
DIFFERENCE SETS AND THE SYMMETRIC DIFFERENCE PROPERTY

A Thesis

Presented to

The Faculty of the Department of Mathematics and Statistics

Sam Houston State University

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science

by

Matthew W. Williams

May, 2022

DIFFERENCE SETS AND THE SYMMETRIC DIFFERENCE PROPERTY

by

Matthew W. Williams

APPROVED:

 Kenneth Smith, PhD
 Committee Director

James Davis, PhD

 Committee Co-Director

Martin Malandro, PhD
Committee Member

Naomi Krawzik, PhD
Committee Member

John B. Pascarella, PhD
Dean, College of Science and Engineering
Technology

DEDICATION

This thesis/dissertation is dedicated to the Department of Mathematics and Statistics,

which is resided in the College of Science and Engineering Technology at Sam Houston

State University.

iii

ABSTRACT

Williams, Matthew W., Difference sets and the symmetric difference property. Master
of Science (Mathematics), May 2022, Sam Houston State University, Huntsville, Texas.

With the intent to discover block designs from groups of order 256 and higher that

have the symmetric difference property, we analyze these block designs through products

of groups that give smaller block designs with the symmetric difference property (SDP).

This research expands upon the knowledge of SDP designs by looking at designs that come

from groups of extremely high orders, which we analyze by looking at the difference sets

of these groups. This will give way to new SDP designs that can be analyzed and studied

in the near future.

KEY WORDS: Block designs, Groups, Difference sets, SDP.

iv

ACKNOWLEDGEMENTS

I would like to thank the members of my committee who have helped shape my thesis

after all this time, especially Dr. Ken Smith, who has been a major influence to the con-

struction of the thesis and the contents that are within it. I could not have accomplished all

of this work without him. Also, I would like to thank Dr. Edward Swim who has helped

provide me the information I needed on how to create a thesis in the SHSU style. Finally,

I would like to thank my friends and family, who have supported and enabled me to do my

best at everything that I do, and helped me in this part of my journey by being there for me

when I needed them the most.

v

PREFACE

This paper is a study of block designs and difference sets. Specifically, it looks into

whether or not these block designs and difference sets possess the Symmetric Difference

Property (SDP). In order to study these properties and topics, several other mathematical

topics must be introduced, including blocks, incidence matrices, group rings, hyperplanes,

Hadamard matrices and various other minor topics. We define difference sets, block de-

signs, and codes in order to study SDP designs that comes from groups of order 22m.

vi

TABLE OF CONTENTS

Page

DEDICATION . iii

ABSTRACT . iv

ACKNOWLEDGEMENTS . v

PREFACE . vi

TABLE OF CONTENTS . vii

CHAPTER

I INTRODUCTION . 1

SDP for difference sets . 1

Literature review. 1

II SYMMETRIC BLOCK DESIGNS 4

(v,k,λ) symmetric block designs 4

Bruck-Ryser Chowla Theorem . 7

Examples of symmetric block designs 8

Incidence matrices for symmetric designs 10

III DIFFERENCE SETS . 15

Definition and examples . 15

Multiplier conjecture . 18

Group rings . 19

Abelian and non-abelian difference sets. 22

IV HADAMARD DIFFERENCE SETS 26

Basic definitions . 26

Definition of Hadamard difference sets 27

vii

Hyperplane construction. 32

Product construction . 34

V DESIGNS WITH THE SYMMETRIC DIFFERENCE PROPERTY 41

SDP designs . 41

Examples of SDP and non-SDP difference sets 41

Rank of a matrix . 44

Codes of a design . 46

Product construction theorem of difference sets. 52

Motivation and climax . 54

Difference sets in larger groups . 55

Future research . 59

REFERENCES . 59

APPENDIX . 62

VITA . 115

viii

1

CHAPTER I

Introduction

SDP for difference sets

Designs and difference sets, and their relation to the Symmetric Difference Prop-

erty (or the SDP) is the focus of this research. Therefore, we will introduce topics and

ideas needed to understand difference sets and the SDP, including blocks, group rings, and

hyperplanes. Designs are ordered pairs that consists of a set (the points of a design) and

a collection of subsets of that set (where each subset is called a block) that follows certain

parameters. Furthermore, we say that a design has the Symmetric Difference Property, if

the symmetric difference of three blocks is a block or the complement of a block. A group

ring is a set of formal sums of products of an element in a commutative ring with identity

and an element in a finite group. Finally, a hyperplane is a subspace of a vector space V of

dimension one less than the dimension of V . All of these mathematical topics will be ex-

plored since they give way to the climax of the thesis: the construction of 6 non-isomorphic

SDP designs, which were formed by looking closely at a specific type of group (semi-direct

products of two groups with a specific order).

Literature review

This section goes over the sources used in the bibliography.

A course in combinatorics, by J.H. van Lint and R.M. Wilson [16], provides basic in-

formation about designs, group rings, and difference sets. The text is also helpful by stating

the definition of codes and the many applications of codes in a clear and understandable

way.

2

Combinatorial theory, by Marshall Hall Jr. [10], introduces difference sets and block

designs.

Abstract Algebra, by Dummit and Foote [8], is a professional, well-written text that

can be used to instruct higher-level algebra classes in well-recognized campuses. It gives

definitions and provides basic information about group rings, the mathematical topic that

is used in this thesis to expand on difference sets and the SDP.

Symplectic groups, symmetric designs, and line ovals, by W. M. Kantor, is a mathe-

matical article in the Journal of Algebra [12] that talks about symmetric designs, and also

introduces the Symmetric Difference Property (SDP).

Applied Linear Algebra, by P. J. Olver and Shakiban [14], is a college-level linear

algebra text. It provides a definition for vector spaces, which is ultimately used to set up

hyperplanes and the hyperplane construction of difference sets.

Exponential numbers of two-weight codes, difference sets and symmetric designs, by W.

M. Kantor [13], illustrates the lower bounds on the parameters of the (v,k,λ) symmetric

designs and the codes that are derived from them. It accomplishes this by looking at a

vector space V over the field {0,1} and a group and then derives certain parameters early

on and then uses those parameters to define the rank of codes and incidence matrices.

This research follows the ideas described in the following three papers: Designs with

the symmetric difference property on 64 points and their groups, by C. Parker, E. Spence,

and V. D. Tonchev [15], On symmetric and quasi-symmetric designs with the symmetric

difference property and their codes, by D. Jungnickel and V. D. Tonchev [11], and Abelian

difference sets with the symmetric difference property, by J. A. Davis, J. J. Hoo, C. Kissane,

3

Z. Liu, C. Reedy, K. Sharma, K. Smith, and Y. Sun [5]. Designs with the symmetric dif-

ference property on 64 points and their groups is an article that looks over symmetric and

non-symmetric (v,k,λ) designs, and puts some emphasis on the designs/groups of size 64.

It also looks at the binary codes and minimum weights of these designs/groups. On sym-

metric and quasi-symmetric designs with the symmetric difference property and their codes

gives parameters needed for a design to have the SDP and gives theorems that help derive

the SDP designs of order 256 or higher. Abelian difference sets with the symmetric differ-

ence property gives various theorems and proofs that are connected to difference sets and

designs with the Symmetric Difference Property.

Finally, the free software, GAP-Groups, Algorithms, and Programming, Version 4.11.1

[9], helped find SDP difference sets and SDP designs very quickly and efficiently.

4

CHAPTER II

Symmetric Block Designs

(v,k,λ) symmetric block designs

Block designs are an important field in discrete mathematics and statistics because it is

used to create error correcting codes. Block designs have applications to finite geometry,

and design of experiments in statistics.

Definition: Let X be a finite set and B a family of subsets of X . Call the elements of

X points and the elements of B blocks. The pair (X ,B) is a block design, if each of the

blocks has k points, every point in X appears in r blocks, and any pair of two distinct points

appear together in exactly λ blocks.

A block design is often called a design. The cardinality of X is denoted by v; the

cardinality of B is denoted by b. The definition of a block design implies certain conditions

on the parameters, (v,b,r,k,λ).

Lemma 1. If (v,b,r,k,λ) are the parameters of a block design (X ,B), then bk = vr and

r(k−1) = λ (v−1).

Proof. Consider a set of ordered pairs {(x,B) : x ∈ B} ⊆ X ×B. There are v choices for

the point x, and each point is contained in r blocks. There are vr elements in this set. Since

there are b choices for B and every block has k elements, this set has bk elements. Thus,

vr = bk.

Consider a fixed point y ∈ X and the set {(x,B) : x ̸= y,x,y ∈ B} ⊆ X ×B. There are

v−1 distinct other points to choose for x. Since x,y are distinct points, they appear λ times

in B. Thus, there are λ (v−1) elements in this set. Furthermore, y appears in r blocks, and

5

in each of those blocks, it can be paired with k−1 points. Thus, there are r(k−1) elements

in this set, which implies that r(k−1) = λ (v−1).

A block design is symmetric if v = b. If a design is symmetric, then k = r. These

designs are called (v,k,λ) designs.

Example 1: Consider the sets X and B, where X = {0,1,2,3,4,5,6} and

B = {B0,B1,B2,B3,B4,B5,B6}, where the blocks Bi are listed below:

B0 = {0,1,3}

B1 = {1,2,4}

B2 = {2,3,5}

B3 = {3,4,6}

B4 = {4,5,0}

B5 = {5,6,1}

B6 = {6,0,2}

This is an example of a symmetric design (X ,B) with parameters (7,7,3,3,1) or pa-

rameters (7,3,1).

Example 2: Consider the set Y = {1,3,4,5,6,7,9,10,11} and the set B= {B0,B1,B2, ...,B11},

where the elements of B are shown below:

B0 : {1,3,9}

B1 : {1,4,10}

B2 : {3,5,11}

B3 : {3,4,6}

B4 : {4,5,7}

6

B5 : {5,6,1}

B6 : {6,7,9}

B7 : {7,10,3}

B8 : {9,11,4}

B9 : {9,10,5}

B10 : {10,11,6}

B11 : {11,1,7}

This is an example of a design (Y,B) with parameters (9,12,4,3,1).

Definition: Two block designs, (X ,B) and (Y,A), are isomorphic if there exists a

one-to-one and onto mapping α : X 7→ Y of points, such that for every block B in B, there

is a block A in A where α(B) = A.

In Example 1, the mapping α : i 7→ i+1 sends Bi to Bi+1. This is an automorphism of

the design (X ,B) with parameters (7,7,3,3,1).

