 36) assessment of competency in this required skill. He proposes these

guidelines be modeled after a framework for skill development, such as the Dreyfus five

stage model of skill acquisition (S. E. Dreyfus & Dreyfus, 1980). Such a framework

hypothesizes a series of identifiable changes in how a learner’s knowledge is organized

as the learner gains experience in the skill through repeated practice over time (S. E.

Dreyfus & Dreyfus, 1980; Gladwell, 2008; Polanyi, 1966). As with the chemistry and

biology studies, by comparing the conceptual representations of computer science

5

students against this series of expected changes an improved method for assessing

computational skill development can be realized which is based upon a progression of

indicators associated with sequential levels of skill acquisition.

The prior studies of domain related problem-solving skills in physics, biology,

and chemistry were able to hypothesize expert-like conceptual representations for

problem solving based upon well-established foundational principles in those domains.

For the field of computer science, an alternative approach may be more practical while

equally effective. Conceptual representations can be elicited from cross-sections of

computer science students and analyzed to identify those that differentiate the higher

performing seniors (McCauley et al, 2005) from other samples of the learner population.

These identified conceptual representations can designate attainment of the desired

ABET student outcome 2. Subsequently, comparison of learners’ conceptual

representations against these indicators can serve as a proxy measure of their degree of

attainment of computational problem-solving competency.

Theoretical Framework

Personal Construct Theory and knowledge elicitation. Personal construct

theory addresses how individuals create cognitive representations of their environment

based upon their experiences, and then use these representations to recognize and respond

to their current situation (Kelly, 1955). These cognitive representations of events, or

constructs, denote an individual’s categorization of stimuli (Bell, 2011). As individuals

each have unique experiences in the world, their categorizations of the world will be

unique to them (Upchurch, Rugg, & Kitchenham, 2001). For a set of events shared by a

group, such as a learning activity, individual categorizations should be similar enough to

6

enable meaningful communication and shared understanding, yet different enough to

reflect personal interpretation and expression (Upchurch et al., 2001).

By eliciting the personal constructs shared by members of a group and examining

the similarities and differences among the constructs, it is possible to gain an

understanding of the event and the meaning attributed to it by each individual (Fincher &

Tenenberg, 2005; Rugg & McGeorge, 2005). Several techniques, such as repertory grid,

laddering, and card sorting, described by Kelly in his description of personal construct

theory (1955), are capable of eliciting knowledge than the more common qualitative

methods of interviewing and surveying are able to collect (Upchurch et al., 2001).

Furthermore, the repertory grid and card sorting approaches collect data suitable for

statistical analysis (Deibel, Anderson, & Anderson, 2005; Rugg & McGeorge, 2005),

thus enabling quantitative methods of analysis to gain qualitative-like understanding of

respondents’ construction of knowledge and meaning.

Card sorting is a categorization task (Fincher & Tenenberg, 2005) where a

participant sorts elements of a stimuli set into multiple groups based upon a sorting

criteria (Rugg & McGeorge, 2005). This active construction by the participant of external

groups, i.e. categories, reflects their internal conceptualizations (Fincher & Tenenberg,

2005). Card sorts are especially well suited for capturing data of non-scalar or nominal

categories, for which repertory grids are not suitable (Rugg & McGeorge, 2005). In an

open, or unframed, type card sort, participants are allowed to choose the sort criteria, and

to specify category labels. Thus, as a data collection method, open card sorts have the

benefit of being participant-centric rather than researcher-centric (Fincher & Tenenberg,

2005). Administratively, card sorts have an advantage of being easy to use, relatively

7

quick, and systematic (Rugg et al. 1992). For analysis, card sort results reveal

participants’ categorizations which can be compared to identify similarities and

differentiations in participant conceptualizations (Rugg & McGeorge, 2005).

Card sort studies have been used to examine the differences in conceptualizations

between novices and experts (Chi et al., 1981). Results support that experts have a larger

and more elaborate conceptualization schema of their field of knowledge (Rugg &

McGeorge, 2005). This is in keeping with personal construct theory in that an

individual’s cognitive representations of experiences allows for current externally

presented events to be categorized according to previously seen criteria, identified in

context, and used as a basis to select an appropriate response (Chi et al., 1981; Kelly,

1955). An expert’s schema provides a more differentiated filter for recognition of

fragmentary cues found in a problem presentation. This greater ability to differentiate

among personal constructs during categorization of unstructured stimuli may largely

explain the expert’s greater ability for problem-solving (Chi et al., 1981).

Dreyfus model of skill acquisition. The Dreyfus model of skill acquisition

describes changes in cognitive processing as a learner progresses in experience and

ability from novice to expert (H. L. Dreyfus, Dreyfus, & Zadeh, 1987; S. E. Dreyfus &

Dreyfus, 1980). The model was originally developed to guide instructional design of

training programs for high-order skills such as aircrew emergency decision making (S. E.

Dreyfus & Dreyfus, 1980). Based on phenomenological research and philosophical

deliberation (Peña, 2010) the model argues that instructional strategies must be adapted

to a learner’s current skill level stage in order to facilitate progression to the next stage

(S. E. Dreyfus & Dreyfus, 1980). The model also emphasizes the role that long-term,

8

repeated experience plays in skill progression. As such, the model reinforces the adage

that skill is acquired over time with practice (Denning, 2017; Polanyi, 1966).

The model describes skill acquisition as successive transformations of mental

functions. The transformations are sequentially dependent so that they must occur in a

fixed order (S. E. Dreyfus & Dreyfus, 1980). The stages of the resulting model are

described as follows.

Novice. Initially a learner has limited knowledge of and no experience with the

skill. This is the Novice stage. Performing the skill is a matter of using explicit

knowledge to identify certain external stimuli, and to match the stimuli to a prescribed set

of unique conditions that then dictate the action to be performed. Thus, performance is

strictly rule-based. The learner’s awareness is focused on monitoring performance for

conformity and compliance. In the Novice stage, each of the mental processes is in a

primitive form which requires conscious thought on the part of the learner (S. E. Dreyfus

& Dreyfus, 1980). This creates a high cognitive load for the learner. Performance of the

skill is methodical (Carraccio, Benson, Nixon, & Derstine, 2008). An example is initially

learning to drive a car: conditions inside and outside of the car must be continuously

monitored; sensory feedback processed and corrective actions taken; and rules followed.

This is also the common state for introductory computer science students.

Advanced Beginner. As the Novice practices the skill, the more frequent rules

and actions develop automaticity. This lessens the cognitive load of performance on the

learner. At this stage the learner is an Advanced Beginner (H. L. Dreyfus et al., 1987) and

can begin to filter stimuli and prioritize responses based on relevance (Carraccio et al.,

2008). In the example of learning to drive a car, many of the driving procedures such as

9

preparing to drive, accelerating and braking the car, and monitoring the environment

inside and outside of the car become routine and require a minimum of conscious

thought.

Competent. In the Novice and Advanced Beginner stages, the conditions of

stimuli are free of context. With more experience, the learner begins to recognize

recurring meaningful patterns among stimuli conditions. These patterns represent a

growing awareness of situational contexts which are derived from recognition of prior

examples. An appropriate and more complex response is directly triggered by recognition

of the particular situation. At this stage the learner has achieved Competence (S. E.

Dreyfus & Dreyfus, 1980). The skill performance is now situated within the context of a

larger picture (Carraccio et al., 2008). In the example of learning to drive a car, the driver

is now aware of the routine traffic flow surrounding the car and how the flow varies

according to location and time of the day.

Proficient. Continued experience and practice exposes the competent performer

to a widening variety of typical situations. The scope of the learner’s awareness of

situations grows to encompass whole situations which conclude with the achievement of

a goal. The learner begins to assess situations according to their relevance to desired

objectives. Thus, a single recognized situation, encountered at different points in time

during pursuit of different objectives will be treated as different situations (S. E. Dreyfus

& Dreyfus, 1980). This is the Proficiency stage of skill development. The Proficient

performer identifies multiple possible solutions to a situation and evaluates the options

from the perspective of a particular goal. As an example, a proficient driver is able to

evaluate alternative routes to a desired destination based upon the expected traffic flows

10

of locations along the way at the particular time of day and under pertinent weather

conditions.

Expert. Eventually, the performer may gain such a vast repertoire of contextually

experienced and perspective-specific situations that the selection of complex courses of

action develops automaticity to the extent of appearing to be intuitive (S. E. Dreyfus &

Dreyfus, 1980). This is the stage of Expertise in the skill. Experts perceive features that

are atypical from the norm and will notice the unexpected (Carraccio et al., 2008).

Hypothesized framework for Computational Thinking. Individually, the

Dreyfus model of skill acquisition and Kelly’s personal construct theory each account for

the significant differences documented between the endpoints of Novice and Expert (Chi

et al., 1981). Combined together, they can form a framework that suggests specific ways

and steps in which the conceptualizations of the Novice transform into those of an

Expert. Such a description of the intervening levels of skill acquisition can directly

address Denning’s (2017) call for guidelines to the different skill levels of computational

thinking. Such a combined hypothetical framework for the acquisition of computational

thinking skill is presented in Figure 1. As computer science students practice their

programming and gain experience, their cognitive representations of the programming

domain should grow more sophisticated. Figure 1 denotes this growth in both the

knowledge content that is retained, and that which is transferrable, relative to the five

stages of skill acquisition. Each of these stages is described more fully below.

11

Figure 1. Hypothesized framework for computational thinking skill acquisition.

The Novice is taught a pre-defined schema of stimuli related through a two-

dimensional causal network (Carraccio et al., 2008). The constructs are context-free and

there are few if any abstractions. The constructs and causal network are under active

construction as they are initially learned and reinforced through practice. Therefore,

categorizations will be largely based on superficial aspects of the prescribed stimuli and

may be incomplete, i.e., the novice may not be able to sort all elements of a stimuli set

into categories. Cognitive processes are engaged in monitoring rule compliance.

The Advanced Beginner has completed the construction of the prescribed schema.

The causal network can now be methodically referenced and followed with minimal

cognitive load which allows for cognitive processes for prioritization and conformance.

Categorizations remain based on superficial aspects of the constructs but are complete.

The advanced beginner computer science student is able to consider tradeoffs in

execution time or code clarity when considering language syntax options.

12

Competence is achieved as patterns of related stimuli conditions are recognized as

distinct recurring situations, and responses become differentiated according to the

situation. The constructs of the beginner’s cognitive schema become supplemented with

abstractions representing these situational patterns. Increasingly complex

interrelationships among the constructs enable greater differentiation which can be

directed toward situational analysis. Categorizations become less superficial and begin to

reflect contextual situations. The competent computer science student is able to associate

desired functions such as search, sort, or tree traversal to typical code fragments.

Proficiency is marked by the addition of constructs representing relevance to end-

goals. This enables differentiation between alternative responses based upon criteria for

goal achievement. Categorizations become more numerous, more differentiated, and

more abstract. The proficient computer scientist is able to integrate multiple functions

and the associated code fragments into a processing system that meets project-level

objectives.

The schema of the Expert is very robust in terms of constructs and relationships.

Abstractions exist for stimulus conditions whose presence or absence has proven to be

significant in the past. Processes for transfer of knowledge reach beyond individual needs

to benefit others. Expert categorizations will be the most numerous and most

differentiated.

Definition of Terms

Accreditation Board for Engineering and Technology (ABET). In the United

States, ABET is the accrediting organization for post-secondary education programs in

engineering and technology, including computer science. ABET establishes the criteria

13

and the process for accreditation of an institution’s programs (ABET, 2019). Specific to

this study, ABET criteria define student outcomes for computer science education and the

requirement for programs to self-evaluate achievement of the objectives as part of an

ongoing continuous improvement process.

Baseline indicators of skill acquisition progress. This study proposed to

associate the desired level of skill acquisition for post-secondary computer science

students with specific structural exemplar sorts of the stimuli set used for this study. The

stimuli set was a list of 26 single word programming terms, such as constant, variable,

loop, and list, that have been used previously (McCauley et al., 2005; Sanders et al.,

2005) with computer science students as knowledge elicitation prompts. This study

hypothesized that as students’ progress in their skill development then their

categorizations of the stimuli set will become more differentiated and be evidenced as

changes in the structural exemplar sorts as derived from cluster analyses of their card

sorts. These structural exemplar sorts can then be used as a baseline of skill acquisition

indicators to gauge students’ progress towards attainment of the desired level of

expertise. Thus, if a student produces card sorts that are highly similar to the structural

exemplar sorts of students who have been deemed to be at the desired level of skill

acquisition, then that student’s card sort result will be taken as an indicator of having

attained the ABET student outcome 2.

Bloom’s taxonomy. Specific to this study, Bloom’s revised taxonomy of the

cognitive domain specifies a hierarchy of cognitive tasks arranged by cognitive demand

(Selby, 2015). The Bloom levels of cognitive tasks ordered from least demanding to the

most demanding are: remembering; understanding; applying; analyzing; evaluating; and

14

creating (Anderson et al., 2001). Assessments of retention of knowledge require cognitive

tasks at the levels of remembering and understanding. The remaining levels involve

cognitive tasks related to the transfer of knowledge (Anderson et al., 2001).

Categorization. Categorization is an elemental cognitive process for collecting

similar objects together. Specific to personal construct theory (Kelly, 1955) individuals

make sense of the world by categorizing the objects sensed within it. An individual will

group objects together in a category based upon a perceived similarity, known as the

criterion. This criterion also differentiates objects in this group from objects in other

groups (Rugg & McGeorge, 2005).

Cluster analysis. A cluster analysis of card sorts seeks to discover similarity

patterns in a collection of sorts. A cluster is a subset of the sort collection where the sorts

within the cluster share a similarity. Qualitative methods of cluster analysis are based on

lexical analysis of the category names and are represented with dendograms. Quantitative

methods of cluster analysis of card sorts are based on structural similarity as measured by

the edit distance (Precht, Szwillus, & Domik, 2014). Data mining techniques have

developed several algorithms for quantitative identification of clusters: such as, d-cliques;

k-means, hierarchical clustering, and multidimensional scaling (Deibel et al., 2005;

Precht et al., 2014). This study utilized an algorithm for d-cliques.

Cognitive conceptualizations and representations. For the purpose of this study

these terms refer to the cognitive framework an individual constructs to organize and

utilize knowledge as described in Piaget’s theory of cognitive development (Piaget &

Inhelder, 1969).

15

Cognitive processes and tasks. Cognitive processes and tasks are an individual’s

mental procedures for utilizing the schema of knowledge. One enumeration and

classification of these processes can be found in Blooms’ revised taxonomy of the

cognitive domain (Anderson et al., 2001). The majority of these processes involve

transfer of the knowledge to new requirements, problems, and situations.

Conceptual expertise. From prior studies of this type, conceptual expertise is the

level of skill acquisition and cognitive processing of putative experts in the field (Krieter

et al., 2016). One learning objective for computer science students at the post-secondary

level is to demonstrate an advanced level of ability for program design and

implementation, similar to that of professionals. For the purpose of this study, conceptual

expertise refers to the progression of skill acquisition beyond the novice and advanced

beginner levels as described by the theoretical framework.

Cumulative GPA in Computer Science (CS) coursework. This measure is the

grade point average of all of the computer science courses a student has completed to

date at the institution.

Edit distance. The edit distance metric is an indication of the structural similarity

between exactly two sorts. The metric is calculated as the fewest number of elements of

the stimuli set that must be moved from one category to another in order to make the

sorts identical (Deibel et al., 2005). An edit distance of zero indicates the sorts are

identical in that the stimuli set has been organized into the same set of groups, even

though the groups may have been given different category names by the participants. The

larger the edit distance value becomes, the greater the dissimilarity between the sorts.

16

Geek gene. The hypothesis of the geek gene is that there are two types of

computer science students: those who can learn to code; and those who can’t. The

differentiator between the two groups being an innate ability apparently due to the

presence or absence of the geek gene (McCartney et al., 2017). This hypothesis is also

associated with the perception that the distribution of grades in an introductory CS course

is bi-modal, with students either performing very well, or very poorly. Recent research

refutes both of these perceptions (Ahadi & Lister, 2013; Patitsas et al., 2016; Robins,

2010).

Graduating CS seniors. For the purpose of this study, graduating seniors are

computer science students who have completed 28 hours or more of computer science

coursework with a cumulative GPA of at least 2.0 out of 4.0.

Introductory CS course. The introductory computer science course at the

participating institution is commonly referred to as Java 1. Learning objectives for this

course are to learn the fundamental elements of the Java programming language, learn the

process for developing a functionally correct program, and apply the concepts and

procedures of object-oriented programming to the creation of solutions to realistic

problems and needs (Sam Houston State University, 2018). Current enrollment in this

course will be categorized as Course A in the milestones of coursework achievement.

Intermediate milestones of coursework attainment. Prior studies have

identified differences in the conceptual expertise of seniors versus students of

introductory courses. This study proposed to investigate how these differences manifest

as students progress through milestones of coursework achievement, such as the end of

each school year. However, at the participating institution, the different computer science

17

degrees have unique schedules of courses (tracks) throughout their programs.

Additionally, as some students will change majors, or may need to alter their individual

class schedules, not all students will have had the same set of courses at the end of each

semester or school year. Therefore, milestone progress through the degree programs will

be determined based upon current enrollment in, or completion of select courses that are

sequentially dependent on one another for each particular degree program. For this study,

three intermediate points that follow the introductory course A will be determined for

each degree program, and be categorized as courses B, C, and D.

Knowledge elicitation. Knowledge elicitation is data collection from an

individual of the cognitive representation of knowledge which they uniquely possess. The

data collection tools for knowledge elicitation include repertory grids, laddering, and card

sorting. For the purpose of this study knowledge elicitation of computer science students

will be accomplished with use of an open card sorting task.

Orthogonality of card sorts. Orthogonality is a measure of the degree of

differentiation among sorts in a collection. The measure is based on the edit distance

between every pair of sorts in the collection. Orthogonality is a proxy measure for an

individual’s conceptual expertise. Sorts of Novices tend to exhibit low orthogonality

while the sorts of experts tend to exhibit high orthogonality.

 Personal constructs. Based on Kelly’s (1955) personal construct theory, people

make sense of the world by categorizing it. Constructs are the attributes an individual

associates with objects in order to describe and categorize them.

Programming experience. As computer science students progress through their

degree program they add to their experience in developing, testing, and implementing

18

computer programs. Some of this time may occur prior to their entering the program,

some occurs as programming assignments for course homework or lab periods, and some

may be for personal or professional purposes outside of their formal education. The

amount of time varies for each individual. For this study, the students responded to

several survey questions regarding prior learning in programming and to Likert-scale

assessments of coding experience they gained with various types of projects and

assignments. These responses were evaluated by the researcher for their indications of

overall experience and will result in an experience categorization for the student of Light,

Moderate, or Extensive.

Quantitative vs qualitative measures of conceptual expertise. A quantitative

approach to assessing conceptual expertise in a field of knowledge is based on the edit

distance metric to analyze the similarity or dissimilarity among two or more card sorts.

Analyses that can be derived with the use of the edit distance are the orthogonality of a

collection of sorts; clusters of sorts that are within a specified distance of each other, and

the proximity of a specific sort to a target or exemplar sort. These comparisons consider

only which stimuli are grouped together, and are ignorant of any category names ascribed

to the groups by the participants. Hence, these measures are comparisons of the similarity

of the sort structures. They can be objectively determined and computer generated, so

they scale well with large sample sizes.

A qualitative approach to assessing conceptual expertise in a field of knowledge is

based on evaluating a learner’s demonstration of transferring the learning by performing

the skill. For computer science students these demonstrations take the form of creating a

segment of computer code that performs a specified function. These skillful actions are

19

often assessed with an assignment specific rubric identifying the criteria and scale for

evaluating proficiency of the performance. However, these instruments require human

judgements and therefore do not scale well to large samples (McCracken et al., 2001).

This study sought to establish the quantitative approach as a viable alternative to the

qualitative approach for assessment of conceptual expertise.

Proximity of card sorts. The proximity of one sort to another refers to the

structural similarity of the two sorts. This measure is expressed as the edit distance

between the two sorts. Specific to this study, the proximity measure of individuals’ sorts

to an exemplar structural sort may be taken as an indication of which individuals have

achieved a skill baseline and which have not.

Schema. For the purpose of this study schema refers to the cognitive framework

an individual constructs to organize and utilize knowledge as described in Piaget’s theory

of cognitive development (Piaget & Inhelder, 1969).

Skill acquisition. Skills in the cognitive domain involve tasks associated with

transfer of knowledge such as applying, analyzing, evaluating, and creating (Anderson et

al., 2001). Individual skills improve as they are repeated or practiced and there is a

progression to this improvement. Thus, skills are not just learned, but are acquired and

improved over time through experience (Denning, 2017; Polanyi, 1966). According to the

Dreyfus model, skill acquisition progresses through five stages beginning with Novice

and ending at Expert. Students enrolled in higher education computer science degree

programs are assumed to begin at the Novice stage. However, there is no research

literature regarding their typical stage upon graduation. Furthermore, it can be assumed to

be unlikely that they graduate as Experts. Thus, for this study, student progression

20

through skill development was analyzed in terms of milestones of coursework attainment,

and levels of programming experience.

Stimuli set. For card sorting knowledge elicitation, each participant is presented

with a set of cards, where each card contains an entity. These entities may be pictures,

single words or phrases, or descriptions of individual situations or problems. Entities

provide the participant with a stimulus to cognitively categorize that entity, so the set of

all the entities to be categorized is referred to as the stimuli set. Specific to this study, the

stimuli set was 26 single-word programming terms utilized in previous studies

(McCauley et al., 2005; Sanders et al., 2005) of conceptual expertise in computer science

students. Example stimuli include terms like constant, variable, loop, and list.

Structural exemplar sort. Sorts within a cluster share a structural similarity as

they are all within a specific edit distance of each other. The single sort in the cluster with

the smallest total edit distance to all the other sorts in the cluster (i.e., closest to being

equidistant) is the structural exemplar (McCauley et al., 2005). The structural exemplar

sort is to the cluster as a mean value is to a sample of measurements.

 Purpose of the Study

The purpose of this study was to establish a baseline of quantitative measures of

computational thinking skill acquisition as an aid in evaluating student outcomes for

programming competency. Proxy measures for the desired skill levels were identified that

reliably differentiate the conceptual representations of computer science students most

likely, from those least likely, to have attained the desired level of programming skill.

Insights about the development of computational thinking skills across the degree

program were gained by analyzing variances between these proxy measures and the

21

conceptual representations of cross-sections of participating students partitioned by levels

of coursework attainment, programming experience, and academic performance. Going

forward, similar measures can provide a basis for quantitative assessment of individual

attainment of the desired learning outcome.

The study used the knowledge elicitation instrument (a repeated, open card sort of

26 programming terms) and quantitative methods from McCauley et al. (2005) and

Fossom and Haller (2005). The theoretical framework hypothesized that learners’

organization of knowledge changes as learners gain experience with a skill over time (S.

E. Dreyfus & Dreyfus, 1980), and that these changes are reflected in the elicited

conceptual representations (Kelly, 1955). Therefore, cross-sections of students in the

computer science degree program at the participating institution were selected for

elicitation of conceptual representations reflective of their attainment of specific

milestones of coursework, level of programming experience, and category of academic

performance. A cross-sectional analysis approach similar to that used by Krieter et al.

(2016) and Bissonnette et al. (2017) compared differences between groups to identify

differentiating indicators of progression in computational thinking skill acquisition across

the degree program.

Significance of the Study

Most immediately, a baseline of indicators of cognitive development of

computational thinking resulting from this study can serve as an additional basis for

formative assessments of student progress toward the ABET student outcome 2 for an

ability to develop computer-based solutions to meet specified needs (ABET, 2019). As

compared to the common practice of qualitatively assessing programming assignments,

22

the comparison of knowledge elicitation data against the baseline indicators will yield

objective, quantitative, computer-assessed measures of progress toward skill acquisition.

Such measures will enable timely identification of those students not progressing as

expected and will provide insights for the design of appropriate intervention measures.

This outcome will be of benefit to the students and potentially to the prospective

employers of the students as they may have greater assurance of students’ competency as

programmers and analytical problem solvers.

Computer science education programs are required to demonstrate that program

effectiveness is being evaluated, documented, and used as a basis for program

improvement (ABET, 2019). A baseline of cognitive development indicators for

formative assessments will provide additional means and measures for institutions to

address this ABET accreditation criteria. This outcome will be of benefit to the

institution.

Perhaps most importantly, this study, as a direct response to Denning’s suggestion

(2017) to assess computational thinking as a skill, addressed a gap in the research and

discussion of computational thinking. While the studies of conceptual expertise in the

fields of physics (Chi et al., 1981), biology (Bissonnette et al., 2017), chemistry (Krieter

et al., 2016), and computer science (Fossum & Haller, 2005; McCauley et al., 2005;

Sanders et al., 2005) have confirmed the ability of knowledge elicitation instruments to

identify differences in conceptualizations between novices and experts, these studies have

not, however, investigated how these changes develop and manifest during the continuum

of learning and experience building that takes place between these endpoints. Insights

gained into this development process will inform adaptive instructional strategies, as was

23

an original intention of the Dreyfus paper (1980). Furthermore, these insights may also

direct future research into the nature of the computer programming activity, and the role

that innate ability or some form of multiple intelligence factor (McCartney et al., 2017)

contributes to accomplishment of these tasks. Better understanding of these factors will

allow a more objective assessment and discussion of the benefits claimed for

computational thinking.

Research Questions

The following research questions were addressed in this study:

1. Is there a relationship between categories of coursework achievement

(Introductory, Mid-Program, Completing) and categories (High, Low, or

Zero) of card sort orthogonality?

2. How many reliable and interpretable structural exemplar sorts are derivable

from the collections of sorts produced by those participants most likely to

have attained the desired level of programing skill?

3. Is there a statistically significant difference among the categories of computer

science students’ progression through milestones of coursework attainment

(Introductory, Completing, and Mid-program) on the dependent variable, the

edit distance between the card sorts to the exemplar sorts?

4. Is there a statistically significant difference among the categories of computer

science students’ programming experience (Light, Moderate, Extensive) on

the dependent variable, the edit distance between the card sorts to the

exemplar sorts?

24

Null Hypotheses

H01: There is no statistically significant relationship between categories of

coursework achievement (Introductory, Mid-Program, Completing) and

categories (High, Low, or Zero) of card sort orthogonality.

H02: No reliable and interpretable structural exemplar sorts are derivable from the

collections of sorts produced by those participants most likely to have attained

the desired level of programing skill.

H03: There are no statistically significant differences among the categories of

computer science students’ progression through milestones of coursework

attainment (Introductory, Completing, and Mid-program) on the dependent

variable, the edit distance between the card sorts to the exemplar sorts.

H04: There are no statistically significant differences among the categories of

computer science students’ programming experience (Light, Moderate,

Extensive) on the dependent variable, the edit distance between the card sorts

to the exemplar sorts.

Delimitations

Delimitations of a study describe the choices made during the design of the study

by the researcher to establish practical boundaries. These decisions are both inclusionary

and exclusionary in nature. They are presented to provide full disclosure of options that

were considered, and those that were taken.

1. While the focus of the study is on assessment of student ability as described in

ABET student outcome 2, the study also implicitly equates this outcome to

computational thinking. Computational thinking is generally considered to

25

encompass additional cognitive processes. However, this study justifies its

equivalence of the two terms on the basis that computational thinking processes

exemplify a transfer of the ability to design and develop computer-based solutions

to meet specified needs. Hence, the ABET student outcome 2 is essential to

computational thinking.

2. While computational thinking is introduced via the K-12 educational reform

movement, the study focus is on post-secondary computer science education only.

This reduction in scope was elected in order to avoid issues of informed consent

with underage populations.

3. Participants will be chosen from a single institution of higher education. The

researcher had direct access to both the students and faculty of this University. As

a practical matter, this access simplified the Institutional Review processes and

expedited data collection. However, this decision could lessen transfer of the

findings to other situations.

4. Participants self-reported their cumulative programming practice time and these

data will not be verified against other sources.

5. The research questions were chosen with consideration for quantitative analysis

with the collected data and in order to connect prior research with the ABET

student outcome 2 and a theoretical framework that emphasizes the importance of

experience in skill acquisition.

6. The card sort elicitation instrument is the same one used in the 2005 card sort

studies of computer science conceptual expertise (Fossum & Haller, 2005;

McCauley et al., 2005; Sanders et al., 2005). It was decided to use the identical

26

stimuli set and to attempt to replicate the results of these studies in order to

minimize concerns regarding the validity and reliability of the instruments and

procedures of this study. Future research may alter the stimuli set in order to

pursue more focused research objectives.

7. A longitudinal study design may be more appropriate for researching the

progression of knowledge and skill acquisition. However, such a design would

require a much longer timeframe for data collection. Such a timeframe was

outside the boundaries of the dissertation that encompasses this study.

8. This study did not correlate its quantitative assessments of students’ achievement

of the desired ABET student outcome 2 with other institutional evaluations of that

outcome. While such a correlation is to be desired, it was decided to leave that as

a worthy question for subsequent research.

9. Due to the size of the population, the card sort activity was administered online

without direct supervision or intervention by the researcher. This could have

permitted some invalid or incomplete responses by participants to be improperly

included for analysis.

Limitations

Limitations describe potential weaknesses in the research, many of which are

outside the control of the researcher. Some weaknesses are always inherent in the

methods and procedures that are selected, while others become evident during the course

of conducting the study. This statement of limitations discloses those conditions which

might have affected the findings or which may be of interest for exploration in future

research:

27

1. Knowledge elicitation techniques, such as card sorts, are proxies and not direct

methods for assessing an individual’s internal conceptualizations regarding a

body of knowledge. The accuracy of these proxies is assumed based upon theory,

observations, and prior use in research.

2. The measure of participants’ cumulative programming practice or experience is

only an approximation. As these data were self-reported, the variance in each

approximation differed among participants. Therefore, findings based on

cumulative practice time were affected to an unknown extent by this limitation.

3. Prior studies of differences in cognitive expertise among post-secondary students

have compared only the endpoints on traditional four-year degree programs. The

assumption has been made in these prior studies that these endpoints represent

novice and expert levels. While this study aspired to demark this progression at

intermediate milestones of the program coursework, it was not possible to

calibrate these findings to a continuum from novice to competent or proficient

programmer according to the Dreyfus model.

Assumptions

This study relies on the following assumptions:

1. That “individuals construct meaningful internal categories to reflect their

understanding of distinctions in the world” (Fincher & Tenenberg, 2005, p. 90).

2. Novices and experts categorize field related knowledge differently (Chi et al., 1981;

Rugg & McGeorge, 2005).

3. “People learn a skill only by engaging with it and practicing it” (Denning, 2017, p.

36).

28

4. Cumulative grade point average in computer science coursework reliably reflects both

a student’s conceptual knowledge and computational thinking ability.

Organization of the Study

This study of using knowledge elicitation techniques to establish a baseline of

quantitative measures of computational thinking skill acquisition among university

computer science students is organized into five chapters. Chapter 1, the introduction,

includes the study background, statement of the problem, the theoretical framework as

derived from personal construct theory and the Dreyfus model of skill acquisition,

purpose of the study, significance of the study, research questions, hypotheses, definition

of terms, delimitations, limitations, assumptions, and organization of the study. Chapter 2

provides a review of the literature. Chapter 3 describes the methodology used for the

study which includes an introduction, the research questions, hypotheses, research design,

participants, data collection, data analysis, and a summary of the study proposal. Chapter

4 presents the results of the study including an introduction, the research questions,

hypotheses, the overall descriptive statistics for the collected data, and the statistical

results for each of the four research questions. Chapter 5 interprets the implications and

meaning of the results as they relate to existing literature, to the theoretical framework, to

the implications for teaching, learning, and assessing computer programming and

computation thinking skills and abilities, and makes recommendations for future

research.

29

CHAPTER II

Review of Literature

The study area for this dissertation is Computer Science education. Specifically, it

focuses on an objective for developing students’ competency in programming at the post-

secondary level according to accreditation criterion for student outcomes. Learning

outcome 2 of the Accreditation Board for Engineering and Technology (ABET, 2019)

states:

Graduates of the program will have an ability to . . . design, implement, and

evaluate a computer-based solution to meet a given set of computing requirements

in the context of the program’s discipline. (Criterion 3. Student outcomes).

This chapter summarizes the literature regarding academic debate and research

into the nature of programming competency, and methods of assessing learners’

attainment of the objective.

Defining Programming Competencies

The ability to write computer programs that accomplish beneficial tasks is

frequently linked to the development of analytical and critical thinking skills. Papert

(1980) asserted this relationship in writing about children working with the LOGO

programming language. He coined the term “computational thinking” to describe the

collection of cognitive activities of logical thinking, problem solving, and creativity

which he believed were engendered by learning to program.

Jeannette Wing popularized the computational thinking (CT) term with an

influential essay (2006) which advocated for the inclusion of CT in secondary and even

primary education. She declared CT to be an essential learning objective for all students.

30

Supporting her reasoning is the view that programming which meets an authentic need is

a problem-solving task and as such, is a model of constructionist learning activity.

Furthermore, Wing asserted that computational thinking involves multiple levels of

abstraction and is, therefore, universally applicable as a method by which humans solve

problems (Wing, 2006).

Initial efforts to describe computational thinking competencies as learning

objectives were undertaken by educational standards organizations such as the Computer

Science Teachers Association, the British Computer Society, and the International

Society for Technology in Education (Denning, 2017). These included imprecise terms

such as abstraction, decomposition, algorithms, and analysis to describe the cognitive

process expected to be evident in the learning outcomes. Academic discussions of the

time struggled for consensus on operationalized terminology for computational thinking.

However, until CT could be clearly defined, corresponding pedagogical methods and

assessment means could not be agreed upon (Zhong, Wang, Chen, & Li, 2016).

By 2012, consensus began to coalesce around a multi-part definition for

computational thinking. A theoretical framework was proposed which operationalized CT

in three dimensions: computational concepts, computational practices, and computational

perspectives (Brennan & Resnick, 2012). This work coincided with an essay on

computation and computational thinking by Aho (2012) that narrowed the definition of

CT to the set of thought processes used to formulate a problem such that it can be solved

computationally (Czerkawski & Lyman, 2015). Furthermore, these computational

solutions are specifications of algorithms and procedural steps which can be implemented

by a particular computational model (Aho, 2012). A computational model is an abstract

31

mechanism with prescribed capabilities, capacities, and procedures. These attributes of

the computational model correspond to the set of computational concepts identified in

Brennan and Resnick’s framework (2012), such as sequences, loops, parallelism, events,

conditionals, operators, and data. The set of thought processes involved in formulating a

problem for computational solution correspond to the computational practices of the

framework, such as incremental and iterative building, ongoing testing and debugging,

improving through abstracting and modularizing, and reusing and remixing code

(Brennan & Resnick, 2012). Thus, learning objectives for computational thinking may be

operationalized as separate and distinct strategies for promoting knowledge retention of

the computational concepts, and for utilizing the computational practices for knowledge

transfer in authentic situations.

The computational concepts enumerated by the Brennan and Resnick framework

may be considered fundamental knowledge constructs for most programming languages.

The methods to promote and assess the retention of these concepts in students are well-

established. However, it is the methods for promoting and assessing computational

practices that have been the most debated and studied.

Assessing CT Competencies

In proposing their framework, Brennan and Resnick intended it to provide a basis

for researching and evaluating development of computational thinking in learners (2012).

They sought methods which could assess against two or more dimensions

simultaneously. Their article elaborated on experiences with three techniques (a) a

portfolio analysis, (b) an artifact-based interview, and (c) the design scenario. They

recommended the design scenario method as most suitable for assessing both

32

computational concepts and computational practices without being too labor-intensive

(Brennan & Resnick, 2012).

The design scenario is a problem-based interview where a participant is presented

with code for a small application and asked to explain what the application does, to

suggest ways to extend it, to identify and correct an embedded bug, and to add a new

feature (Brennan & Resnick, 2012). Variations in the structure of design scenario tasks

were subsequently studied empirically for the effectiveness and efficiency of

administration (Zhong et al., 2016). These variations were defined in the two dimensions

of directionality and openness. Forward direction tasks ask participants to create a coded

solution from stated requirements. Alternatively, reverse direction tasks ask the

participant to debug a code segment. Openness of a task refers to whether there are one or

more correct outcomes and expected processes for arriving at the outcome. Closed tasks

have a single defined outcome and a single expected process. Semi-open tasks have a

single defined outcome, but no single expected process. The researchers created four

tasks combining the two options for each dimension and presented these to all

participants for completion. The study concluded that semi-open tasks assess a greater

number of computational concepts and processes, offer more levels of difficulty, and

provide better discrimination among participants than closed tasks. The directionality of

the task did not have an effect on student scoring in their study. That is, asking

participants to troubleshoot code was as effective a tool as having them create code

(Zhong et al., 2016).

Design scenarios with semi-open tasks are a typical method in most literature on

CT assessment (Lye & Koh, 2014), and require qualitative analysis of participants’

33

responses and programming code. Qualitative instruments are effective with small sets of

participants to provide the researcher or instructor with insight into learners’ retention of

concepts and performance of the practices. However, design scenario assessments can be

labor-intensive and so do not scale well to larger populations. Additionally, the validity

and reliability of scenarios are sensitive to influence by other factors. For example, the

degree of difficulty presented by a scenario may be perceived differently by participants

than by the researcher (McCracken et al., 2001). Also, lessening the cognitive load on

novice programming students by providing greater access to explicit knowledge

regarding the scenario and the computational concepts, such as language reference

manuals, has been shown to improve students’ performance on computational practices

(McCartney, Boustedt, Eckerdal, Sanders, & Zander, 2013).

Post-secondary Experiences with Programming Competencies

The programming competencies now being advocated as learning objectives for

computational thinking in primary and secondary schools have been the subject of

instruction at the higher-education level for more than four decades. Subsequently there

is a body of research into student and faculty experiences in computer science education

at the post-secondary level that pre-dates definition of competencies for CT. This section

relates this body of research into programming competencies at the post-secondary level

with the prior section on competencies for computational thinking.

Students are often surprised at the level of difficulty they encounter in the

introductory programming courses (Robins, Rountree, & Rountree, 2003). The study of

programming imposes a significant cognitive load on students (Garner, 2009).

Programming requires the learner to quickly assimilate numerous new skills, concepts,

34

and details and then be able to apply this new knowledge in demonstrations that are

without error. Studies have shown it to be a complex cognitive task (Guzdial & Morrison,

2016). Many students are not accustomed to the levels of precision and accuracy required

by the programming languages they study. Since the computer demands perfection in the

code they write, students often fail in their coding attempts. Successfully completing an

assignment requires persevering through repeated failures which can be perceived as a

frustrating and time-consuming experience (Campbell, 2016). Repeated unsuccessful

attempts can seem like personal failures and can take a toll on students’ self-efficacy and

motivation (Fang, 2012; Garner, 2009). Consequently, high rates of course drop-outs and

failures are common (Bergin & Reilly, 2005; Caspersen & Kolling, 2009).

Among computer science faculty, a common perception is that not all students are

capable of learning to program (Lewis, 2007). This perception has been called the Geek

Gene hypothesis (McCartney, Boustedt, Eckerdal, Sanders, & Zander, 2017) which states

that based on innate ability, there are two types of students (a) those who can learn to

program, and (b) those who can’t. The existence of these two categories is argued to be

reflected in the frequent occurrence of bimodal grade distributions in introductory

programming courses (Dehnadi & Bornat, 2006).

One empirical study was highly influential (McCartney et al., 2013) in reinforcing

this perception. The McCracken working group (MWG) sought to assess university

students’ basic mastery of fundamental programming skills at the conclusion of their first

year of computer science course work (McCracken et al., 2001). This research objective

was based on a predecessor to ABET student outcome 2. The McCracken study presented

participants (n = 216) from four universities in the United States, Australia, and Europe

35

with a short programming challenge to create a calculator application. Students were

given a fixed timeframe during a lab period to read through the challenge and related

material; design a computational solution; and write the code to implement the solution.

During the lab period the participants were not allowed access to other materials such as

textbooks or language reference guides. This is comparable to a forward direction, semi-

open design scenario as in Zhong et al. (2016). The students’ performance at the task was

assessed based upon the execution of their solutions in a black-box test, an examination

of their code for style, and an examination of the code for closeness to a correct solution.

Most students’ performance fell far below instructors’ expectations for the learning

outcomes of their first-year students. Many of the programs were incomplete and either

would not compile, or could not execute to normal completion. Examination of the

designs and the program code indicated that the majority of students lacked a viable

design or a complete solution. Additionally, the assessed scores had a bi-modal

distribution (McCracken et al., 2001).

Within a decade of the McCracken study, many computer science educators had

come to discount its findings (Lister, 2011) due to several issues with its methodology

and a belief that the programming challenge was too difficult. Therefore, a new study was

conducted to replicate the objectives and approach of the MWG with corrections to

address its problematic issues (McCartney et al., 2013). In this new study the original

programming task was modified to lessen the cognitive load by removing some

problematic knowledge requirements and by providing open access to relevant

documentation including online language reference guides. Using the same scoring

36

criteria and scale as the MWG, mean scores in the new study improved to 68 out of 110

possible from the prior mean of 23 in the McCracken study (McCartney et al., 2013).

More recent studies have sought empirical evidence for either the geek gene or

the prevalence of bimodal grade distributions and have generally refuted both. Other

factors that may explain extreme distributions in the grades have been presented by

Robins (2010), Ahadi and Lister (2013), and Patitsas, Berlin, Craig, and Easterbrook

(2016). However, the geek gene hypothesis still influences computer science instructors

as a folk pedagogy. The persistence of this perception is significant as it represents a

fixed mindset and presents a risk of self-fulfillment (McCartney et al., 2017).

Computational Practices as Acquired Skills

Aho’s (2012) definition of CT categorizes both computational concepts and

practices, as does the framework of Brennan & Resnick (2012). In a recent essay,

Denning (2017) argued that evaluations of attainment of computational thinking too

frequently depend on measures of knowledge retention of the computational concepts. He

asserts that it is possible for students to perform well on such tests yet still lack the ability

to transfer that knowledge into computational practices. He reasoned that these

computational practices are cognitive skills, and that skills only develop over time as the

learner gains experience. As an alternative form of assessment, he contended that

students’ competency with computational practices be evaluated in the manner of skills

competency.

In order to assess computational thinking competencies as skills, a model of skill

development is required. Denning recommended the Dreyfus model of directed skill

acquisition (S. E. Dreyfus & Dreyfus, 1980). According to this model, skill development

37

begins as rule-based behaviors in the novice, and progresses to situation-based behaviors

which are complex, nuanced, and intuitive when demonstrated by the actions of experts.

Denning concluded his thoughts on assessing CT development by stating that “We need

guidelines for different skill levels of computational thinking to support competency

tests” (Denning, 2017, p. 36). That is, an assessment of a learner’s CT abilities should be

located on a scale of CT skill levels, such as the stages of the Dreyfus model.

This model of skill acquisition relates changes in cognitive processes to learner

progressions in experience and ability through five stages from novice to expert (H. L.

Dreyfus, Dreyfus, & Zadeh, 1987; S. E. Dreyfus & Dreyfus, 1980). The model has been

widely adopted for education of healthcare professionals (Carraccio, Benson, Nixon, &

Derstine, 2008). However, for each field of expertise, the model requires interpretation of

the characteristics displayed by learner’s at each stage. Benner (1982) adapted the model

for development of nursing skills (Peña, 2010). Carraccio et al. developed an

interpretation for medical students and residents in clinical practice skills. By combining

this model with Kelly’s personal construct theory (1955) this paper has provided a

framework that describes the stages of development for problem-solving computational

practice skills.

Attaining Problem-solving Competency

Competencies for problem-solving skills are a requirement in many fields of

higher education. Studies of the development and assessment of such conceptual

expertise have been based on comparisons between novices and experts in fields of

science such as physics, biology, and chemistry. By examining differences in the

problem-solving processes of the two groups, insights can be gained into the cognitive

38

structures and processes available to each. If consistent differences can be reliably

elicited and identified, then these differences can serve as markers of, and proxy

measures for progress toward problem-solving competency.

Comparisons of the problem-solving abilities of novices and experts trace back to

a set of studies into the categorization and representation of physics problems conducted

by Chi, Feltovich, and Glaser (1981). Earlier research had established that problem-

solvers use knowledge schemata to construct cognitive representations of problem

descriptions, and that success at solving problems is dependent upon the quality of these

problem representations (Hayes and Simon, 1976; Newell and Simon, 1972; Simon and

Simon, 1978). Chi et al. (1981) investigated the interaction between these cognitive

representations of problems and relevant knowledge by hypothesizing that (a) creation of

a problem representation involves a categorization task, (b) categorization of the problem

triggers associated knowledge in the solver’s knowledge base, (c) and the construction of

the problem representation may be constrained by the available context of this associated

knowledge. Therefore, any differences in problem-solving performance between novices

and experts should be attributable to deficiencies in the novices’ available categories of

domain knowledge which in turn, limit the construction of problem representations

sufficient for an effective, efficient, and expedient problem-solving process.

Chi et al. investigated the process of problem categorization by novices and

experts with open card sorts and interviews. The researchers confirmed their hypotheses.

Experts and novices categorize the same problems differently. The categories of novices

tend to be based on explicit, surface cues found in the problem description. Experts,

however, perceive more information in a problem statement than do novices. Experts

39

have a great deal of tacit knowledge available for making inferences and derivations from

the problem statement. Their recognition of cues and associated significance within a

problem statement are based on the context or situation, and not just lexical meanings.

Expert schemata are organized by derived factors and contain both declarative

knowledge, used for categorization, and procedural knowledge used for taking action.

The elicited procedural knowledge includes potential solution methods as well as features

used to confirm, reject, or choose among these potential solutions. Thus, for experts,

there is robust cognitive interplay between the knowledge structure and the problem

representation (Chi et al., 1981).

The Chi et al. study used two card sort instruments. The first used 24 physics

problems selected from a standard textbook. The elicited categorizations identified a

significant difference between novices and experts. In order to confirm the interpretation

of the difference as the result of using surface or deep factors as cues, a second card sort

used 20 physics problems specifically constructed by the researchers to roughly pair six

explicit surface factors with three implicit physics principles. These implicit factors were

hypothesized by the researchers to represent the categorization cues used by experts. The

results of the second sort confirmed this conclusion (Chi et al., 1981).

Subsequent studies of problem-solving expertise in other fields of science have

followed this approach of using problems that combine hypothesized surface and deep

factors in the stimuli set of an open sort. One recent study of undergraduate biology

students used a stimulus set of 16 problems constructed as pairings of four hypothesized

surface factors with four hypothesized deep factors. The deep factors were core concepts

obtained from standard biology references. Novices were predicted to create four

40

categories corresponding to the surface factors with four stimuli each, while the experts

were predicted to create four categories corresponding to the deep factors (Bissonnette et

al., 2017). A similar instrument was used to research undergraduate chemistry students

where problems were also constructed to pair four hypothesized surface factors with four

hypothesized deep factors (Krieter, Julius, Bush, Scott, & Tanner, 2016). Another

chemistry study used pairings of three hypothesized surface factors with three

hypothesized deep factors (Irby et al., 2016). Participants in these studies completed only

one open, or unframed, sort of the stimuli set.

For data analysis, the sorts in each of these three studies were quantified by

counting the pairs of cards contained in each category. Thus, a category containing two

cards would count as one pair (i.e., A-B), three cards would count as three pairs (i.e., A-

B, A-C, B-C), while a category with four cards would count as six pairs. Expected

pairings for the novice and expert categorizations were also identified. The sorts

produced by experts and novices could then be compared by calculating the percentage of

expected pairings for novice or expert classifications found in participants’ sorts

(Bissonnette et al., 2017; Irby et al., 2016; Krieter et al., 2016). Experts were found to

have high percentages of the expected deep factor pairings. Novices, as expected, had

few deep factor pairings, and many hypothesized surface factor pairings. However, the

novices also had many unexpected card pairings (Bissonnette et al., 2017; Krieter et al.,

2016). Unexpected card pairings indicate a surface or superficial grouping criteria by a

participant that the researchers had not foreseen. These studies were able to conclude that

card sort instruments are able to reliably differentiate between the problem-solving

competency of novices and experts; and that experts categorize their problem

41

representations based upon deep factors. They also concluded that novices seldom use

deep factors for categorization, and based upon the number of unexpected pairings

chosen by novices, the surface factor categorizations of novices are less predictable

(Bissonnette et al., 2017; Krieter et al., 2016).

The Krieter et al. (2016) study in chemistry also used two other quantitative

measures for analysis: (a) edit distance, and (b) comparison-based index. Edit distance

quantifies the structural similarity of two sorts (Deibel et al., 2005). By using the

expected sort for the hypothesized deep factor categorization, and that for the surface

factor categorization sort, the edit distance of each participant sort to these two expected

sorts was calculated. The results were displayed as box plots of the distance between

sorts by novices and experts to the hypothesized sorts of surface factors and that of deep

factors. These results corresponded with the percentage pairing statistics (Krieter et al.,

2016).

The comparison-based index for a sort is based on the frequency of observed

pairings in both the novice and the expert sorts. The comparison-based index is derived

by creating a comparison frequency matrix that subtracts the frequency count for each

pairing observed for novices from the frequency count of the same pairing observed for

experts. Thus, if a specific pairing is observed more frequently among the experts, the

frequency matrix value for that pairing will be positive. Likewise, it will be negative for

pairings more frequently observed among novices. The comparison-based index for a

given participant’s sort is the sum of the frequency matrix values for all pairings in the

sort (Krieter et al., 2016). The researchers developed this index as a measure to be

independent of the hypothesized sorts. That is, the results consider how all the

42

participants actually categorized the stimuli, as opposed to the researchers’

preconceptions about the categorization.

The comparison-based index also provided a method to assess the development of

problem-solving expertise in chemistry as students progressed through the undergraduate

curriculum. The sort instrument was additionally administered to first-year majors,

second-year majors, and upper division majors. Comparison-based index values for these

sorts were calculated on the basis of the prior novice and expert frequency matrices. Box

plots of the range of values for each cross-section demonstrated a monotonic trend

toward expert-like sorting over time, with the largest movement occurring between the

first and second years. The upper division group indicated continued movement toward

expert-like, but the increase was not statistically significant.

Problem-solving Competencies in Computer Science

A search of the recent computer science education literature does not disclose

similar studies regarding development of problem-solving expertise. However, four

articles (Deibel et al., 2005; Fossum & Haller, 2005; McCauley et al., 2005; Sanders et

al., 2005) were found that utilized card sorts to investigate the conceptual structures of

computer science undergraduates regarding programming concepts. These articles share a

common origin in a National Science Foundation funded initiative for bootstrapping

research in computer science education (Sanders et al., 2005). The initial study by

Sanders et al. (2005) focused on students who were completing their introductory courses

in programming. The study design followed a constructivist perspective in order to

understand how the students create meanings for basic programming concepts and the

relationships among the concepts. The sample was drawn from 22 institutions, six

43

nations, and involved 23 researchers. Due to this large, diverse, and distributed

population of participants (n = 276) and the variability of factors such as programming

languages and instructional practices utilized across the institutions, the researchers

concluded that traditional qualitative methods of data collection were impractical

(Sanders et al., 2005). They instead chose to use a repeated single-criterion open card sort

as their data collection method as this instrument is participant-focused rather than

researcher focused and can be administered in a consistent manner across diverse

segments of a population (Sanders et al., 2005).

In contrast to the card sort instruments and research designs employed for the

studies of problem-solving expertise in physics, biology, and chemistry, the data

collection instrument used with these computer science students consisted of single word

prompts for programming concepts rather than problem scenarios. Additionally, while

Bissonnette et al. (2017) and Krieter et al. (2016) constructed their stimuli sets as

combinations of hypothesized surface and deep factors selected from generally accepted

core concepts, Sanders et al. (2005) lacked a similar theoretical basis for such hypotheses.

Indeed, an objective of this study was to gain insight into what the surface and deep

factors might be. Therefore, a stimuli set was developed with prompts including 26

fundamental programming terms. To construct this list, the researchers consulted

programming textbooks, academic literature on programming taxonomies, programming

experts and computer science educators. The instrument was evaluated with a seven-

person pilot study (Sanders et al., 2005).

Data collection utilized a physical card sort. Each participant was given a shuffled

deck of 26 index cards, with one of the programming terms on each card, and asked to

44

sort the cards into categories of their own choosing using a single criterion for the sort.

For each sort the participant supplied a label for each group and a description of the

sorting criterion. These labels and descriptions were recorded by the researchers along

with the cards making up each group. Upon completion of a sort the cards were collected

back into a deck and reshuffled. Each participant was asked to repeatedly sort the cards

using a new criterion until the participant was unable or unwilling to continue (Sanders et

al., 2005). The repetition of the sorting task is another difference between this data

collection design and those for the biology and chemistry studies. In order to gain the

greatest insight into a participant’s knowledge structure, a collection of sorts from that

participant is required (Rugg & McGeorge, 2005). This data collection activity resulted in

an information-rich dataset of 1260 sorts with a total of 5053 recorded categories

(Sanders et al., 2005).

Sanders et al. (2005) lacked hypothesized sorts for surface and deep factors for

the programming concepts, and did not use a quantitative analysis of frequencies of card

pairings. Instead, they utilized qualitative methods to analyze the participants’ supplied

group labels and sort criteria descriptions. These data were aggregated across the sample

with a hierarchical cluster analysis on both a verbatim basis and on the basis of an

interpretation of the meaning, that is, a gist analysis. A gist analysis is a qualitative

technique that aggregates items with a similar meaning despite use of different words,

such as loop, iterative, and repetition. However, the analysis was constrained by the

quantity of data and the lack of automated tools for lexical analysis (Sanders et al., 2005).

Based on this constrained, qualitative analysis of the collection of sorts, Sanders

et al. were able to conclude that despite the diversity of institutions, instructional

45

methods, programming languages, and levels of experience there was a clear similarity

across the population between the top ten sort categories. This indicated a consistent

development of conceptual structures regardless of programming language or institution.

The researchers also suggested that additional information could be gained from the

dataset if new techniques for analysis could be developed which are more amenable to

automation (Sanders et al., 2005).

Three groups of researchers from the Sanders et al. (2005) study pursued the

challenge to create new computational techniques for attributing meaning to card sort

data (Fincher & Tenenberg, 2005). These efforts resulted in the card sort measures for

edit distance (Deibel et al., 2005) and orthogonality (Fossum & Haller, 2005). Edit

distance compares the structural similarity of two sorts. Orthogonality expresses the

dissimilarity of sorts within a collection. The edit distance is one of the statistics

calculated by the more recent studies of Bissonnette et al. (2017) and Krieter et al. (2016)

in their analyses. Fossum and Haller (2005) and McCauley et al. (2005) used the edit

distance and orthogonality measures to further analyze the dataset from the Sanders et al.

(2005) study. Both of these articles also collected additional card sort data from a sample

of graduating computer science seniors (n = 65). This collection process used the same

stimuli set as Sanders et al. (2005) and so enabled a statistical comparison of differences

between the cognitive structures of novice programming students and those of graduating

seniors.

McCauley et al. (2005) found that the orthogonality of sort collections of

graduating seniors correlates to their categorization by quartiles when ranked by

academic performance in their computer science courses. This trend in orthogonality was

46

shown to be statistically significant. The best performing seniors produced sorts with the

greatest degree of differentiation. This finding is in keeping with the Chi et al. (1981)

conclusion that the cognitive structures of experts contain greater degrees of

differentiation than those of novices, as evidenced by the orthogonality of their sort

categorizations.

Using the same ranking and categorization by quartiles of the graduating seniors,

Fossum and Haller (2005) found that the orthogonality of the sorts produced by all but

the lowest quartile of graduating seniors showed a statistically significant difference from

the orthogonality of sorts produced by all novices. Therefore, the orthogonality measure

can be used to reliably distinguish between the card sorts produced by novices from those

produced by students with more developed problem-solving expertise. Furthermore, the

sorts of the lowest quartile of seniors showed no statistically significant difference in

orthogonality from that of the novice sorts (Fossum & Haller, 2005). This is an indication

that the lowest quartile of graduating seniors failed to develop their problem-solving

expertise beyond that of introductory programming students.

Since McCauley et al. (2005) identified that significant differences exist between

the sorts of the highest and lowest performing graduating seniors based upon their

respective orthogonality, they attempted to interpret the sorts of these two groups to

identify how the changes in differentiation manifested. Using a qualitative content

analysis of the criterion and category names provided during the sorts by each

participating senior, a set of 16 representative content analysis groups (CAGs) were

derived and used as the basis for coding the 291sorts. The frequency distribution of the

sorts within these CAGs was then analyzed by student performance quartile. The results

47

identified a difference in the frequency of selection of the CAGs between the highest and

lowest performing quartiles (McCauley et al., 2005). This technique is analogous to the

comparison-based index utilized by Krieter et al. (2016) to evaluate sorts without

comparison against hypothesized sorts, although the methods of collection and analysis

differ significantly.

Interestingly, for the majority of the identified CAGs, the calculated orthogonality

confirmed that the sorts selected for each CAG were structurally similar. Thus, the

derivation of the CAGS was validated both qualitatively and quantitatively. Additionally,

the edit distance metric was calculated for each pair of sorts within a CAG. For each

CAG, this process identified one sort which had the lowest edit distance to all the other

sorts in that CAG. That is, the sort that was most structurally like all the other sorts in the

CAG was identified quantitatively by its aggregate edit distance score. That sort was

labeled as the structural exemplar sort for that CAG (McCauley et al., 2005). Since the

edit distance and orthogonality metrics ignore the labels for categories and criteria, these

exemplars provided a means to re-associate meaningful descriptors to each CAG. The

exemplars derived from the collection of sorts in the quartile with the highest measure of

orthogonality can also be considered to represent deep factors for categorization.

Likewise, the exemplar sorts derived from the collection of sorts of the novice

programmers could represent the surface factors.

Summary

Competency requirements for learner attainment of ABET student outcome 2

have most recently been researched and debated in the context of computational thinking

(CT). Computational thinking is best defined as the set of thought processes used to

48

formulate a problem such that it can be solved computationally within a particular model

of computation (Aho, 2012; Czerkawski & Lyman, 2015). Thus, operationalizing CT

instruction and assessment must address (a) knowledge retention of the computational

concepts of the model, and (b) acquisition of a set of computational practices for

knowledge transfer with the purpose of problem-solving. This chapter has focused on the

research conducted towards assessment of computational practices.

Two approaches for assessment of computational practices have been reviewed.

The first is to require performance of the practices, and the second is to elicit

categorizations of problem-solving expertise. Instruments for evaluating demonstrations

of computational practices frequently provide a design scenario and request the learner to

respond with either a forward directed activity, such as create the code, or a reverse

directed activity, such as debug the code (Lye & Koh, 2014; Zhong et al., 2016). These

assessments are often open or semi-open tasks requiring an element of qualitative

evaluation. Studies that have utilized this approach to assess the programming

competencies of post-secondary computer science students have had the reliability and

validity of these instruments subsequently challenged. For example the McCracken

(2001) task was judged as too difficult (Lister, 2011), and results were significantly

improved with actions to reduce the cognitive load on the participants (McCartney et al.,

2013). Multiple other factors have been investigated (Ahadi & Lister, 2013; Patitsas et

al., 2016; Robins, 2010) for their influence on the scores of such evaluations and the

common occurrence of extreme distributions that result.

An alternative approach for assessment of computational practices is based upon

studies of differences in the cognitive representations and processes of experts as

49

compared to novices for problem-solving (Chi et al., 1981). Recent studies of problem-

solving skill competencies in the fields of chemistry and biology (Bissonnette et al.,

2017; Irby et al., 2016; Krieter et al., 2016) have employed and validated this form of

assessment. A pair of earlier studies (Fossum & Haller, 2005; McCauley et al., 2005) in

computer science also evaluated and refined techniques for this approach. Each of these

studies confirmed that while the novices approach a problem-solving task by taking cues

from explicit, surface factors stated in a problem description, the more skilled senior

students, like their faculty, are guided by deeper factors that they derive from the problem

statements. For the chemistry and biology studies, the deep factors were accurately

hypothesized and one of the studies (Krieter et al., 2016) found evidence of a progression

of development toward these deep factors in students during their undergraduate years.

However, there is a gap in comparable research for computer science students as the

representations of associated deep factors for computational practices have not yet been

identified and the progression of their development toward these factors has not been

investigated using knowledge elicitation methods.

Furthermore, the only two studies of differences in the cognitive representations

between computer science novices and seniors (Fossum & Haller, 2005; McCauley et al.,

2005) concluded that this cognitive ability for computational practices does not develop

for all graduating seniors. Therefore, development of this ability must be influenced by

factors other than just the time and exposure to the curriculum which all seniors share in

common. The geek gene hypothesis states that this difference is due to innate ability.

However, the Dreyfus model of skill acquisition states that development is facilitated

with repeated practice and application of the skill. An extensive search of literature has

50

found no additional studies using knowledge elicitation techniques to research factors

that influence the progression of development of the ability of computer science students

to attain ABET student outcome 2.

Therefore, this review of the literature has identified two gaps in the research of

computer science education that need to be pursued. The first gap is the lack of follow-up

to study results (Fossum & Haller, 2005; McCauley et al., 2005) indicating that the

computational practices of the lowest performing quartile of graduating seniors did not

develop significantly beyond the skill level of novices, while the top quartile of

graduating seniors did demonstrate a statistically significant growth in their

computational practices skills. This difference should be investigated to determine if it is

the result of innate ability or if it is influenced by accumulated programming experience

in accordance with the model of skill acquisition.

The second gap is the lack of recent studies (Fossum & Haller, 2005; McCauley

et al., 2005) in computer science education comparable to that for chemistry education

(Krieter et al., 2016). Differences in the cognitive representations of computer science

novices and seniors were last investigated in 2005. Krieter et al. (2016) very recently

investigated similar differences for chemistry students and charted development toward

expert-like skills as students progressed through the curriculum. No study has been found

in the literature for computer science education that investigates the progression of skill

development as these students progress through the curriculum.

 This study proposed to address these gaps in three steps. First, it replicated the

previous studies of conceptualizations of computer science students to determine if

similar differences in categorizations exist within the cross-section of completing

51

students at the participating institution according to their academic performance. Second,

it investigated how the conceptualizations of those students most likely to have attained

the desired level of programming skill differ from those of the least likely. Finally, it

analyzed how development toward conceptual expertise is affected by students’ levels of

instruction and programming experience as they progress through the curriculum.

The following research questions were addressed in this study:

1. Is there a relationship between categories of coursework achievement

(Introductory, Mid-Program, Completing) and categories (High, Low, or

Zero) of card sort orthogonality?

2. How many reliable and interpretable structural exemplar sorts are derivable

from the collections of sorts produced by those participants most likely to

have attained the desired level of programing skill?

3. Is there a statistically significant difference among the categories of computer

science students’ progression through milestones of coursework attainment

(Introductory, Completing, and Mid-program) on the dependent variable, the

edit distance between the card sorts to the exemplar sorts?

4. Is there a statistically significant difference among the categories of computer

science students’ programming experience (Light, Moderate, Extensive) on

the dependent variable, the edit distance between the card sorts to the

exemplar sorts?

52

CHAPTER III

Methodology

The purpose of this study was to establish a baseline of quantitative measures of

computational thinking skill acquisition as an aid in evaluating student outcomes for

programming competency. Proxy measures for the desired skill levels were identified that

reliably differentiate the conceptual representations of computer science students most

likely, from those least likely, to have attained the desired level of programming skill.

Insights about the development of computational thinking skills across the degree

program were gained by analyzing variances between these proxy measures and the

conceptual representations of cross-sections of participating students partitioned by levels

of coursework attainment, programming experience, and academic performance. Going

forward, similar measures can provide a basis for quantitative assessment of individual

attainment of the desired learning outcome.

The study used the knowledge elicitation instrument (a repeated, open card sort of

26 programming terms) and quantitative methods from McCauley et al. (2005) and

Fossom and Haller (2005). The theoretical framework hypothesized that learners’

organization of knowledge changes as learners gain experience with a skill over time (S.

E. Dreyfus & Dreyfus, 1980), and that these changes are reflected in the elicited

conceptual representations (Kelly, 1955). Therefore, cross-sections of students in the

computer science degree program at the participating institution were selected for

elicitation of conceptual representations reflective of their attainment of specific

milestones of coursework, level of programming experience, and category of academic

performance. A cross-sectional analysis approach similar to that used by Krieter et al.

53

(2016) and Bissonnette et al. (2017) compared differences between groups to identify

differentiating indicators of progression in computational thinking skill acquisition across

the degree program. This chapter describes the design of the research, and the

methodology to be used to conduct the study and to analyze the collected data.

Research Questions

The following research questions were addressed in this study:

1. Is there a relationship between categories of coursework achievement

(Introductory, Mid-Program, Completing) and categories (High, Low, or

Zero) of card sort orthogonality?

2. How many reliable and interpretable structural exemplar sorts are derivable

from the collections of sorts produced by those participants most likely to

have attained the desired level of programing skill?

3. Is there a statistically significant difference among the categories of computer

science students’ progression through milestones of coursework attainment

(Introductory, Completing, and Mid-program) on the dependent variable, the

edit distance between the card sorts to the exemplar sorts?

4. Is there a statistically significant difference among the categories of computer

science students’ programming experience (Light, Moderate, Extensive) on

the dependent variable, the edit distance between the card sorts to the

exemplar sorts?

54

Null Hypotheses

H01: There is no statistically significant relationship between categories of

coursework achievement (Introductory, Mid-Program, Completing) and

categories (High, Low, or Zero) of card sort orthogonality.

H02: No reliable and interpretable structural exemplar sorts are derivable from the

collections of sorts produced by those participants most likely to have attained

the desired level of programing skill.

H03: There are no statistically significant differences among the categories of

computer science students’ progression through milestones of coursework

attainment (Introductory, Completing, and Mid-program) on the dependent

variable, the edit distance between the card sorts to the exemplar sorts.

H04: There are no statistically significant differences among the categories of

computer science students’ programming experience (Light, Moderate,

Extensive) on the dependent variable, the edit distance between the card sorts

to the exemplar sorts.

Research Design

In order to investigate and answer the research questions it was necessary to

gather descriptive statistical data from computer science students regarding the level of

development of their conceptualizations of programming as they progress through their

computer science degree program. A single point-in-time, cross-sectional, survey design

was chosen for this purpose. From the population of all computer science students at the

participating institution, cross-sections of the collected data were elicited for comparative

55

statistical analysis. The chief limitation of this approach is that it cannot determine causal

relationships (Cohen, Manion, & Morrison, 2011).