Example 3: Consider the sets X = Z21 and Y = Z7×Z3. Consider the two sets B =

{B0,B1, ...,B20} and A = {A0,A1, ...,A20}, where the elements of both sets are shown

below.

B0 : {0,3,4,9,11} A0 : {(0,0),(3,0),(4,1),(2,0),(4,2)}

B1 : {1,4,5,10,12} A1 : {(1,1),(4,1),(5,2),(3,1),(5,0)}

B2 : {2,5,6,11,13} A2 : {(2,2),(5,2),(6,0),(4,2),(6,1)}

B3 : {3,6,7,12,14} A3 : {(3,0),(6,0),(0,1),(5,0),(0,2)}

B4 : {4,7,8,13,15} A4 : {(4,1),(0,1),(1,2),(6,1),(1,0)}

B5 : {5,8,9,14,16} A5 : {(5,2),(1,2),(2,0),(0,2),(2,1)}

B6 : {6,9,10,15,17} A6 : {(6,0),(2,0),(3,1),(1,0),(3,2)}

7

B7 : {7,10,11,16,18} A7 : {(0,1),(3,1),(4,2),(2,1),(4,0)}

B8 : {8,11,12,17,19} A8 : {(1,2),(4,2),(5,0),(3,2),(5,1)}

B9 : {9,12,13,18,20} A9 : {(2,0),(5,0),(6,1),(4,0),(6,2)}

B10 : {0,10,13,14,19} A10 : {(0,0),(3,1),(6,1),(0,2),(5,1)}

B11 : {1,11,14,15,20} A11 : {(1,1),(4,2),(0,2),(1,0),(6,2)}

B12 : {0,2,12,15,16} A12 : {(0,0),(2,2),(5,0),(1,0),(2,1)}

B13 : {1,3,13,16,17} A13 : {(1,1),(3,0),(6,1),(2,1),(3,2)}

B14 : {2,4,14,17,18} A14 : {(2,2),(4,1),(0,2),(3,2),(4,0)}

B15 : {3,5,15,18,19} A15 : {(3,0),(5,2),(1,0),(4,0),(5,1)}

B16 : {4,6,16,19,20} A16 : {(4,1),(6,0),(2,1),(5,1),(6,2)}

B17 : {0,5,7,17,20} A17 : {(0,0),(5,2),(0,1),(3,2),(6,2)}

B18 : {0,1,6,8,18} A18 : {(0,0),(1,1),(6,0),(1,2),(4,0)}

B19 : {1,2,7,9,19} A19 : {(1,1),(2,2),(0,1),(2,0),(5,1)}

B20 : {2,3,8,10,20} A20 : {(2,2),(3,0),(1,2),(3,1),(6,2)}

There exists an isomorphism between these two sets. This isomorphism is the mapping

x 7→ (a,b), where a is x modulo 7 and b is x modulo 3. Then, each of the blocks of B will

be mapped to a block of A . Thus, (X ,B) and (Y,A) are isomorphic designs.

Bruck-Ryser Chowla Theorem

In addition to Lemma 1, there is one more known condition on the parameters of a

symmetric design, which is known as the Bruck-Ryser Chowla Theorem.

Theorem 2. (Bruck-Ryser Chowla Theorem): Suppose the design (X ,B) is a (v,k,λ)

symmetric design. Then:

(i) if v is even, then k−λ is a square.

8

(ii) if v is odd, then the equation z2 = (k−λ)x2+(−1)
v−1

2 λy2 has a solution in integers

x,y,z, where not all of them are zero.

A proof can be found on [16], pg. 230.

Example 4(a): Assume that v = 22,k = 7,λ = 2. Then, 7(6) = 2(22−1) = 42. How-

ever, even through v is even, k−λ = 7− 2 = 5 is not a square since the square root of 5

is an irrational number. Thus, by the Bruck-Ryser Chowla Theorem, there does not exist a

(22,7,2) symmetric design.

Example 4(b): Assume that v = 43,k = 7,λ = 1. Then, 7(6) = 1(43− 1). Then, the

equation z2 = 6x2−y2 could determine if a (43,7,1) symmetric design does not exist. This

equation can be rewritten as z2 + y2 = 6x2. If there is a solution to this equation, assume

that x,y,z are non-negative integers, and not all zero. By the Law of Well Ordering, the

solution can be chosen so that x has the smallest possible value.

Furthermore, z2+y2 = 6x2 ≡ 0 (mod 3). Therefore, z≡ y≡ 0 (mod 3). Therefore, 3 | z

and 3 | y. Then, z = 3a and y = 3b, where a,b ∈ Z. Thus, (3a)2 +(3b)2 = 6x2 implies

that 3a2 + 3b2 = 2x2. Then, 2x2 ≡ 0 (mod 3). Therefore, 3 | x2, which implies that 3 | x.

Thus, x = 3c for some c ∈ Z. Then, we have that 3a2 + 3b2 = 18c2, which means that

a2+b2 = 6c2. However, c < x, which is a contradiction. Thus, z2+y2 = 6x2 has no integer

solutions. By the Bruck-Ryser Chowla Theorem, there does not exist a (43,7,1) symmetric

design.

Example 4(c): Assume that v = 111,k = 11,λ = 1. Then, 11(10) = 111−1. Then, by

looking at the equation z2 = 10x2− y2, it can be concluded that the ordered triple (1,1,3)

is a solution to the equation. Thus, we cannot conclude from this whether or not there is a

(111,11,1) symmetric design with these parameters.

9

Examples of symmetric block designs

Example 5: Consider the set X = {0,1,2,3, ...,10}, and the set B= {B0,B1,B2, ...,B10},

where the elements of B are shown below:

B0 : {0,2,3,4,8}

B1 : {1,3,4,5,9}

B2 : {2,4,5,6,10}

B3 : {3,5,6,7,0}

B4 : {4,6,7,8,1}

B5 : {5,7,8,9,2}

B6 : {6,8,9,10,3}

B7 : {7,9,10,0,4}

B8 : {8,10,0,1,5}

B9 : {9,0,1,2,6}

B10 : {10,1,2,3,7}

This is a (11,5,2) symmetric design since the number of elements in X and number of

blocks in B is 11, every block has 5 points and every point in X appears in 5 blocks, and

any pair of two distinct points appear together in 2 blocks.

Example 6: Consider the set X = {0,1,2,3, ...,12} and the set B = {B0,B1,B2, ...,B12}

where the elements of B are shown below:

B0 : {0,1,3,9}

B1 : {1,2,4,10}

B2 : {2,3,5,11}

10

B3 : {3,4,6,12}

B4 : {4,5,7,0}

B5 : {5,6,8,1}

B6 : {6,7,9,2}

B7 : {7,8,10,3}

B8 : {8,9,11,4}

B9 : {9,10,12,5}

B10 : {10,11,0,6}

B11 : {11,12,1,7}

B12 : {12,0,2,8}

This is an example of a design with parameters (13,4,1) since the number of elements

in X and number of blocks in B is 13, every block has 4 points and every point in X appears

in 4 blocks, and any pair of two distinct points appear together in 1 block.

Incidence matrices for symmetric designs

The definition of an incidence matrix will be illustrated below:

Definition: For a (v,b,r,k,λ) symmetric design, an incidence matrix, M, is a b× v

(0,1)−matrix, where mi j = 1 if the point x j ∈ Bi and mi j = 0 if x j is not in Bi, where

0≤ i≤ b and 0≤ j ≤ v.

Example 7(a): Refer to Example 1. The set X = {0,1,2,3,4,5,6} and blocks B0,B1,B2,

B3,B4,B5,B6 can be used to create an incidence matrix, where each column represents an

element of X (numbered numerically from left to right) and the rows represent the blocks

(where the nth row represents the Bn−1 block). This gives the table below:

11

X 0 1 2 3 4 5 6

B0 0 1 1 0 1 0 0

B1 0 0 1 1 0 1 0

B2 0 0 0 1 1 0 1

B3 1 0 0 0 1 1 0

B4 0 1 0 0 0 1 1

B5 1 0 1 0 0 0 1

B6 1 1 0 1 0 0 0

As a result, the 7×7 incidence is:



0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0


This 7× 7 incidence matrix is formed by having the ones in the matrix appear under

the numbers that appears in a block. The first row represents B0, and 1’s were placed under

the second, third and fifth columns (which represents 1,2 & 4 respectively). The second

row represents B1, and 1’s were placed under the third, fourth and sixth column (which

represents 2,3 & 5 respectively). The remaining rows are formed in a similar manner.

Example 7(b): Refer to Example 5. Then, X = {0,1,2, ...,10} and the blocks B0,B1,B2, ...,B10

12

can be used to create an incidence matrix, similar to how it was done in Example 7(a). This

results in the 11×11 incidence matrix shown below.



1 0 1 1 1 0 0 0 1 0 0

0 1 0 1 1 1 0 0 0 1 0

0 0 1 0 1 1 1 0 0 0 1

1 0 0 1 0 1 1 1 0 0 0

0 1 0 0 1 0 1 1 1 0 0

0 0 1 0 0 1 0 1 1 1 0

0 0 0 1 0 0 1 0 1 1 1

1 0 0 0 1 0 0 1 0 1 1

1 1 0 0 0 1 0 0 1 0 1

1 1 1 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 0 0 1


Now, consider the following results that will be useful later on.

Lemma 3. Let M be a v× v incidence matrix of a symmetric (v,k,λ) design. Then,

1). MJ = kJ and MtM = (k−λ)I+λJ, where I is the identity matrix and J is the v×v

matrix where all of the entries are 1.

2) M is invertible.

3) MtM = MMt

Proof. Let M be a v× v incidence matrix of a symmetric (v,k,λ) design.

1) We want to show that MJ = kJ. Since J is the v× v matrix where all of the entries

are 1, each entry of MJ is ∑
v
k=1 aik, where i = 1,2, ...,v. Since M is an incidence matrix

13

and each row has k entries equal to 1, then ∑
v
k=1 aik = k for all entries of MJ, which is the

matrix J multiplied by the scalar k.

Thus, MJ = kJ.

Furthermore, each entry of MtM is ∑
v
k=1 bikck j, where bik is the (i,k)−entry of Mt and

ck j is the (k, j)−entry of M, where i = 1, ...,v and j = 1, ...,v. If i = j for all k, then that

entry of MtM is ∑
v
k=1 bikck j = k. If i ̸= j for all k, then that entry of MtM is ∑

v
k=1 bikck j = λ .