Prior studies of the development of conceptual expertise have utilized the card

sorting elicitation technique for data collection and analysis. In McCauley et al. (2005)

significant differences between the top and bottom quartiles of academic performance in

computer science seniors were found in their conceptualizations of programming. Krieter

et al. (2016) identified changes in the way chemistry majors conceptualized problem

solutions as they progressed through their coursework. The selection and use of methods

for collecting and analyzing card sorting data to address the research questions of this

current study were drawn from these and other card sorting studies. These additional

research design details are provided in the following sections.

Selection of Participants

The population for this study was the set of students enrolled in computer science

courses in the Department of Computer Science during the Spring 2019 semester (N ~

430) at the participating institution. Most of these students take multiple computer

science courses each semester, as evidenced by the current enrollments for the Spring

classes, approximately 850, exceeding the number of individual students in the Computer

Science department. Therefore, the sampling procedure was designed to efficiently solicit

a majority of computer science students through a number of selected courses, quickly

identify redundant solicitations to the same students, and prevent more than one data

collection per participant.

The instructors for the courses listed in Table 1 were asked to make a study

recruitment announcement to their classes. Recruitment materials were provided online to

56

inform students about the nature and purpose of the study and to provide video examples

of card sorting tasks. Students were informed that participation would require an hour of

their time. The students could then choose whether or not they wished to register for the

study. Instructors were encouraged to award participation points to students who

participated. Solicited students were informed of the nature of the research, its potential

benefits and risks, and asked to consent. The principle risk to participants was a breach of

confidentiality. To protect against this risk, a randomly generated participant identifier

was assigned to each consenting participant. This identifier was used exclusively in the

study to associate all collections and analyses of data to the participants.

Students who chose to participate provided their school e-mail address as part of

an online registration activity. If students were solicited in more than one class, they only

needed to register one time. However, the cloud-based application that received these

submissions identified redundant registrations from the same e-mail address and if found,

just thanked the student for their request.

The courses listed in Table 1 were selected to provide adequate solicitation for the

various cross-sections of students required to address the research questions. Student

progression through the degree programs was categorized into five stages of milestone

achievement. First were introductory students in course A, 1436. Last were graduating

seniors (E) who had completed D level courses, and had 28 or more hours of computer

science coursework with a cumulative GPA of at least 2.0. The intermediate achievement

milestones were determined by current enrollment in, or completion of, course B, 1437,

2327, or DFSC 1316; course C, 2329, 3318, or 3327; and course D, 3319, 4318, or 4319.

57

Table 1

Computer Science Courses to be Solicited for Student Participation in the Study

 Course Number Description Spring Enrollment

A 1436 Fundamentals I 100

B 1437 Fundamentals II 60

 2327 Networking Intro 55

 DFSC 1316 Digital Forensics I 25

C 2329 Machine Language 55

 3318 Databases 55

 3327 Computer Architecture 55

D 3319 Data Structures 55

 4318 Advance Language Concepts 44

 4319 Software Engineering 28

 4326 Network Theory 30

 4327 Operating Systems 31

 4349 Professionalism and Ethics 36

 DFSC 4317 Info Security 15

Table 2 provides details on the planning basis for soliciting cross-sections of

students by milestone achievement. The number of students at each milestone could only

be estimated. Based on these estimates, a desired sample size was interpolated from a

table of sample sizes for categorical data by Bartlett et al. (as cited in Cohen et al., 2011,

p. 148) given a desired alpha of 0.05 and a margin of error of 0.05. The total desired

sample size of 338 for all cross sections exceeds the sample size of 305 calculated with

58

the G*Power software for a one-way ANOVA with five groups at an alpha of 0.05,

statistical power level of 0.95, and a medium effect size of 0.25. Soliciting from all

students in the Table 1 courses was anticipated to result in a greater number of

solicitations than required for each desired sample size and to also exceed the total

population, indicating that some students will receive multiple solicitations.

Table 2

Computer Science Cross-Section Details

 Milestone Estimated Size Minimum Desired Sample Size Soliciting

 A 90 74 100

 B 90 74 140

 C 85 70 165

 D 75 64 127

 E (65 56 65)

 Total 340 282 532

Instrumentation

The instrumentation for this study was based on that of a prior study. McCauley et

al. (2005) conducted an investigative survey through use of a repeated single-criterion

card sort (Rugg & McGeorge, 2005) regarding the conceptualizations that graduating

computer science students have about programming. Their study also gathered

background data for each participant including grades in all computer science courses,

the computer science grade point average (GPA), and the overall grade point average

along with demographic data. The computer science GPA was used to categorize students

59

into academic performance quartiles for purposes of comparison using several

quantitative methods for statistical analysis.

This current study collected data with two online instruments for the participants,

and by gathering official document artifacts from the institution regarding each

participant. One online instrument solicited background and demographic information

from the participants through a questionnaire. The other online instrument elicited the

primary data for the study from the participants through a card sorting activity. Once the

students completed both instruments their participation in the study was concluded. There

were no follow-up questions or interviews with the researcher.

Card sort activity. Card sorting is a categorization task (Fincher & Tenenberg,

2005) where a participant sorts elements of a stimuli set into groups based upon a sorting

criteria (Rugg & McGeorge, 2005). This active construction by the participant of the

external groups, or categories, reflects their internal conceptualizations (Fincher &

Tenenberg, 2005). Card sorts are especially well suited for capturing data of non-scalar or

nominal categories, for which repertory grids are not suitable (Rugg & McGeorge, 2005).

In an open, or unframed, type card sort, participants are allowed to choose the sort

criteria, and to specify category labels. Thus, as a data collection method, open card sorts

have the benefit of being participant-centric rather than researcher-centric (Fincher &

Tenenberg, 2005). Administratively, card sorts have an advantage of being easy to use,

relatively quick, and systematic (Rugg et al., 1992). For analysis, card sort results reveal

participants’ categorizations which can be compared to identify similarities and

differentiations in participant conceptualizations (Rugg & McGeorge, 2005).

60

When comparing card sorts produced by experts against those of novices, it is

noted that experts generally can find more criterion for uniquely grouping cards than do

novices (Fossum & Haller, 2005). In order to allow this tendency to manifest, each

participant needs to be encouraged to repeat the card sort multiple times. Hence the term,

repeated single-criterion card sort. This repetition results in a collection of card sorts for

each participant.

This study utilized the repeated single-criterion card sort instrument originally

devised by Sanders et al. (2005) and subsequently used in the McCauley et al. (2005)

study. As an open card sort, the instrument consists only of the 26 item non-scalar stimuli

set shown in Figure 2. The original researchers selected single-word prompts for

programming concepts. These prompts were gathered from textbooks, academic articles,

educators, and experts. A pilot test of the instrument was conducted with seven

participants (Sanders et al., 2005).

61

Figure 2. Stimuli set consisting of 26 single word programming terms for card sort use.

An online tool (see Appendix A) randomized these items into one vertical list and

displayed them all at once along the left side of the screen as shown in Figure 3.

Participants then dragged each item to the right and dropped it into a new or existing

category, as shown in Figure 4. Participants could enter a description for each category.

When all the objects had been placed within a group, the data was recorded (i.e., category

names, and objects within each category) and the stimuli set randomized again. In a

repeated single-criterion sort the respondent is asked to categorize the stimuli again using

a different criterion. The sorting task continues until the respondent is unable or unwilling

to create a new sort.

62

Figure 3. Initial screen display of card sort task. Twenty-six programming terms listed on
the left side of the screen are to be dragged to groups on the right side.

63

Figure 4. Card sort task underway. Four categories of data, flow of control, classes, and
execution have been created with items from the stimuli-set dropped into them.

Questionnaire. An online questionnaire (see Appendix B) solicited background

and demographic information from each participant. The demographic information

collected was gender, age, ethnicity, intended major, and college classification level.

Participants were allowed to supply their own descriptions for gender, and ethnicity, and

these were subsequently categorized by the researcher. Background information solicited

included questions regarding prior training or experience in programming, and Likert-

scale evaluations of skill level for various types of programming activities. Answers to

these background questions were used by the researcher to rank the participants

according to their degree of programming experience. The ranked participants were then

categorized into thirds (Light, Moderate, Extensive).

Document artifacts. For each consenting participant, university records were

retrieved to collect the list of computer science courses taken each semester, and the

64

grades earned in each of these courses. The researcher calculated each participant’s

cumulative grade point average in their computer science coursework. Participants

classified as completing students were ranked by the researcher according to their

cumulative grade point average and categorized into thirds. Some other cross-sections of

the participants were also ranked by cumulative GPA in computer science coursework for

comparison against the completing students.

Validity and reliability. Card sort tasks are well established instruments for the

investigation of expertise (Irby et al., 2016) and have been used in studies of physics (Chi

et al., 1981), biology (Bissonnette et al., 2017), chemistry (Irby et al., 2016; Krieter et al.,

2016), and computer science (Fossum & Haller, 2005; McCauley et al., 2005). The

validity of a card sort instrument is dependent upon the stimuli set used to prompt the

elicitation. The reliability of a card sort instrument is dependent upon the procedures used

in the administration of the activity.

To improve the validity of the instruments for this study, the stimuli set used was

the same one used by Sanders et al. (2005) to investigate systematic differences among a

large and diverse population of 276 computer science students and instructors at 22

institutions in multiple nations with a resulting 1260 sorts. These stimuli prompts were

originally selected from programming textbooks, articles on programming taxonomies,

and recommendations from programming experts and educators, and then tested with a

seven-person pilot group.

To improve the reliability of the instruments for this study, the instruments were

delivered online and the procedures for administering the instruments were automated.

The card sorting task followed the same procedures used previously with this stimuli set

65

(Fossum & Haller, 2005; McCauley et al., 2005; Murphy et al., 2005; Sanders et al.,

2005) and as described in Rugg and McGeorge (2005). While accessing the document

artifacts, the study followed University procedures for researcher access to student

records. As all data was collected it was securely stored in a relational database. An

online tool was developed to retrieve datasets for analysis in SPSS, and Excel based upon

filters selected by the researcher. This tool also collected and journaled these extraction

requests with date and time stamps to enable a reliable recreation of all datasets for

statistical testing as needed.

Procedures

Preparation. The study was conducted with only a single researcher, and no

outside funding. The population solicited for participation exceeded 325. Therefore, the

administration of the instruments was conducted online and automated to the extent

possible.

As the data was collected asynchronously, identification and authentication of

each participant was essential for maintaining the integrity of the collected data. Each

participant had to be properly identified and associated with only one study participant

identifier. The study relied on the university assigned student email address for

identification and authentication. A cloud-based application was developed to register

participants upon receipt of an email address supplied by the student. The registration

application associated a unique, random identifier, the participant identifier, with the

submitted email address. This participant identifier was embedded in links returned to the

student to open the collection instruments. Cloud-based applications were also developed

66

to receive these links, to authenticate the submitting participant, and then display the

appropriate collection instrument.

Existing online tools for administering the questionnaire and card sort instruments

were considered for use in the study. However, these tools had to be capable of being

integrated within the authentication protocol of the study. This study imposed specific

requirements on the card sort instrument.

The card sort tool had to support administration of repeated single-criterion sorts.

Participants had to be able, and were encouraged to complete multiple, different

categorizations of the same stimuli set. Participants also had to be required to assign all

items in the stimuli set to a group, even if one group is labeled as “Don’t know”, or “Not

applicable”. Due to these requirements, subsequent procedures for the card sort activity

were written with the assumption of the instrument being specifically developed for this

study.

The cloud-based application was developed in parallel with the Institutional

Review Board (IRB) approval process. None of the data collection materials were made

available to students until IRB approval of the study had been obtained. This approval

occurred at the end of November. The timeframe for the data collection was targeted for

the 6th week of the Sprint 2019 semester, February 20 through 26.

Collection. The procedures for data collection were presented to the population

through announcements by their course instructors. The activity opened on February 20,

and remained open for one week. Within this activity students were presented with an

overview of the study, offered a demonstration of an example card sort activity, and

informed as to their rights and risks associated with participating in the study. The

67

principle risk to participants was a breach of confidentiality regarding the data collected.

They were given the right to decline to participate, or to withdraw from participation

without consequence to their course grade.

Students who chose to participate indicated their consent by signing, dating, and

submitting forms of informed consent and consent to the release of academic records.

They then provided their email address in a registration form and submitted that form to

the cloud-based registration application. The application verified the student’s identity by

sending a confirmation code to the email address. The student then entered the

confirmation code into the registration page within a set timeframe. Upon confirmation of

student identity, the application verified the uniqueness of the student registration

request, and assigned each student a unique and random participant identifier. The

student received a return page with a link, including an embedded participant identifier,

to the questionnaire instrument.

The student used the link to open and complete the questionnaire regarding their

demographic data and background information. The instrument collected and stored this

data and associated it to the participant identifier. The student was then sent a second

link, and the embedded participant identifier, to the card-sorting instrument. In this link,

the student was asked to reserve 40 to 60 minutes to complete the task.

Students using the link to access the card sorting instrument were presented with

the task instructions (see Appendix A), and given another opportunity to view a

demonstration of a sample sort. When the participant was ready, the task began.

The instrument initially displays all 26 items of the stimuli set, as shown in Figure

2, listed down the left side of the window. Adjacent to the list of stimuli is one empty

68

group box. The participant drops a selected item into the group box and is prompted to

enter a description for the group. At the top of the window a prompt opens requesting a

description for the sort criteria. A button appears at the top that says “I am Done”.

The user then selects another item from the stimuli set. The outline of another

empty group box appears either beside or below the existing group(s). The participant

drops the item into one of the group boxes. This process repeats for each item in the

stimuli list. At any time, the participant may move items between groups and may change

the group labels.

At any time the user may click on the “Done” button. If items remain in the

stimuli list, the participant is prompted that items remain to be sorted and asked if these

items can be sorted. If the participant responds that they cannot be sorted, a prompt will

ask to select a reason, either (a) don’t know this term, or (b) the sort criterion does not

apply. When the participant selects one of these choices, a new group box appears with

the selected description as the label, and containing the remaining items from the stimuli

set.

When the list of stimuli items is emptied, the participant is prompted to provide

any unnamed group labels. When the participant is finished with all edits, they click on

the “Done” button. The tool then records the sort data, with a unique sort identifier, and

displays an acknowledgement to the participant and prompts them to try to sort again, or

to quit.

If the participant elects to sort again, the window returns to the initial state with

the list of stimuli items randomized again. If the participant elects to quit and fewer than

69

four sorts have been completed, the participant is encouraged to try for just one more, and

again given the choice to try again, or to quit.

Once the participant quits, the instrument closes. While the data collection period

was open, if the participant used the link to return to the sorting instrument, they were

allowed to complete additional sorts. If the participant creates a duplicate sort, this

situation is not detected or prevented. Duplicate sorts become evident during data

analysis.

Analysis. Each sort was assigned a unique identifier and tagged with the

participant identifier of its creator. Through the participant identifier, each sort was also

be tagged with the categorical information about that participant. Various collections of

sorts were extractable from the database using any of these tags. A tool was developed to

extract collections of sorts and save them as datasets suitable for analysis in SPSS, Excel,

etc.

As mentioned above, demographic and background information collected with the

questionnaire was reviewed by the researcher. Since some of this data is open ended, the

researcher determined proper categorization. The researcher also collected institution

artifacts regarding the participants and recorded appropriate data from those records. The

data from these two sources was associated with the participant identifier and stored in

the database prior to analysis activities.

Data Analysis

The objective in analyzing data collected from a card sorting instrument is to

compare and contrast individual sorts and collections of sorts against each other. Such

analysis provides insight into the differences in the participants’ construction of their

70

conceptual representations (Fincher & Tenenberg, 2005; Rugg & McGeorge, 2005). A

card sort activity collects both lexical and structural data. The lexical information consists

of the labels the respondent provides for the categories, and the description of the sorting

criterion. Traditionally, qualitative coding and clustering methods have been used to

analyze the lexical data. However, card sort studies can easily generate volumes of data

which are impractical for analysis with qualitative methods (Sanders et al., 2005).

Quantitative measures for expressing the similarities and dissimilarities among card sorts,

however, easily accommodate large sets of data and enable statistical methods of analysis

to be applied in order to address research objectives (Deibel et al., 2005; Fincher &

Tenenberg, 2005; Fossum & Haller, 2005). These quantitative measures ignore the

lexical content and analyze only the structural data provided in the respondents’ card

sorts.

Measures. In order to explain the calculation and meaning of the quantitative

measures of card sorts, it is first necessary to describe the structural information provided

by the instrument. For the purpose of illustration, consider a case (Deibel et al., 2005)

where a respondent produces two sorts, identified as A and B, from a stimuli set

consisting of nine items, identified as 1 – 9. Sort A contains three categories: A = {A1,

A2, A3} and sort B contains four categories: B = {B1, B2, B3, B4}. Furthermore, the nine

stimuli objects are distributed across the categories in both sorts as shown in Table 3.

71

Table 3

Two Example Sorts

Sort A Sort B

 A1 = {1, 2, 3} B1 = {1, 2}

 A2 = {4, 5, 6} B2 = {3, 4}

 A3 = {7, 8, 9} B3 = {5, 6, 7}

 A4 = {} B4 = {8, 9}

 Note. Example sorts of a stimuli set of nine items. Sort A contains three categories
and Sort B contains four categories (Deibel et al., 2005).

Table 3 represents the structural description of both sorts. In comparing these two

sorts, the fundamental question is: how much alike are they? The answer to this question

can be quantified as the edit distance metric.

It is also desirable to compare different collections of sorts. For example, how do

the sorts produced by the top third of completing students compare to the sorts produced

by the lowest third of completing students? Quantifying the orthogonality of each

collection of sorts enables such statistical comparisons to be performed (Fossum &

Haller, 2005).

Edit distance. The edit distance between two sorts is defined as the minimum

number of card moves required to transform one sort into the other and is calculated as

described in Deibel et al. (2005) with the following sequence.

Using the example in Table 3, the first step is to create an equal number of groups

for both sorts. This is a requirement of the algorithmic solution. So we create category A4

= {}, an empty group. Then, a minimum set of moves to transform A into B is the

sequence: Move 3 from A1 to A4; move 4 from A2 to A4; and move 7 from A3 to A2.

72

This results in two sorts as shown in Table 4. This allows the groups between the

two sorts to be matched as: A1 = B1; A2 = B3; A3 = B4; and A4 = B2.

Table 4

Transformation of Sort A to be Identical to Sort B

 Sort A Sort B

 A1 = {1, 2} B1 = {1, 2}

 A2 = {5, 6, 7} B2 = {3, 4}

 A3 = {8, 9} B3 = {5, 6, 7}

 A4 = {3, 4} B4 = {8, 9}

 Note. Sort A transformed to structurally match Sort B in terms of number of groups
and contents of each group. Three item moves were required for this transformation
(Deibel et al., 2005)

The edit distance calculation only counts the number of moves of individual

stimuli items required for the transformation. The final reordering of the groups to

achieve the final match is not considered. Therefore, in this example, the edit distance

value is 3, and we can state that the two sorts differ by an edit distance of 3. The edit

distance can be efficiently calculated using the Munkres, or Hungarian assignment

algorithm for bipartite graphs (Deibel et al., 2005).

Note that the edit distance is a measure of structural similarity between two sorts.

If the edit distance is zero, then the sorts are structurally identical, even if the category

names assigned in both sorts are disparate, and possibly differ in meaning. The edit

distance measure is a ratio scale metric (Deibel et al., 2005).

Orthogonality. The orthogonality of a collection of sorts is a measure of the

degree of differentiation among the members of the collection. The measure is based on

73

the edit distance between every pair of sorts in the collection. For example, assume a

collection contains four sorts J, K, L, and M. The distance between each pair of sorts can

be calculated and represented as a matrix as in Table 5:

Table 5

Pair-wise Edit Distances Among Four Sorts.

 J K L M

J 0 1 1 2

K 1 0 3 4

L 1 3 0 2

M 2 4 2 0

Note. Matrix of pair-wise edit distances among four sorts.

These distances and relationships can also be represented as a topological graph

as shown in Figure 5:

Figure 5. Example topological graph of a collection of four sorts with the edit distances
between each pair of sorts displayed.

Each vertex in the graph represents one of the sorts within the collection, and each

line (or edge) connecting a pair of vertices represents the edit distance (or weight)

between those two sorts. A path through a topological graph along the edges that passes

through all of the vertices exactly once is called a spanning tree. Note that not all of the

74

edges are included in any one spanning tree. For example, one spanning tree for the

above example is J -> L -> M -> K as denoted by the heavier edge lines in the left hand

graph in Figure 6. The length of this path is the sum of the edge weights included in the

path: 1 + 2 + 4 = 7. Among possible spanning trees for a graph, the minimum spanning

tree is the one with the shortest distance. In the example in the right hand graph in Figure

6, the minimum spanning tree is: K -> J - > L -> M with a length of 1 + 1 + 2 = 4.

Figure 6. Illustration of minimum spanning tree.

The orthogonality measure of a collection of sorts is calculated as the sum of the

weights of the minimum spanning tree divided by the total number of vertices in the

graph (Fossum & Haller, 2005). This measure is also known as the normalized minimum

spanning tree, or NMST. The need for this normalization is demonstrated by the

following example. Consider the graphs in Figure 7 of two different collections where the

minimum spanning tree of each is indicated with heavy lines for the edges. The length of

the minimum spanning tree for both graphs is the same: 6. However, the graph on the

right contains five sorts which exactly match each other structurally (edit distance = 0)

and one sort at a large edit distance from the other sorts in the collection. In the graph on

the left, all of the sorts are similar, but clearly differentiated from one another. That is, in

75

the graph on the left the sorts are more orthogonal than those in the graph on the right.

This distinction is reflected in the NMST values of the two graphs: 1.5 versus 1.0

(Fossum & Haller, 2005).

Figure 7. Greater differentiation of sorts represented by NMST measure.

Methods. The orthogonality measure, NMST, is an ordinal scale value; therefore

non-parametric statistical tests are appropriate for its use in analytical methods. However,

since the edit distance value is a ratio scale metric, it is suitable for parametric statistical

tests. Additionally, the edit distance enables quantitative methods of analysis to identify

clusters of sorts which may be embedded within a collection (Deibel et al., 2005; Precht

et al., 2014). The edit distance also can be used to evaluate the proximity of a sort

collection to a probe or exemplar sort (Deibel et al., 2005; Krieter et al., 2016).

Clusters. The edit distance can be used within a collection of sorts to identify

clusters of similar sorts. Deibel et al. (2005) define a d-clique as the set of sorts that are

all within a distance d of each other. For example, the collection shown in Table 5 and

Figure 5 is a d-clique with a distance of 4, since the weight of each edge is less than or

76

equal to 4. Within a clique, the vertex with the shortest total edit distance to all of the

other sorts is the structural exemplar sort (McCauley et al., 2005). In Figure 5, vertex J is

the structural exemplar sort with a total edit distance to the other vertices of 1 + 1 + 2 = 4.

The exemplar sort is the most nearly equidistant sort within a cluster (McCauley et al.,

2005).

Sorts within a cluster will have highly similar structural characteristics. However,

this may not assure that this set of sorts have similar lexical meaning, depending upon the

value of d which is selected for identification of the cluster. This study compared the

lexical data of the sorts within a cluster before accepting the equivalence of the sorts.

This was the reverse of the procedure followed by the McCauley et al. (2005) study

which first performed a qualitative content analysis on the lexical data of all the collected

sorts and then verified the structural similarity of the resulting clusters.

An algorithm for finding cliques of edit distance size d is discussed in Deibel et

al. (2005) as well as in Precht et al. (2014). This study chose to use the Bron-Kerbosch

algorithm for identification of cliques within an edit distance table where all values are d

or less.

Probe proximity. The previous measures and methods allow for comparison

among the sorts collected from the respondents of an open sorting activity. However, a

researcher may have interest in comparing a collection of sorts against a particular sort

criterion. The researcher may introduce this criterion as a probe, either as a hypothetical

sort, or by identifying one sort as an exemplar (Deibel et al., 2005). The proximity of

various clusters or collections to this probe sort allows for the collected data to be

compared to the referenced criterion. The proximity measure can be taken as either the

77

mean of the set of edit distances between the probe sort and each of the sorts within the

collection or as the smallest edit distance between the collection and the probe. This later

technique can be graphically expressed as a box plot, suggested by Krieter et al. (2016),

and represented in Figure 8 where the open sorts of novices and faculty are compared to a

probe sort representing a hypothetical, cognitively complex categorization. In this

example, the box plots clearly indicate that the sorts of the faculty have greater proximity

to the probe sort, that is, are closer to an edit distance of zero, than are the sorts produced

by novice students.

Figure 8. Box plot of sort proximity to a probe. The proximity, expressed as edit distance
on the horizontal scale, of open sorts of novices and faculty to a probe sort representing a
hypothetical, cognitively complex categorization.

Tools. SPSS was used for statistical analyses. Node.js applications were written

by the researcher to implement the data collection procedures. Publicly available Node.js

implementations of graph theory algorithms were used for derivation of edit distances,

minimum spanning trees, and d-cliques. Example sort collections provided in Fossum

and Haller (2005) were used to validate the accuracy of the edit distance and

orthogonality implementations.

78

Summary

Computational thinking is becoming a learning objective at all levels of the

educational system. However, developing learners’ computational thinking requires more

than growing individuals’ accumulations of facts pertinent to programming. Instead,

computational thinking is a skill developed over time through practice. Therefore,

progression of learners’ computational thinking abilities should be assessed against a

baseline of expected indicators of skill acquisition over a period of practice time.

However, no such baseline of development has been previously defined and researched

for the learning objective of computational thinking.

Prior studies in the fields of physics, biology, chemistry, and computer science in

post-secondary education have demonstrated significant differences in the cognitive

representations of learners at the extremes of the skill acquisition scale: novices versus

experts. These differences have been taken as proxy indicators of skill development in the

experts. This study proposes a theoretical framework combining the personal construct

theory of Kelly (1955) with the Dreyfus model of skill acquisition (1987; 1980) to

explain these differences as cognitive changes in an individual’s organization and

processing of skill knowledge which affect their recognition of and responses to stimuli

resulting from experience gained through repeated practice of the skill. This theoretical

framework is able to describe the intervening levels of computational thinking skill

acquisition which may be observed in computer science students as they progress through

their degree programs.

Therefore, by eliciting data from individuals regarding their current methods of

organizing and processing skill related knowledge, an assessment may be drawn

79

regarding the progress of their development of skill competency. Repeated single-

criterion card sorting activities effectively visualize individuals’ cognitive processes for

selecting criteria that both aggregate and differentiate among conceptual terms.

Furthermore, objective, quantitative measures have been validated for the analysis of data

collected from card sort instruments. The premise of this study is that card sorting

activities offer a credible, valid, and objective means to quantitatively assess students’

development of computational thinking skill.

Therefore, this study proposed to utilize a card sorting instrument from earlier

research of higher education computer science students along with subsequently

developed and validated quantitative data analysis methods to establish a baseline of

structural exemplar sorts as potential markers of student development of programming

related knowledge as proxies for measures of computational thinking ability relative to

experience gained by practicing the skill. An investigative survey was conducted in the

Spring semester of 2019 to administer a questionnaire and card sort activity to

undergraduate students enrolled in computer science courses at the University. The data

was analyzed to address the research questions suggested by the application of the

theoretical framework to this data collection method.

A baseline of indicators of cognitive development of computational thinking

ability resulting from this study can serve as an additional basis for formative

assessments of student progress toward this learning objective. These assessments will

enable adaptive instructional strategies for the benefit of students and continuous

improvement of the curriculum for the benefit of the institution. Most importantly, results

80

of this study can direct future discussion and research into the evaluation of the benefits

claimed for computational thinking.

81

CHAPTER IV

Results

Introduction

Card sorting activities have previously been used to assess the development of

conceptual representations related to field-specific problem-solving skills in higher

education students (Bissonnette, et al., 2017; Irby, et al., 2016; Krieter et al., 2016;

McCauley et al., 2005). Historically, the data elicited through card sorting instruments

did not lend itself to quantitative methods for analysis (Sanders, et al., 2005). That began

to change in 2005 with Deibel et al.’s definition of the edit distance metric for

comparison between pairs of card sorts. This new measure allowed the different studies

cited above to employ a variety of quantitative methods, based on edit distances, to

compare and contrast differences among the card sorts of independent samples of

participants. This current study combines a number of these methods to analyze the

collected data and answer its research questions.

Research Questions

The following research questions were addressed in this study:

1. Is there a relationship between categories of coursework achievement

(Introductory, Mid-Program, Completing) and categories (High, Low, or

Zero) of card sort orthogonality?

2. How many reliable and interpretable structural exemplar sorts are derivable

from the collections of sorts produced by those participants most likely to

have attained the desired level of programing skill?

82

3. Is there a statistically significant difference among the categories of computer

science students’ progression through milestones of coursework attainment

(Introductory, Completing, and Mid-program) on the dependent variable, the

edit distance between the card sorts to the exemplar sorts?

4. Is there a statistically significant difference among the categories of computer

science students’ programming experience (Light, Moderate, Extensive) on

the dependent variable, the edit distance between the card sorts to the

exemplar sorts?

Null Hypotheses

H01: There is no statistically significant relationship between categories of

coursework achievement (Introductory, Mid-Program, Completing) and

categories (High, Low, or Zero) of card sort orthogonality.

H02: No reliable and interpretable structural exemplar sorts are derivable from the

collections of sorts produced by those participants most likely to have attained

the desired level of programing skill.

H03: There are no statistically significant differences among the categories of

computer science students’ progression through milestones of coursework

attainment (Introductory, Completing, and Mid-program) on the dependent

variable, the edit distance between the card sorts to the exemplar sorts.

H04: There are no statistically significant differences among the categories of

computer science students’ programming experience (Light, Moderate,

Extensive) on the dependent variable, the edit distance between the card sorts

to the exemplar sorts.

83

Data Collection Results

Data collection occurred during the Spring 2019 semester. In February, a majority

of computer science students were solicited for participation in the study by the

instructors of the courses listed in Table 1 (see Chapter 3). Following approval from the

IRB (see Appendix O), in April a second solicitation sought participation from the

students in all sections of the introductory computer science course, COSC 1436. All

instructors were encouraged to award extra credit as an incentive for students to

participate in the study activities but their decision was not reported back to the study.

Data collection from the initial solicitation was conducted from February 20th

through March 25th. Course instructors collected 109 signed forms for both informed

consent and an equal number of forms for FERPA consent for release of academic

records. During this collection period, a total of 84 students entered the online study

website and completed the registration process and the survey instrument. Of these 84

participants, 75 also submitted one or more card sorts. Two participants subsequently

withdrew from the study, resulting in usable surveys from 82 students and 195 card sorts

from 74 students.

Data collection from the solicitation of students in the introductory computer

science course, COSC 1436, was conducted from April 22nd through May 1st of 2019.

Instructors for the course collected signed forms of informed consent from 64 students.

Since this course is typically the first and only course of record in computer science for

students enrolled in COSC 1436, there was no intent to collect their academic records,

and so no forms for FERPA consent for release of academic records were distributed to

nor collected from these students. During this second collection period, a total of 53

84

students entered the online study website and completed the registration process and the

survey instrument. One or more card sorts were contributed from 50 of these participants,

resulting in an additional 101 card sorts.

For this study, the objective was to collect data from three sources: a self-

administered online survey, a self-administered online card sort activity, and official

academic records provided by the Registrar’s office. In total, the data collection for this

study gathered usable surveys from 135 participants, with 124 of these providing 296

card sorts. Academic records were requested for 108 students enrolled in computer

science courses beyond COSC 1436.

Data Derivations and Transformations

The online study website stored and formatted data as submitted by the

participants in a manner designed for processing efficiency and accuracy. However, in

order to analyze the results, it was necessary to both transform the structure of the

collected data and to derive several additional measures from the data. This section

details the procedures involved in these processes.

Participant Anonymization. In order to correctly associate each participant with

their submitted data, the online system captured and authenticated the school email

address of each participant every time they entered the website. In order to provide

anonymity of the participants during data analysis, each student email address was

assigned to a unique, randomly generated participant identifier during the initial online

study registration process. All subsequent data collected online was coded with this

participant identifier. Student email addresses were omitted from all data extractions,

with only the participant identifier used to differentiate the submissions among

85

participants. Similarly, for each participant who consented to the release of their

academic records, their email address was associated with a randomly generated

academic identifier which was used by the Registrar’s office to report the academic

records to the study. Once these records were received by the study, they were recoded

from the academic identifier to the participant identifier through their known association

with the student email address.

Demographic categorizations. A procedural batch processing program was

written in Node.js to reformat the survey data into a form more conducive for review and

analysis. The results of this process were stored in a new table called participantTags.

Each column in this table corresponds to a survey question. Since some of the online

survey questions allowed for an open response, the transformation program assigned the

most similar and frequent responses to a fixed categorical value. Ethnicity for example,

included open responses such as: Asian, Asian-American, and South Asian. These were

categorized as Asian in the participantTags table. Appendix H details the transformations

that were performed on each survey field.