Therefore, this will result in all of the diagonal entries of MtM to be k and all other entries

of MtM to be λ . Therefore, MtM can be rewritten as (k−λ)I +λJ, since (k−λ)I is the

matrix with k−λ in all of its diagonal entries and zeroes everywhere else, and λJ is the

matrix where all of the entries are λ . Thus, MtM = (k−λ)I +λJ.

2) Consider the matrix

B =
1

k−λ
Mt− λ

k(k−λ)
J.

Then,

BM =

(
1

k−λ
Mt− λ

k(k−λ)
J
)

M =
1

k−λ
MtM− λ

k(k−λ)
JM

=
1

k−λ
[(k−λ)I +λJ]− λ

k(k−λ)
kJ = I.

Similarly, MB = I by performing very similar computations as above. Thus, BM =

MB = I. Thus, M is invertible and M−1 = B =
1

k−λ
Mt− λ

k(k−λ)
J.

3) MtM = (k−λ)I +λJ. Then,

MMtMM−1 = M[(k−λ)I +λJ]M−1.

14

Then,

MMtMM−1 = M[(k−λ)I]M−1 +M[λJ]M−1.

Therefore, since JM−1 =
1
k

J, then

MMtMM−1 = MMt = (k−λ)I +λJ = MtM.

Lemma 4. If M1,M2 are the incidence matrices of isomorphic (v,k,λ) designs, then there

are v× v permutation matrices P and Q such that

M2 = PM1Q

This lemma can be found in [4] on pg. 786.

Corollary 5. Any pair of distinct blocks in a (v,k,λ) design intersect in λ points.

Proof. Assume there is a (v,k,λ) design with an incidence matrix M. Let B1,B2, be two

distinct blocks in this design. Then, B1,B2 correspond to two distinct rows in the matrix.

For Mt , these blocks correspond to two distinct columns. These columns will be called the

ith column and the jth column, where i ̸= j. Thus, the (i, j)-entry of MMt is λ . Since the

rows of M and the columns of Mt correspond to the blocks, any pair of distinct block in in

a (v,k,λ) design intersect in λ points.

15

CHAPTER III

Difference Sets

Definition and examples

In Example 1, the blocks Bi, where i = 0,1, ...6, have an interesting property. All of the

blocks that are listed are sets of residues modulo 7 and the differences between any pair of

two distinct elements from this set is also a residue modulo 7. These blocks are a special

type of set called a difference set.

Definition: Let G be a group of order v written in multiplicative notation. If D is a

subset of G of size k, then D is a (v,k,λ) difference set if, for all non-identity elements

g ∈ G, there exists exactly λ pairs of elements d1,d2 in D such that d1d−1
2 = g.

It is important to note that there are several different types of difference sets. A differ-

ence set D for some group G is also called "cyclic", "abelian", or "non-abelian" if the group

G is cyclic, abelian, or non-abelian, respectively.

Furthermore, there are sets that can be derived from difference sets. These sets are

called translates.

Definition: Let D be a (v,k,λ) difference set in G. The translates of D are all the sets

of the form gD := {gd | d ∈ D}, where g varies throughout G.

The next two examples illustrate these definitions.

Example 8(a): Let G = Z7 be a group under addition, and D = {1,2,4}. This is a

(7,3,1) difference set because |Z7| = 7, there are 3 elements in the set and each nonzero

element of the group appears 1 time in the subtraction table below:

16

- 1 2 4

1 0 6 4

2 1 0 5

4 3 2 0

Example 8(b): In Example 8, there was the D = {1,2,4} difference set in the group

Z7, which is a group under addition. Then, this set can be used to form its translates by

taking an element of Z7, j, and adding it to each element of the set D modulo 7. Thus,

1+D = {1+1,2+1,4+1}= {2,3,5}

2+D = {1+2,2+2,4+2}= {3,4,6}

3+D = {1+3,2+3,4+3}= {4,5,0}

4+D = {1+4,2+4,4+4}= {5,6,1}

5+D = {1+5,2+5,4+5}= {6,0,2}

6+D = {1+6,2+6,4+6}= {0,1,2}

0+D = D.

These are the 7 translates of D.

By looking at Example 8(b), we see that each translate of D gives a block that was given

in Example 1.

Example 9: Another example is the set D = {1,3,4,5,9} contained in the additive

cyclic group Z11. D is a (11,5,2) difference set. D is a subset of Z11. There are exactly 5

17

elements in D. Every nonzero element of the cyclic group Z11 appears twice in the table

below, implying λ = 2.

- 1 3 4 5 9

1 0 9 8 7 3

3 2 0 10 9 5

4 3 1 0 10 6

5 4 2 1 0 7

9 8 6 5 4 0

The design illustrated in Example 5 can be recreated by taking as points the elements

of Z11 and as blocks the translates of D.

The observations shown in Example 8(b) and Example 9 are a result of the following

lemma(s):

Lemma 6. (a) If D is a (v,k,λ) difference set in a group G of order v, then so is gD, where

g ∈ G.

(b) If D is a (v,k,λ) difference set in a group G of order v and φ is an automor-

phism of G, then φ(D) is a difference set.

Proof. (a) Assume D is a (v,k,λ) difference set in a group G of order v. Then, consider

the set hD := {hd | d ∈ D}, where h ∈ G and h ̸= 1G, where 1G is the identity of G. Then,

|hD|= k and all of the elements of hD are distinct since all of the elements of D are distinct

and |D|= k. Consider the multiset Xh = {(di,d j) | di,d j ∈ D,did−1
j = h}, where |Xh|= λ .

Also, consider the multiset Yh = {(di,d j) | gdi,gd j ∈ gD,gdid−1
j g−1 = h}, where g ∈ G. If

(di,d j) ∈ Yh, gdid−1
j g−1 = h implies that did−1

j = g−1hg, where di,d j ∈ D. Since g,h ∈ G

and h ̸= 1G, then g−1hg ∈ G and g−1hg ̸= 1G. Thus, Yh = Xg−1hg. Then, |Yh| = |Xg−1hg|.

18

Furthermore, g−1hg = h1, where h1 ∈ G and h1 ̸= 1G. Thus, Xg−1hg = Xh1 . Then, |Yh| =

|Xg−1hg|= |Xh1|= λ . Therefore, gD is a difference set.

(b) Assume D is a (v,k,λ) difference set in a group G of order v and φ is an automor-

phism of G. Since D⊂G and φ is bijective, φ(D) will send each element of D to an element

of G. Then, each element of φ(D) is distinct and since |D| = k, |φ(D)| = k. Consider the

multiset Xg = {(di,d j) | di,d j ∈D,did−1
j = g}, where |Xg|= λ . Also, consider the multiset

Yg = {(di,d j) | φ(di),φ(d j) ∈ φ(D),φ(di)φ(d j)
−1 = g}. If (di,d j) ∈ Yh, φ(di)φ(d j)

−1 = g

implies that φ(did−1
j) = g, where di,d j ∈ D. Then, did−1

j = φ−1(g). Since g ∈ G and

g ̸= 1G, then φ−1(g) ∈ G and φ−1(g) ̸= 1G. Thus, Yg = Xφ−1(g). Furthermore, φ−1(g) = h,

where h ∈ G and h ̸= 1G. Thus, Xφ−1(g) = Xh. This implies that |Yg| = |Xφ(h)| = |Xh| = λ .

Thus, φ(D) is a difference set.

Lemma 7. The translates of a difference set D in a group G of order v gives a (v,k,λ)

symmetric design on the point set G.

Proof. Assume there is a difference set D in a group G of order v. Then, there are v distinct

translates for D. By Lemma 6, all translates are difference sets. Therefore, there are k

distinct elements in each of the translates. Let g1,g2 ∈ G such that g1 ̸= g2. Consider the

set g1D∩g2D = {g1d1 | d1 ∈ D and ∃d2 ∈ D such that g1d1 = g2d2}. Then, g1d1 = g2d2 if

and only if d1d−1
2 = g−1

1 g2 = g, where g ∈ G and g is not the identity 1G. Since g1D and

g2D are difference sets and d1,d2 ∈D such that d1d−1
2 = g, |g1D∩g2D|= λ . Furthermore,

if we treat the group G as a point set and the translates as blocks, then it gives a (v,k,λ)

symmetric design on the points set G since there are v blocks and points, each block has k

elements and by Corollary 5, each of these blocks intersect at λ points.

19

Multiplier conjecture

In special cases, difference sets can be constructed using the following conjecture.

Conjecture 8. Suppose that there is an abelian group G of order v written additively. If G

has a (v,k,λ) difference set with parameters (v,k,λ) and p is a prime dividing k−λ , but

not dividing v, then there is a difference set D such that pD = D.

This conjecture essentially states that a difference set can be formed by applying a

guess and check method to possible values of elements that are in D. To illustrate what this

means, consider the following examples.

Example 10: Assume there is a (v,k,λ) difference set with specific parameters that

needs to be found, such as (15,7,3). Since 7-3=4, then the only prime p that divides 4 is

p= 2. Since 2 does not divide 7, Conjecture 8 can be applied. If 1∈D, then, by multiplying

1 by 2 repeatedly under modulo 15, it implies that 2,4,8 are also in D.

If 5∈D, then 5,10 are also in D. Thus, one choice for D might be {1,2,4,8}∪{5,10}∪

{0}= {0,1,2,4,5,8,10}, which is a set with 7 elements. It is easy to see that every nonzero

element of the cyclic group Z15 would appear three times as a difference of elements in D.

Thus, D = {0,1,2,4,5,8,10} is a (15,7,3) difference set.

Example 11: Consider the group Z21. The goal here is to find the (21,5,1) difference

set D. Since 5− 1 = 4, then the only prime that divides 4 (but not 7) is p = 2. If 3 ∈ D,

then 3,6,12 are in D. If 7 ∈ D, then 7,14 are in D. Then, one choice for D might be

{3,6,7,12,14}. This set can be verified as a (21,5,1) difference set by using the previous

methods shown in earlier examples.

20

Group rings

The definition of a group ring is shown below.

Definition: Fix a commutative ring R with the multiplicative identity 1R ̸= 0R and let G

be a finite group of order n with a group operation written multiplicatively. The group ring

R[G] is the set of all of the following sums:

∑
n
i=1 aigi = a1g1 +a2g2 +a3g3 + · · ·+angn,

where ai ∈ R, gi ∈ G and 1≤ i≤ n. [8], pg. 236.

Furthermore, some of the basic properties for the group rings are shown below (note

that ai,bi,b j ∈ R and 1≤ i, j ≤ n).

Addition: ∑
n
i=1 aigi +∑

n
j=1 bigi = ∑

n
i=1(ai +bi)gi.

Scalar Multiplication: c∑
n
i=1 aigi = ∑

n
i=1(cai)gi.

Multiplication:(∑n
i=1 aigi) · (∑n

j=1 b jg j) = ∑
n
i=1 aigi(∑

n
j=1 b jg j). [16], pg.383.

The definition of difference sets can also be written in group ring notation.

Definition: Given a group ring R[G], any difference set D in G can be written as the

following in R[G]:

∑d∈D d

where D⊂ G and |D|= k.

Group ring notation, where the coefficients of D are in {0,1}, can be used to verify that

D is a difference set if and only if:

DD(−1) = (k−λ)1G +λG,

21

where G is the group, 1G is the identity of G, DG = kG, and D(−1) is the sum of the

inverses of each of the elements in D. For every element d ∈ D, there is a d′ ∈ D(−1) such

that dd′ = g, where g is a non-identity element in G. Since there are λ pairs of elements

d ∈ D and d′ ∈ D(−1) such that dd′ = g, then λG appears in DD(−1).

Furthermore, ∀d ∈ D, ∃ d−1 ∈ D such that dd−1 = 1G. Since there are k elements in

D, this results in k(1G) to appear in DD(−1). Furthermore, there are λ pairs of elements,

d ∈D and d′ ∈D(−1) that do not give the identity 1G. Thus, (k−λ)1G is in DD(−1). Hence,

DD(−1) = (k−λ)1G +λG.

This is useful since it is a tool that verifies which sets in a given group are difference

sets. For example, it can be used to prove Lemma 6.

Proof. (Lemma 6 (a)): Assume D is a (v,k,λ) difference set in a group G of order v. We

will prove that gD is also a (v,k,λ) difference set, where g ∈ G. Then,

gDD(−1)g−1 = g((k−λ)1G +λG)g−1

= g((k−λ)1G)g−1 +g(λG)g−1 = gg−1(k−λ)1G +λ [g(G)g−1] = (k−λ)1G +λG

(since g(G)g−1 = G). Thus, gD is a difference set.

(Lemma 6 (b)): Assume D is a (v,k,λ) difference set in a group G of order v and φ is

an automorphism. We will prove that φ(D) is also a (v,k,λ) difference set. Then,

φ(D)φ(D(−1)) = φ(DD(−1)) = φ((k−λ)1G)+λG) = φ((k−λ)1G)+φ(λG)

22

since φ is an automorphism of G. Then,

φ((k−λ)1G)+φ(λG) = (k−λ)φ(1G)+λφ(G).

Then,

(k−λ)φ(1G)+λφ(G) = (k−λ)1G +λG

since φ is an isomorphism and bijection. Thus, φ(D) is a difference set.

Example 12: Consider Example 9. D = {x,x3,x4,x5,x9} is a difference set in the

multiplicative group C11 =< x : x11 = 1 >. Then, D becomes

D := x+ x3 + x4 + x5 + x9,

if it is written in group ring notation. It can also be confirmed as a difference set since

DD(−1) := (5−2)1G +2G = 31G +2G, where k−λ = 3 and λ = 2.

Abelian and non-abelian difference sets

We will give examples of difference sets in abelian groups.

Example 13(a): Consider the difference set D = {1,2,4} in Example 7(a). The differ-

ence set D can be written in group ring notation, where

D := x+ x2 + x4.

Then, D is a (7,3,1) difference set in C7 =< x : x7 = 1 >.

Example 13(b): Recall Example 13(a), where there is the difference set D := x+x2+x4

in the group C7. Now, D needs to be verified that this is a difference set using the equation

23

DD(−1)=(k−λ)1G+λG. Therefore, D(−1) is the sum of all of the inverses of the elements

in D, thus D(−1) := x3 + x5 + x6. Thus,

DD(−1) = (x+ x2 + x4)(x3 + x5 + x6) = 3+ x+ x2 + x3 + x4 + x5 + x6

= (3−1)1G +(1+ x+ x2 + x3 + x4 + x5 + x6) = (k−λ)1G +λG

(where λ = 1 and k = 3). Thus, this once again verifies that D is a difference set in the

group C7.

Example 14: The set D = {x2,x3,x10,x13,x15,x19} is a (31,6,1) difference set of the

group G = C31 =< x : x31 = 1 >, which can be easily checked using methods previously

discussed. However, this can also be checked by using the group ring notation. Thus, D

can be written as

D := x2 + x3 + x10 + x13 + x15 + x19,

where x31 = 1. The sum of the inverses of the elements of D is D(−1) := x29 + x28 + x21 +

x18 + x16 + x12.

Then,

DD(−1) = (x2 + x3 + x10 + x13 + x15 + x19)(x29 + x28 + x21 + x18 + x16 + x12)

= 5+
30

∑
i=0

xi = (6−1)1G +C31 = (k−λ)1G +λG.

This verifies that D is a (31,6,1) difference set of C31.

24

Example 15: Consider the abelian group C8×C2 = ⟨x,y : x8 = y2 = 1,xy = yx⟩. Then,

D := x+ xy+ x2 + x3 + x6 + x7y

is a (16,6,2) abelian difference set since it belongs to a group has order 16, there are six

terms in D (or six element in D when D is written as a set), and every element in C8×C2

appears twice in the division table below.

÷ x xy x2 x3 x6 x7y

x 1 y x7 x6 x3 x2y

xy y 1 x7y x6y x3y x2

x2 x xy 1 x7 x4 x3y

x3 x2 x2y x 1 x5 x4y

x6 x5 x5y x4 x3 1 x7y

x7y x6y x6 x5y x4y xy 1

Now that examples of difference sets in abelian groups have been given, an example of

a difference set in a non-abelian group will be shown.

Example 16: Consider the group of order 16 that is defined as the following:

C4 ⋊−1 C4 =< x,y | x4 = y4 = 1,yx = xy3 > .

This is a non-abelian group (since yx ̸= xy). A difference set in this group is

D := x+ x3 + y+ y3 + xy+ x3y3.

25

This is a (16,6,2) difference set since it belongs to a group has order 16, there are six terms

in D, and every element in C4 ⋊−1 C4 appears twice in the division table below, where the

operation of the table is defined below.

÷ a

b ba−1

÷ x x3 y y3 xy x3y3

x 1 x2 xy3 xy y x2y3

x3 x2 1 x3y3 x3y x2y y3

y x3y3 xy3 1 y2 x3 xy2

y3 x3y xy y2 1 x3y2 x

xy y3 x2y3 x xy2 1 x2y2

x3y3 x2y y x3y2 x3 x2y2 1

26

CHAPTER IV

Hadamard Difference Sets

Basic definitions

Definition: A Hadamard matrix H of order m is a m×m matrix where the entries of

the matrix are either 1 or -1 and HHT = mI, where I is the identity matrix.

Example 17: The following matrices below are Hadamard matrices.

1 1

1 −1

 ,

−1 −1

−1 1

 ,

 1 −1

−1 −1

 ,



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


.

Two Hadamard matrices of different orders can be used to create another, larger Hadamard

matrix, where the order of this larger matrix is the product of the orders of the two smaller

matrices.

Theorem 9. If Hm and Hn are Hadamard matrices of order m and n respectively, Hm⊗Hn

(Kronecker product of Hm and Hn) is a Hadamard matrix of order mn.

A proof of this theorem can be found in [16] on page 201.

Example 18: Consider the following Hadamard matrices of order 4,

H1 =



1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


,H2 =



−1 −1 −1 −1

−1 −1 1 1

−1 1 −1 1

−1 1 1 −1


.

27

Then, by the previous theorem, H1⊗H2 =



−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

−1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1

−1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1

−1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1

−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 1 1 1 1

−1 −1 1 1 −1 −1 1 1 1 1 −1 −1 1 1 −1 −1

−1 1 −1 1 −1 1 −1 1 1 −1 1 −1 1 −1 1 −1

−1 1 1 −1 −1 1 1 −1 1 −1 −1 1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1

−1 −1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1

−1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1

−1 1 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1

−1 −1 −1 −1 1 1 1 1 1 1 1 1 −1 −1 −1 −1

−1 −1 1 1 1 1 −1 −1 1 1 −1 −1 −1 −1 1 1

−1 1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 1 −1 1

−1 1 1 −1 1 −1 −1 1 1 −1 −1 1 −1 1 1 −1


is a Hadamard matrix of order 16.

With the basic definition of Hadamard matrices established, a particular type of dif-

ference set will be introduced. Then, a connection between these new difference sets and

Hadamard matrices will be established.

28

Definition of Hadamard difference Sets

The definition of a Hadamard difference sets is shown below.

Definition: A difference set with parameters (v,k,λ), where v = 4(k−λ) is called a

Hadamard difference set.

If D is a Hadamard difference set, it is useful to consider a ±1 version of a difference

set described below.

Definition: The ±1 version of a Hadamard difference set is D := G−2D.

Lemma 10. Let D = ∑agg ∈ Z[G] be a group ring element where ag ∈ {0,1}. Let v = |G|

and k be the number of coefficients ag equal to 1. Fix h ̸= 1G in G and set λ equal to the

number of times ag and ah−1g are both equal to 1. Set D := G−2D. Then, D is a Hadamard

(v,k,λ) difference set iff DD(−1) = v1G.

Proof. Assume the hypothesis.

(→): Suppose D is a Hadamard (v,k,λ) difference set. Then, the ±1 version of D is

D := G−2D. Then,

DD(−1) := (G−2D)(G−2D(−1)) = GG−2DG−2GD(−1)+4DD(−1).

Since DD(−1) = (k−λ)1G +λG, DG = GD(−1) = kG and GG = vG, then

GG−2DG−2GD(−1)+4DD(−1)

= vG−2kG−2kG+4[(k−λ)1G +λG]

= vG−4kG+4(k−λ)1G +4λG.

29

Furthermore,

−4kG+4λG = (4k−4λ)1G(−G) = 4(k−λ)1G(−G) =−vG.

Therefore,

vG−4kG+4(k−λ)1G +4λG = vG− vG+4(k−λ)1G = 4(k−λ)1G.