Other categorizations. Several other participant characteristics were categorized

by ranking results obtained from survey responses, academic records, and card sort

contributions. The survey asked for binary responses to twelve types of possible

instruction in computer programming outside of SHSU coursework. A score for Prior

Instruction was calculated by counting all true responses to these twelve questions. This

score was then ranked against those of all participants. Two breakpoints were then

identified which divided the rank list into three nearly equal-sized groups. Participants in

the group with the lowest total scores were categorized as Light. Participants in the group

86

with the highest total scores were categorized as Extensive, and the remaining

participants were categorized as Moderate.

The survey also asked for Likert style responses to four types of purposeful

programming experience outside of SHSU coursework and scored on a scale from zero to

four. Different weights were assigned for each question. A score for Purposeful

Experience was calculated by multiplying the score for each question by the weight of

that question, and then summing the results of each of these questions together. This

score was then ranked against those of all participants. Two breakpoints were then

identified which divided the rank list into three nearly equal-sized groups. Participants in

the group with the lowest total scores were categorized as Light. Participants in the group

with the highest total scores were categorized as Extensive, and the remaining

participants were categorized as Moderate.

From the academic records, a cumulative grade point average (GPA) was

calculated for all courses taken by the participant offered by the Department of Computer

Science. This cumulative GPA was then ranked against those of all non-Introductory

participants. Two breakpoints were then identified which divided the rank list into three

nearly equal-sized groups. Participants in the group with the lowest cumulative GPA

were categorized as Bottom. Participants in the group with the highest cumulative GPA

were categorized as Top, and the remaining participants, including those introductory

students in COSC 1436 were categorized as Average.

Also from the academic records, participants were assigned to one of five levels

of coursework achievement: COSC 1436 denotes level A; either COSC 1437, COSC

2327, or DFSC 1316 is level B; either COSC 2329, COSC 3318, or COSC 3327 is level

87

C, and level D is denoted by a grade of D or better in either COSC 3319, COSC 4318, or

COSC 4319. Level E is attainment of Level D along with more than 28 hours of COSC or

DFSC courses and a grade point average of 2.0 or better for all COSC and DFSC

coursework. These milestones were then categorized into three tiers: Introductory for

Level A students; Mid-program for Levels B and C; and Completing for Levels D and E.

As described below, participants who contributed more than one card sort had a

measure of orthogonality calculated for them. Participants who submitted only a single

card sort were assigned an orthogonality measure of zero. This orthogonality value was

then ranked against those of all participants who contributed card sorts. Two breakpoints

were then identified which divided the rank list into three groups. Since 45% of cases

were single-sorts, the lowest breakpoint was set just above an orthogonality measure

Normalized Minimum Spanning Tree (NMST) of zero to create the Zero category. The

second breakpoint was set after an NMST value of 7.0 which placed nearly equal

percentages (27% and 28% respectively) of the frequency counts for the range of non-

zero NMST values between 2 and the maximum of 11.4 for the remaining participants in

the Low and High categories.

Derivation of edit distance between card sorts. This study chose to analyze

collected card sort data by using two derived measures: the edit distance between pairs of

sorts, and the orthogonality of a collection of sorts. The edit distance measure is defined

by Deibel et al. (2005) as the number of items in one card sort which have to be moved

between groups in order to exactly replicate the other card sort. Deibel et al. (2005)

described the calculation of edit distance by utilizing an algorithm from bipartite graph

theory known as the Hungarian, or Munkres algorithm for solving the Assignment

88

Problem. For this study, a procedural batch processing program was written that used a

publicly available implementation of the Munkres algorithm for Node.js. The validity of

this derivation procedure was verified using example card sorts and results published in

Fossum and Haller (2005). For this study, the edit distance was calculated between each

pair of the 296 submitted sorts. The result for each pair was stored in a table called

editDistance. For the 296 sorts, this resulted in 43,660 unique edit distance pairs [(2962 –

296) / 2]. See Appendix K for a listing of the program code, and the program execution.

Orthogonality among card sorts. The measure of orthogonality of a collection

of sorts (NMST) is an indication of the degree of variance among the sorts. A low value

indicates higher similarity while a high value denotes greater differentiation. An NMST

value was derived for each participant and then ranked against those of the other

participants as previously described.

Calculation of orthogonality requires the availability of edit distances between

each pair of sorts in the collection to define a weighted, undirected graph where weights

between graph vertices are the edit distances between the sorts represented by the

vertices. Card sort orthogonality is defined by Fossum and Haller (2005) and is based on

the concept of the minimum spanning tree in graph theory. Orthogonality is calculated as

the length of a sort collection’s minimum spanning tree divided by the total number of

sorts in the collection (Fossum & Haller, 2005). For this study, a procedural batch

processing program was written to use a publicly available Node.js implementation of the

Eager Prim algorithm for determination of the minimum spanning tree of a weighted,

undirected graph. The validity of this derivation procedure was verified using example

card sorts and results published in Fossum and Haller (2005). Orthogonality results were

89

derived both for manually selected collections of sorts as well as for all of the sorts

contributed by individual participants. An initial version of the orthogonality program

derived the orthogonality measure for every participant who contributed one or more

sorts and stored the results in a table called participantStats. This table also captured the

total number of sorts in the collection, the identifier of each sort in the collection, the edit

distances among each pair of these sorts, the path of the minimum spanning tree and its

total length, and the mean, standard deviation, and range of the edit distances for the

collection. A second version of the orthogonality program derived the same table data for

researcher selected collections involving sorts from multiple participants and stored the

results in a table called collectionStats. See Appendix L for a listing of the program code,

and execution for each individual participant.

For participant-based analyses, the participantTags and participantStats tables are

joined together in an SQL view to provide a dataset containing data collected from both

survey and card sort instruments for every participant. This dataset was extracted from

the database into an Excel spreadsheet (using a data connection), and then imported into

SPSS and saved as a .sav file. See Appendix I for a listing of the SPSS variable data

definition of the .sav file.

Descriptive participant statistics. SPSS version 25 (IBM Corp, 2017) was used

for analysis of datasets. Descriptive statistics and frequency counts on participant gender,

ethnicity, age, classification level, coursework milestone achievement level and category,

intended major, prior instruction, purposeful experience, grade point average and GPA

category, sort count, sort orthogonality, and self-assessments of experience with

completion of programming assignments and competence as a programmer were

90

generated for the 135 participants. See Appendix J for the detailed frequency counts and

statistics. The demographics of this sample were 23.7% female and 1.5% identifying as

non-binary; 16.3% Asian, 17% Black, 20% Hispanic, 41.5% White and 5.2% categorized

as other; ages ranged from 19 to 53 with 80% younger than 26. In terms of institutional

classification level, 14.8% self-reported as Freshmen, 21.5% as Sophomores, 22.2% as

Juniors, and 41.5% as Seniors; while based upon coursework milestone categorization as

described above, 38.5% were considered Introductory level students, 23% were at the

Completing level, with the remaining 38.5% classified as Mid-program.

In terms of the five milestone levels, 20% were at Level E, 28.1% were at Level

C, 10.4% were at Level B, and 3% had attained Level D but lacked either the hours or the

GPA requirements to be classified as Level E. Computer Science majors accounted for

45.9% of the participants, Software Engineering Technology were 16.3%, Digital

Forensics were 6.7%, with 28.9% majoring in programs in Department of Technology

Engineering, mostly Electronics and Computer Engineering Technology (ECET).

Participants were classified in the bottom third, Light, for prior instruction if they

reported less than two non-SHSU training examples, and in the top third, Extensive, with

more than three examples. Participants were classified in the top third, Extensive, for

purposeful experience if their responses scored above 3.4 and in the bottom third, Light,

if they reported no purposeful experiences.

Card sorts were submitted by 124 of the participants with 45.2% contributing only

a single sort and 28.2% responding to the online prompts to contribute at least four sorts.

Two participants produced 6 and 8 sorts respectively. The sort orthogonality of the top

91

third of respondents measured 7.0 or above, while the bottom third contributed only a

single sort (an implicit orthogonality of zero).

The majority of participants (60%) reported that they struggled to complete

programming assignments for their coursework with 41.5% requiring more than three

hours per assignment, 14.1% having to seek help in order to complete their code, and

4.4% admitting that they just don’t get it when it comes to programming. A third of

participants (34.1%) reported that they typically completed assignments in less than three

hours, and the remaining 5.9% reported that they could complete their programming

assignments in less than two hours. When asked to self-assess their programming

competency, 5.2% consider themselves to be really good and often sought out by others

for help; 16.3% reported that they enjoy programming and experience few problems;

37% feel confident in their ability to complete their programming assignments; 34.8%

consider themselves to be beginner programmers; and 6.7% admit that they just can’t

code.

RQ1 - Analysis of Relationship between Orthogonality and Categories of

Achievement

To address the first research question, card sort results were cross-tabulated by

categories of coursework achievement (Introductory, Mid-program, and Completing) and

categories of participant NMST values. NMST values were categorized according to the

distribution of frequency counts. Since 45 percent of the 124 participants who completed

the card sort activity contributed only a single card sort, and therefore had an NMST

value of zero, these single sort cases were labeled as the Zero category. The NMST

values for the remaining participants were categorized as either Low or High in a manner

92

to place nearly equal percentages of frequency counts (27% and 28% respectively) in

each category. The Low category thus contained NMST values ranging from 2.0 to 7.0,

while the High category ranged from 7.19 to 11.4. A bar chart of the frequency counts

from the cross tabulation is shown in Figure 9. Further details of the statistical analysis

for this question may be found in Appendix C.

Figure 9. Bar chart of frequency counts from cross-tabulation of card sorts by
coursework achievement category and category of orthogonality.

Examination of the counts and percentages indicated that the frequency of zero

NMST values, representing single sort submissions, decreased as students progressed in

their coursework, with 60% of Introductory students submitting single sorts, while 37.8%

of Mid-program students, and 31% of Completing students submitted single sorts.

Comparable numbers of participants submitted multiple card sorts among the three

categories of students: 20 each for Introductory and Completing students and 28 for Mid-

program students. NMST values were calculated for these participants and categorized as

93

either high or low. Mid program students had an equal percentage of high and low NMST

values (31.1%). High NMST values, denoting greater differentiation among submitted

card sorts, outnumbered low NMST values among the Introductory students (24% vs

16%), while Completing students had fewer high than low NMST values (31% high vs

37.9% low).

A chi-square was calculated to determine the statistical relationship between

categories of coursework achievement (Introductory, Mid-program, and Completing) and

categories of card sort orthogonality (Zero, Low, High). All cells of the cross-tabulation

had frequency counts of five or more. There was no statistically significant relationship

(X2(4) = 8.65, p > .05) found between categories of coursework achievement and

categories of card sort orthogonality. The effect size determined by Cramer’s V was .19

indicating that a small association was found between student’s orthogonality of their

card sorts and whether the student was at the Introductory, Mid-program, or Completing

milestone in their computer science coursework.

Summary of findings for research question 1. A statistical analysis of the

relationship between computer science students’ categories of coursework achievement

and the orthogonality of their card sorts was conducted with a bivariate chi-square. No

statistically significant evidence was found to reject the null hypothesis. The observed

trend for this study was that a greater percentage of Introductory students sorts had high

(24%) as opposed to low (16%) orthogonality values, while Completing students had a

greater percentage of low (38%) to high (31%) orthogonality values. These results appear

contrary to the findings of Fossum and Haller’s (2005) comparison of NMST values

94

between introductory and senior computer science students in the datasets from Sanders

et al. (2005) and McCauley et al. (2005).

RQ 2 - Identification of Card Sorts that Exemplify the Desired Level of Conceptual

Development

Bissonnette et al. (2017) and Krieter et al. (2016) previously concluded that card

sorts produced by students in the early stages of developing field specific problem-

solving skills (e.g., for biology and chemistry, respectively) typically use surface factor

sorting criteria, while those of faculty and graduate students typically use conceptual

deep factor criteria. In card sort studies of computer science students, McCauley et al.

(2005) performed a qualitative content analysis of 291 card sorts for 65 graduating

seniors and classified the sorts into 16 Content Analysis Groups (CAGs), based upon the

participants’ descriptions of sorting criteria and category label. They calculated the

orthogonality of the sorts within each of these CAGs and demonstrated that CAGs

organized around a coherent theme were composed of similarly structured sorts which

were confirmed by low NMST values. In essence, a quantitative procedure was

performed to validate a qualitative analysis. This current study elected to follow a

suggestion by Fossum and Haller (2005) to reverse the order of these procedures and first

perform a quantitative clique analysis to identify groups of structurally similar sorts for

subsequent content analysis.

The objective for research question 2 was to identify from the 296 submitted card

sorts, a few structural exemplar sorts that represent deep factor conceptualizations of

those participants most likely to have attained the desired level of programming skill. A

95

multiple step process was required to achieve this objective. This process is illustrated in

Figure 10.

Figure 10. Illustration of multiple step process used to identify exemplar sorts of deep
factor categorization for research question 2.

Process. As described in Chapter 3, participants were solicited from varied cross-

sections of the population of students studying computer science at the University. These

participants each completed a questionnaire that collected data such as their university

classification level, intended major, and self-assessments of their ability to complete

programming assignments and their overall competency as a programmer. These data

were collected to provide a basis for partitioning the participants into cross-sections for

comparison and analysis. An interactive tool was developed to allow the researcher to

select participants according to these characteristics, as shown in Figure 11. Each

96

selection of participants defined a specific cross-section, which was referred to as a

collection and identified with a unique collection number. The study database tables

could then be queried to extract the statistics and card sorts for participants belonging to a

specific collection by the collection number.

Figure 11. Participant characteristics for collection 13.

Fourteen collections in all (see complete list in Appendix N) were selected and

investigated with an objective of identifying one collection presumed to represent the

cross-section of participants most likely to have attained the desired level of

programming skill, and another collection representing the cross-section least likely to

have attained the desired skill level. The following collections were considered:

- Collection 3: Students classified by the University, as freshmen and

sophomore in the Introductory course (55 sorts from 32 participants).

- Collection 6: Students classified by the University, as juniors and seniors who

self-reported as normally completing programming assignments in three hours

or less, with a GPA in the Average and Top categories (77 sorts from 27

participants).

- Collection 11: Students classified as seniors with a GPA in the Top (71 sorts

from 20 participants). This collection includes participants who may have

97

self-reported having greater difficulty in completing programming

assignments or having a lack of confidence in their programming abilities.

- Collection 13: Students classified as juniors and seniors who self-reported as

normally completing programming assignments in three hours or less, and

who are also self-confident in their programming abilities (76 sorts from 29

participants).

Collection 3, consisting of first- and second-year students in the Introductory

course, was presumed to represent the cross-section least likely to have attained the

desired skill level. Collections 6, 11, and 13 were potentially representative of the group

most likely to have attained the desired level of programming skill. A cross-reference was

constructed to show which of the 296 total submitted sorts had membership in these three

collections. This activity identified sort sensitivity to the various selection characteristics

of the collections. Additionally, the interactive tool shown in Figure 11 also provided the

ability to visually recreate sorts within a collection. Using this ability, sorts that appeared

in the cross-reference across more than one of the three collections (6, 11, or 13) were

then visually recreated, as shown in Figure 12, and evaluated for their lexical content.

This yielded approximately two dozen card sorts that were identified as potentially

representative of participants’ attainment of the desired level of programming skill.

Although each of the collections contained some of these card sorts, the majority of them

could be found within collection 13. Therefore, collection 13 was presumed to be the

cross-section representative of participants most likely to have attained the desired skill

level.

98

Figure 12. Display of sort Id 4 from collection 13.

The next step in the process of identifying exemplar sorts that represent deep

factor conceptualizations was to categorize the sorts of the most-likely cross-section,

collection 13, into coherent themes. Rather than perform a qualitative content analysis of

the participant supplied sort criterion and group labels for all 76 card sorts in the

collection, a quantitative data mining technique for identify cliques within a community

of data points was utilized. Themes for each clique were then derived using the ability of

the tool shown in Figure 11 to display the card sorts within each clique.

The analysis of cliques in data mining derives from graph theory. A clique is a

subset within a community of vertices in which all members of the clique have weighted

edges to all the other members of the clique (i.e., the graph is complete) and all of these

edges are less than or equal to a specified length, d (Deibel et al., 2005; Johnston, 1976).

Cliques occur as a result of variances in the distribution of edit distances among the card

sorts. Selection of the d value is obviously a significant factor in the identification and

meaningfulness of cliques. Cliques with a d value of zero contain card sorts that are

structurally identical, i.e., where all elements have been grouped together in an identical

99

number of groups. Increasing the d value permits more card sorts to be associated with

the clique, with the consequence that the sorts of the clique overall become more

dissimilar (i.e., the NMST value of the clique increases). Eventually the d value reaches a

point where the conceptual theme that represents the clique is too broad to be meaningful.

Therefore, the researcher should evaluate cliques within a considered range of d values

(Deibel et al., 2005).

This current study followed an iterative approach in searching for cliques within a

specified range of d values. For each collection of participants, statistics were calculated

for the range of edit distances among all sorts in the collection, and the mean and

standard deviation of these edit distances. For the clique analysis of that collection, a

lower d-value was then set equal to the bottom of the range of edit distances in the

collection. The upper d-value was set as the lesser of the value eight, or the mean edit

distance less one standard deviation. Restricting the upper d-value to the mean less one

standard deviation limits the number of eligible sort pair edges in a collection to a

maximum of 16%, thereby promoting cliques that are more cohesive and distinct within

the community. Likewise, imposing a maximum upper value of eight was selected as that

edit distance represents one third of the theoretical maximum distance between two card

sorts of 26 items, so any greater edit distances are increasingly indicative of too great a

dissimilarity.

A Node.js program was written to identify cliques within a collection by iterating

within this specified range to remove all edges of length > d from the edit distance table

of sorts within the selected collection (Deibel et al., 2005). Each iteration resulted in a

graph where not all vertices have an edge to all other sorts (i.e., an incomplete graph). A

100

publicly available implementation of the Bron-Kerbosch algorithm from graph theory

was then utilized to identify all cliques within this remaining graph (Johnston, 1976). The

identified cliques were recorded in a database table along with the current d-value, the list

of member sorts, the edges among the sorts, the minimum spanning tree path, and the

NMST value for the clique. The interactive tool shown in Figure 11 displayed the

analysis results for a collection, as shown in Figure 13.

Figure 13. Clique analysis results for collection 13 showing d values of 7 and 8.

Cliques within collection 13 were examined to understand which cliques at

smaller d sizes gained additional sorts as the d size of the analysis was increased. This

process highlighted the significance of several cliques at the largest d size. Based upon a

content comparison of the sorts contained within these cliques, cohesive themes for the

categorization represented by the cliques were identified. These themes aligned with

categories of sorts, such as CAGs, identified in earlier card sort studies of computer

science students (Deibel et al., 2005; McCauley et al., 2005). Examples included What I

know / Don’t know (sorts 6, 58, 130, 194, 206), Concrete / Abstract (sorts 139, 201), and

Types of Programming Terms (sorts 4, 15, 21, 51, and 74).

For each clique theme, a procedure defined by Deibel et al. (2005) was followed

to identify the single sort within the clique that is most equidistant to all other sorts in the

clique (see Appendix M). This designates the structural exemplar for that clique. Each

exemplar represented a potential deep factor categorization and provided a suitable basis

101

for comparing the similarity of participant card sorts against that deep factor. At the

conclusion of the above process, eight structural exemplars from collection 13 were

identified: sorts 6, 15, 21, 84, 85, 185, 193, and 201.

These eight structural exemplars characterize the range of sorts frequently

submitted by participants selected in collection 13, the juniors and seniors most

comfortable with their programming skills. The next step was to determine whether these

sorts adequately differentiate between the submissions of participants representing the

highest concentration of students with the desired level of conceptual development for

programming (collection 13) from the submissions of students representing the least

likely to have attained the desired level of conceptual development (collection 3:

freshmen and sophomores in the introductory course). This evaluation was performed by

calculating edit distances between the card sorts of participants in collections 3 and 13,

and for each participant, recording the shortest edit distance, i.e., the proximity, to each of

the eight structural exemplar sorts. Also recorded was whether the participant is a

member of the desired collection 13 group. Note that a lower proximity value indicates

that participant’s sort is more similar to the exemplar, while a higher proximity value

indicates less similarity to the exemplar.

Analysis. Proximities to these eight identified exemplars were initially tested as

indicators of significant difference between participants in collection 3 versus collection

13 using independent samples t-tests. An examination of the proximity values in

preparation for conducting the t-tests identified three outliers for proximity to exemplar 6.

These cases were removed from the analysis.

102

Data values within the groups for each t-test were checked for normal distribution

and homogeneity of variance. Kolmogorov-Smirnov statistics and z-scores for skewness

and kurtosis were calculated to evaluate the frequency distributions. Z-scores for all of

the groups fell within the range of +/- 3. Groups from collection 13 had Kolmogorov-

Smirnov significance values above .05 indicative of normal distribution, while the

collection 3 groups had values below .05. However, the collection 3 group sizes each

exceeded 20. Based on the z-scores and group sizes, normal distribution of the proximity

values was assumed for both groups.

Levene statistics were calculated for the proximities to each exemplar to evaluate

homogeneity of variance. Equal variances were found for the proximities to exemplars

84, 85, 185 and 201. Unequal variances were found for the proximities to exemplars 6,

15, 21, 193. Results of the t-tests were interpreted accordingly (Cohen, Manion, &

Morrison, 2011).

Statistically significant differences between participants in collection 3 and

collection 13 (see Appendix D) were found for the mean proximities to exemplars 6

[t(28.2) = 3.09, p = .004], 21 [t(31.1) = 2.47, p = .019], 185 [t(53) = 2.29, p = .026], and

201 [t(53) = 2.23, p = .03] respectively. Proximities to exemplars 15, 84, 85, and 193 in

collections 3 and 13 were not found to be statistically significantly different (p > .05).

Therefore, those exemplars were removed from further consideration as differentiators.

To determine which of the independent variables (proximities to exemplars: 6, 21,

185, and 201) are reliable predictors of computer science students’ attainment of student

outcome 2 (least likely, most likely) based upon level of development of conceptual

representations of programming concepts, forward binary logistic regression was

103

performed. Data screening led to the elimination of 4 cases of multivariant outliers.

Predictors were tested in groups of 3 in order to keep the ratio of cases to predictors

above 15: 1 (Pallant, 2001). Regression results (see Appendix D) indicated that the

overall model of two predictors (proximity to exemplar 6 and proximity to exemplar 21)

was statistically reliable in distinguishing between sorts submitted by members of

collection 13 (most likely to have attained the desired skill level) and members of

collection 3 (least likely to have attained the desired skill level) [-2 Log likelihood =

51.76, X2(2) = 19.63, p < .001]. The model correctly classified 15 of 23 (65.2%) as being

members in collection 13, and correctly classified 73.1 % of cases overall. Regression

coefficients are presented in Table 6.

Wald statistics indicate that the proximity of a student’s sorts to both exemplar 6

and exemplar 21 significantly predicted their level of attainment of the desired level of

programming skill. The odds ratios for these two variables indicate a decrease in the

likelihood of having attained the learning objective as the proximity value to either of

these exemplars increases. Stated conversely, a closer proximity to the exemplars

increases the likelihood of a student demonstrating a level of conceptual development

representative of having attained the desired level of programming skill for student

outcome 2.

Table 6

Logistic Regression Coefficients for Proximity to Exemplars 6 and 21

 B Wald df p Odds Ratio

Exemplar 21 -.358 6.57 1 .010 .699

Exemplar 6 -.328 8.40 1 .004 .720

Constant 9.259 9.89 1 .002

104

Summary of findings for research question 2. The objective for research

question 2 was to identify structural exemplar sorts that best represent the deep factor

conceptualizations of those participants most likely to have attained the desired level of

programming skill. The card sorts of participants considered to be most likely to have

attained deep factor conceptualizations were quantitatively analyzed to identify cliques of

highly similar sorts. Based upon a content comparison of contained sorts, cliques were

selected that best represented a cohesive criterion for categorization and which aligned

with previously identified categories of sorts, such as Content Analysis Groups

(McCauley et al., 2005). Selected cliques were then mathematically reduced to structural

exemplar sorts (Deibel et al., 2005). Using standard statistical analysis procedures, the

measures of participants’ sorts proximity to the exemplar sorts 6, 21, 185, and 201 were

found to yield statistically significant differences between the groups of participants

considered the least, and the most likely to have attained the desired level of

programming skill. Two of these measures, proximities to exemplar 6 and to exemplar

21, were found to be reliable predictors of participants’ membership in the most likely

group.

While quantitative means and measures were utilized to identify these structural

exemplars, it is worth examining the qualitative considerations represented by these four

submitted card sorts before addressing the subsequent research questions. These

exemplars are relatable to the CAGs categorized by McCauley et al. (2005). Using the

ability of the interactive analysis tool mentioned above, each sort has been visually

recreated as shown below.

105

Figure 14. Exemplar 6, representing the Know / Don't Know criterion.

Exemplar sort 6 (Figure 14) is of the CAG category What I know / Don’t know.

Examples of this criterion were widely found among the submissions of participants in

this study. However, the grouping of elements between the two categories was observed

to differ significantly between the introductory students, and the completing students.

Therefore, Exemplar 6 serves as an example of the fewer number of programming terms

which should remain in the unknown group upon completion of coursework for a

computer science degree. Introductory students may be expected to have many more

elements in the unknown group and thus to have a higher edit distance from this

exemplar.

106

Figure 15. Exemplar 201, from the Concrete / Abstract CAG.

Exemplar 201 (Figure 15) is an example of the Concrete / Abstract CAG.

Although it is dichotomous like exemplar 6, this criterion is based on a deeper conceptual

representation which might be expected to develop later in students’ coursework. Close

proximity values to this exemplar seem to represent this more conceptual, or deep factor

dichotomy.

Exemplars 21 and 185 are both examples of the Types of Programming Terms

CAG. Students using this criterion group terms together based upon their conceptual

representations of fundamental programming concepts. The better developed the

representations, the more differentiated the groups will be. Examples of this criterion

were submitted by many participants, using widely varying numbers of groups. Exemplar

185 (Figure 16) may represent an intermediate level of conceptualization, where

relationships between terms may be clearer in initial groups, but become less apparent in

subsequent groups.

107

Figure 16. Exemplar 185, an intermediate Types of Programming Terms CAG example.

Exemplar 21 (Figure 17) presents groups that are clearly-defined and express an

elaborate differentiation.

Figure 17. Exemplar 21, an advanced Types of Programming Terms CAG example.

Finally, two zero cliques (d value = 0) were identified in many of the collections,

including both collection 3 and 13. Zero cliques are significant because they consist of

card sorts that are identical. This high degree of similarity among card sorts submitted by

different participants was achievable because these sorts categorized on the basis of

surface factors readily apparent to participants, such as the first letter of each

programming term, and the number of letters in each term. Examples are shown in Figure

18.

108

Figure 18. Surface factor sort grouping alphabetically (top) and by length (bottom).

RQ3 - Analysis of Variances between Proximity to Exemplar Sorts by Coursework

Attainment

Given the four exemplar sorts identified for the previous question, Research

Question 3 examines whether the proximal distance between computer science students’

card sorts and each of these exemplar sorts significantly differs according to participant’s

progression through milestones of coursework attainment (introductory, mid-program,

and completing). A node.js program was written to identify for each participant the

109

shortest edit distance between each exemplar sort (sorts 6, 21, 185, and 201) and every

sort submitted by that participant. This resulted in an edit distance to each of the four

exemplars for each participant. These edit distances were recorded in the participantTags

table, as that participant’s proximity values to the four exemplars. The participantTags

table was then imported into SPSS for an analysis of the variance of mean proximity

values to an exemplar sort in a one-way ANOVA as grouped by the three categories of

coursework attainment. A separate ANOVA was conducted for each exemplar sort and

the details of these analyses are reported in Appendix E.

Initial examination of the proximity values in preparation for conducting the

ANOVAs identified a few outliers that fell below two standard deviations from the group

mean. These data were recoded into new variables to the lowest value within two

standard deviations from the mean. This choice of value preserves recognition of the

participant’s close proximity to the exemplar without further skewing the distribution

(Mertler & Vannatta, 2013).

Data values within the groups for each ANOVA were checked for normal

distribution and homogeneity of variance. Kolmogorov-Smirnov statistics and z-scores

for skewness and kurtosis were calculated to evaluate the frequency distributions. While

the majority of the groups had Kolmogorov-Smirnov significance values lower than .05,

the z-scores for all of the groups fell within the range of +/- 3. Additionally, each group

size exceeded 25. Therefore, normal distribution of the proximity values was assumed for

all groups.

Levene statistics were calculated for the proximities to each exemplar to evaluate

homogeneity of variance. Equal variances were found for the proximities to exemplars

110

185 and 201, and Bonferroni was chosen for post hoc analysis. Unequal variances were

found for the proximities to exemplars 6 and 21, and Dunnett T3 was selected for post

hoc analysis as it has been shown to yield conservative results with unequal variances

with equal or unequal group sizes (Shingala & Rajyaguru, 2015).

Box and whiskers plots of the groups analyzed by each ANOVA are presented in

Figure 19. Note that higher proximity values indicate that a participant’s nearest sort has

low similarity with the exemplar; while lower proximity values indicate the participant

sort is more similar to the exemplar. Examination of the mean proximities for each level

of coursework attainment indicate that proximity to each of the four exemplars generally

decreased, becoming more similar to the exemplar, relative to progressive levels of

coursework attainment (introductory, mid-program, and completing).

Figure 19. Box and whiskers plots of proximities to each exemplar sort by categories of
coursework attainment.

111

One-way ANOVAs were conducted to compare categories of coursework

attainment (Introductory, Mid-program, and Completing) with the proximity of

participant sorts to each of the exemplar sorts. For exemplar sort 6 [F(2,121) = 1.15, p >

.05, ƞ2 = .02], and exemplar sort 201 [F(2,121) =.641, p > .05, ƞ2 = .01], the differences

among the means were not found to be statistically significant.

For sort proximities to exemplar sort 185, a statistically significant difference was

found (F(2,121) = 3.35, p = .038, ƞ2 = .05). The effect size was ƞ2 = .05; a small effect

size (Kirk, 1996) indicating that 5% of the variance of proximities to exemplar sort 185

was explained by a student’s level of coursework attainment. Bonferroni post hoc tests

found a statistically significant difference (p = .038) in the means of completing students

(m = 11.97, sd = 2.37) to introductory students (m = 13.24, sd = 2.04).

A visual comparison of these means is presented in Figure 20. Introductory

student sorts display the furthest proximity from, and the least similarity with, exemplar

185 while Completing student sorts display the nearest proximities and greatest similarity

to the exemplar. The post hoc analysis found that the sorts of Completing computer

science students are statistically significantly more similar to exemplar sort 185 than the

sorts of the Introductory category of participants. While the Mid-program category of

participants display a mean proximity to exemplar sort 185 which is between the means

of the other two categories, participant sorts do not become significantly more similar to

exemplar sort 185 until the Completing category of coursework has been attained.

112

Figure 20. Comparison of group means for proximity to exemplar sort 185.

For sort proximities to exemplar sort 21, a statistically significant difference was

found [F(2,121) = 13.32, p < .001, ƞ2 = .18]. The effect size was ƞ2 = .18; a large effect

size (Kirk, 1996) indicating that 18% of the variance of proximities to exemplar sort 21

was explained by a student’s level of coursework attainment. Post hoc tests using Dunnett

T3 found a statistically significant difference between the means of Completing students

(m = 11.45, sd = 3.37) to Mid-program students (m = 13.58, sd = 2.29) (p = .013), and to

Introductory students (m = 14.46, sd = 2.09) (p < .001).

A visual comparison of these means is presented in Figure 21. Introductory

student sorts display the furthest proximity from, and the least similarity with, exemplar

21 while Completing student sorts display the nearest proximities and greatest similarity

to the exemplar. The post hoc analysis found that the sorts of Completing computer

science students are statistically significantly more similar to exemplar sort 21 than the

sorts of either the Introductory or Mid-program categories of participants.

113

Figure 21. Comparison of group means for proximity to exemplar sort 21.

Summary of findings for research question 3. A statistical analysis of variances

of the proximal distance between computer science students’ card sorts to each of the

exemplar sorts relative to participant’s degree of coursework attainment (introductory,

mid-program, and completing) was conducted using one-way ANOVAs. Statistically

significant evidence was found to reject the null hypothesis in the use of exemplar sorts

21 and 185. Variances in distance between participants’ card sorts to these two exemplars

decreased, indicating a movement toward greater similarity, as students progressed in

their level of coursework attainment from Introductory, to Mid-program, and to

Completing. The direction of this trend in decreasing distance from the exemplars as

coursework progresses appears consistent with the expectation of the theoretical

framework that additional levels of instruction and study should yield indications of more

advanced conceptual representations.

114

RQ 4 - Analysis of Variances Between Proximity to Exemplar Sorts by

Programming Experience

Research Question 4 examines whether the proximal distance between computer

science students’ sorts and each of these exemplar sorts significantly differs according to

participant’s level of purposeful programming experience (light, moderate, and

extensive). Using the proximity values for each participant to each exemplar sort as

calculated for the previous research question, an analysis was made of the variance of

mean proximity values as grouped by the three categories of programming experience to

an exemplar sort using a one-way ANOVA. A separate ANOVA was conducted for each

exemplar sort and the details of these analyses are reported in Appendix F.