Thus, DD(−1) = 4(k−λ)1G = v1G.

(←): Suppose DD(−1) = v1G.Choose a nonidentity element h ∈G. The coefficient of h

in DD(−1) is

0 = ∑agah−1g.

If (ag,ah−1g) are equal to−1 λ times, then there are k−λ times that ag =−1 and ah−1g = 1

and k−λ times that ag = 1 and ah−1g = −1. There are v− 2k+λ times that both ag and

ah−1g are equal to 1. Then,

v−2k+λ −2(k−λ) = v−4(k−λ).

This forces λ to be constant, independent of h and v = 4(k−λ). Then, DG = kG and

DD(−1) =

(
G−D

2

)(
G−D(−1)

2

)
.

Then,

DD(−1) =

(
(G−D)(G−D(−1))

4

)
.

30

Then,

DD(−1) =

(
(GG−DG−GD(−1)+DD(−1))

4

)
.

Since GG = vG, DG = (G−2D)G = vG−2kG and GD(−1) = G(G−2D(−1)) = vG−2kG,

(
(GG−DG−GD(−1)+DD(−1))

4

)
=

(
vG−2vG+4kG+ v1G

4

)
.

Then, (
vG−2vG+4kG+ v1G

4

)
=

(
−vG+4kG+ v1G

4

)
.

Since v = 4(k−λ),

(
−vG+4kG+ v1G

4

)
=

(
−4(k−λ)G+4kG+4(k−λ)1G

4

)
.

Therefore,

(
−4(k−λ)G+4kG+4(k−λ)1G

4

)
=−(k−λ)G+ kG+(k−λ)1G.

Then,

−(k−λ)G+ kG+(k−λ)1G = (k−λ)1G +λG.

Therefore, DD(−1) = (k− λ)1G + λG. Since v = 4(k− λ), D is a Hadamard (v,k,λ)

difference set.

This lemma appears in [3].

An example of how this definition is applied to a difference set is shown below:

31

Example 19: Consider Example 15. Then, the difference set in the group G = C8×

C2 =< x,y : x8 = y2 = 1,xy = yx > is

D := x+ x2 + x7y+ xy+ x3 + x6.

Then, G is the sum of all of its elements and

D :=G−2D= 1+x4+x5+x7+y+x2y+x3y+x4y+x5y+x6y−(x+x2+x7y+xy+x3+x6)

is the±1 version of the difference set D. Furthermore, DD(−1) := 16 in the group ring ZG.

Since |G|= 16 = 4(6−2), then D is a Hadamard difference set.

If D is a Hadamard difference set, then a Hadamard matrix can be formed by inter-

changing the entries of the incidence matrix of D, replacing the 1’s with −1 and the 0’s

with 1. Thus, Hadamard difference sets yields Hadamard matrices.

Example 20: Consider the trivial Hadamard difference set T = {1} in the group C4 =

{x : x4 = 1}. Then, the incidence matrix of T is



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

Then, by interchanging all of the 1’s with -1 and 0’s with 1, this results in the following

matrix:

32



−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


,

which is a Hadamard matrix of order 4.

Hyperplane construction

Finding constructions of difference sets and the various ways to manipulate these con-

structions is important when going deeper into difference sets and groups. To expand on

this concept, one mathematical topic must be introduced to obtain these new difference

sets: hyperplane construction.

Definition: A subspace of a vector space V of dimension one less than the dimension

of V is called a hyperplane.

In this thesis, all vector spaces will be over the field F2 = {0,1}, where the arithmetic

for this field is mod 2. One source for the necessary linear algebra is [14]. Vector spaces

are of interest because hyperplanes are a part of vector spaces.

A group H isomorphic to Zd+1
2 is viewed as a vector space of dimension d + 1 over

Z2 and so call its subgroups of order 2d "hyperplanes." The number of such hyperplanes is

2d+1−1.

Let Hi,H j be hyperplanes of H in Zd+1
2 . Some properties of the hyperplanes of H

include:

1. Hi = H(−1)
i

2. H2
i = 2dHi

33

3. Since Hi,H j are distinct hyperplanes, then HiH j = 2dH .

4. Every non-identity element of H is in 2d−1 hyperplanes and so ∑i Hi = 2d +(2d−

1)H .

Now, the theorem for hyperplane construction is shown below.

Theorem 11. Suppose G is a group of order 22d+2 with normal subgroup H isomor-

phic to Zd+1
2 . Label the hyperplanes of H , H1,H2, ...,H2d+1−1. Then, there is a choice

of coset representatives of H , {1,g1,g2, ...,g2d+1−1}, such that D = ∑
2d+1−1
i=1 giHi is a

(22d+2,2d(2d+1−1),2d(2d−1)) difference set.

For a proof of this theorem, see Corollary 1.10, page 5 of [1].

We will illustrate this construction in the following example.

Example 21: Consider the group C2×C8 =< x,y : x2 = y8 = 1,xy = yx >. and H =

{1,y4,x,xy4}.

Then, there are three different hyperplanes in H , called H1,H2,H3. They are (in group

ring notation):

H1 := 1+ x,

H2 := 1+ y4,

H3 := 1+ xy4.

Then, {1,y,y2,y3} is a choice of coset representatives of H . The coset representatives

y,y2,y3 gives

D := y2H1 + yH2 + y3H3 = y2 + xy2 + y+ y5 + y3 + xy7.

34

Then, D is a difference set by Theorem 11.

The exact same strategy that is used for abelian groups can also be applied to non-

abelian groups. However, when this action is performed, it must be done so with extreme

caution, since the elements in these groups may not commute. An example of a non-abelian

group difference set is given below.

Example 22: Referring back to Example 16, with the group C4 ⋊−1 C4 =< x,y : x4 =

y4 = 1,yx = xy3 >. Consider H = {1,x2,y2,x2y2}. Then,

H1 := 1+ x2,

H2 := 1+ y2,

H3 := 1+ x2y2.

are the three hyperplanes of H . A choice for the cosets representatives of H is C =

{1,x,y,xy}. Then, the coset representatives x,y,xy gives

D := xH1 + yH2 + xyH3 = x+ x3 + y+ y3 + xy+ x3y3

This set is a difference set in this group.

Product construction

Difference sets will become more complex in groups of higher orders. One of the

ways that a difference set can be found in groups of higher order is by using a product

construction.

Definition: Given subgroups G1,G2 of G, where G1 ·G2 = G and G1 ∩G2 = {1}, a

35

Hadamard difference set D1 of G1 of order v1, and a Hadamard difference set D2 of G2 of

order v2, the product construction of a difference set D in G is the following:

D := (D1DC
2)+(DC

1 D2).

Here, DC
1 is the complement of the difference set D1 ∈G1 and DC

2 is the complement of the

difference set D2 ∈ G2. The ±1 version of this construction is the following:

D = D1 ·D2.

D is a difference set since

DD(−1) = D1(D2D2
(−1))D1

(−1) = D1(4(k2−λ2)1G)D1
(−1) = 4(k2−λ2)1GD1D1

(−1)

= 4(k2−λ2)1G4(k1−λ1)1G = v1v21G = |G|1G,

where (v1,k1,λ1) are the parameters for D1 and (v2,k2,λ2) are the parameters for D2.

The product construction is equivalent to a modification of the tensor products of inci-

dence matrices. The following theorem will illustrate what this means.

Theorem 12. Suppose M is the incidence matrix for a (v1,k1,λ1) symmetric design D1,

where v1 = 4(k1−λ1) and N is the incidence matrix for a (v2,k2,λ2) symmetric design D2,

where v2 = 4(k2−λ2). Then,

1) Assume a new matrix was created by replacing all entries equal to 1 in M with J−N

(where J is the all ones matrix) and all entries equal to 0 with N. Then, this new matrix,

36

called Prod(M,N), is an incidence matrix of a (V,K,Λ) design where

V = v1v2,K = v2k1 + v1k2−2k1k2,Λ = v2k1 + v1λ2−2k1k2.

2) If M1,M2 are incidence matrices of the two isomorphic designs and N1,N2 are inci-

dence matrices of two other isomorphic designs, then the design with incidence matrix

Prod(M1,N1) is isomorphic to the design with incidence matrix Prod(M2,N2).

Proof. 1) Assume the hypothesis. Then, the incidence matrix M has v1 rows and columns,

k1 1’s in each row and λ1 is the number in which any two rows of the matrix both have a

one in a column. Thus, N has v2 rows and columns, k2 1’s in each row and λ2 is the number

in which any two rows of the matrix both have a one in a column and J−N has v2 rows

and columns, v2− k2 1’s in each row and v2− 2k2 + λ2 is the number in which any two

rows of the matrix both have a one in a column. Thus, we creating this new matrix using

the method given, each entry of M is being replaced with a v2× v2 matrix. Since M is a

v1× v1, then this new matrix, Prod(M,N), is a v1v2× v1v2 matrix. Then, for each row of

Prod(M,N), the rows were created by replacing all entries of 1 with J−N and all entries of

0 with N, where there are k1 1’s and v1− k1 0’s in each row of M. Since each row of N has

k2 1’s and each row of J−N has v2− k2 1’s, then each row of Prod(M,N) will have K 1’s,

where,

K = k1(v2− k2)+(v1− k1)k2 = v1k2 + v2k1−2k1k2.

Furthermore, look at one row of M. Recall that each row of M has entries that consist

of either the matrix N (which replaced the original entry of 0) or J−N (which replaced the

37

original entry of 1). Then, there are v1− k1 entries in which N appears in that row of M.

Pick two different rows of this matrix formed by J−N and N. Since number in which any

two (different) rows of the matrix N both have a one in a column is λ2, then the number

in which any two (different) rows of each matrix N in that row of M both have a one in a

column in that row of M is (v1− k1)λ2. Furthermore, there are k1 entries in which J−N

appears and the number in which any two (different) rows of the matrix N both have a one

in a column is v2− 2k2 +λ2. Then, the the number in which any two (different) rows of

each matrix J−N in that row of M both have a one in a column is (v2−2k2+λ2)k1. Then,

the number in which any two rows of the matrix inside that row of M where both have a

one in a column is

Λ = (v1− k1)λ2 +(v2−2k2 +λ2)k1 = v1λ2 + v2k1−2k12k2.

Now, consider two different rows of M. The number in which any two rows of the

matrix both have a one in a column is λ1. In each of those rows, they both contain a matrix

formed by replacing the entries of 0 and 1 with N and J−N respectively. Then, in each

of these matrices, pick a row such that they are both the ith row of their respective matrix.

Then, by using a argument similar to the argument above (but slightly modified to fit this

case), then the number in which any two different rows of M (where we pick the ith row of

the matrices in both rows of M) both rows have a one in a column is

Λ1 = (v2− k2)λ1 +2(k1−λ1)+(v1−2k1 +λ1)k2 = v2λ1 + v1k2−2k1k2.

38

Furthermore, we have that

v1λ2 + v2k1−2k12k2 = v2λ1 + v1k2−2k1k2

only when

v2(k1−λ1) = v1(k2−λ2).

Since v1 = 4(k1−λ1) and v2 = 4(k2−λ2), then v2(k1−λ1) = v1(k2−λ2) becomes

4(k1−λ1)(k2−λ2) = 4(k1−λ1)(k2−λ2)

Therefore,

Λ1 = Λ.

Finally, consider two different rows of M and in each of those rows (where each row con-

tains a different matrix formed by replacing the entries of 0 and 1 with N and J−N re-

spectively), pick a row such that they are both not the ith row of their respective matrix.

Then, by an argument similar to the previous two arguments (but modified for this case),

this results in the number in which any two different rows of M (where we pick two rows

that are both not the ith row of the matrices in both rows of M) both rows have a one in a

column is

Λ2 = (v2−2k2 +λ2)λ1 +2(k1−λ1)(k2−λ2)+(v1−2k1 +λ1)λ2 = v2λ1 + v1k2−2k1k2.

39

Then, this equation will become

v1λ2 + v2λ1 +2k1k2−4k1λ2−4k1λ2 +4λ1λ2.

Since 2k1k2 =−2k1k2 +4k1k2, then the above equation can be transformed into

v1λ2 + v2λ1−2k1k2 +4(k1k2− k1λ2− k1λ2 +λ1λ2).

Furthermore, by taking v2λ1 = v2k1− v2(k1−λ1), this implies that

v1λ2 + v2k1− v2(k1−λ1)−2k1k2 +4(k1−λ1)(k2−λ2).

Then, this equation equals

v1λ2+v2k1−2k1k2−v2(k1−λ1)+4(k1−λ1)(k2−λ2) = Λ+(k1−λ1)[−v2+4(k2−λ2)].

Since v2 = 4(k2−λ2), then (k1−λ1)[−v2 +4(k2−λ2)] = 0, implying that

Λ2 = Λ.

Therefore, this new matrix, Prod(M,N) is an incidence matrix of a (V,K,Λ) design

where

V = v1v2,K = v2k1 + v1k2−2k1k2,Λ = v2k1 + v1λ2−2k1k2.

2) Assume the hypothesis. If there are permutation matrices P,Q,R,S such that M2 =PM1Q

and N2 = RN1S (by Lemma 4), then (P⊗R)Prod(M1,N1)(Q⊗S) =Prod(M2,N2).

40

The simplest application of Theorem 12 occurs when G is an internal direct product

of two subgroups G1 and G2. In this case, if G1 and G2 contain Hadamard difference sets

D1 and D2 with incidence matrices M and N, respectively, then the incidence matrix of the

difference set created by the product construction will be Prod(M,N).

Example 23: Let G =C4×C4 = ⟨a,b : a4 = b4 = 1,ab = ba⟩. Let D1 = {1} in ⟨a⟩ and

D2 = {1} in ⟨b⟩.

Then,

D1 :=−1+a+a2 +a3

and

D2 :=−1+b+b2 +b3.

Then, D = D1 ·D2 = (−1+a+a2 +a3)(−1+b+b2 +b3) yields a difference set in G.

Overall, this is important because this introduces another method that can used to find

difference sets within groups of a specific order.

41

CHAPTER V

Designs with the Symmetric Difference Property

SDP designs

When looking into designs that come from groups of a specific order, (64,256, etc.),

one concept that is of particular interest is whether or not a design and/or difference set has

what will be called the Symmetric Difference Property, or the SDP.

Definition: The symmetric difference of sets A and B, denoted A△B, is A△B = (A−

B)∪ (B−A).

Definition: A (v,k,λ) symmetric design has the Symmetric Difference Property if the

symmetric difference of any three blocks is either a block or the complement of a block.[5]

This property can occur in Hadamard (v,k,λ) difference sets with parameters

(22m,22m−1−2m−1,22m−2−2m−1).

This particular design has been defined and studied in [13], [15] and [11].

These particular difference sets are the difference sets we are interested in because these

difference sets hold some interesting properties, which will be discussed later on.

Examples of SDP and non-SDP difference sets

Below are some examples of SDP difference sets and difference sets that do not have

SDP.

Example 24: Consider the abelian group C2×C8 in Example 21. Then, a difference

set is y+ y2 + y3 + xy2 + y5 + xy7, which was found using Theorem 11.

Then, the incidence matrix of the difference set is:

42



0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1

0 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0

0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 0

1 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0

0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 0

1 0 1 0 0 0 1 1 0 0 0 0 1 0 0 1

1 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0

1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0

1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0

0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1

0 0 1 0 0 1 0 0 1 0 0 0 1 1 1 0

0 0 0 1 0 0 1 0 0 1 0 0 0 1 1 1

0 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1

1 0 0 0 0 1 0 0 1 1 0 1 0 0 0 1

0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0



One may verify this design has the SDP by seeing if any three rows of this matrix added

together forms another row of the matrix or its complement. This is equivalent to finding

the symmetric difference of three blocks since each row of the matrix represents a block.

When adding two rows together modulo 2, there will be λ 1’s that add up to zero. This

is equivalent to how the symmetric difference "throws out" the λ elements shared by the

blocks. The sum of three rows modulo 2 is equivalent to the symmetric difference of three

43

blocks.

Example 25: Consider the non-abelian group that was given in Example 16. Then,

x+x3+y+y3+xy+x3y3 is a difference set in C4⋊−1C4 =< x,y : x4 = y4 = 1,yx = xy3 >.

This difference set has the SDP since any three rows added together from its incidence

matrix either gives another row of the matrix or its complement.

For example, consider the first four rows of the incidence matrix that are shown below.

The first three rows added together gives the fourth row of the matrix.

0 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1

1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0

0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0

1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 1

Example 26: Consider the group C8×C2. This group has the difference set

D = x+ x2 + x3 + x5 + x2y+ x7y,

The incidence matrix for this design is:

44



0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1

0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0

0 0 0 1 0 1 0 0 1 0 0 1 1 1 0 0

0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0

1 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0

1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0

1 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1

0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1

0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 1

1 1 1 0 0 0 1 0 0 0 0 0 1 1 0 0

0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0

0 0 1 0 1 0 0 0 1 0 0 0 0 1 1 1

1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0

1 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1

0 1 1 0 0 1 0 0 1 1 1 0 0 0 0 0



This difference set does not have the SDP since the sum of the second, third and fourth

rows modulo 2 is (0 0 1 0 0 0 0 1 1 1 1 0 1 0 0 0), which is not a row in the matrix or its

complement.

45

Rank of a matrix

The definition of a row space and its rank is shown below.

Definition: The row space of a matrix is the subspace generated by rows of the matrix

or, for a m×n matrix A,

row space = < xT A | x ∈ Fm >,

where F is a field.

Definition: The rank of a matrix is the dimension of the row space.

Claim: If the dimension of the row space for a matrix A is r and the field is F2, the row

space will have 2r elements.

This claim is true because each element of the row space is a linear combination of the

members of the basis. Since each scalar is either 0 or 1, there are only 2r ways we can

construct an element of the row space.

Example 27(a): Consider the matrix



0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1

1 1 0 1 0 0 0



,

46

which is the incidence matrix for the difference set D = {1,2,4} in the group Z7. Then, the

above matrix can be row reduced to the matrix



1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


The rank of this matrix is 4 and the row space has the basis:

{(1 0 0 0 1 1 0),(0 1 0 0 0 1 1),(0 0 1 0 1 1 1),(0 0 0 1 1 0 1)}.

So, the row space has 24 = 16 elements.

The rank of a matrix is important because it is essential to a theorem about difference

sets with the SDP. This theorem will be discussed later on.

Codes of a design

Below is the definition of a linear code.

Definition: A linear code is a subspace of a vector space over the field F2. A codeword

is an element of the subspace. The code has the parameter [n,r], where n is the length of a

codeword and r is the dimension of the linear code. The number of codewords that a [n,r]

linear code has is 2r.

47

Definition: The distance between two codewords, x,y in the code C is the number of

positions in which the codewords differ, that is,

d(x,y) := |{i : 1≤ i≤ n,xi ̸= yi}|,

where xi and yi are the ith positions of the codewords x and y respectively.[16]

Definition: The minimum distance of the code C is d = min{d(x,y) : x∈C,y∈C,x ̸=

y}.[16]

Example 27(b): Consider the result that was found in Example 27(a). Then,

{1000110,0100011,0010111,0001101}.

can be used for the basis of the code C. Therefore,

C = {0000000,1000110,0100011,0010111,0001101,1100101,1010001,1001011,

0110100,0101110,0011010,1110010,1101000,1011100,0111001,1111111}.

Assume that x = 1010001 and y = 1101000. Then, the distance is d(x,y) = 4 since the

codewords x and y differ in four positions (for example, x has a zero in its 2nd position,

while y has a one in its 2nd position, x has a one in its third position while y has a zero in its

third position, etc). The minimum distance for C is equal to 3 because the smallest distance

that can be obtained from any two codewords is 3.

Example 28: Consider Example 21, where there was the group C2×C8 and the dif-

ference set y+ y2 + y3 + xy2 + y5 + xy7. With this difference set, an incidence matrix was

48

created in Example 24. Each row of the incidence matrix can be treated as a codeword for

a code C ⊂ F16
2 .

Then, after a lot of calculations, the following results can be produced based on the

incidence matrix for the difference set y+ y2 + y3 + xy2 + y5 + xy7:

Rank of matrix: 6

Minimum distance: 6

Number of Codewords (in C): 64

Number of Codewords in C with weight 0 : 1

Number of Codewords in C with weight 6 : 16

Number of Codewords in C with weight 8 : 30

Number of Codewords in C with weight 10 : 16

Number of Codewords in C with weight 16 : 1

Does the Difference Set have the SDP?: Yes

We were able to reach these conclusions by utilizing the following theorems.