Initial examination of the proximity values in preparation for conducting the

ANOVAs identified a few outliers that fell below two standard deviations from the group

mean. These data were recoded in new variables to the lowest value within two standard

deviations from the mean. This choice of value preserves recognition of the participant’s

close proximity to the exemplar without further skewing the distribution (Mertler &

Vannatta, 2013).

Data values within the groups for each ANOVA were checked for normal

distribution and homogeneity of variance. Kolmogorov-Smirnov statistics and z-scores

for skewness and kurtosis were calculated to evaluate the frequency distributions. While

the majority of the groups had Kolmogorov-Smirnov significance values lower than .05,

the z-scores for all of the groups fell within the range of +/- 3. Additionally, each group

size exceeded 35. Therefore, normal distribution of the proximity values was assumed for

all groups.

115

Levene statistics were calculated for the proximities to each exemplar to evaluate

homogeneity of variance. Equal variances were found for the proximities to exemplars 21

and 185, and Bonferroni was chosen for post hoc analysis. Unequal variances were found

for the proximities to exemplars 6 and 201, and Dunnett T3 was selected for post hoc

analysis as it has been shown to yield conservative results with unequal variances with

equal or unequal group sizes (Shingala & Rajyaguru, 2015).

Box and whiskers plots of the groups analyzed by each ANOVA are presented in

Figure 22. Note that higher proximity values indicate that a participant’s nearest sort has

low similarity with the exemplar; while lower proximity values indicate the participant

sort is more similar to the exemplar. Examination of the mean proximities for each level

of programming experience indicate that proximity to each of the four exemplars

generally increased, becoming less similar to the exemplar, between the light and

moderate levels of programming experience. However, as programming experience

increased from moderate to extensive, mean proximity values to exemplars 6 and 201

also decreased to levels nearer that of participants with light experience. For exemplars

21 and 185, mean proximity values of participants with extensive experience continued to

increase relative to both light and moderate categories of experience.

116

Figure 22. Box and whiskers plots of proximities to each exemplar sort by categories of
purposeful programming experience.

One-way ANOVAs were conducted to compare categories of programming

experience (Light, Moderate, and Extensive) with the proximity of participant sorts to

each of the exemplar sorts. For exemplar sort 6 [F(2,121) = 1.78, p > .05, ƞ2 = .03], and

exemplar sort 201 [F(2,121) = 2.06, p > .05, ƞ2 = .03] the differences among the means

were not found to be statistically significant.

For sort proximities to exemplar sort 185, a statistically significant difference was

found [F(2,121) = 3.23, p = .043, ƞ2 = .05]. The effect size was ƞ2 = .05; a small effect

size (Kirk, 1996) indicating that 5% of the variance of proximities to exemplar sort 185

was explained by a participant’s level of coursework attainment. Bonferroni post hoc

tests found a statistically significant difference (p = .039) in the means of students with

117

extensive programming experience (m = 13.33, sd = 2.0) compared to students with light

programming experience (m = 12.16, sd = 2.13).

A visual comparison of these means is presented in Figure 23. Examination of the

mean proximities for each level of purposeful experience indicate that distances to the

exemplar increased, indicating less similarity to the exemplar, relative to progressive

levels of programming experience (light, moderate, and extensive). Post hoc analysis

indicates that participants with light programming experience had sorts significantly more

similar to the exemplar than students with extensive programming experience.

Figure 23. Comparison of group means for proximity to exemplar sort 185.

For sort proximities to exemplar sort 21, a statistically significant difference was

found [F(2,121) = 8.04 p = .001, ƞ2 = .12]. The effect size was ƞ2 = .12; a medium to

large effect size (Kirk, 1996) indicating that 12% of the variance of proximities to

exemplar sort 21 was explained by a student’s level of purposeful programming

experience. Bonferroni post hoc tests found a statistically significant difference (p < .001)

118

in the means of students with extensive programming experience (m = 14.58, sd = 2.13)

compared to students with light programming experience (m = 12.37, sd = 3.12).

A visual comparison of these means is presented in Figure 24. Participants with

light programming experience had sorts with the nearest proximity to the exemplar while

students with extensive programming experience had sorts with the furthest proximities

to the exemplar. Post hoc analysis found that the sorts of computer science students with

light programming experience are statistically significantly more similar to exemplar sort

21 than the sorts of participants with either moderate or extensive levels of programming

experience.

Figure 24. Comparison of group means for proximity to exemplar sort 21.

Summary of findings for research question 4. A statistical analysis of variances

of the proximal distance between computer science students’ card sorts to each of the

exemplar sorts relative to participants’ degree of programming experience (light,

moderate, and extensive) was conducted using one-way ANOVAs. Statistically

significant evidence was found to reject the null hypothesis in the use of exemplar sorts

119

21 and 185. Variances in distance between participants’ card sorts to these two exemplars

increased, indicating a movement toward less similarity, as students progressed in their

degree of programming experience from light, to moderate, and to extensive. The

direction of this trend in increasing distance from the exemplars as experience increases,

appears contrary to the expectation of the theoretical framework that increases in

experience should yield indications of more advanced conceptual representations.

Summary of Findings

This study tested four Null Hypotheses and obtained the following results:

H01: There is no statistically significant relationship between categories of

coursework achievement (introductory, mid-program, completing) and

categories (high, low, or zero) of card sort orthogonality.

No statistically significant evidence was found to reject the null hypothesis.

The trend observed in this study was that a greater percentage of introductory

students’ card sorts had high (24%) as opposed to low (16%) orthogonality

values, while completing students had a greater percentage of low (38%) to

high (31%) orthogonality values. These results appear contrary to the findings

of Fossum and Haller’s (2005) comparison of NMST values between

introductory and senior computer science students.

 H02: No reliable and interpretable structural exemplar sorts are derivable from the

collections of sorts produced by those participants most likely to have attained

the desired level of programing skill.

Four exemplar sorts were isolated and found to yield statistically significant

differences between the groups of participants considered the least, and the

120

most likely to have attained the desired level of programming skill. Two of

these variables, proximities to exemplar 6 and to exemplar 21, were found to

be reliable predictors of participants’ membership in the most likely group to

have attained the learning objective.

H03: There are no statistically significant differences among the categories of

computer science students’ progression through milestones of coursework

attainment (introductory, completing, and mid-program) on the dependent

variable, the edit distance between the card sorts to the exemplar sorts.

Statistically significant evidence was found to reject the null hypothesis in the

use of exemplar sorts 21 and 185. Variances in distance between participants’

card sorts to these two exemplars decreased, indicating a movement toward

greater similarity, as the level of coursework attainment progressed from

introductory, to mid-program, and to completing. The direction of this trend in

decreasing distance from the exemplars as coursework progresses appears

consistent with the expectation of the theoretical framework that additional

levels of instruction and study should yield indications of more advanced

conceptual representations.

H04: There are no statistically significant differences among the categories of

computer science students’ programming experience (light, moderate,

extensive) on the dependent variable, the edit distance between the card sorts

to the exemplar sorts.

Statistically significant evidence was found to reject the null hypothesis in the

use of exemplar sorts 21 and 185. Variances in distance between participants’

121

card sorts to these two exemplars increased, indicating a movement toward

less similarity, as the degree of programming experience increased from light,

to moderate, and to extensive. The direction of this trend in increasing

distance from the exemplars as experience increases, appears contrary to the

expectation of the theoretical framework that increases in experience should

yield indications of more advanced conceptual representations.

Further discussion of these results and additional investigation into their meaning

is presented in the following chapter, Discussion and Conclusion.

122

CHAPTER V

Discussion and Conclusion

Introduction

The area of study for this dissertation was Computer Science education.

Specifically, the study focused on an objective for developing students’ competency in

programming at the post-secondary level according to accreditation criterion for student

outcomes. Student Outcome 2 of the Accreditation Board for Engineering and

Technology (ABET, 2019) states:

Graduates of the program will have an ability to . . . design, implement, and

evaluate a computer-based solution to meet a given set of computing requirements

in the context of the program’s discipline. (Criterion 3. Student Outcomes).

The abilities listed in Student Outcome 2 require development of competency in

the myriad analytical and problem-solving skills, often referred to as Computational

Thinking skills (Wing, 2006), required for effective program design and development. In

reflecting upon research into the evaluation of program effectiveness in computer science

education since 2006, Denning (2017) summarized the problem facing computer science

educators: after a decade of research and academic discussion about the definition and

assessment of computational thinking, “we have no consensus on what constitutes the

skill and our current assessment methods are unreliable indicators” (p. 36). He called for

the development of baseline measures of programming expertise levels modeled after a

framework of skill acquisition (Denning, 2017).

Review of literature found that a proxy predictor of a subject’s problem-solving

skill level can be obtained by eliciting the subject’s basis for categorizing knowledge

123

through the use of a card sorting task (Mason & Singh, 2011). Recent studies in the fields

of biology and chemistry at the post-secondary level have used card sort instruments to

assess student development of conceptual development and related analytical and

problem-solving skills (Bissonnette et al., 2017; Krieter et al., 2016). Searches for similar

research in computer science education identified two gaps. First, there is an absence of

studies in computer science education that are comparable to that for chemistry education

to evaluate development of conceptual expertise. The Krieter et al. (2005) study used

quantitative measures and methods to investigate the differences between the cognitive

representations of introductory and senior students, and noted a trend toward

development of expected knowledge representations as students progressed through the

curriculum. The most recent studies to compare card sorts of introductory and senior

computer science students were last conducted in 2005 when Fossum and Haller (2005)

and McCauley et al. (2005) evaluated a unique measure of card sort orthogonality. The

second gap is a lack of follow-up to the results of those prior studies in computer science

which indicated that the conceptual representations of the lowest performing quartile of

graduating seniors as measured by the orthogonality of their card sorts did not develop

significantly beyond those of introductory students, while the top quartile of graduating

seniors did demonstrate a statistically significant growth in their conceptual organization

related to programming skills.

This study addressed these gaps in three steps. First, it replicated the previous

studies of conceptualizations of computer science students to assess the use of the card

sort orthogonality measure (NMST) as a differentiator between the top and bottom

performing segments of senior students against introductory students. Second, it

124

categorized the card sorts and identified exemplars which differentiate between those

students demonstrating significant conceptual growth from those students who are just

beginning their conceptual development. Finally, it analyzed how progress toward the

desired level of conceptual representation may be affected by students’ levels of

instruction and programming experience at various milestones through the curriculum.

This study used the knowledge elicitation instrument (a repeated, open card sort

of 26 programming terms) and quantitative measures from McCauley et al. (2005) and

Fossom and Haller (2005). Cross-sections of students in the computer science degree

program at the University were solicited for the study with 124 participants contributing

296 card sorts. An analysis approach adapted from Krieter et al. (2016) and Bissonnette

et al. (2017) compared differences in computational thinking skill acquisition as

measured by card sort orthogonality, and proximal distances to the differentiating

exemplars among cross-sections of the degree program partitioned by levels of

achievement of coursework milestones and also by levels of programming experience.

Four Null Hypotheses were tested with the following results:

H01: There is no statistically significant relationship between categories of

coursework achievement (introductory, mid-program, completing) and

categories (high, low, or zero) of card sort orthogonality.

No statistically significant evidence was found to reject the null hypothesis.

The trend observed in this study was that a greater percentage of introductory

students’ card sorts had high (24%) as opposed to low (16%) orthogonality

values, while completing students had a greater percentage of low (38%) to

high (31%) orthogonality values. These results appear contrary to the findings

125

of Fossum and Haller’s (2005) comparison of NMST values between

introductory and senior computer science students.

H02: No reliable and interpretable structural exemplar sorts are derivable from the

collections of sorts produced by those participants most likely to have attained

the desired level of programing skill.

Four exemplar sorts were isolated and found to yield statistically significant

differences between the groups of participants considered the least, and the

most likely to have attained the desired level of programming skill. Two of

these variables, proximities to exemplar sort 6 and to exemplar sort 21, were

found to be reliable predictors of participants’ membership in the most likely

group to have attained the learning objective.

H03: There are no statistically significant differences among the categories of

computer science students’ progression through milestones of coursework

attainment (introductory, completing, and mid-program) on the dependent

variable, the edit distance between the card sorts to the exemplar sorts.

Statistically significant evidence was found to reject the null hypothesis in the

use of exemplar sorts 21 and 185. Variances in distance between participants’

card sorts to these two exemplars decreased, indicating a movement toward

greater similarity, as the level of coursework attainment progressed from

introductory, to mid-program, and to completing. The direction of this trend in

decreasing distance from the exemplars as coursework progresses appears

consistent with the expectation of the theoretical framework that additional

126

levels of instruction and study should yield indications of more advanced

conceptual representations.

H04: There are no statistically significant differences among the categories of

computer science students’ programming experience (light, moderate,

extensive) on the dependent variable, the edit distance between the card sorts

to the exemplar sorts.

Statistically significant evidence was found to reject the null hypothesis in the

use of exemplar sorts 21 and 185. Variances in distance between participants’

card sorts to these two exemplars increased, indicating a movement toward

less similarity, as the degree of programming experience increased from light,

to moderate, and to extensive. The direction of this trend in increasing

distance from the exemplars as experience increases, appears contrary to the

expectation of the theoretical framework that increases in experience should

yield indications of more advanced conceptual representations.

This chapter discusses the meaning and implications of the above results as they

relate to existing literature, to the theoretical framework, and to the implications for

teaching, learning, and assessing computer programming and computation thinking skills

and abilities. It concludes with recommendations for further research and for establishing

a baseline of quantitative measures for such assessment purposes.

Discussion

Using the NMST measure for differentiating conceptual development levels.

The card sorting activity is an effective instrument for eliciting a subject’s basis for

aggregating elements of field specific knowledge (Rugg & McGeorge, 2005).

127

Additionally, when the subject is prompted to repeatedly categorize the same stimuli,

subjects with more differentiated conceptual representations tend to produce a larger

number of card sorts with varied categorizations (Fossum & Haller, 2005). The NMST

measure of structural dissimilarity (orthogonality) among a collection of card sorts

produced by a single individual is one indication of the individual’s capacity for

categorizing a stimuli set using multiple, varied criteria. Therefore, the NMST measure

has been proposed as a differentiator in assessing relative skill levels among computer

science students (Fossum & Haller, 2005). Such a proposition was evaluated in two

related studies of computer science students (McCauley et al., 2005; Fossum & Haller,

2005). This current study began its analysis of the collected card sorts by attempting to

replicate the findings these prior studies. Each of these studies followed a repeated single-

criterion sort technique and used the identical stimuli set of 26 programming terms.

McCauley et al. (2005) collected 291 card sorts from 65 graduating seniors at

eight institutions of higher education in the United States. The grade point averages in

computer science courses were also collected and used to partition the sample into

performance quartiles. The NMST measure was calculated for each participant, and then

the means for each quartile were compared. The results are shown in Table 7. The

researchers found that the mean NMST increased with each step increase in quartile of

GPA performance from the bottom to the top, and that the difference between the top and

bottom mean values was statistically significant (z = 2.97, p = .0025) using a Mann-

Kendall test for randomness against a monotone trend.

128

Table 7

NMST by Performance Quartile as Reported in the McCauley et al. (2005) Study

Quartile: Bottom Third Second Top Total

N = 17 16 16 16 65

Sort count 69 75 62 86 291

Mean NMST 6.16 6.63 7.10 8.33 7.04

Note. Adapted from McCauley et al. (2005)Table 3

Fossum and Haller (2005) compared this data from the McCauley et al. (2005)

study against a set of 1199 card sorts from 243 novice programming students and 33

experienced graduate students and faculty at 22 higher education institutions collected by

Sanders et al. (2005). In initially comparing the mean NMST of all seniors against all

novice students, the researchers were surprised to find a lack of difference. However,

when the mean NMST of all but the bottom quartile of seniors (the senior+ group) was

compared against the mean of all novice students, the difference was statistically

significant (z = 1.77, p < .04, one-sided) using a Wilcoxon two-sample test (Fossum &

Haller, 2005). Similar comparisons against the educators found a difference (z = 1.67, p <

.05) with the full set of seniors, but no significant difference (z = 0.66, p < .51) with the

senior+ group (Fossum & Haller, 2005). The researchers concluded from these findings,

that either the NMST measure is inadequate as a differentiator among undergraduate

students, or that the bottom quartile of seniors underperformed at meeting the

expectations for graduating seniors.

 As reported in Chapter 4, the current study examined the relationship between

card sort orthogonality and three categories of coursework achievement (Introductory,

129

Mid-program, and Completing). No statistically significant association was found. The

observed trend, as shown in Figure 25, was that the greater percentage of Introductory

student sorts had high (24%) as opposed to low (16%) orthogonality values, while

Completing students had a greater percentage of low (38%) to high (31%) orthogonality

values. These results appear contrary to the findings in Fossum and Haller’s (2005)

comparison of NMST values between introductory and senior computer science students.

Consequently, further analysis of the NMST values collected in this study was

undertaken to understand these differences from the prior studies.

Figure 25. Bar chart of frequency counts from cross-tabulation of card sorts by
coursework achievement category and category of orthogonality.

Also apparent from Figure 25 is the significant number of students who submitted

only single-sorts and therefore had NMST values of zero. These cases skewed the means

for each category of coursework achievement downward and by unequal amounts. Sixty

percent of the contributions from introductory students were single card sorts, while 69%

of completing students submitted multiple card sorts. McCauley et al. (2005) did not

130

report the number of graduating seniors who contributed only single card sorts. However,

in Fossum and Haller’s (2005) comparison of novices to seniors, it was noted that only 2

of 276 participants contributed single card sorts. Therefore, in order to perform a more

comparable analysis, this study removed the single-card sort cases before performing the

following tests.

The differences in mean NMST values were compared for all non-introductory

participants who submitted at least two card sorts (n = 48) categorized into thirds (Top,

Average, Bottom) according to cumulative computer science grade point averages. After

determining that the three frequency distributions were normal and had equal variances, a

one-way factorial analysis was conducted (see Appendix G) and found no statistically

significant difference on the entire model [F(2,45) = .20, p = .82, ƞ2 = .009]. Although

not statistically significant, the trend for mean values of NMST, as shown in Table 7 and

Figure 26, increased with each step increase in GPA ranking category (from Bottom to

Top) which is a finding consistent with McCauley et al. (2005).

Figure 26. Bar chart of NMST means by category of GPA ranking (n = 68).

131

However, when the NMST mean for introductory students who contributed two or

more sorts is added to the comparisons in Table 7, as shown in Table 8, it is apparent that

its value is second only to the category of Top GPA students. This finding is contrary to

results in Fossum and Haller (2005) which equated the mean NMST of novices to those

of the Bottom GPA seniors. It is therefore surprising to find that the group of introductory

students in this study had such a high mean NMST.

Table 8

Mean NMST Values for Introductory Students Versus Non-Introductory Students

Categorized by GPA Ranking

Category: Introductory Bottom GPA Average GPA Top GPA

N = 20 12 20 16

Mean NMST 7.62 7.14 7.41 7.75

Note. Adapted from McCauley et al. (2005) Table 3

To better understand how the NMST values of the introductory group differed

from those of other cross-sections of participants, trends in the frequencies of NMST

values were explored relative to other categories of collected data. As shown Figure 27,

the means trended higher for both groups (introductory, non-introductory) when

categorized by the variables programming experience and prior instruction. Participants

categorized as Extensive in these variables had higher NMST values than those

categorized as Light. Programming experience relates to types of self-reported

programming activities outside of coursework assignments. Prior instruction relates to

formal and informal training in programming received outside of the University degree

program. It could be expected from the theoretical framework that participants reporting

132

higher levels of either of these variables would have more developed programming skills

as reflected in higher NMST values.

Figure 27. Comparison of mean NMST of introductory and non-introductory participants
categorized by programming experience (left) and by prior instruction (right).

Figure 28. Distribution (by percentage) of participants among the categories for
programming experience and prior instruction between the introductory and non-
introductory groups

Figure 28 examines the distribution of participants, as percentages, between the

Light and Extensive categories for the introductory and non-introductory groups. For

both variables, the majority of introductory participants were categorized as Extensive.

Taken in conjunction with Figure 27, this indicates that a majority of the introductory

group had high NMST values, while only a minority of the group had low NMST values.

This is consistent with the findings for research question 1 shown in Figure 25. Figure 28

also shows the situation reversed for the distribution for non-introductory participants

with the majority categorized as Light, and therefore having the lowest NMST values.

133

This difference in instruction and experience outside of formal coursework between the

introductory and non-introductory participants offers an explanation for why the mean

NMST value of the introductory group was higher than expected relative to the categories

of GPA ranking for the other participants as reported in Table 8.

Several conclusions regarding the use of mean NMST measures of card sort

orthogonality as a differentiator of problem- solving skill levels of computer science

students may be drawn from this study. First, cases of participants completing only a

single card sort can skew mean orthogonality values lower, and variances in the

percentage of such cases among groups may adversely affect statistical comparisons.

Sanders et al. (2005) conducted 276 one-on-one facilitated card sorting activities using

physical index cards, and collected only two single-sort cases. This study used an online,

asynchronous tool to conduct 296 card sorts with 124 participants and collected 56

single-sort cases (45%). For statistical analyses using the NMST measure, the single-sort

cases reduced the sample size from 124 to 68, which greatly reduced statistical power.

While the online card sorting tool included prompts to encourage participants to complete

multiple card sorts, this may have been less effective in this regard than the facilitated

activities of the Sanders et al. (2005) study.

Second, for participants whose academic records were collected (the non-

introductory group), the trend observed in McCauley et al. (2005) of mean NMST values

increasing with categories reflecting increasing GPA performance was replicated. The

card sorts of top performing participants were more differentiated than those of lower

performing participants. However, in the broader comparison of introductory versus non-

introductory participants, it became apparent that the NMST mean values were more

134

influenced by participants’ exposure to programming experiences and prior instruction

outside of their University coursework than by GPA ranking. Thus, the introductory

group may have averaged higher NMST values than the bottom GPA ranking group due

to a greater percentage of introductory students with greater exposure to experience

building activities.

Therefore, based on the above, the NMST measure alone is not a sufficient basis

for differentiating the level of conceptual development or problem-solving skill among

computer science students.

Using exemplars of desired categorization for differentiating conceptual

development levels. Card sorting instruments can be designed to elicit an individual’s

framework for categorizing field specific knowledge (Chi et al., 1981). These revealed

frameworks can be effective in differentiating levels of conceptual development among

individuals (Smith, 1990; Mason & Singh, 2011). Studies in the fields of physics,

biology, and chemistry have demonstrated that putative experts tend to categorize based

upon field specific concepts and principles implied in a stimuli set while novices tend to

categorize using more readily apparent surface features of the stimuli (Chi et al., 1981;

Bissonnette, et al., 2017; Krieter et al., 2016).

In card sort studies of the development of conceptual expertise of physics,

biology, and chemistry students, researchers designed stimuli sets to elicit expected

surface and deep factor categorizations (Bissonnette, et al., 2017; Krieter et al., 2016).

Given the expected categorizations, researchers were able to construct exemplar sorts for

each expected result. The similarity of participants’ sorts to these exemplars was assessed

by counting the number of expected pairings of stimuli found in the participant sorts.

135

While this was a reliable measure to identify similarity to an exemplar, it provided less

useful in understanding the implications of the differences, that is, the unexpected

pairings. It was observed that sorts of introductory students had many more unexpected

pairings than did the sorts of the putative experts (Bissonnette, et al., 2017). This led

Krieter et al. (2016) to evaluate the use of the edit distance metric to calculate a measure

of proximal distance to the exemplar sorts for surface and deep factor categorizations.

Using this measure they found that the proximal distance to an exemplar of deep factor

categorization decreased as students attained progressive coursework milestones.

For the studies of computer science education, researchers designed the stimuli set

to broadly investigate the conceptual representations about programming constructs

across a large, diverse sample of introductory programming students (Sanders et al.,

2005). Although this stimuli set was administered in two studies of different target

populations [introductory (Sanders et al., 2005) and seniors (McCauley et al, 2005)] and

the results analyzed in three additional papers (Deibel et al., 2005; Fossum & Haller,

2005; Murphy, et al., 2005) no references were found to preconceived notions of desired

or expected categorizations. Indeed, in the originating study, the researchers concluded

that given the analytical methods and tools available at that time, a rigorous

categorization of the 1199 card sorts was cost and time prohibitive. In response to this

restriction, the edit distance metric (Deibel et al., 2005) and the NMST measure of

orthogonality (Fossum & Haller, 2005) were defined and evaluated.

Subsequent studies explored the potential of the new measures to facilitate

categorization. By using cluster analysis to identifying structurally similar sorts, Deibel et

al., 2005 were able to compare participant supplied category names and criterion

136

descriptions in subsets of the Sanders study dataset to identify several common

categorization themes, such as Easy or Hard to use, Concrete or Abstract, and Players,

Formations, and Coaching. McCauley et al. (2005) collected a smaller dataset of 291

card sorts from graduating seniors, and were able to conduct a rigorous content analysis

to identify sixteen Content Analysis Groups, or CAGs. Eleven of these CAGs were

believed to be organized around coherent themes. Using the NMST measure, the

orthogonality of the sorts within each of these CAGs was calculated and confirmed that

these eleven CAGs were composed of similarly structured sorts. These categorization

themes included Ease/Difficulty of use, Abstract/Concrete, Design/Software Engineering,

Types of Programming Terms, and Entities and operations. It is significant that these two

studies using different datasets and different analytical measures and methods

independently identified similar categorizations from the same stimuli set.

As described in Chapter 4, this current study identified cliques of categorizations

within the sorts of participants considered most likely to have achieved the desired level

of conceptual development. These cliques align well with the set of CAGs from

McCauley et al. (2005). Structural exemplar sorts were then derived for several of these

presumed deep factor categorizations. Measures of proximal distance to these exemplars

were then calculated for participants’ card sorts.

Results of the analysis for research question 3 replicated the finding from Kreiter

et al. (2016) that the proximal distance to an exemplar of deep factor categorization

decreased as students attained progressive coursework milestones. This finding suggests

that proximal distances to exemplars of common categorizations for this stimuli set can

137

effectively differentiate conceptual development levels of students between, as well as

within, cross-sections selected by achievement of coursework milestones.

Effects of programming experience and practice on proximity measures for

differentiating conceptual development levels. As reported in Chapter 4, the current

study analyzed variances in the edit distance between the participant card sorts to the

exemplar sorts by categories of their programming experience (light, moderate,

extensive). While statistically significant differences were found between participants

reporting extensive experience versus light experience in the proximal distance of their

card sorts to exemplars 21 and 185 (representing the Types of Programming Terms

categorization), these differences trended in the direction opposite to that expected by the

theoretical framework. The observed trend was that card sorts of participants with greater

levels of experience were more distant from, rather than closer to, the exemplars. Due to

this contrary finding, further analysis of the reported programming experiences of the

population in this study was undertaken.

Since the prior analysis into research question 1 revealed an unequal distribution

of experience levels between introductory, and non-introductory groups of participants

with multiple card sorts (n = 68), a cross tabulation was prepared for categories of

programming experience by categories of coursework achievement for all participants,

including single card sorts (n = 124). The result is depicted in Figure 29. As noted earlier,

the majority of the Introductory group reported extensive programming experiences,

while the majority of the Completing group reported only light experience. These

differences were then examined in a cross tabulation of programming experience by

intended degree major as shown in Figure 30.

138

Figure 29. Percentages of programming experience categories per coursework
achievement category (n = 124).

Figure 30. Percentage of experience level by intended majors.

The trend of decreasing percentages of programming experience seen in Figure 29

for the Completing group is found in the Figure 30 trends for participants majoring in

digital forensics and computer science (left chart). However, the opposite trend, matching

that of the Introductory group in Figure 29 is found in Figure 30 for software engineering

technology and non-CS department majors (right chart). The non-CS department students

are mostly Electronics and Computer Engineering Technology (ECET) majors who are

not required to take as many hours of COSC courses as are CS department majors. This is

reflected in the composition each category of coursework achievement by intended major

as shown in Figure 31. While the majority of the Introductory group consists of the non-

CS and software engineering technology majors, the percentage of students majoring in

139

computer science nearly doubles at mid-program, and is then predominant in the

Completing group.

Figure 31. Percentage of intended majors for categories of coursework achievement.

One possible conclusion from these cross tabulations is that students drawn to

degrees in software engineering technology and ECET are more prone to seek out the

types of informal or job related programming experiences listed in the study

questionnaire. Thus, a higher percentage of participants in the Introductory group report

extensive programming experience. Due to the observed variations in composition of the

cross-sections in terms of intended majors and experience levels, research question 4 was

re-tested to determine if using only the group of introductory participants would alter the

trend lines for the proximal distances to the exemplar sorts.

The trend lines from the original analysis using all participants are shown in

Figure 32. Figure 33 shows the lines for the same exemplars for only the Introductory

cross-section. In both figures the lines trend in the same direction. Therefore, it can be

concluded that experience and practice with programming skills as captured by the study

questionnaire does not support the expectation of the theoretical framework that

experience fosters the desired conceptual growth.

140

Figure 32. Proximal distances to Exemplars 21 and 185 (all participants).

Figure 33. Proximal distances to Exemplars 21 and 185 (Introductory group).

This contrary finding may be explained by the nature of the exemplars used as the

basis for the proximity measures. As noted in Chapter 4, both exemplar sorts 21 and 185

align with the Types of Programming Terms criterion as categorized by McCauley et al.

(2005). Exemplar 21 in particiular, shown below in Figure 34, reflects differentiation

based upon computer science concepts that are only fully addressed in courses associated

with later milestones of coursework achievement, such as Data Structures, Advanced

Language Concepts, and Operating Systems. Therefore, programming experiences alone,

as enumerated by the study questionnaire, appear to be insufficient for developing the

conceptual representations expressed in Exemplar 21. For this deep-factor categorization

criterion, the data supports a conclusion that formal instruction fosters the desired

141

conceptual development with greater efficacy than does additional programming practice

and experience.

Figure 34. Exemplar sort 21 for the Types of Programming Terms categorization.

Conclusion

The results of this study successfully replicated findings of similar, prior studies

of computer science students. For example, within the cross-section of completing

students, the orthogonality of participant card sorts increased with each category of

increase in academic performance. Also, collections of structurally similar card sorts

were found to align with categorizations identified in earlier studies.

These findings provide the basis for responding to Denning’s call for the

establishment of “guidelines for different skill levels of computational thinking” (2017, p.

36). Such a baseline of measures can be constructed from categorizations of elicited

conceptual representations and associated exemplars. As shown in this and prior studies,

students’ progress in development of computational thinking skills can be assessed, using

their elicited representations, using multiple measures. The first two measures involve

conceptual differentiation. Students grow in their ability to categorize in additional, but

also more varied ways. Differentiated representations align with, or aggregate into, a

142

greater number of common categorizations. Therefore, differentiation might be measured

as the number of common categorizations matched (McCauley et al., 2005). A second

measure of differentiation is the orthogonality among the elicited card sorts (Fossum &

Haller, 2005).

An additional measure of elicited conceptual development is the degree of

similarity to an exemplar of an expected representation. The conceptual representations

of novice learners often contain inaccuracies and simplifications which become better

defined over time. The proximal edit distance metric from an exemplar quantifies how

similar/dissimilar a student’s representation is from the expected (Deibel et al., 2005). As

students’ conceptual representations progress, their card sorts become more similar to the

desired exemplar. Therefore, establishing a baseline of measures for quantitative

assessment of computational thinking skills should identify expected representations for a

number of expected categorizations of card sorts. Eleven of the Content Analysis Groups

identified by McCauley et al. (2005) appear to present reliable expectations for

categorizations. Further research is needed to identify representative exemplars for each

of these categorizations.

In this current study, measures of proximal distance to exemplars for one category

were shown to be reliable differentiators of levels of conceptual development. However,

conceptual development as elicited by these specific exemplars was found to be more

influenced by instruction than by practice. This may be different for other categorizations

of conceptual representation, such as Design versus Coding, where conceptual

development may be more influenced by practice with the skill in accordance with the

theoretical framework from Dreyfus and Dreyfus (1980). For example, results from

143

comparing the orthogonality measure of introductory to completing participants

suggested that introductory students with greater levels of experience also had more

differentiated card sorts. Therefore, follow-up studies should be conducted to identify

exemplars of additional categorizations and to evaluate which of these benefit from

increased levels of programming practice.

Exemplars should also be identified that are representative of students at earlier

stages of their conceptual development. For example, card sorts for the dichotomous

criterion Items I know/Don’t know might be expected to change as a student progresses

through the degree program. Since conceptual development often is not linear, exemplars

at intermediate stages of development would provide a more accurate assessment than a

single measure of distance from the desired end point.

Findings from this study further suggest that there should be expected differences

in the target level of conceptual development for the various degree majors, such as

ECET, and Software Engineering Technology, in addition to Computer Science.

Therefore, exemplars should be identified that are representative of the desired level of

conceptual development for that major.