Theorem 13. If a design D comes from a (22m,22m−1−2m−1,22m−2−2m−1) difference set

(where m≥ 1), then 1 is in the code of that design.

Proof. Let C be the code of the design. Since the rank of the code is r > 0, the number

of codewords, 2r, is even. The group G of order 22m acts as an automorphism group of

this code, (if B is a block in the code, then gB is also in the code). Consider the orbit of

codewords under left multiplication by elements of G, or Orbit(c)={gc | g ∈ G}. Then, by

the Orbit-Stabilizer Theorem (page 114 of [8]), the size of an orbit of a codeword c gives

the index of the stabilizer of c. Consider the orbits that have size 1 (where gc = c for all

49

g ∈ G). Since the code is linear, 0 ∈C. Given any two coordinates g1,g2, there is a group

element g = g1g−1
2 that moves g1 to g2. This means if a codeword c is in an orbit by itself,

all entries of c are the same. However, the number of codewords must be even. This implies

that there is some codeword other than 0 that has all entries be the same. Thus, 1, is in the

code of that design.

The proof was communicated by John Dillon to Ken Smith, [7].

Theorem 14. A symmetric design D coming from a difference set with parameters (22m,22m−1−

2m−1,22m−2− 2m−1) has the SDP if and only if the rank of the associated code is 2m+ 2

(m≥ 2).

Proof. Assume the hypothesis.

(→): Assume the symmetric design has the SDP property. Then, by Theorem 13, 1 is

in the code of the design C. Furthermore, there are 22m blocks that are codewords in the

code C since |B|= 22m for the set of blocks B. Furthermore, if B0 is a fixed block and B

is any block in the design, then the set,

{B0 +B : B ∈B},

generates 22m blocks that are also codewords in the code C. Furthermore, B ∩{B0 +B :

B ∈B}=∅ since all of the codewords of the blocks in B have weight 22m−1−2m−1 and

most of the codewords given by {B0 +B : B ∈B} have weight 22m−1 (the only element in

this set that does not given a codeword of weight 22m−1 is the all zeroes vector, 0, which

50

gives a codeword of weight zero). Then, consider the set,

{B+1 : B ∈B}.

This set generates 22m in C, where

B∩{B+1 : B ∈B}=∅

and

{B+1 : B ∈B}∩{B0 +B : B ∈B}=∅

since all the codewords of the blocks given by {B+ 1 : B ∈B} have a weight of 22m−

(22m−1−2m−1). Finally, consider the set (where B0 is a fixed block),

{B0 +B+1 : B ∈B}.

Then,

B∩{B0 +B+1 : B ∈B}=∅

and

{B+1 : B ∈B}∩{B0 +B+1 : B ∈B}=∅

since most of the codewords of the blocks given by {B0 +B+ 1 : B ∈ B} have weight

22m−1 (the only element in this set that does not given a codeword of weight 22m−1 is 1,

which gives a codeword of weight 16). However, the weight of all of the codewords of the

blocks in

51

{B0 +B : B ∈B},

also have weight 22m−1. Thus, assume there is an element in {B0 +B : B ∈ B} and an

element in {B0 +B+1 : B ∈B} such that

B0 +B = B0 +B+1.

By adding B0 to both sides, this becomes

B = B+1.

The codeword of B has weight 22m−1− 2m−1 while the codeword of B+ 1 has weight

22m− (22m−1−2m−1). This is a contradiction. Therefore,

{B0 +B : B ∈B}∩{B0 +B+1 : B ∈B}=∅.

Thus, the blocks given in all four sets are distinct. Since the design has the SDP, then it

can be concluded that there are no other codewords that can be given outside of these four

sets. Therefore, there are 4(22m) = 22m+2 codewords in C, which means that the rank of C

is 2m+2.

(←): Assume that the rank of the code C of the symmetric design D is 2m+2. There-

fore, all of the codewords of C are given by the blocks of the following four sets, where

each set has a cardinality of 22m:

52

B,{B0 +B : B ∈B},{B+1 : B ∈B},{B0 +B+1 : B ∈B},

where B is the set of the blocks of the given design.

Then, consider B0+B1+B2, where B0,B1,B2 ∈B. Since B0+B1 ∈ {B0+B : B ∈B},

then assume B0 +B1 = B, where B ∈ {B0 +B : B ∈B}. Then, B0 +B1 +B2 = B+B2.

Then, B + B2 gives back a codeword (of a block) with weight 22m−1 − 2m−1 or 22m −

(22m−1− 2m−1), which means that B2 +B ∈B or B2 +B ∈ {B+ 1 : B ∈B}. Therefore,

B0 +B1 +B2 ∈B or B0 +B1 +B2 ∈ {B+1 : B ∈B}. Therefore, the design that is given

has the SDP.

Product construction theorem of difference sets

One result that is also of interest is determining whether or not symmetric designs exist

in groups of order 256. This is difficult since there are lots of groups of order 256 or higher.

One tool has been found that could clarify what groups of order 256 or higher give SDP

designs. The following theorem is the tool that helped discovered some of these designs:

Theorem 15. Let D1 ⊂G1 be a (22m+2,22m+1−2m,22m−2m) difference set, where D1 has

the SDP. Then, the product construction D :=D1(−1+x+x2+x3) will be a SDP difference

set in the group G1×C4.[5]

Proof. Let D1 ⊂ G1 be a (22m+2,22m+1− 2m,22m− 2m) difference set, where D1 has the

SDP. By the given parameters, D = D1(−1+ x+ x2 + x3) is a difference set in the group

G1×C4. Suppose A1 is an incidence matrix for D1. The complement of that matrix, Ac
1 is

Ac
1 = A1 + J, where J is a 22m+2×22m+2 matrix that has 1 in all of its entries. Now, order

the elements of G1×C4 such that all of the elements of the coset G1×{1} appear first

53

and are ordered using the same ordering that was used in G1 to create A1. Then, this coset

will be followed by the elements of the cosets G1×{x}, G1×{x2}, G1×{x3} respectively

and each of these cosets are ordered based on the the ordering used for G1 to construct A1.

Thus, the incidence matrix A for D will be:

A=



Ac
1 A1 A1 A1

A1 Ac
1 A1 A1

A1 A1 Ac
1 A1

A1 A1 A1 Ac
1


Now, consider any three rows from the matrix A, which will be called Rc,Rd, and Re,

where 0 ≤ c,d,e ≤ 2m+ 2. For l ∈ {c,d,e}, Rl is a concatenation of the row rl from the

matrix A1. More specifically, Rl =

(
rc

l rl rl rl

)
and rc

l is the complement of the row

rl or rc
l = rl +12m+2, where 12m+2 is the 1× (2m+2) vector consisting of all ones. Since

A1 has the SDP, then for any rows rc,rd,re in A1 then rc + rd + re equals ru or rc
u for some

1≤ u≤ 22m+2. Then,

Rc +Rd +Re =

(
rc

c rc rc rc

)
+
(

rc
d rd rd rd

)
+
(

rc
e re re re

)
=
(

rc + rd + re +12m+2 rc + rd + re rc + rd + re rc + rd + re

)
, where(

rc + rd + re +12m+2 rc + rd + re rc + rd + re rc + rd + re

)
∈ {Ru,Rc

u} where 1≤ u≤

22m+2.

Thus, the sum of any three rows in A will give either another row of this matrix or its

complement. Therefore, D is an SDP difference set of the group G1×C4.

The proof of this theorem can also be found in [5].

Below are a few examples of the theorem being used for more difficult and higher

ordered groups, including some groups that have order 256.

54

Example 29: Consider the group that was given in Example 25, where there was the

group C4 ⋊−1 C4 =< x,y : x4 = y4 = 1,yx = xy3 >. It had the SDP difference set D =

x+x3+y+y3+xy+x3y3. By Theorem 15, D(−1+x+x2+x3) will be an SDP difference

set of (C4 ⋊−1 C4)×C4.

Example 30: Consider a SDP difference set D1 ⊂ C8×C4×C2. By Theoreom 15,

D1(−1+ x+ x2 + x3) is an SDP difference set in the group C8×C4×C4×C2.

Theorem 14 tells us that designs from difference sets of order 256 will have the SDP if

the rank of code is equal to 10.

Therefore, this theorem can help give (256,120,56) difference sets in groups of order

256. This theorem can also be used to find (22m+4,22m+3− 2m+1,22m+2− 2m+1) SDP

difference sets. As a result, (22m+4,22m+3 − 2m+1,22m+2 − 2m+1) SDP designs can be

found. However, the theorem only can only do this for groups of the form G×C4 and does

not account for groups that are not direct products.

Motivation and Climax

While Theorem 15 is useful, it does not give us a lot of new information in regards to

the existence of SDP designs that come from groups of order 22m+4. There are two reasons

for this: the first reason is that the theorem needs special prerequisites in order to work,

which includes the existence of a (22m+2,22m+1− 2m,22m− 2m) SDP difference set in a

group of order 22m+2. It is easy to see that not all difference sets fit this condition. The

second reason is that this theorem only applies to difference sets of groups of the form

G×C4, where G is a group. Thus, this theorem can only look at groups of the form G×C4,

which cannot account for all groups. Therefore, in order to identify non-isomorphic SDP

designs, other types of groups must be looked at, such as semi-direct products.

55

The reason semi-direct are of interest is because in some cases, a semi-direct product of

two SDP difference sets produces another SDP difference set. However, this is not always

true and can be seen when analyzing semi-direct products.

Regardless, semi-direct products gives us more designs and difference sets to look in

order to determine the number of non-isomorphic SDP designs with parameters (v,k,λ).

There is one SDP design on 16 points.

There are four non-isomorphic SDP designs on 64 points. These may be found in [15].

All four can be constructed from difference sets in groups of order 64. All four can be

constructed as a semi-direct product of a normal subgroup of order 16 and C4, using the

SDP design on 16 points.

By Theorem 15, there are four new (256,120,56) SDP designs that are given by the

direct product of one of these semi-direct products of order 64 and C4.

We also seek non-isomorphic (256,120,56) SDP designs in semi-direct products of two

groups of order 16. The reason the semi-direct products of two groups with order 16 is of

main interest is because this is a very large pool of groups that can yield significant results.

This is also of interest because this can be used as a starting point for future research on

other groups that give SDP designs with parameters (256,120,56).

Therefore, using the information that has been discussed up to this point, a major result

was established that answers this question.

Difference sets in larger groups

Now, the major result of this research will be illustrated.