Finally, this study used a repeated, open criterion card sorting activity with a

stimuli set of 26 programming terms as the instrument for eliciting participants’

organization of knowledge regarding computer programming concepts. A comparison

with other studies’ use of card sorting tasks suggests potential for improving aspects of

the elicitation protocol for use with the baseline measures proposed above. An alternative

protocol is the framed, as opposed to open, card sort in which the researcher prompts the

participant to sort using a specific criterion (Rugg & McGeorge, 2005). However, framed

144

card sorts require the researcher to have identified criteria in advance. This was possible

for the studies in the fields of biology and chemistry where students were given both

open and framed activities. Card sorts obtained in both cases yielded similar results

(Bissonnette, et al., 2017; Krieter et al., 2016). Given a set of desired categorizations for

computational thinking skills as proposed above, framed card sorts could be used to elicit

desired criteria from computer science students. This change would address an issue in

this current study, where the use of the open card sort had an unexpected result of

allowing too many instances of single card sorts. With simple modifications to the online

tool for administration of the activity, it would be possible to prompt participants with a

mix of open and framed sorting activities thereby eliminating single sort instances and

ensuring adequate cases of diverse categorizations.

The objective of this study was to establish a baseline of computational thinking

skill acquisition as an additional tool for evaluation of student progress toward the ABET

student outcome 2: competency in the development of computer-based solutions to meet

specified requirements (ABET, 2019). As compared to the common practice of

qualitatively assessing programming assignments, the comparison of knowledge

elicitation results against baseline indicators can yield objective, quantitative, computer-

assessed measures of progress toward skill acquisition. Given an elicitation tool and a set

of exemplar representations as proposed above, institutions could establish expected

ranges of proximal distance measures to specific exemplars, selected according to

particular categorizations, degree majors, and coursework milestones as evidence that

students are meeting or exceeding the program learning objective for developing

competency in the design and implementation of computer-based solutions.

145

Additionally, such measures would enable timely identification of those students

not progressing as expected and would provide insights for the design of appropriate

intervention measures. Such an outcome will be of benefit to the students and potentially

to the prospective employers of the students as they may have greater assurance of

students’ competency as programmers and analytical problem solvers.

Beyond the specific focus on Computer Science Education, this study provides a

research basis for transfer of new assessment approaches to other fields of education. One

example is the Instructional Systems Design and Technology (ISDT) degree program.

Instructional Systems Design shares a development methodology with Software

Development, i.e., computer programming. Goals are identified and agreed upon with

various groups of stakeholders, and specified as measurable learning objectives to be

attained. Teaching and Learning methods and materials are developed to achieve these

learning objectives. Assessment methods and instruments are developed and utilized to

evaluate attainment of the objectives.

The ISDT program at this university delves into the impact that information and

communication technology has on this methodology for Instructional Systems Design.

For Teaching and Learning, technology has introduced disruptive methods, media, and

mediums. It is enabling shifts in paradigms between teachers and learners, and between

instructional presentation and knowledge construction. Examples include blended or

flipped classrooms and asynchronous communications.

For assessment, technology to date has mostly been used to offer enhancements to

the test media and mediums. However, the methods of assessment have not yet been

146

disrupted by technology. Assessment tools, even when technology based, are still derived

from the instruments of behaviorist educators.

Technology has begun to impact learning objectives through the reform initiatives

for Computational Thinking and Coding for All. Furthermore, as students are gaining

persistent, mobile access to commercial cognitive cloud services such as Siri, Alexa, and

Cortana, there is a need to shift instructional objectives to the development of learners’

ability to transfer knowledge, i.e., their cognitive skills, and away from requirements for

them to retain and recall knowledge, i.e., cognitive concepts.

This study has demonstrated the feasibility of, and techniques for the quantitative

and objective assessment of learners’ development of high-order cognitive skills. These

skills are required for transfers of knowledge which enable problem solving and solutions

design. Assessment methods for these cognitive skills, such as those demonstrated in this

study, will be necessary for educators and instructional designers to keep pace with the

disruptions that technology is bringing to the Instructional Systems Design process.

147

REFERENCES

ABET. (2019). Criteria for accrediting computing programs, 2019-2020. Retrieved from

ABET: https://www.abet.org/accreditation/accreditation-criteria/criteria-for-

accrediting-computing-programs-2019-2020/

Adams, J., & Reed, D. A. (2015). Introducing young women to CS, and supporting

advanced research environments. Communications of the ACM, 58(5), 10-11.

doi:10.1145/2742480

Ahadi, A., & Lister, R. (2013). Geek genes, prior knowledge, stumbling points and

learning edge momentum: Parts of the one elephant? Proceedings of the ninth

annual international ACM conference on international computing education

research (pp. 123-128). ACM.

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal,

55(7), 832-835. doi:10.1093/comjnl/bxs074

Ambrosio, A. P., Xavier, C., & Georges, F. (2014). Digital ink for cognitive assessment

of computational thinking. Frontiers in education conference (FIE), 2014 IEEE

(pp. 1-7). IEEE. doi:10.1109/FIE.2014.7044237

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E.,

Pintrich, P. R., . . . Wittrock, M. C. (2001). A taxonomy for learning, teaching and

assessing: A revision of Bloom's Taxonomy of educational outcomes: Complete

edition. New York: Longman.

Bell, R. (2011). Personal constructs. In L. Cohen, L. Manion, & K. Morrison (Eds.),

Research methods in education (7th ed., pp. 496-509). London and New York:

Routledge.

148

Benner, P. (1982). From novice to expert. The American Journal of Nursing, 82(3), 402-

407.

Bergin, S., & Reilly, R. (2005). The influence of motivation and comfort-level on

learning to program. In P. Romero, J. Good, A. Chaparro, & S. Bryant (Ed.), 17th

Workshop of the Psychology of Programming Interest Group (pp. 293-304).

Sussex University. Retrieved from

http://eprints.teachingandlearning.ie/1770/2/Bergin%20and%20Reilly%202005.p

df

Bissonnette, S. A., Combs, E. D., Tanner, K. D., Nagami, P. H., Byers, V., Fernandez, J.,

. . . Smith, J. I. (2017). Using the Biology Card Sorting Task to measure changes

in conceptual expertise during postscondary biology education. CBE-Life

Sciences Education, 16(1), 1-15.

Botha, F. (2016). Rethinking computational thinking. Communications of the ACM,

59(7), 8. doi:10.1145/2949401

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. Proceedings of the 2012 annual meeting

of the American Educational Research Association (pp. 1-25). Vancover, Canada:

AERA.

Burleson, W. (2005). Developing creativity, motivation, and self-actualization with

learning systems. International Journal of Human-Computer Studies, 63(4), 436-

451. doi:10.1016/j.ijhcs.2005.04.007

Campbell, P. J. (2016). Coding for all? UMAP Journal, 37(4), 333-337.

149

Carraccio, C., Benson, B. J., Nixon, L. J., & Derstine, P. L. (2008). From the educational

bench to the clinical bedside: Translating the Dreyfus developmental model to the

learning of clinical skills. Academic Medicine, 83(8), 761-767.

doi:10.1097/ACM.0b013e31817eb632

Casperson, M. E., & Kolling, M. (2009). STREAM: A first programming process. ACM

Transactions on Computing Education (TOCE), 9(1), 4.

doi:10.1145/1513593.1513597

Casperson, M. E., Larsen, K. D., & Bennedsen, J. (2007). Mental models and

programming aptitude. ACM SIGCSE Bulletin. 39, pp. 206-210. ACM.

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of

physics problems by experts and novices. Cognitive Science, 5(2), 121-152.

Code.org. (2018). About us. Retrieved from Code.org: https://code.org/about

Code.org. (2018a). About us. Retrieved from Code.org: https://code.org/about

Code.org. (2018b). Infographic source data. Retrieved from Code.org:

https://docs.google.com/document/d/1gySkItxiJn_vwb8HIIKNXqen184mRtzDX1

2cux0ZgZk/pub

Code2College. (2017). About. Retrieved from code2college.org:

https://code2college.org/about

Cohen, L., Manion, L., & Morrison, K. (2011). Choosing a statistical test. In Reseach

methods in education. London: Routledge.

Cohen, L., Manion, L., & Morrison, K. (2011). Surveys, longitudinal, cross-sectional and

trend studies (7th ed.). London: Routledge.

150

Czerkawski, B., & Lyman, E. (2015). Exploring issues about computational thinking in

higher education. TechTrends: Linking Research & Practice to Improve Learning,

59(2), 57-65. doi:10.1007/s11528-015-0840-3

Dehnadi, S., & Bornat, R. (2006). The camel has two humps. Middlesex University, UK,

1-21. Retrieved from http://eis.sla.mdx.ac.uk/research/PhDArea/saeed/paper1.pdf

Deibel, K., Anderson, R., & Anderson, R. (2005). Using edit distance to analyze card

sorts. Expert Systems, 22(3), 129-138.

Denning, P. (2017). Remaining trouble spots with computational thinking: Addressing

unresolved questions concerning computational thinking. Communications of the

ACM, 60(6), 33-39. doi:10.1145/2998438

Dreyfus, H. L., Dreyfus, S. E., & Zadeh, L. A. (1987). Mind over machine: The power of

human intuition and expertise in the era of the computer. IEEE Expert, 2(2), 110-

111. doi:10.1109/MEX.1987.4307079

Dreyfus, S. E., & Dreyfus, H. L. (1980). A five-stage model of the mental activities

involved in directed skill acquistion. University of California, Berkley Operations

Research Center.

Fang, X. (2012). Application of the participatory method to the computer fundamentals

course. In J. Luo (Ed.), Affective Computing and Intelligent Interaction (pp. 185-

189). doi:10.1007/978-3-642-27866-2_23

Fincher, S., & Tenenberg, J. (2005). Making sense of card sorting data. Expert Systems,

22(3), 89-93. doi:10.1111/j.1468-0394.2005.00299.x

Fossum, T., & Haller, S. (2005). Measuring card sort orthogonality. Expert Systems, 139-

146.

151

Garner, S. (2009). Learning to program from scratch. 2009 Ninth IEEE International

Conference on Advanced Learning Technologies, (pp. 451-452).

doi:10.1109/ICALT.2009.50

Girls Who Code. (2018). About us. Retrieved from GirlsWhoCode:

https://girlswhocode.com/about-us/

Gladwell, M. (2008). Outliers: The story of success. UK: Hachette.

Google. (2018). About. Retrieved from Made w/ Code:

https://www.madewithcode.com/about

Guzdial, M., & Morrison, B. (2016). Growing computer science education into STEM

education discipline. Communications of the ACM, 59(11), 31-33.

doi:10.1145/3000612

Hayes, J. R., & Simon, H. A. (1976). The understanding process: Problem isomorphs.

Cognitive Psychology, 8, 165-190.

Hewner, M. (2013). Undergraduate conceptions of the field of computer science.

Proceedings of the ninth annual international ACM conference on International

computing education research (pp. 107-114). ACM.

IBM Corp. (2019, April). IBM® SPSS® Statistics 25 [Computer software]. Armonk,

NY: IBM Corp. Retrieved from https://www-

01.ibm.com/support/docview.wss?uid=swg24043678

Irby, S. M., Phu, A. L., Borda, E. J., Haskell, T. R., Steed, N., & Meyer, Z. (2016). Use

of a card sort task to assess students' ability to coordinate three levels of

representation in chemistry. Chemistry Education Research and Practice, 17(2),

337-352.

152

Johnston, H. C. (1976). Cliques of a graph- Variations on the Bron-Kerbosch algorithm.

International Journal of Computer & Information Sciences, 5(3), 209-238.

Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgement under uncertainty:

Heuristics and Biases. Cambridge University Press.

Katsanos, C., Tselios, N., & Avouris, N. (2008). AutoCardSorter: Designing the

information architecture of a web site using latent semantic analysis. Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (pp. 875-

878). New York, NY: ACM.

Kelly, G. (1955). The psychology of personal constructs. New York: Norton.

Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational

and Psychological Measurement, 56(5), 746-759.

Koh, K. H., Basawapatna, A., Bennett, V., & Repenning, A. (2010). Towards the

automatic recognition of computational thinking for adaptive visual language

learning. Visual Languages and Human-Centric Computing, (pp. 59-66).

doi:10.1109/VLHCC.2010.17

Krieter, F. E., Julius, R. W., Bush, S. D., Scott, G. E., & Tanner, K. D. (2016). Thinking

like a chemist: Development of a chemistry card-sorting task to probe conceptual

expertise. Journal of Chemical Education, 93(5), 811-820.

Lister, R. (2011). Ten years after the McCracken working group. ACM Inroads, 2(4), 18-

19. doi:10.1145/2038876.2038882

Lye, S. Y., & Koh, J. H. (2014). Review on teaching and learning of computational

thinking through programming: What is next for K-12? Computers in Human

Behavior, 41, 51-61. doi:10.1016/j.chb.2014.09.012

153

Mason, A., & Singh, C. (2011). Assessing expertise in introductory physics using

categorization task. Physical Review Special Topics - Physics Education

Research, 7(2), 1-17. doi:10.1103/PhysRevSTPER.7.020110

McCartney, R., Boustedt, J., Eckerdal, A., Sanders, K., & Zander, C. (2013). Can first-

year students program yet?: A study revisited. Proceedings of the Ninth Annual

International ACM Conference on International Computing Education Research

(pp. 91-98). New York, NY: ACM. doi:10.1145/2493394.2493412

McCartney, R., Boustedt, J., Eckerdal, A., Sanders, K., & Zander, C. (2017). Folk

pedagogy and the Geek Gene: Geekiness quotient. Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education (pp. 405-410).

ACM.

McCauley, R., Murphy, L., & Westbrook, S. (2005). What do successful computer

science students know? An integrative analysis using card sort measures and

content analysis to evaluate graduating students' knowledge of programming

concepts. 22(3), 147-159. doi:10.1111/j.1468-0394.2005.00306.x

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y. B., . . .

Wilusz, T. (2001). A multi-national, multi-institutional study of assessment of

programming skills of first-year CS students. Working Group Reports from

ITiCSE on Innovation and Technology in Computer Science Education (pp. 125-

180). Newy York, NY: ACM. doi:10.1145/572133.572137

Mertler, C. A., & Vannatta, R. A. (2013). Advanced and multivariant statistical methods.

Glendale, CA: Pyrczak Publishing.

154

Murphy, L., McCauley, R., Westbrook, S., Fossum, T., Haller, S., Morrison, B. B., . . .

Anderson, R. E. (2005). A multi-institutional investigation of computer science

seniors' knowledge of programming concepts. Proceedings of the 36th SIGCSE

technical symposium on computer science education (pp. 510-514). New York,

NY: ACM. doi:10.1145/1047344.1047505

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:

Prentice-Hall.

Pallant, J. (2001). SPSS Survival Manual. Maidenhead: Open University Press and

McGraw-Hill Education.

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas . New York,

NY: Basic Books.

Patitsas, E., Berlin, J., Craig, M., & Easterbrook, S. (2016). Evidence that computer

science grades are not bimodal. Proceedings of the 2016 ACM conference on

international computing education research (pp. 113-121). ACM.

Paul, A. M. (2016). The coding revolution. Scientific American, 315(2), 42-49.

doi:10.1038/scientificamerican0816-42

Pena, A. (2010). The Dreyfus model of clinical problem-solving skills acquisition: A

critical perspective. Medical Education Online, 15(1).

doi:10.3402/meo.v15i0.4846

Petrie, H., Power, C., Cairns, P., & Seneler, C. (2011). Using card sorts for understanding

website information architectures: Technological, methodological and cultural

issues. Human-Computer Interaction - INTERACT 2011 (pp. 309-322). Berlin,

Heidelberg: Springer. doi:10.1007/978-3-642-23768-3_26

155

Piaget, J. (1969). The psychology of the child. New York: Basic Books.

Polanyi, M. (1966). The Tacit Dimension. Chicago: The University of Chicago Press.

Precht, B. S., Szwillus, G., & Domik, G. (2014). Edit distance analysis of card sorting

experiments. (Master's Thesis). University of Panderborn.

Robins, A. (2010). Learning edge momentum: A new account of outcomes in CS1.

Computer Science Education, 20(1), 37-71.

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A

review and discussion. Computer Science Education, 13(2), 137-172.

doi:10.1076/csed.13.2.137.14200

Rugg, G., & McGeorge, P. (2005). The sorting techniques: A tutorial paper on card sorts,

picture sorts and item sorts. Expert Systems, 22(3), 94-97. doi:10.1111/j.1468-

0394.2005.00300.x

Rugg, G., Corbridge, C., Major, N. P., Burton, A. M., & Shadbolt, N. R. (1992). A

comparison of sorting techniques in knowledge acquistion. Knowledge

Acquisition, 4(3), 279-291.

Sam Houston Statue University. (2017). Department of Computer Science. Retrieved

from Sam Houston State University:

http://catalog.shsu.edu/undergraduate/colleges-academic-departments/science-

and-engineering-technology/computer-science/

Sanders, K., Fincher, S., Bouvier, D., Lewandowski, G., Morrison, B., Murphy, L., . . .

Zander, C. (2005). A multi-institutional, multinational study of programming

concepts using card sort data. Expert Systems, 22(3), 121-128.

doi:10.1111/j.1468-0394.2005.00303.x

156

Scott, J., & Bundy, A. (2015). Creating a new generation of computational thinkers.

Communications of the ACM, 58(12), 37-40. doi:10.1145/2791290

Selby, C. (2015). Relationships: Computational thinking, pedagogy of programming, and

Bloom's taxonomy. The 10th Workshop in Primary and Secondary Computing

Education (WipSCE) (pp. 80-87). London: ACM. doi:10.1145/2818314.2818315

Shingala, R. E., & Rajyaguru, D. A. (2015). Comparision of post hoc tests for unequal

variance. International Journal of New Technologies in Science and Engineering,

2(5), 22-33.

Simon, D. P., & Simon, H. A. (1978). Individual differences in solving physics problems.

In R. S. Siegler (Ed.), Children's thinking: What develops? Hillsdale, NJ:

Erlbaum.

Smith, M. U. (1990). Knowledge structures and the nature of expertise in classical

genetics. Cognition and Instruction, 7(4), 287-302.

doi:10.1207/s1532690xci0704_1

Upchurch, L., Rugg, G., & Kitchenham, B. (2001). Using card sorts to elicit web page

quality attributes. IEEE Software, 18(4), 84-89. doi:10.1109/MS.2001.936222

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in

compulsory education: Towards an agenda for research and practice. Education

and Information Technologies, 20(4), 715-728. doi:10.1007/s10639-015-9412-6

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

doi:10.1145/1118178.1118215

Wing, J. M. (2008). Computational thinking and thinking about computing.

Philosophical Transactions of the Royal Society of London A: Mathematical,

157

Physical and Engineering Sciences, 366(1881), 3717-3725.

doi:10.1098/rsta.2008.0118

Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional

integrated assessment for computational thinking. Journal of Educational

Computing Research, 53(4), 562-590. doi:10.1177/0735633115608444

158

APPENDIX A

Card Sort Online Instrument

The Card Sort online instrument will appear similar to the following example

created with the Proven by Client product.

The participant will first receive instructions on how to perform the sort as shown

in Figure 35.

Figure 35. Card sort instrument screen 1. The initial screen of the online card sort
instrument displays the instructions for completing the task to the participant.

Then the set of stimuli, that is, the cards, are presented. With this tool, they are

presented in a vertical list down the left hand side of the screen as shown in Figure 36.

159

Figure 36. Card sort instrument screen 2. The starting point for each sort displays the
stimuli set down the left-hand side of the screen with the remainder of the screen being
blank.

The participant begins creating categories and groups the cards into the categories

by dragging cards from the list to the right into new, or existing group boxes as shown in

Figure 37. As cards are dropped into new categories, the participant is able to provide a

label for the category.

160

Figure 37. Card sort instrument screen 3. Three categories: data, flow of control, and
classes have been created with items from the stimuli-set dropped into them..

As cards are categorized, they are removed from the vertical column on the left

hand side as shown in comparing Figure 38 to Figure 39.

Figure 38. Card sort instrument screen 4.Twenty-one cards have been sorted into the four
categories of data, flow of control, classes, and execution.

161

Figure 39. Card sort instrument screen 5. Twenty-five cards have been sorted into five
categories of data, flow of control, classes, data structures, and execution.

As shown in Figure 39, the participant has been able to categorize all but one of

the cards. However, the instructions require the participant to place all cards in a group,

that is, leave no cards in the Card List.

The user is prompted to create groups called “Don’t know”, or “Not applicable”

to capture the remaining cards as shown in Figure 40.

162

Figure 40. Card sort instrument screen 6. All cards sorted into the five user-created
categories and an additional category for “Don’t Know”.

This particular sort is now completed. Next, the tool will collect and save the

categories and their labels along with the cards in each group.

The stimulus set is randomly re-ordered, and the participant is asked to sort the

cards again based on a new criterion.

163

APPENDIX B

Data Collection Questionnaire

164

165

166

167

APPENDIX C

Statistical Analysis for Question 1

Research Question 1:

Is there a relationship between categories of coursework achievement

(Introductory, Mid-Program, Completing) and categories (High, Low, or Zero) of card

sort orthogonality?

Null and Alternative Hypotheses

H0: There is no statistically significant relationship between categories of coursework

achievement and categories of card sort orthogonality.

Ha: There is a statistically significant relationship between categories of coursework

achievement and categories of card sort orthogonality.

Assumption Testing

All assumptions were met. Expected frequency counts for each category are

greater than 5 as shown in the cross-tabulation table (Figure 41).

Results of Relationship Testing

A chi-square was calculated to determine the relationship between categories of

coursework achievement and categories of card sort orthogonality as shown in Figure 42.

No significant relationship was found (X2(4) = 8.65, p > .05). There was no statistically

significant relationship between categories of coursework achievement and categories of

card sort orthogonality.

168

Figure 41. Cross-tabulation of categories of Coursework Achievement (Introductory,
Mid-program, Completing) by categories of Orthogonality (High, Low, Zero).

Coursework Achievement Category * Orthogonality Crosstabulation

Orthogonality

Total High Low Zero

Coursework

Achievement Category

Introductory Count 12 8 30 50

Expected Count 14.1 13.3 22.6 50.0

% within Coursework

Achievement Category

24.0% 16.0% 60.0% 100.0%

% within Orthogonality 34.3% 24.2% 53.6% 40.3%

% of Total 9.7% 6.5% 24.2% 40.3%

Mid

Program

Count 14 14 17 45

Expected Count 12.7 12.0 20.3 45.0

% within Coursework

Achievement Category

31.1% 31.1% 37.8% 100.0%

% within Orthogonality 40.0% 42.4% 30.4% 36.3%

% of Total 11.3% 11.3% 13.7% 36.3%

Completing Count 9 11 9 29

Expected Count 8.2 7.7 13.1 29.0

% within Coursework

Achievement Category

31.0% 37.9% 31.0% 100.0%

% within Orthogonality 25.7% 33.3% 16.1% 23.4%

% of Total 7.3% 8.9% 7.3% 23.4%

Total Count 35 33 56 124

Expected Count 35.0 33.0 56.0 124.0

% within Coursework

Achievement Category

28.2% 26.6% 45.2% 100.0%

% within Orthogonality 100.0% 100.0% 100.0% 100.0%

% of Total 28.2% 26.6% 45.2% 100.0%

169

Figure 42. Chi-square testing the relationship of categories of Coursework Achievement
(Introductory, Mid-program, Completing) with categories of Orthogonality (High, Low,
Zero).

Examination of the counts and percentages indicated that the frequency of zero

NMST values, representing only single sort submission, decreased as students progressed

in their coursework, with 60% of Introductory students submitting single sorts, while

38% of Mid-program students, and 31% of Completing students submitted single sorts.

Figure 43. Frequency counts of categories of orthogonality (High, Low, Zero) by
categories of coursework achievement (Introductory, Mid-program, Completing).

Chi-Square Tests

 Value df

Asymptotic

Significance (2-

sided)

Pearson Chi-Square 8.647a 4 .071

Likelihood Ratio 8.792 4 .067

Linear-by-Linear Association 3.890 1 .049

N of Valid Cases 124
a. 0 cells (0.0%) have expected count less than 5. The minimum

expected count is 7.72.

170

Comparable numbers of participants submitted multiple card sorts among the

three categories of students: 20 each for Introductory and Completing students and 28 for

Mid-program students. NMST values were calculated for participants and categorized as

either High or Low. High NMST values, denoting greater differentiation among

submitted card sorts, outnumbered low NMST values among the Introductory students

(24% vs 16%), while this relationship was reversed among the Completing students (31%

high vs 38% low). Mid program students had an equal percentage of high and low NMST

values (31%).

The effect size determined by Cramer’s V was .19 (Figure 44). This indicates that

a small association was found between whether a student submitted card sorts with High,

Low, or Zero NMST values and whether the student was at the Introductory, Mid-

program, or Completing milestone in their computer science coursework.

Figure 44. Cramer’s V determination of effect size for Chi-square.

Symmetric Measures

 Value

Approximate

Significance

Nominal by Nominal Phi .264 .071

Cramer's V .187 .071

N of Valid Cases 124

171

APPENDIX D

Statistical Analysis for Question 2

Research Question 2

A. Is there a difference in participant sort proximities to the probe sorts (6, 15,

21, 84, 85, 185, 193, 201) between members of collection 3 (membership = 0)

and collection 13 (membership = 1)?

B. How many reliable and interpretable structural exemplar sorts are derivable

from the collections of sorts produced by those participants most likely to

have attained the desired level of programing skill?

Null and Alternative Hypotheses

HA0 = There is no difference in participant sort proximities to the probe sorts (6, 15, 21,

84, 85, 185, 193, 201) between members of collection 3 and collection 13.

HAa = There is a difference in participant sort proximities to the probe sorts (6, 15, 21, 84,

85, 185, 193, 201) between members of collection 3 and collection 13.

HB0 = No reliable and interpretable structural exemplar sorts are derivable from the

collections of sorts produced by those participants most likely to have attained the

desired level of programing skill.

HBa = Reliable and interpretable structural exemplar sorts are derivable from the

collections of sorts produced by those participants most likely to have attained the

desired level of programing skill.

172

Assumption Testing for Independent Samples t-tests

There are no missing data values among membership in Collection 13 groups

(Yes, No) for each of the sets of proximity values to the exemplar sorts categorized by

(Figure 45). The groups are independent as the membership in collections 3 (membership

= 0) and 13 (membership = 1) is mutually exclusive. The dependent variables are the

scalar edit distance between participant sorts and each exemplar sort.

Figure 45. Case Process Summary for the membership groups for the set of proximity
values to the exemplar sorts.

Three cases of outliers were found among participant sort proximities to exemplar

6 in collection 3 (membership = 0). No other significant outliers exist (Figure 46).

Case Processing Summary

membership

Cases
 Valid Missing Total
 N Percent N Percent N Percent

Exemplar 6 0 32 100.0% 0 0.0% 32 100.0%

1 23 100.0% 0 0.0% 23 100.0%

Exemplar 15 0 32 100.0% 0 0.0% 32 100.0%

1 23 100.0% 0 0.0% 23 100.0%

Exemplar 21 0 32 100.0% 0 0.0% 32 100.0%

1 23 100.0% 0 0.0% 23 100.0%

Exemplar 185 0 32 100.0% 0 0.0% 32 100.0%

1 23 100.0% 0 0.0% 23 100.0%

Exemplar 193 0 32 100.0% 0 0.0% 32 100.0%

1 23 100.0% 0 0.0% 23 100.0%

Exemplar 201 0 32 100.0% 0 0.0% 32 100.0%

1 23 100.0% 0 0.0% 23 100.0%

Sort 84 0 32 100.0% 0 0.0% 32 100.0%

1 23 100.0% 0 0.0% 23 100.0%

Sort 85 0 32 100.0% 0 0.0% 32 100.0%

1 23 100.0% 0 0.0% 23 100.0%

173

Figure 46. Box and whiskers plots for memberships groups for proximity to the exemplar
sorts.

Inspection of Kolmogorov-Smirnov statistics (Figure 47) indicated that

proximities to each of the eight probe sorts for members of collection 13 (membership =

1) and proximities to sorts 85, 185, and 201 for members of collection 3 (membership =

174

0) had significance > .05 indicating normal frequency distributions. Kolmogorov-

Smirnov statistics for participant sort proximities to sorts 6, 15, 21, 84, and 193 for

members of collection 3 were < .05. However, calculated z-scores (Figure 48) for all

distributions except for proximities to sort 6 fell within +/- 3. Based on the Kolmogorov-

Smirnov and z-scores, distributions for proximity to all sorts except sort 6 were assumed

to be normal. Statistical analysis was conducted for the remaining sorts.

Levene’s test for homogeneity (Figure 50) was found to be significant, indicating

homogeneity of variance, when comparing groups for proximity to sorts 84, 85, and 185,

but not significant when comparing groups for proximity to sorts 6, 15, 21, 193, or 201.

Results of t-tests were interpreted according.

175

Figure 47. Test of Normality for the membership groups for the set of proximity values
to the exemplar sorts.

Tests of Normality

membership

Kolmogorov-Smirnova Shapiro-Wilk
 Statistic df Sig. Statistic df Sig.

Exemplar 6 0 .185 32 .007 .846 32 .000

1 .150 23 .194 .925 23 .084

Exemplar 15 0 .186 32 .006 .957 32 .234

1 .112 23 .200* .947 23 .259

Exemplar 21 0 .171 32 .018 .965 32 .382

1 .121 23 .200* .946 23 .243

Exemplar 185 0 .131 32 .172 .954 32 .187

1 .115 23 .200* .972 23 .743

Exemplar 193 0 .174 32 .015 .950 32 .147

1 .116 23 .200* .961 23 .480

Exemplar 201 0 .144 32 .089 .935 32 .053

1 .137 23 .200* .943 23 .209

Sort 84 0 .182 32 .009 .947 32 .115

1 .163 23 .117 .958 23 .418

Sort 85 0 .132 32 .166 .948 32 .124

1 .150 23 .196 .935 23 .141

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

176

Figure 48. Z-Scores for membership groups for proximity to each of the exemplar sorts.

177

Figure 49. Test of Homogeneity of Variance for the membership groups for the set of
proximity values to the exemplar sorts.

Test of Homogeneity of Variance
 Levene Statistic df1 df2 Sig.

Exemplar 6 Based on Mean 4.663 1 53 .035

Based on Median 3.547 1 53 .065

Based on Median and with

adjusted df

3.547 1 52.996 .065

Based on trimmed mean 4.573 1 53 .037

Exemplar 15 Based on Mean 4.662 1 53 .035

Based on Median 4.354 1 53 .042

Based on Median and with

adjusted df

4.354 1 50.334 .042

Based on trimmed mean 4.611 1 53 .036

Exemplar 21 Based on Mean 10.490 1 53 .002

Based on Median 8.817 1 53 .004

Based on Median and with

adjusted df

8.817 1 39.983 .005

Based on trimmed mean 10.379 1 53 .002

Exemplar 185 Based on Mean 1.426 1 53 .238

Based on Median 1.267 1 53 .265

Based on Median and with

adjusted df

1.267 1 48.998 .266

Based on trimmed mean 1.376 1 53 .246

Exemplar 193 Based on Mean 6.574 1 53 .013

Based on Median 5.138 1 53 .028

Based on Median and with

adjusted df

5.138 1 42.680 .029

Based on trimmed mean 6.632 1 53 .013

Exemplar 201 Based on Mean 3.987 1 53 .051

Based on Median 3.558 1 53 .065

Based on Median and with

adjusted df

3.558 1 52.964 .065

Based on trimmed mean 4.097 1 53 .048

Sort 84 Based on Mean .908 1 53 .345

Based on Median .455 1 53 .503

Based on Median and with

adjusted df

.455 1 49.598 .503

Based on trimmed mean .911 1 53 .344

Sort 85 Based on Mean .244 1 53 .623

178

Summary of Assumption Testing for independent samples t-tests: The

assumptions of dependent Interval data and Independence for the membership in

collections 3 (membership = 0) and 13 (membership = 1) are met for proximity to the

sorts 6, 15, 21, 84, 85, 185, 193, and 201. Three outlying cases found in the proximities

to sort 6 for members of collection 3 (membership = 0) were removed from the dataset

and the distributions re-examined (Figure 50) and found to be normal, but with unequal

variances.

Based upon the Kolmogorov-Smirnov statistics and z-scores, all distributions

were assumed to be normal. Variances between groups were found to be equal for

proximities to sorts 84, 85, and 185, but unequal for proximity to sorts 6, 15, 21, 193, and

201.

Figure 50. Re-test of assumptions for membership groups proximity to Exemplar 6 with
outliers removed.

179

Results of Statistical Significance of t-tests

Eight independent samples t-tests were calculated to compare the mean scores of

participants in collection 3 (membership = 0) to those of collection 13 (membership = 1)

on the proximities to sorts 6, 15, 21, 84, 85, 185, 193, and 201 (Figure 51).

No statistically significant difference was found for participant sort proximities to

sorts 15 [t(36.9) = 1.66, p > .05], 84 [t(53) = -.58, p > .05], 85 [t(53) = -.08, p > .05], or

193 [t(33.7) = 1.70, p > .05].

A statistically significant difference was found for participant sort proximities to

sort 6 [t(28.2) = 3.09, p = .004]. The mean proximity for members of collection 3 (m =

15.62, sd = 2.19) was statistically significantly farther from sort 6 than the mean

proximity for members of collection 13 (m = 12.04, sd = 5.19). An r of .25 was

calculated which is a small to medium effect.

The sorts of participants in collection 13 were found to be closer in proximity to

sort 6 than members of collection 3 and that this difference between groups accounted for

6% of the variance in proximity values.

A statistically significant difference was found for participant sort proximities to

sort 21 [t(31.1) = 2.47, p = .019]. The mean proximity for members of collection 3 (m =

14.50, sd = 2.08) was statistically significantly further from sort 21 than the mean

proximity for members of collection 13 (m = 12.30, sd = 3.88). An r of .16 was

calculated which is a small effect.

The sorts of participants in collection 13 were found to be closer in proximity to

sort 21 than members of collection 3 and that this difference between groups accounted

for 3% of the variance in proximity values.

180

Figure 51. Independent samples t-test between membership groups for proximities to
each exemplar sort.

A statistically significant difference was found for participant sort proximities to

sort 185 [t(53) = 2.29, p = .026]. The mean proximity for members of collection 3 (m =

13.47, sd = 1.92) was statistically significantly further from sort 185 than the mean

Levene's Test t-test for Equality of Means

F Sig. t df
Sig. (2-
tailed)

Mean
Difference

Std. Error
Difference

95% Confidence Interval of the Difference
Lower Upper

Exemplar 6 Equal
variances
assumed

19.440 .000 3.358 50 .002 3.577 1.065 1.438 5.717

Equal
variances not
assumed

3.093 28.231 .004 3.577 1.157 1.209 5.946

Exemplar 15 Equal
variances
assumed

4.662 .035 1.759 53 .084 1.466 .833 -.206 3.138

Equal
variances not
assumed

1.661 36.944 .105 1.466 .883 -.322 3.254

Exemplar 21 Equal
variances
assumed

10.490 .002 2.712 53 .009 2.196 .810 .572 3.820

Equal
variances not
assumed

2.472 31.087 .019 2.196 .888 .384 4.007

Exemplar
185

Equal
variances
assumed

1.426 .238 2.288 53 .026 1.338 .585 .165 2.511

Equal
variances not
assumed

2.203 40.510 .033 1.338 .607 .111 2.566

Exemplar
193

Equal
variances
assumed

6.574 .013 1.839 53 .072 1.311 .713 -.119 2.741

Equal
variances not
assumed

1.704 33.724 .098 1.311 .769 -.253 2.875

Exemplar
201

Equal
variances
assumed

3.987 .051 2.234 53 .030 2.534 1.134 .259 4.809

Equal
variances not
assumed

2.130 38.714 .040 2.534 1.190 .127 4.941

Sort 84 Equal
variances
assumed

.908 .345 -.580 53 .564 -.257 .443 -1.145 .631

Equal
variances not
assumed

-.592 50.590 .557 -.257 .434 -1.128 .615

Sort 85 Equal
variances
assumed

.244 .623 -.075 53 .941 -.034 .453 -.943 .875

Equal
variances not
assumed

-.074 45.394 .941 -.034 .459 -.958 .890

181

proximity for members of collection 13 (m = 12.13, sd = 2.42). An r of .09 was

calculated which is a small effect.

The sorts of participants in collection 13 were found to be closer in proximity to

sort 185 than members of collection 3 and that this difference between groups accounted

for less than 1% of the variance in proximity values.

A statistically significant difference was found for participant sort proximities to

sort 201 [t(53) = 2.23, p = .03]. The mean proximity for members of collection 3 (m =

13.97, sd = 3.60) was statistically significantly further from sort 201 than the mean

proximity for members of collection 13 (m = 11.43, sd = 4.82). An r of .08 was

calculated which is a small effect.

The sorts of participants in collection 13 were found to be closer in proximity to

sort 201 than members of collection 3 and that this difference between groups accounted

for less than 1% of the variance in proximity values.

Assumption Testing for Binary Logistic Regression (Mertler & Vannatta, 2013)

After removal of cases of multivariant and univariate outliers for the independent

samples t-tests, there are 52 cases representing participants in collections 3 (n = 29) and

13 (n = 23). Testing with all four predictors at once yields a ratio of 13 cases to predictor.

A minimum of 15 cases per predictor is recommended (Pallant, 2001). Therefore,

Logistic regression will be performed on combinations of three of the four predictors at a

time, yielding a ratio greater than 17.

Evidence of multicollinearity among predictors was investigated by performing a

multiple regression and examining the Collinearity Statistics (Figure 52). Tolerances for

182

each of the predictors were greater than .1 and all of the VIFs were less than 10 indicating

that no predictors explained the same construct.

Figure 52. Collinearity statistics for Exemplars 6, 21, 201, and 185.

Results of Logistic Regression

A forward binary logistic regression was performed (Figure 53) to determine

which of the independent variables (proximities to exemplars 6, 21, 185, and 201) are

reliable predictors of participant membership in collection 13, the group most likely to

have conceptual representations that demonstrate attainment of the desired level of

learning. Analysis was performed on combinations of three of the four predictors at a

time as discussed above in the assumptions. Using the predictors 6, 21, and 201 produced

the most favorable results with the overall model fit with the predictors proximity to

exemplar 6, and proximity to exemplar 21 being statistically reliable in distinguishing

between sorts submitted by members of collections 3 (membership = 0) and 13

(membership = 1) [-2 Log likelihood = 51.76, X2(2) = 19.63, p < .001] . The model

Coefficientsa

Model

Unstandardized

Coefficients

Standardized

Coefficients

t Sig.

95.0% Confidence

Interval for B

Collinearity

Statistics

B Std. Error Beta

Lower

Bound

Upper

Bound Tolerance VIF

1 (Constant) 2.057 .401 5.135 .000 1.251 2.863
Exemplar 6 -.058 .027 -.486 -2.146 .037 -.113 -.004 .281 3.557

Exemplar

21

-.059 .025 -.360 -2.307 .026 -.110 -.007 .593 1.685

Exemplar

201

.004 .027 .035 .151 .881 -.051 .059 .270 3.699

Exemplar

185

-.005 .036 -.022 -.136 .892 -.078 .068 .560 1.787

a. Dependent Variable: membership

183

correctly classified 15 of 23 (65.2%) as being members in collection 13, and correctly

classified 73.1 % of cases overall.

Wald statistics (Figure 54) indicate that the proximity of a student’s sorts to both

exemplar 6 and exemplar 21 significantly predicted their level of attainment of student

outcome 2. The odds ratios for these two variables indicate a decrease in the likelihood of

having attained the learning objective as the proximity value to either of these exemplars

increases, or stated conversely, a closer proximity to the exemplars increases the

likelihood of a student demonstrating a level of conceptual development representative of

having attained the learning objective.

184

Figure 53. Logistic Regression Model results showing correct prediction rate for
membership in the most-likely with two variables is 65%.

Model Summary

Step -2 Log likelihood

Cox & Snell R

Square

Nagelkerke R

Square

1 60.703a .186 .249

2 51.762a .314 .421

a. Estimation terminated at iteration number 5 because

parameter estimates changed by less than .001.
Omnibus Tests of Model Coefficients

 Chi-square df Sig.

Step 1 Step 10.690 1 .001

Block 10.690 1 .001

Model 10.690 1 .001

Step 2 Step 8.941 1 .003

Block 19.631 2 .000

Model 19.631 2 .000

Classification Tablea

Observed

Predicted
 membership Percentage

Correct 0 1

Step 1 membership 0 24 5 82.8

1 10 13 56.5

Overall Percentage 71.2

Step 2 membership 0 23 6 79.3

1 8 15 65.2

Overall Percentage 73.1

a. The cut value is .500

185

Figure 54. Logistic Regression results showing Exemplars 6 and 21 in the solution.

Variables in the Equation
 B S.E. Wald df Sig. Exp(B)

Step 1a Exemplar 6 -.269 .100 7.262 1 .007 .764

Constant 3.582 1.479 5.865 1 .015 35.949

Step 2b Exemplar 21 -.358 .140 6.568 1 .010 .699

Exemplar 6 -.328 .113 8.399 1 .004 .720

Constant 9.259 2.945 9.887 1 .002 10502.616

a. Variable(s) entered on step 1: Exemplar 6.

b. Variable(s) entered on step 2: Exemplar 21.

186

APPENDIX E

Statistical Analysis for Question 3

Research Question 3

Is there a statistically significant difference among the categories of computer

science students’ progression through milestones of coursework attainment (introductory,

completing, and mid-program) on the dependent variable, the edit distance between

participant’s card sorts to the exemplar sorts (sorts 6, 21, 185, and 201)?

Null and Alternative Hypotheses

H0 = There are no statistically significant differences among the categories of computer

science students’ progression through milestones of coursework attainment

(introductory, completing, and mid-program) on the dependent variable, the edit

distance between participant’s card sorts to the exemplar sorts (sorts 6, 21, 185,

and 201).

Ha = There are statistically significant differences among the categories of computer

science students’ progression through milestones of coursework attainment

(introductory, completing, and mid-program) on the dependent variable, the edit

distance between participant’s card sorts to the exemplar sorts (sorts 6, 21, 185,

and 201).

Assumption Testing for ANOVA

There are no missing data values for testing Proximity to the Exemplar sorts by

Coursework Attainment (Figure 55). It is noted that the categorizations of participants by

levels of coursework attainment result in three groups of unequal sizes (i.e., n = 50, 45,

and 29).

187

The groups are independent as the membership in the categorical groups of

coursework attainment is mutually exclusive. The dependent variables are the scalar edit

distance between participant sorts and each exemplar sort.

Figure 55. Case Process Summary for mean values of proximity to Exemplars 6, 21, 185,
and 201 for categories of coursework attainment (Introductory, Mid program,
Completing).

Outliers were found in the several groups of data as shown in Figure 56. Three

cases were found among the Introductory students’ sorts proximity to Exemplar 6. These

data points fell below two standard deviations from the mean. These data were recoded,

in a new variable, to the lowest value (i.e., 7) within two standard deviations from the

mean. Also, the exemplar sorts 21 and 185 were submitted by participants in the

Completing group. This resulted in outlying values of 0 for testing the proximity to

Exemplar 21, and to Exemplar 185. These data were recoded, in new variables, to the

Case Processing Summary

Coursework Attainment

Cases
 Valid Missing Total
 N Percent N Percent N Percent

Proximity to 6 Introductory 50 100.0% 0 0.0% 50 100.0%

Mid Program 45 100.0% 0 0.0% 45 100.0%

Completing 29 100.0% 0 0.0% 29 100.0%

Proximity to 21 Introductory 50 100.0% 0 0.0% 50 100.0%

Mid Program 45 100.0% 0 0.0% 45 100.0%

Completing 29 100.0% 0 0.0% 29 100.0%

Proximity to 185 Introductory 50 100.0% 0 0.0% 50 100.0%

Mid Program 45 100.0% 0 0.0% 45 100.0%

Completing 29 100.0% 0 0.0% 29 100.0%

Proximity to 201 Introductory 50 100.0% 0 0.0% 50 100.0%

Mid Program 45 100.0% 0 0.0% 45 100.0%

Completing 29 100.0% 0 0.0% 29 100.0%

188

lowest value within two standard deviations from the mean: 5 for proximity to Exemplar

21, and 7 for proximity to Exemplar 185.

After recoding the outliers, all data fall within the box and whiskers plots and are

included in the following descriptive statistics and analyses.

Figure 56. Box and whiskers plots for of proximity to Exemplars 6, 21, 185, and 201 for
categories of coursework attainment (Introductory, Mid program, Completing).

An inspection of the Kolmogorov-Smirnov (Figure 57) indicated significance

levels lower than .05 for all groups except the Completing students in proximity to

Exemplars 6 and 185. Calculation of the z-scores (Figure 58) indicates that all data values

fall within +/- 3 standard deviations. Therefore, normality is assumed.

Levene’s test for homogeneity was found to be significant, indicating

homogeneity, when comparing groups for Proximity to Exemplars 185 and 201, but not

significant when comparing groups for Proximity to Exemplars 6 or 21.

189

Figure 57. Test of Normality of proximity to Exemplars 6, 21, 185, and 201 as
categorized by coursework attainment (Introductory, Mid program, Completing).

Figure 58. Z-Scores for proximities to Exemplars 6, 21, 185, and 201 as categorized by
coursework attainment (Introductory, Mid program, Completing).

Tests of Normality

Coursework Attainment

Kolmogorov-Smirnova Shapiro-Wilk
 Statistic df Sig. Statistic df Sig.

Proximity to 6 Introductory .130 50 .035 .940 50 .014

Mid Program .177 45 .001 .932 45 .011

Completing .152 29 .084 .970 29 .546

Proximity to 21 Introductory .137 50 .019 .961 50 .096

Mid Program .151 45 .012 .961 45 .136

Completing .186 29 .012 .946 29 .148

Proximity to 185 Introductory .126 50 .045 .946 50 .023

Mid Program .158 45 .007 .956 45 .088

Completing .152 29 .086 .955 29 .241

Proximity to 201 Introductory .136 50 .022 .952 50 .042

Mid Program .158 45 .007 .951 45 .056

Completing .167 29 .037 .946 29 .141

a. Lilliefors Significance Correction

190

Figure 59. Test of Homogeneity of Variance for proximities to Exemplars 6, 21, 185, and
201 as categorized by coursework attainment (Introductory, Mid program, Completing).

Summary of Assumption Testing for ANOVA: The assumptions of dependent

Interval data and Independence of the factoring variables are met for proximity to the

four exemplar sorts of Research Question 3. Outlying data values, including two of the

exemplar sorts themselves, were recoded to values two standard deviations below the

mean. Based upon z-scores, normality was assumed. Homogeneity of variance among

groups was indicated for comparing proximities to exemplars 185 and 201 so ANOVA

post hoc analysis will be performed using Bonferroni. Since unequal variances were

indicated among the groups for comparison of proximities to exemplars 6 and 21,

ANOVA post hoc analysis will be performed using Dunnett T3, which yields

conservative results with unequal variances and equal or unequal group sizes (Shingala &

Rajyaguru, 2015).

Test of Homogeneity of Variance
 Levene Statistic df1 df2 Sig.

Proximity to 6 Based on Mean 5.618 2 121 .005

Based on Median 3.149 2 121 .046

Based on Median and with adjusted df 3.149 2 108.487 .047

Based on trimmed mean 5.305 2 121 .006

Proximity to 21 Based on Mean 5.314 2 121 .006

Based on Median 3.466 2 121 .034

Based on Median and with adjusted df 3.466 2 93.967 .035

Based on trimmed mean 5.139 2 121 .007

Proximity to 185 Based on Mean .567 2 121 .569

Based on Median .654 2 121 .522

Based on Median and with adjusted df .654 2 114.627 .522

Based on trimmed mean .567 2 121 .569

Proximity to 201 Based on Mean 1.822 2 121 .166

Based on Median 1.005 2 121 .369

Based on Median and with adjusted df 1.005 2 107.823 .370

Based on trimmed mean 1.777 2 121 .174

191

Results of Statistical Significance for Proximity to Exemplar Sort 6

A one-way ANOVA compared participants’ sort proximity to exemplar sort 6

grouped by participant coursework attainment (Figure 60). For the entire model, no

statistically significant difference was found based on category of coursework attainment,

F(2,121) = 1.15, p > .05, ƞ2 = .02. The effect size was ƞ2 = .02; a small effect size (Kirk,

1996) indicating that 2% of the variance of proximities to exemplar sort 6 was explained

by a student’s level of coursework attainment.

Figure 60. One-way ANOVA comparing proximities to Exemplar sort 6 by category of
coursework attainment.

The analysis revealed the following means and standard deviations (Figure 61) for

each level of coursework attainment: a) Introductory students (m = 14.26, sd = 3.52), b)

Mid program students (m = 13.42, sd = 5.09), and c) Completing students (m = 12.69, sd

= 5.15). Post hoc tests using Dunnett T3 found no statistically significant difference

among the groups (Figure 62).

Tests of Between-Subjects Effects
Dependent Variable: Proximity to 6

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 47.220a 2 23.610 1.148 .321 .019

Intercept 21248.796 1 21248.796 1033.068 .000 .895

courseCategory 47.220 2 23.610 1.148 .321 .019

Error 2488.805 121 20.569
Total 25433.000 124
Corrected Total 2536.024 123
a. R Squared = .019 (Adjusted R Squared = .002)

192

Figure 61. Mean and standard deviation statistics of proximities to Exemplar 6 for the
Introductory, Mid program, and Completing groups of participants.

Figure 62. Post hoc pair-wise comparisons among the categories of coursework
attainment for proximity to Exemplar 6.

Note in Figure 63 that higher proximity values indicate that a participant’s sort

has low similarity with the exemplar; while lower proximity values indicate the

participant sort is more similar to the exemplar. Examination of the mean proximities for

each level of coursework attainment indicate that proximity to the exemplar decreased,

becoming more similar to the exemplar, relative to progressive levels of coursework

attainment (introductory, mid-program, and completing). Introductory student sorts had

Descriptive Statistics
Dependent Variable: Proximity to 6
Coursework Attainment Mean Std. Deviation N

Introductory 14.26 3.516 50

Mid Program 13.42 5.092 45

Completing 12.69 5.149 29

Total 13.59 4.541 124

193

the furthest proximity from the exemplar while completing student sorts had the nearest

proximities to the exemplar.

Figure 63. Line chart of mean proximity values to Exemplar 6 by categories of
coursework attainment.

Results of Statistical Significance for Proximity to Exemplar Sort 21

A one-way ANOVA compared participants’ sort proximity to exemplar sort 21

grouped by participant coursework attainment (Figure 64). For the entire model, a

statistically significant difference was found based on category of coursework attainment,

F(2,121) = 13.32, p < .001, ƞ2 = .18. The effect size was ƞ2 = .18; a large effect size

(Kirk, 1996) indicating that 18% of the variance of proximities to exemplar sort 21 was

explained by a student’s level of coursework attainment.

194

Figure 64. One-way ANOVA comparing proximities to Exemplar sort 21 by category of
coursework attainment.

The analysis revealed the following means and standard deviations (Figure 65) for

each level of coursework attainment: a) Introductory students (m = 14.46, sd = 2.09), b)

Mid program students (m = 13.58, sd = 2.29), and c) Completing students (m = 11.45, sd

= 3.37). Post hoc tests using Dunnett T3 found a statistically significant difference in the

means of Completing students to Mid program students (p = .013), and to Introductory

students (p < .001) respectively (Figure 66).

Figure 65. Mean and standard deviation statistics of proximities to Exemplar 21 for the
Introductory, Mid program, and Completing groups of participants.

Tests of Between-Subjects Effects
Dependent Variable: Proximity to 21

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 167.914a 2 83.957 13.322 .000 .180

Intercept 20326.560 1 20326.560 3225.295 .000 .964

courseCategory 167.914 2 83.957 13.322 .000 .180

Error 762.570 121 6.302
Total 23314.000 124
Corrected Total 930.484 123
a. R Squared = .180 (Adjusted R Squared = .167)

Descriptive Statistics
Dependent Variable: Proximity to 21
Coursework Attainment Mean Std. Deviation N

Introductory 14.46 2.092 50

Mid Program 13.58 2.291 45

Completing 11.45 3.366 29

Total 13.44 2.750 124

195

Figure 66. Post hoc pair-wise comparisons among the categories of coursework
attainment for proximity to Exemplar 21.

Note in Figure 67 that higher proximity values indicate that a participant’s sort

has low similarity with the exemplar; while lower proximity values indicate the

participant sort is more similar to the exemplar. Examination of the mean proximities for

each level of coursework attainment indicate that proximity to the exemplar decreased,

becoming more similar to the exemplar, relative to progressive levels of coursework

attainment (introductory, mid-program, and completing). Introductory student sorts had

the furthest proximity from the exemplar while completing student sorts had the nearest

proximities to the exemplar.

Multiple Comparisons
Dependent Variable: Proximity to 21
Dunnett T3

(I) Coursework

Attainment

(J) Coursework

Attainment

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence Interval

Lower

Bound

Upper

Bound

Introductory Mid Program .88 .452 .153 -.22 1.98

Completing 3.01* .691 .000 1.29 4.73

Mid Program Introductory -.88 .452 .153 -1.98 .22

Completing 2.13* .712 .013 .37 3.89

Completing Introductory -3.01* .691 .000 -4.73 -1.29

Mid Program -2.13* .712 .013 -3.89 -.37

Based on observed means.

 The error term is Mean Square(Error) = 6.302.

*. The mean difference is significant at the .05 level.

196

Figure 67. Line chart of mean proximity values to Exemplar 21 by categories of
coursework attainment.

Results of Statistical Significance for Proximity to Exemplar Sort 185

A one-way ANOVA compared participants’ sort proximity to exemplar sort 185

grouped by participant coursework attainment (Figure 68). For the entire model, a

statistically significant difference was found based on category of attainment, F(2,121) =

3.35, p = .038, ƞ2 = .05. The effect size was ƞ2 = .05; a small effect size (Kirk, 1996)

indicating that 5% of the variance of proximities to exemplar sort 185 was explained by a

student’s level of coursework attainment.

197

Figure 68. One-way ANOVA comparing proximities to Exemplar sort 185 by category
of coursework attainment.

The analysis revealed the following means and standard deviations (Figure 69) for

each level of coursework attainment: a Introductory students (m = 13.24, sd = 2.04), b)

Mid program students (m = 12.56, sd = 2.15), and c) Completing students (m = 11.97, sd

= 2.37). Post hoc tests using Bonferroni found a statistically significant difference in the

means of Completing students to Introductory students (p = .038) as shown in Figure 70.

Figure 69. Mean and standard deviation statistics of proximities to Exemplar 185 for the
Introductory, Mid program, and Completing groups of participants.

Tests of Between-Subjects Effects
Dependent Variable: Proximity to 185

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 31.158a 2 15.579 3.347 .038 .052

Intercept 18589.388 1 18589.388 3993.838 .000 .971

courseCategory 31.158 2 15.579 3.347 .038 .052

Error 563.197 121 4.655
Total 20574.000 124
Corrected Total 594.355 123
a. R Squared = .052 (Adjusted R Squared = .037)

Descriptive Statistics
Dependent Variable: Proximity to 185
Coursework Attainment Mean Std. Deviation N

Introductory 13.24 2.036 50

Mid Program 12.56 2.149 45

Completing 11.97 2.368 29

Total 12.69 2.198 124

198

Figure 70. Post hoc pair-wise comparisons among the categories of coursework
attainment for proximity to Exemplar 185.

Note in Figure 71 that higher proximity values indicate that a participant’s sort

has low similarity with the exemplar; while lower proximity values indicate the

participant sort is more similar to the exemplar. Examination of the mean proximities for

each level of coursework attainment indicate that proximity to the exemplar decreased,

becoming more similar to the exemplar, relative to progressive levels of coursework

attainment (introductory, mid-program, and completing). Introductory student sorts had

the furthest proximity from the exemplar while completing student sorts had the nearest

proximities to the exemplar.

Multiple Comparisons
Dependent Variable: Proximity to 185
Bonferroni

(I) Coursework

Attainment

(J) Coursework

Attainment

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence Interval

Lower

Bound

Upper

Bound

Introductory Mid Program .68 .443 .376 -.39 1.76

Completing 1.27* .504 .038 .05 2.50

Mid Program Introductory -.68 .443 .376 -1.76 .39

Completing .59 .514 .759 -.66 1.84

Completing Introductory -1.27* .504 .038 -2.50 -.05

Mid Program -.59 .514 .759 -1.84 .66

Based on observed means.

 The error term is Mean Square(Error) = 4.655.

*. The mean difference is significant at the .05 level.

199

Figure 71. Line chart of mean proximity values to Exemplar 185 by categories of
coursework attainment.

Results of Statistical Significance for Proximity to Exemplar Sort 201

A one-way ANOVA compared participants’ sort proximity to exemplar sort 201

grouped by participant coursework attainment (Figure 72). For the entire model, no

statistically significant difference was found based on category of coursework attainment,

F(2,121) =.641, p > .05, ƞ2 = .01. The effect size was ƞ2 = .01; a small effect size (Kirk,

1996) indicating that 1% of the variance of proximities to exemplar sort 201 was

explained by a student’s level of coursework attainment.

200

Figure 72. One-way ANOVA comparing proximities to Exemplar sort 201 by category
of coursework attainment.

The analysis revealed the following means and standard deviations (Figure 73) for

each level of coursework attainment: a) Introductory students (m = 13.48, sd = 3.80), b)

Mid program students (m = 12.49, sd = 4.76), and c) Completing students (m = 12.79, sd

= 4.59). Post hoc tests using Bonferroni found no statistically significant difference

among the groups (Figure 74).

Figure 73. Mean and standard deviation statistics of proximities to Exemplar 201 for the
Introductory, Mid program, and Completing groups of participants.

Tests of Between-Subjects Effects
Dependent Variable: Proximity to 201

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 24.315a 2 12.158 .641 .528 .010

Intercept 19587.933 1 19587.933 1032.973 .000 .895

courseCategory 24.315 2 12.158 .641 .528 .010

Error 2294.483 121 18.963
Total 23145.000 124
Corrected Total 2318.798 123
a. R Squared = .010 (Adjusted R Squared = -.006)

Descriptive Statistics
Dependent Variable: Proximity to 201
Coursework Attainment Mean Std. Deviation N

Introductory 13.48 3.797 50

Mid Program 12.49 4.761 45

Completing 12.79 4.593 29

Total 12.96 4.342 124

201

Figure 74. Post hoc pair-wise comparisons among the categories of coursework
attainment for proximity to Exemplar 201.

Note in Figure 75 that higher proximity values indicate that a participant’s sort

has low similarity with the exemplar; while lower proximity values indicate the

participant sort is more similar to the exemplar. Examination of the mean proximities for

each level of coursework attainment indicate that proximity to the exemplar decreased,

becoming more similar to the exemplar, as students progressed from the Introductory to

Mid program level of coursework and then increased for Completing students.

Introductory student sorts had the furthest proximity from the exemplar while mid

program student sorts had the nearest proximities to the exemplar.

Multiple Comparisons
Dependent Variable: Proximity to 201
Bonferroni

(I) Coursework

Attainment

(J) Coursework

Attainment

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence

Interval

Lower

Bound

Upper

Bound

Introductory Mid Program .99 .895 .811 -1.18 3.16

Completing .69 1.016 1.000 -1.78 3.15

Mid Program Introductory -.99 .895 .811 -3.16 1.18

Completing -.30 1.037 1.000 -2.82 2.21

Completing Introductory -.69 1.016 1.000 -3.15 1.78

Mid Program .30 1.037 1.000 -2.21 2.82

Based on observed means.

 The error term is Mean Square(Error) = 18.963.

202

Figure 75. Line chart of mean proximity values to Exemplar 201 by categories of
coursework attainment.

203

APPENDIX F

Statistical Analysis for Question 4

Research Question 4

Is there a statistically significant difference among the categories of computer

science students’ purposeful programming experience (light, moderate, and extensive) on

the dependent variable, the edit distance between participant’s card sorts to the exemplar

sorts (sorts 6, 21, 185, and 201)?

Null and Alternative Hypotheses

H0 = There are no statistically significant differences among the categories of computer

science students’ purposeful programming experience (light, moderate, and

extensive) on the dependent variable, the edit distance between participant’s card

sorts to the exemplar sorts (sorts 6, 21, 185, and 201).

Ha = There are statistically significant differences among the categories of computer

science students’ purposeful programming experience (light, moderate, and

extensive) on the dependent variable, the edit distance between participant’s card

sorts to the exemplar sorts (sorts 6, 21, 185, and 201).

Assumption Testing for ANOVA

There are no missing data values for testing Proximity to the Exemplar sorts by

Purposeful Experience (Figure 76). It is noted that the Light and Extensive groups are of

equal size while the Moderate group is 10% smaller.

The groups are independent as the membership in the categorical groups of

purposeful programming experience is mutually exclusive. The dependent variables are

the scalar edit distance between participant sorts and each exemplar sort.

204

Figure 76. Case Process Summary for mean values of proximity to Exemplars 6, 21, 185,
and 201 for categories of purposeful experience (Light, Moderate, Extensive).

Outliers were found in the several groups of data as shown in Figure 77. Three

cases were found among moderately experienced students’ sorts proximity to Exemplar

6. These data points fell below two standard deviations from the mean. These data were

recoded, in a new variable, to the lowest value (i.e., 7) within two standard deviations

from the mean. Also, the exemplar sorts 21 and 185 resulted in outlying values of 0 for

light experience students in testing the proximity to Exemplar 21, and to Exemplar 185.

These data were recoded, in new variables, to the lowest value within two standard

deviations from the mean: 5 for proximity to Exemplar 21, and 8 for proximity to

Exemplar 185. One other outlier was found for students with extensive experience

proximity to exemplar 21. This data point fell below two standard deviations from the

mean. The data were recoded, in a new variable, to the lowest value (i.e., 11) within two

standard deviations from the mean.

Case Processing Summary

Purposeful Experience

Cases
 Valid Missing Total
 N Percent N Percent N Percent

Proximity to 6 Light 43 100.0% 0 0.0% 43 100.0%

Moderate 38 100.0% 0 0.0% 38 100.0%

Extensive 43 100.0% 0 0.0% 43 100.0%

Proximity to 21 Light 43 100.0% 0 0.0% 43 100.0%

Moderate 38 100.0% 0 0.0% 38 100.0%

Extensive 43 100.0% 0 0.0% 43 100.0%

Proximity to 185 Light 43 100.0% 0 0.0% 43 100.0%

Moderate 38 100.0% 0 0.0% 38 100.0%

Extensive 43 100.0% 0 0.0% 43 100.0%

Proximity to 201 Light 43 100.0% 0 0.0% 43 100.0%

Moderate 38 100.0% 0 0.0% 38 100.0%

Extensive 43 100.0% 0 0.0% 43 100.0%

205

After recoding the outliers, all data fall within the box and whiskers plots and are

included in the following descriptive statistics and analyses.

Figure 77. Box and Whiskers plots for proximity to Exemplars 6, 21, 185, and 201 for
categories of purposeful experience (Light, Moderate, Extensive).

An inspection of the Kolmogorov-Smirnov (Figure 78) indicates significance

levels lower than .05 for all groups except the Extensive category in proximity to

Exemplar 6. Calculation of the z-scores (Figure 79) indicates that all data values fall

within +/- 3 standard deviations. Therefore, normality is assumed.

Levene’s test for homogeneity was found to be significant, indicating

homogeneity, when comparing groups for Proximity to Exemplars 21 and 185, but not

significant when comparing groups for Proximity to Exemplars 6 or 201.

206

Figure 78. Test of Normality for proximity to Exemplars 6, 21, 185, and 201 for
categories of purposeful experience (Light, Moderate, Extensive)

Figure 79. Z-Scores for proximity to Exemplars 6, 21, 185, and 201 for categories of
purposeful experience (Light, Moderate, Extensive).

Tests of Normality

Purposeful Experience

Kolmogorov-Smirnova Shapiro-Wilk
 Statistic df Sig. Statistic df Sig.

Proximity to 6 Light .154 43 .012 .960 43 .143

Moderate .200 38 .001 .893 38 .002

Extensive .114 43 .190 .955 43 .094

Proximity to 21 Light .184 43 .001 .935 43 .017

Moderate .175 38 .005 .947 38 .074

Extensive .143 43 .027 .945 43 .039

Proximity to 185 Light .135 43 .047 .970 43 .306

Moderate .147 38 .038 .974 38 .514

Extensive .142 43 .029 .960 43 .137

Proximity to 201 Light .148 43 .019 .963 43 .172

Moderate .170 38 .007 .924 38 .013

Extensive .158 43 .009 .943 43 .034

a. Lilliefors Significance Correction

207

Figure 80. Test of Homogeneity of Variance for proximity to Exemplars 6, 21, 185, and
201 for categories of purposeful experience (Light, Moderate, Extensive).

Summary of Assumption Testing for ANOVA: The assumptions of dependent

Interval data and Independence of the factoring variables are met for proximity to the

four exemplar sorts of Research Question 4. Outlying data values, including two of the

exemplar sorts themselves, were recoded to values two standard deviations below the

mean. Based upon z-scores, normality was assumed. Homogeneity of variance among

groups was indicated for comparing proximities to exemplars 21 and 185 so ANOVA

post hoc analysis will be performed using Bonferroni. Since unequal variances were

indicated among the groups for comparison of proximities to exemplars 6 and 201,

ANOVA post hoc analysis will be performed using Dunnett T3, which yields

conservative results with unequal variances and equal or unequal group sizes (Shingala &

Rajyaguru, 2015).

Test of Homogeneity of Variance
 Levene Statistic df1 df2 Sig.

Proximity to 6 Based on Mean 3.943 2 121 .022

Based on Median 3.038 2 121 .052

Based on Median and with adjusted df 3.038 2 113.464 .052

Based on trimmed mean 3.795 2 121 .025

Proximity to 21 Based on Mean 2.318 2 121 .103

Based on Median 1.327 2 121 .269

Based on Median and with adjusted df 1.327 2 95.826 .270

Based on trimmed mean 2.023 2 121 .137

Proximity to 185 Based on Mean .369 2 121 .692

Based on Median .240 2 121 .787

Based on Median and with adjusted df .240 2 117.696 .787

Based on trimmed mean .362 2 121 .697

Proximity to 201 Based on Mean 3.378 2 121 .037

Based on Median 3.260 2 121 .042

Based on Median and with adjusted df 3.260 2 114.691 .042

Based on trimmed mean 3.459 2 121 .035

208

Results Statistical Significance for Proximity to Exemplar Sort 6

A one-way ANOVA compared participants’ sort proximity to exemplar sort 6

grouped by level of participant programming experience (Figure 81). For the entire

model, no statistically significant difference was found based on category of purposeful

programming experience, F(2,121) = 1.78, p > .05, ƞ2 = .03. The effect size was ƞ2 = .03;

a small effect size (Kirk, 1996) indicating that 3% of the variance of proximities to

exemplar sort 6 was explained by a student’s level of programming experience.

Figure 81. One-way ANOVA comparing proximities to Exemplar sort 6 by category of
purposeful experience.

The analysis revealed the following means and standard deviations (Figure 82) for

each level of programming experience: a) Light (m = 12.70, sd = 5.34), b) Moderate (m =

14.61, sd = 3.70), and c) Extensive (m = 12.69, sd = 5.15). Post hoc tests using Dunnett

T3 found no statistically significant difference among the groups (Figure 83).

Tests of Between-Subjects Effects
Dependent Variable: Proximity to 6

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 73.500a 2 36.750 1.784 .172 .029

Intercept 22899.722 1 22899.722 1111.527 .000 .902

practiceCategory 73.500 2 36.750 1.784 .172 .029

Error 2492.846 121 20.602
Total 25409.000 124
Corrected Total 2566.347 123
a. R Squared = .029 (Adjusted R Squared = .013)

209

Figure 82. Mean and standard deviation statistics of proximities to Exemplar 6 for the
Light, Moderate, and Extensive categories of purposeful experience.

Figure 83. Post hoc pair-wise comparisons among the categories of purposeful
experience for proximity to Exemplar 6.

Note in Figure 84 that higher proximity values indicate that a participant’s sort

has low similarity with the exemplar; while lower proximity values indicate the

participant sort is more similar to the exemplar. Examination of the mean proximities for

each level of purposeful experience indicate that proximity to the exemplar increased,

becoming less similar to the exemplar, for participants with more than light programming

experience. However, students with extensive experience had lower proximity values

than those with moderate experience. Sorts of students with the least programming

Descriptive Statistics
Dependent Variable: Proximity to 6
Purposeful Experience Mean Std. Deviation N

Light 12.70 5.343 43

Moderate 14.61 3.702 38

Extensive 13.53 4.328 43

Total 13.57 4.568 124

Multiple Comparisons
Dependent Variable: Proximity to 6

(I) Purposeful

Experience

(J) Purposeful

Experience

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence

Interval
 Lower

Bound

Upper

Bound

Dunnett

T3

Light Moderate -1.91 1.012 .177 -4.38 .56

Extensive -.84 1.049 .810 -3.39 1.72

Moderate Light 1.91 1.012 .177 -.56 4.38

Extensive 1.07 .892 .547 -1.10 3.25

Extensive Light .84 1.049 .810 -1.72 3.39

Moderate -1.07 .892 .547 -3.25 1.10

Based on observed means.

 The error term is Mean Square(Error) = 20.602.

210

experience had the closest proximity to the exemplar while sorts of students with a

moderate amount of programming experience had the farthest proximities to the

exemplar.

Figure 84. Line chart of mean proximity values to Exemplar 6 by categories of
purposeful experience.

Results Statistical Significance for Proximity to Exemplar Sort 21

A one-way ANOVA compared participants’ sort proximity to exemplar sort 21

grouped by level of participant programming experience (Figure 85). For the entire

model, a statistically significant difference was found based on category of purposeful

programming experience, F(2,121) = 8.04 p = .001, ƞ2 = .12. The effect size was ƞ2 = .12;

a medium to large effect size (Kirk, 1996) indicating that 12% of the variance of

proximities to exemplar sort 21 was explained by a student’s level of programming

experience.

211

Figure 85. One-way ANOVA comparing proximities to Exemplar sort 21 by category of
purposeful experience.

The analysis revealed the following means and standard deviations (Figure 86) for

each level of programming experience: a) Light (m = 12.37, sd = 3.12), b) Moderate (m =

13.45, sd = 2.27), and c) Extensive (m = 14.58, sd = 2.13). Post hoc tests using

Bonferroni found a statistically significant difference in the means of the Light

experience group to Extensive groups (p < .001) as shown in Figure 87.

Figure 86. Mean and standard deviation statistics of proximities to Exemplar 21 for the
Light, Moderate, and Extensive categories of purposeful experience.

Tests of Between-Subjects Effects
Dependent Variable: Proximity to 21

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 104.965a 2 52.482 8.039 .001 .117

Intercept 22412.290 1 22412.290 3433.175 .000 .966

practiceCategory 104.965 2 52.482 8.039 .001 .117

Error 789.906 121 6.528
Total 23386.000 124
Corrected Total 894.871 123
a. R Squared = .117 (Adjusted R Squared = .103)

Descriptive Statistics
Dependent Variable: Proximity to 21
Purposeful Experience Mean Std. Deviation N

Light 12.37 3.117 43

Moderate 13.45 2.274 38

Extensive 14.58 2.130 43

Total 13.47 2.697 124

212

Figure 87. Post hoc pair-wise comparisons among the categories of purposeful
experience for proximity to Exemplar 21.

Note in Figure 88 that higher proximity values indicate that a participant’s sort

has low similarity with the exemplar; while lower proximity values indicate the

participant sort is more similar to the exemplar. Examination of the mean proximities for

each level of purposeful experience indicate that proximity to the exemplar increased,

becoming less similar to the exemplar, relative to progressive levels of programming

experience (light, moderate, and extensive). Participants with light programming

experience had sorts with the nearest proximity to the exemplar while students with

extensive programming experience had sorts with the furthest proximities to the

exemplar.

Multiple Comparisons
Dependent Variable: Proximity to 21

(I) Purposeful

Experience

(J) Purposeful

Experience

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence

Interval
 Lower

Bound

Upper

Bound

Bonferroni Light Moderate -1.08 .569 .183 -2.46 .31

Extensive -2.21* .551 .000 -3.55 -.87

Moderate Light 1.08 .569 .183 -.31 2.46

Extensive -1.13 .569 .145 -2.52 .25

Extensive Light 2.21* .551 .000 .87 3.55

Moderate 1.13 .569 .145 -.25 2.52

Based on observed means.

 The error term is Mean Square(Error) = 6.528.

*. The mean difference is significant at the .05 level.

213

Figure 88. Line chart of mean proximity values to Exemplar 21 by categories of
purposeful experience.

Results Statistical Significance for Proximity to Exemplar Sort 185

A one-way ANOVA compared participants’ sort proximity to exemplar sort 185

grouped by level of participant programming experience (Figure 89). For the entire

model, a statistically significant difference was found based on category of purposeful

programming experience, F(2,121) = 3.23, p = .043, ƞ2 = .05. The effect size was ƞ2 =

.05; a small effect size (Kirk, 1996) indicating that 5% of the variance of proximities to

exemplar sort 185 was explained by a student’s level of programming experience.

214

Figure 89. One-way ANOVA comparing proximities to Exemplar sort 185 by category
of purposeful experience.

The analysis revealed the following means and standard deviations (Figure 90) for

each level of programming experience: a) Light (m = 12.16, sd = 2.13), b) Moderate (m =

12.61, sd = 2.31), and c) Extensive (m = 13.33, sd = 2.0). Post hoc tests using Bonferroni

found a statistically significant difference in the means of participants with Light

programming experience compared to those with Extensive experience (p = .039) as

shown in Figure 91.

Figure 90. Mean and standard deviation statistics of proximities to Exemplar 185 for the
Light, Moderate, and Extensive categories of purposeful experience.

Tests of Between-Subjects Effects
Dependent Variable: Proximity to 185

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 29.578a 2 14.789 3.228 .043 .051

Intercept 19925.532 1 19925.532 4348.973 .000 .973

practiceCategory 29.578 2 14.789 3.228 .043 .051

Error 554.381 121 4.582
Total 20589.000 124
Corrected Total 583.960 123
a. R Squared = .051 (Adjusted R Squared = .035)

Descriptive Statistics
Dependent Variable: Proximity to 185
Purposeful Experience Mean Std. Deviation N

Light 12.16 2.126 43

Moderate 12.61 2.308 38

Extensive 13.33 1.997 43

Total 12.70 2.179 124

215

Figure 91. Post hoc pair-wise comparisons among the categories of purposeful
experience for proximity to Exemplar 185.

Note in Figure 92 that higher proximity values indicate that a participant’s sort

has low similarity with the exemplar; while lower proximity values indicate the

participant sort is more similar to the exemplar. Examination of the mean proximities for

each level of purposeful experience indicate that proximity to the exemplar increased,

becoming less similar to the exemplar, relative to progressive levels of programming

experience (light, moderate, and extensive). Participants with the light programming

experience had sorts with the nearest proximity to the exemplar while student with

extensive programming experience had sorts with the furthest proximities to the

exemplar.

Multiple Comparisons
Dependent Variable: Proximity to 185

(I) Purposeful

Experience

(J) Purposeful

Experience

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence

Interval
 Lower

Bound

Upper

Bound

Bonferroni Light Moderate -.44 .477 1.000 -1.60 .71

Extensive -1.16* .462 .039 -2.28 -.04

Moderate Light .44 .477 1.000 -.71 1.60

Extensive -.72 .477 .400 -1.88 .44

Extensive Light 1.16* .462 .039 .04 2.28

Moderate .72 .477 .400 -.44 1.88

Based on observed means.

 The error term is Mean Square(Error) = 4.582.

*. The mean difference is significant at the .05 level.

216

Figure 92. Line chart of mean proximity values to Exemplar 185 by categories of
purposeful experience.

Results Statistical Significance for Proximity to Exemplar Sort 201

A one-way ANOVA compared participants’ sort proximity to exemplar sort 201

grouped by level of participant programming experience (Figure 93). For the entire

model, no statistically significant difference was found based on category of purposeful

programming experience, F(2,121) = 2.06, p > .05, ƞ2 = .03. The effect size was ƞ2 = .03;

a small effect size (Kirk, 1996) indicating that 3% of the variance of proximities to

exemplar sort 201 was explained by a student’s level of programming experience.

217

Figure 93. One-way ANOVA comparing proximities to Exemplar sort 201 by category
of purposeful experience.

The analysis revealed the following means and standard deviations (Figure 94) for

each level of programming experience: a) Light (m = 12.33, sd = 4.93), b) Moderate (m =

14.13, sd = 3.77), and c) Extensive (m = 12.56, sd = 4.34). Post hoc tests using Dunnett

T3 found no statistically significant difference among the groups (Figure 95).

Figure 94. Mean and standard deviation statistics of proximities to Exemplar 201 for the
Light, Moderate, and Extensive categories of purposeful experience.

Tests of Between-Subjects Effects
Dependent Variable: Proximity to 201

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 76.410a 2 38.205 2.062 .132 .033

Intercept 20901.381 1 20901.381 1127.845 .000 .903

practiceCategory 76.410 2 38.205 2.062 .132 .033

Error 2242.389 121 18.532
Total 23145.000 124
Corrected Total 2318.798 123
a. R Squared = .033 (Adjusted R Squared = .017)

Descriptive Statistics
Dependent Variable: Proximity to 201
Purposeful Experience Mean Std. Deviation N

Light 12.33 4.932 43

Moderate 14.13 3.772 38

Extensive 12.56 4.067 43

Total 12.96 4.342 124

218

Figure 95. Post hoc pair-wise comparisons among the categories of purposeful
experience for proximity to Exemplar 201.

Note in Figure 96 that higher proximity values indicate that a participant’s sort

has low similarity with the exemplar; while lower proximity values indicate the

participant sort is more similar to the exemplar. Examination of the mean proximities for

each level of purposeful experience indicate that proximity to the exemplar increased,

becoming less similar to the exemplar, for participants with more than light programming

experience. However, students with extensive experience had lower proximity values

than those with moderate experience. Sorts of students with the least programming

experience had the closest proximity to the exemplar while sorts of students with a

moderate amount of programming experience had the farthest proximities to the

exemplar.

Multiple Comparisons
Dependent Variable: Proximity to 201

(I) Purposeful

Experience

(J) Purposeful

Experience

Mean Difference

(I-J)

Std.

Error Sig.

95% Confidence

Interval
 Lower

Bound

Upper

Bound

Dunnett

T3

Light Moderate -1.81 .970 .185 -4.17 .56

Extensive -.23 .975 .993 -2.61 2.14

Moderate Light 1.81 .970 .185 -.56 4.17

Extensive 1.57 .871 .206 -.55 3.70

Extensive Light .23 .975 .993 -2.14 2.61

Moderate -1.57 .871 .206 -3.70 .55

Based on observed means.

 The error term is Mean Square(Error) = 18.532.

219

Figure 96. Line chart of mean proximity values to Exemplar 201 by categories of
purposeful experience.

220

APPENDIX G

Statistical Analysis for Question 1 Redux

Research Question

Is there a statistically significant difference among non-introductory participants

who submitted at least two card sorts categorized into thirds (Top, Average, Bottom)

according to cumulative computer science grade point averages?

Null Hypothesis

H0: There is no statistically significant difference among non-introductory participants

who submitted at least two cards sorts categorized into thirds (Top, Average,

Bottom) according to cumulative computer science grade point averages?

Assumption Testing

All assumptions were met. There were no missing data (Figure 97) and no outliers

(Figure 98). Kolmogorov-Smirnov statistics indicated normally distributed data (Figure

99). Levene’s statistic indicated homogeneity of variance (Figure 100) among the three

categories of GPA Ranking for non-introductory participants who submitted at least two

card sorts.

Figure 97. Case Processing Summary for non-introductory participants categorized by
GPA ranking. There are no missing cases.

Case Processing Summary

GPA Ranking

Cases
 Valid Missing Total
 N Percent N Percent N Percent

nmst Top 16 100.0% 0 0.0% 16 100.0%

Average 20 100.0% 0 0.0% 20 100.0%

Bottom 12 100.0% 0 0.0% 12 100.0%

221

Figure 98. Box and whiskers plots for NMST means by GPA ranking categories. No
outliers are observed.

Figure 99. Test of Normality of NMST means by GPA ranking categories. Kolmogorov-
Smirnov statistics are greater than .05 for each group indicating normal distributions.

Figure 100. Test of Homogeneity of Variance among the groups of GPA categories.
Levene’s statistic is greater than .05 indicating the assumption has been met.

Results of Statistical Significance

A one-way factorial analysis was conducted to compare non-introductory

participants who submitted at least two card sorts categorized into thirds (Top, Average,

Tests of Normality

GPA Ranking

Kolmogorov-Smirnova Shapiro-Wilk
 Statistic df Sig. Statistic df Sig.

nmst Top .142 16 .200* .956 16 .592

Average .129 20 .200* .947 20 .329

Bottom .188 12 .200* .924 12 .319

*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Test of Homogeneity of Variance
 Levene Statistic df1 df2 Sig.

nmst Based on Mean .017 2 45 .983

Based on Median .004 2 45 .996

Based on Median and with

adjusted df

.004 2 42.752 .996

Based on trimmed mean .011 2 45 .989

222

Bottom) according to cumulative computer science grade point averages. No statistically

significant difference on the entire model was found between the categories of GPA

Ranking, [F(2, 45) = .20, p = .82, ƞ2 = .009] as shown in Figure 101. Although not

statistically significant, the trend for mean values of NMST as shown in Figure 102

shows an increase with each step increase, from Bottom to Top, in GPA ranking

category. This trend is visualized in Figure 103.

Figure 101. One-way ANOVA comparing non-introductory participants who submitted
at least two card sorts categorized into thirds (Top, Average, Bottom) according to
cumulative computer science grade point averages. No statistically significant difference
is indicated.

Figure 102. Mean and standard deviation statistics of NMST values for the Bottom,
Average, and Top categories of GPA ranking.

Tests of Between-Subjects Effects
Dependent Variable: nmst

Source

Type III Sum of

Squares df Mean Square F Sig.

Partial Eta

Squared

Corrected Model 2.570a 2 1.285 .200 .820 .009

Intercept 2539.069 1 2539.069 394.464 .000 .898

gpa 2.570 2 1.285 .200 .820 .009

Error 289.654 45 6.437
Total 2959.573 48
Corrected Total 292.224 47
a. R Squared = .009 (Adjusted R Squared = -.035)

Descriptive Statistics
Dependent Variable: nmst
GPA Ranking Mean Std. Deviation N

Top 7.74791666869 2.49868021712

4

16

Average 7.40500001910 2.43032801664

8

20

Bottom 7.14583329400 2.75976795960

4

12

Total 7.45451388769 2.49349683817

6

48

223

Figure 103. Line chart of mean NMST values for the Top, Average, and Bottom
categories of GPA ranking.

224

APPENDIX H

Data Transformation Mappings

Table 9

Demographics

Survey Question

Number

Survey Prompt Survey Choice Assigned

Value

Interpretation

1 Classification level Freshman 1 Freshman

 Sophomore 2 Sophomore

 Junior 3 Junior

 Senior 4 Senior

 Graduate 5 Graduate

2 Intended Major CS 1 CS

 SE 2 SE

 DF 3 DF

 CS Minor 4 Non-CS

 Masters 5 Other

 Non-CS 4 Non-CS

 Open Response 5 Other

13 Year of Birth Open Response 2019 -

response

Age in years

14 Gender Female 1 Female

 Male 2 Male

 No Response 0 Non-Binary

225

 Open response -1 Non-Binary

15 Ethnicity Asian 1 Asian

 Black 2 Black

 Hispanic 3 Hispanic

 Indian 5 Other

 Middle Eastern 5 Other

 White 4 White

 Open Response 5 Other

226

Table 10

Self-Assessments

Survey Question

Number

Survey Prompt Survey Choice Assigned

Value

Interpretation

3 Experience completing programming assignments

 Complete in < 2 hours 5 < 2 hrs

 Complete in < 3 hours 4 < 3 hrs

 Struggle but complete >

3 hours

3 > 3 hrs

 Need help to complete 2 Need Help

 Don’t get it, hate to

code

1 Don’t get it

4 Competence as a programmer

 I can’t code 1 Can’t code

 Beginner 2 Beginner

 Confident I can

complete assignments

3 Confident

 Enjoy programming;

have few problems

4 Enjoy

 Really good; others

seek my help

5 Really Good

227

Table 11

Prior Programming Instruction

Survey Question

Number

Survey Prompt Survey Choice Assigned

Value

Points Assigned

5 Experience programming micro-devices

 Yes/No 1 or 0 1 or 0

6 Formal School Training (all that apply)

6a Elementary Yes/No 1 or 0 1 or 0

6b Middle Yes/No 1 or 0 1 or 0

6c HS Freshman Yes/No 1 or 0 1 or 0

6d HS Sophomore Yes/No 1 or 0 1 or 0

6e HS Junior Yes/No 1 or 0 1 or 0

6f HS Senior Yes/No 1 or 0 1 or 0

6g 2 Year College Yes/No 1 or 0 1 or 0

6h Other College Yes/No 1 or 0 1 or 0

7 Formal training

for a job

Yes/No 1 or 0 1 or 0

8 Informal training

8a For a job Yes/No 1 or 0 1 or 0

8b For personal

interest

Yes/No 1 or 0 1 or 0

228

Table 12

Purposeful Programming Experience

Survey Question

Number

Survey Prompt Survey Choice Assigned

Value

Points Assigned

9 Programming micro-devices

 None 0 0

 Minimal 1 0.5

 Long time ago 2 1.0

 Ready 3 1.5

 Very Comfortable 4 2.0

10 Creating web pages

 None 0 0

 Static pages 1 1

 Modify HTML 2 2

 Modify CSS 3 3

 Write Javascript 4 4

11 Creating web sites

 None 0 0

 Simple sites 1 1.2

 Tool-based sites 2 2.4

 Interact with server 3 3.6

 Interact with cloud 4 4.8

12 Using code project services

229

 None 0 0

 Retrieve apps 1 1.5

 Search for code 2 3.0

 Have own Library 3 4.5

 Use with team 4 6.0

230

APPENDIX I

 SPSS Variable Definitions for ParticipantStats dataset

Screenshot from SPSS:

231

APPENDIX J

Descriptive Statistics SPSS Output for ParticipantStats

232

233

234

235

236

237

238

APPENDIX K

Program Listing for Edit Distance Calculation

239

240

241

Program Execution:

242

APPENDIX L

Program Listing for Paricipant Orthogonality Calculation

243

244

Program Execution:

245

APPENDIX M

Structural Exemplar Calculations

Procedure: for each sort in the clique, sum its edit distances to all other sorts in

the clique. The structural exemplar sort is the sort with the shortest total of edit distances

(Deibel, Anderson, & Anderson, 2005).

Prominent sorts identified in collection 13 that are contained in cliques with more than

two sorts (Table 13, Table 14, and Table 15):

Table 13

Clique sequence 109: (6, 58, 130, 194, 201, 206)

Sort: 6 58 130 194 201 206 Total

6 0 5 5 5 7 5 27

58 5 0 8 4 8 6 31

130 5 8 0 8 8 8 37

194 5 4 8 0 8 6 31

201 7 8 8 8 0 6 37

206 5 6 8 6 6 0 31

Note. d-size = 8, 6 sorts, nmst = 4.17
The Structural exemplar is sort 6.

246

Table 14

Clique sequence 68: (12, 13, 14, 15, 51)

Sort: 12 13 14 15 51 Total

12 0 2 6 4 6 18

13 2 0 5 4 7 18

14 6 5 0 2 8 21

15 4 4 2 0 8 18

51 6 7 8 8 0 29

Note. d-size = 8, 5 sorts, nmst = 2.8
There is a tie between sorts 12, 13, and 15. Based upon examination of the
contents of these sorts, the Structural exemplar is 15.

247

Table 15

Clique sequence 110: (4, 21, 51, 74)

Sort: 4 15 21 51 74 Total

4 0 9 6 8 5 28

15 9 0 8 8 10 35

21 6 8 0 7 5 26

51 8 8 7 0 8 31

74 5 10 5 8 0 28

Note. d-size = 8, 4 sorts, nmst = 4.25 +
sequence 113: (15, 51, 21) d-size = 8, 3 sorts, nmst = 5
The Structural exemplar is sort 21.

248

APPENDIX N

Collections

Participants completed an online questionnaire that collected data such as their

university classification level, intended major, experiences in purposeful programming

outside of class, instruction in programming outside of the University, and self-

assessments of their ability to complete programming assignments and their overall

competency as a programmer. Appendix H lists the questions and how responses were

coded in the database. An interactive tool was written to allow the researcher to select

participants according to these data. Each selection of participants defined a specific

cross-section of the sample. These were referred to as collections. Each collection was

stored in the database and identified with a unique collection number. Queries were

written to extract the statistics and card sorts for participants belonging to a specific

collection number.

Fourteen collections in all were created. Some of these were created to explore the

dataset and gain a general understanding of the data. Later on, collections were created in

the search for a cross-section that most-likely represented participants who had attained

the desired level of conceptual development. These collections are described in Chapter

4, in the section on RQ2 – Identification of card sorts that exemplify the desired level of

conceptual development.

Following is the list of all fourteen collections, their selection criteria, and the

resulting number of participants and sorts.

- Collection 1: All participants categorized as Completing. 79 sorts from 29

participants.

249

- Collection 2: All participants categorized as Introductory. 100 sorts from 50

participants.

- Collection 3: Introductory participants with a university classification of

Freshman or Sophomore. 55 sorts from 32 participants. Comparison with

Collection 2 indicates that 18 juniors or seniors were enrolled in the

Introductory course.

- Collection 4: Juniors and Seniors categorized as Introductory with majors of

Computer Science, Software Engineering Technology, or Digital Forensics.

17 sorts from 5 participants.

- Collection 5: Juniors and Seniors categorized as Introductory with intended

majors categorized as Non-CS or Other. 28 sorts from 13 participants.

- Collection 6: Juniors and Seniors who self-reported as normally completing

programming assignments in three hours or less, with a GPA in the Average

or Top categories. 77 sorts from 27 participants.

- Collection 7: Participants with an intended major of Software Engineering

Technology. 37 sorts from 18 participants.

- Collection 8: Seniors in the Top category of GPA ranking with majors of

Computer Science, Software Engineering Technology, or Digital Forensics.

27 sorts from 13 participants.

- Collection 9: Juniors and Seniors with an NMST ranking in the Top or

Average categories of GPA ranking with majors of Computer Science,

Software Engineering Technology, or Digital Forensics. 107 sorts from 34

participants.

250

- Collection 10: All Juniors and Seniors who self-report their programming

competency as Really Good or Enjoy with few problems. 48 sorts from 18

participants.

- Collection 11: Seniors with an NMST ranking in the Top category. 71 sorts

from 20 participants.

- Collection 12: All Juniors and Seniors. 208 sorts from 79 participants.

- Collection 13: Juniors and Seniors who self-reported as completing

programming assignments in 3 hours or less, and who are also either

Confident in their programming competency, Enjoy programming with few

problems, or are Really Good. 76 sorts from 29 participants.

- Collection 14: Juniors and Seniors who are not in Collection 13. 122 sorts

from 46 participants.

251

APPENDIX O

IRB Approvals

252

253

VITA

M. Earnest Morrow

EDUCATION
Doctor of Education in Instructional Systems Design and Technology at Sam
Houston State University, August 2015 – Present.
Master of Education in Instructional Technology at Sam Houston State
University, August 2010 – May 2012.
Bachelor of Science in Business Administration (May 1972), Oklahoma State
University, Stillwater, Oklahoma.

PROFESSIONAL EMPLOYMENT
Information Technology Professional, Exxon / ExxonMobil, Houston, TX, June
1976 – April 2009. Responsibilities included: systems analysis and design,
systems support, leadership of projects, teams, and groups, systems
administration, network administration, database administration, preparation and
monitoring of budgets, evaluation of employee performance, recruiting and
interviewing new college hires, advising management on information technology
trends and implications.

PUBLICATIONS
Morrow, M. E., & Lee, D. (2019). Implementing individualized learning in a
legacy learning management system: A feasibility prototype for an online
statistics course. International Journal of Designs for Learning, 10(1), 131-144.

PRESENTATIONS AT PROFESSIONAL MEETINGS
Morrow, M. (2016). Delivering competency-based, personalized learning through
a legacy LMS. Presentation at 2016 Texas Distance Learning Association
(TxDLA) Annual Conference, San Antonio, TX.
Morrow, M. (2017). Uncharted Territories: Will Siri replace the instructor in
distance education? Presentation at TxDLA 2017 Annual Conference, Galveston,
TX, March 30.
Morrow, M. (2017). Using a chatbot to develop reflection in online learners.
Poster Presentation at 2017 ISTE Annual Conference, San Antonio, TX, June 28.

	Using knowledge elicitation techniques to establish a baseline of quantitative measures of computational thinking skill acquisition among university computer science students
	Using knowledge elicitation techniques to establish a baseline of quantitative measures of computational thinking skill acquisition among university computer science students
	DEDICATION
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	Introduction
	Background
	Statement of the Problem
	Theoretical Framework
	Personal Construct Theory and knowledge elicitation.
	Dreyfus model of skill acquisition. The Dreyfus model of skill acquisition describes changes in cognitive processing as a learner progresses in experience and ability from novice to expert (H. L. Dreyfus, Dreyfus, & Zadeh, 1987; S. E. Dreyfus & Dreyfu...
	Novice.
	Advanced Beginner.
	Competent.
	Proficient.
	Expert.
	Hypothesized framework for Computational Thinking.

	Definition of Terms
	Accreditation Board for Engineering and Technology (ABET). In the United States, ABET is the accrediting organization for post-secondary education programs in engineering and technology, including computer science. ABET establishes the criteria and th...
	Baseline indicators of skill acquisition progress. This study proposed to associate the desired level of skill acquisition for post-secondary computer science students with specific structural exemplar sorts of the stimuli set used for this study. The...
	Bloom’s taxonomy. Specific to this study, Bloom’s revised taxonomy of the cognitive domain specifies a hierarchy of cognitive tasks arranged by cognitive demand (Selby, 2015). The Bloom levels of cognitive tasks ordered from least demanding to the mos...
	Categorization. Categorization is an elemental cognitive process for collecting similar objects together. Specific to personal construct theory (Kelly, 1955) individuals make sense of the world by categorizing the objects sensed within it. An individu...
	Cluster analysis. A cluster analysis of card sorts seeks to discover similarity patterns in a collection of sorts. A cluster is a subset of the sort collection where the sorts within the cluster share a similarity. Qualitative methods of cluster analy...
	Cognitive conceptualizations and representations. For the purpose of this study these terms refer to the cognitive framework an individual constructs to organize and utilize knowledge as described in Piaget’s theory of cognitive development (Piaget & ...
	Cognitive processes and tasks. Cognitive processes and tasks are an individual’s mental procedures for utilizing the schema of knowledge. One enumeration and classification of these processes can be found in Blooms’ revised taxonomy of the cognitive d...
	Conceptual expertise. From prior studies of this type, conceptual expertise is the level of skill acquisition and cognitive processing of putative experts in the field (Krieter et al., 2016). One learning objective for computer science students at the...
	Cumulative GPA in Computer Science (CS) coursework. This measure is the grade point average of all of the computer science courses a student has completed to date at the institution.
	Edit distance. The edit distance metric is an indication of the structural similarity between exactly two sorts. The metric is calculated as the fewest number of elements of the stimuli set that must be moved from one category to another in order to m...
	Geek gene.
	Graduating CS seniors. For the purpose of this study, graduating seniors are computer science students who have completed 28 hours or more of computer science coursework with a cumulative GPA of at least 2.0 out of 4.0.
	Introductory CS course. The introductory computer science course at the participating institution is commonly referred to as Java 1. Learning objectives for this course are to learn the fundamental elements of the Java programming language, learn the ...
	Intermediate milestones of coursework attainment. Prior studies have identified differences in the conceptual expertise of seniors versus students of introductory courses. This study proposed to investigate how these differences manifest as students p...
	Knowledge elicitation. Knowledge elicitation is data collection from an individual of the cognitive representation of knowledge which they uniquely possess. The data collection tools for knowledge elicitation include repertory grids, laddering, and ca...
	Orthogonality of card sorts.
	Programming experience. As computer science students progress through their degree program they add to their experience in developing, testing, and implementing computer programs. Some of this time may occur prior to their entering the program, some o...
	Quantitative vs qualitative measures of conceptual expertise. A quantitative approach to assessing conceptual expertise in a field of knowledge is based on the edit distance metric to analyze the similarity or dissimilarity among two or more card sort...
	Proximity of card sorts. The proximity of one sort to another refers to the structural similarity of the two sorts. This measure is expressed as the edit distance between the two sorts. Specific to this study, the proximity measure of individuals’ sor...
	Schema. For the purpose of this study schema refers to the cognitive framework an individual constructs to organize and utilize knowledge as described in Piaget’s theory of cognitive development (Piaget & Inhelder, 1969).
	Skill acquisition. Skills in the cognitive domain involve tasks associated with transfer of knowledge such as applying, analyzing, evaluating, and creating (Anderson et al., 2001). Individual skills improve as they are repeated or practiced and there ...
	Stimuli set. For card sorting knowledge elicitation, each participant is presented with a set of cards, where each card contains an entity. These entities may be pictures, single words or phrases, or descriptions of individual situations or problems. ...
	Structural exemplar sort. Sorts within a cluster share a structural similarity as they are all within a specific edit distance of each other. The single sort in the cluster with the smallest total edit distance to all the other sorts in the cluster (i...

	Purpose of the Study
	Significance of the Study
	Research Questions
	Null Hypotheses
	Delimitations
	Limitations
	Assumptions
	Organization of the Study

	CHAPTER II
	Review of Literature
	Defining Programming Competencies
	Assessing CT Competencies
	Post-secondary Experiences with Programming Competencies
	Computational Practices as Acquired Skills
	Attaining Problem-solving Competency
	Problem-solving Competencies in Computer Science
	Summary

	CHAPTER III
	Methodology
	Research Questions
	Null Hypotheses
	Research Design
	Selection of Participants
	Instrumentation
	Card sort activity.
	Questionnaire.
	Document artifacts.
	Validity and reliability.

	Procedures
	Preparation.
	Collection.
	Analysis.

	Data Analysis
	Measures.
	Edit distance.
	Orthogonality.

	Methods.
	Clusters.
	Probe proximity.

	Tools.

	Summary

	CHAPTER IV
	Results
	Introduction
	Research Questions
	Null Hypotheses
	Data Collection Results
	Data Derivations and Transformations
	Participant Anonymization.
	Demographic categorizations.
	Other categorizations.
	Derivation of edit distance between card sorts.
	Orthogonality among card sorts.
	Descriptive participant statistics.

	RQ1 - Analysis of Relationship between Orthogonality and Categories of Achievement
	Summary of findings for research question 1.

	RQ 2 - Identification of Card Sorts that Exemplify the Desired Level of Conceptual Development
	Process.
	Analysis.
	Summary of findings for research question 2.

	RQ3 - Analysis of Variances between Proximity to Exemplar Sorts by Coursework Attainment
	Summary of findings for research question 3.

	RQ 4 - Analysis of Variances Between Proximity to Exemplar Sorts by Programming Experience
	Summary of findings for research question 4.

	Summary of Findings

	CHAPTER V
	Discussion and Conclusion
	Introduction
	Discussion
	Using the NMST measure for differentiating conceptual development levels.
	Using exemplars of desired categorization for differentiating conceptual development levels.
	Effects of programming experience and practice on proximity measures for differentiating conceptual development levels.

	Conclusion

	REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	APPENDIX G
	APPENDIX H
	APPENDIX I
	APPENDIX J
	APPENDIX K
	APPENDIX L
	APPENDIX M
	APPENDIX N
	APPENDIX O
	VITA