By using the GAP Program, six non-isomorphic semi-direct products of groups of order

16 were found. The search was exhaustive over all possible groups of order 256 that are

56

semi-direct products of two groups of order 16. Given such a group, the search explored all

possible semi-direct products. The order that the products are given (from top to bottom)

is the order they appeared in the program. The action of righthand group onto the normal

subgroup on the left is by automorphisms. Thus, there are six main designs with v = 256

that come from semi-direct products. The first and third semi-direct products listed give

entirely new designs. The other four SDP designs that the other four semi-direct products

give can also be formed by taking a direct product from an SDP difference set in a group

of order 64 (given in [15]) by C4. The groups that gave these designs are the following

(written as semi-direct products and in terms of the GAP Programming):

(C4×C2×C2)⋊ (C4×C4) (SmallGroup(256, 542))

(C4×C2×C2)⋊ (C4 ⋊−1 C4) (SmallGroup(256, 545))

(C4×C4)⋊ (C8×C2) (SmallGroup(256, 841))

(C4×C4)⋊ (C8×C2) (SmallGroup(256, 853))

(C4×C4)⋊ (C8×C2) (SmallGroup(256, 853))

(C4×C4)⋊ ((C4×C2)⋊C2) (SmallGroup(256, 3704)).

The difference set for each of the groups is shown below. The difference sets are written

in terms of GAP Programming. This means that each element in these difference sets below

is a number that is stored in GAP and used to represent a specific element in the group.

Difference Set of SmallGroup(256, 542): [12, 39, 44, 51, 102, 189, 13, 40, 45, 54, 105,

192, 14, 41, 46, 56, 107, 193, 28, 64, 74, 85, 141, 216, 29, 65, 75, 87, 143, 217, 32, 68, 78,

90, 146, 218, 49, 99, 109, 120, 176, 237, 50, 100, 110, 122, 178, 238, 53, 103, 113, 125,

181, 239, 84, 139, 149, 159, 210, 247, 9, 17, 21, 26, 27, 37, 62, 63, 73, 138, 16, 38, 42,

47, 48, 58, 97, 98, 108, 173, 31, 59, 66, 76, 77, 89, 131, 132, 144, 204, 34, 60, 69, 79, 80,

57

92, 134, 135, 147, 207, 36, 61, 71, 81, 82, 93, 136, 137, 148, 208, 195, 220, 230, 235, 236,

240, 248, 249, 253, 256].

Difference Set of SmallGroup(256, 545): [129, 38, 18, 59, 97, 140, 206, 224, 72, 137,

251, 213, 61, 220, 68, 133, 248, 71, 88, 123, 153, 160, 197, 247, 84, 119, 149, 29, 194,

152, 34, 55, 80, 9, 127, 83, 199, 96, 65, 130, 171, 209, 203, 227, 210, 242, 252, 212, 17,

164, 19, 60, 221, 21, 28, 49, 74, 5, 120, 76, 8, 11, 13, 24, 26, 33, 45, 47, 54, 114, 207, 176,

222, 70, 73, 138, 102, 232, 250, 179, 89, 112, 121, 151, 154, 161, 186, 189, 196, 237, 35,

46, 53, 78, 81, 90, 113, 116, 125, 190, 163, 191, 57, 82, 218, 93, 117, 239, 128, 193, 204,

43, 98, 67, 211, 243, 105, 108, 173, 182].

Difference Set of SmallGroup(256, 841): [8, 15, 26, 33, 58, 157, 18, 42, 59, 64, 108,

201, 20, 177, 61, 68, 233, 206, 21, 101, 62, 69, 179, 207, 29, 122, 75, 84, 197, 215, 35, 14,

81, 90, 57, 218, 65, 41, 130, 139, 107, 242, 66, 10, 131, 140, 43, 243, 87, 50, 152, 159,

123, 247, 142, 106, 202, 209, 183, 255, 9, 11, 13, 24, 27, 34, 45, 48, 55, 115, 22, 94, 99,

60, 63, 70, 164, 167, 176, 222, 31, 44, 49, 74, 77, 86, 109, 112, 121, 186, 36, 116, 125, 78,

82, 91, 190, 193, 198, 239, 89, 111, 120, 150, 154, 161, 185, 189, 196, 237, 148, 165, 174,

205, 208, 213, 220, 224, 231, 249].

Difference Set of SmallGroup(256, 853): [8, 15, 26, 33, 58, 157, 18, 10, 59, 64, 43,

201, 20, 177, 61, 68, 233, 206, 29, 50, 75, 84, 123, 215, 30, 12, 76, 85, 52, 216, 35, 14,

81, 90, 57, 218, 65, 106, 130, 139, 183, 242, 66, 42, 131, 140, 108, 243, 71, 100, 136, 145,

178, 245, 142, 41, 202, 209, 107, 255, 9, 11, 13, 24, 27, 34, 45, 48, 55, 115, 22, 94, 99, 60,

63, 70, 164, 167, 176, 222, 31, 111, 120, 74, 77, 86, 185, 189, 196, 237, 36, 116, 125, 78,

82, 91, 190, 193, 198, 239, 73, 166, 175, 134, 138, 147, 221, 225, 232, 250, 162, 187, 194,

214, 217, 219, 235, 238, 240, 254].

58

Difference Set of SmallGroup(256, 853): [8, 15, 26, 33, 58, 157, 18, 10, 59, 64, 43,

201, 20, 177, 61, 68, 233, 206, 21, 101, 62, 69, 179, 207, 29, 50, 75, 84, 123, 215, 35, 14,

81, 90, 57, 218, 65, 106, 130, 139, 183, 242, 66, 42, 131, 140, 108, 243, 87, 122, 152, 159,

197, 247, 142, 41, 202, 209, 107, 255, 9, 11, 13, 24, 27, 34, 45, 48, 55, 115, 22, 94, 99, 60,

63, 70, 164, 167, 176, 222, 31, 111, 120, 74, 77, 86, 185, 189, 196, 237, 36, 116, 125, 78,

82, 91, 190, 193, 198, 239, 89, 44, 49, 150, 154, 161, 109, 112, 121, 186, 148, 165, 174,

205, 208, 213, 220, 224, 231, 249].

Difference Set of SmallGroup(256, 3704): [9, 16, 27, 34, 82, 126, 18, 43, 59, 64, 130,

181, 21, 179, 62, 69, 136, 253, 22, 102, 63, 70, 137, 231, 30, 124, 76, 85, 152, 240, 37, 15,

83, 92, 158, 125, 66, 42, 131, 140, 202, 180, 67, 10, 132, 141, 203, 103, 89, 51, 154, 161,

217, 194, 144, 108, 204, 211, 244, 234, 7, 11, 13, 14, 24, 32, 45, 46, 78, 113, 20, 94, 99,

100, 60, 68, 164, 165, 133, 220, 29, 44, 49, 50, 74, 84, 109, 110, 149, 184, 35, 118, 127,

128, 79, 90, 192, 193, 155, 239, 88, 112, 121, 123, 151, 160, 186, 188, 215, 236, 148, 166,

175, 177, 207, 213, 221, 223, 245, 248].

This is the main result in our research. This was obtained with the aid of three GAP

programs: 1) Programs that Creates Semi-Direct Products using (16,6,2) Difference Sets,

2) Program that Analyzes Difference Sets where v = 256 and 3) Program that gives the

Non-Isomorphic SDP designs where v = 256. The first program took 30 hours to run and

give all semi-direct products of groups of order 16 that had difference sets. The second

program took 6 hours to run and found all semi-direct products that had the SDP. The last

program took two weeks to run and determined which of the SDP semi-direct products

given in the last program are non-isomorphic. The code for each of these programs is

shown in the Appendix.

59

This illustrates that there are only six non-isomorphic designs that come from semi-

direct products of two groups of order 16. This also eliminates a very large pool of groups

that can be looked at for the existence of SDP designs.

Future research

Finally, this section illustrates some open questions that could be looked into for future

research purposes and projects. The questions are shown below:

1. What are all of the non-isomorphic designs (where v = 1024) could we find using

semi-direct products (using a similar GAP code that we used to find the six non-isomorphic

designs given above)?

2. How many different SDP designs occur as difference sets in groups of order 256?

(Note: SDP designs on 22n points correspond to bent functions on variables. See Dillon

and Schatz text, [6]. The thesis of Bending gives all bent functions on 8 variables. [2]).

3. Can we find SDP designs from groups H64⋊C4, where is a normal subgroup of order

64 that contains a Hadamard difference set?

4. Is there a special structure for designs with a rank 2n+3 (which can be called "almost

SDP" designs?)

60

REFERENCES

[1] T. Applebaum, J. Clikeman, J. Davis, J. Dillon, J. Jedwab, T. Rabbani, K. Smith, and

W. Yolland, Constructions of difference sets in nonabelian 2-groups, March 2020,

pp. 1–8.

[2] T. D. Bending, Bent functions, sdp designs and their automorphism groups, Ph.D.

thesis, Queen Mary and Westfield College, 11 1993.

[3] C. Bhattacharya and K. Smith, Factoring (16,6,2) difference sets, Electron J. Comb.

15 (2008), 1–16.

[4] C. J. Colbourn and J. H. Dinitz, Handbook of combinatorial designs, second ed.,

Chapman & Hall CRC Press; Taylor & Francis Group, 2007.

[5] J. A. Davis, J. J. Hoo, C. Kissane, Z. Liu, C. Reedy, K. Sharma, K. Smith, and Y. Sun,

Abelian difference sets with the symmetric difference property, Des. Codes Cryptogr.

89 (2021), no. 3, 517–523. MR 4220826

[6] J. F. Dillon and J. R. Schatz, Block designs with the symmetric difference property.

[7] J. F. Dillon, personal communication via Ken Smith, July 2021.

[8] D. S. Dummit and R. M. Foote, Abstract algebra, Wiley & Sons, Inc., Hoboken, NJ,

2004. MR 1138725

[9] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.11.1,

2021.

[10] M. Hall, Jr., Combinatorial theory, second ed., Wiley-Interscience Series in Discrete

Mathematics, John Wiley & Sons, Inc., New York, 1986, A Wiley-Interscience Pub-

lication. MR 840216

[11] D. Jungnickel and V. D. Tonchev, On symmetric and quasi-symmetric designs with

61

the symmetric difference property and their codes, Journal of Combinatorial Theory

(1992), 40–50. MR 1129323

[12] W. M. Kantor, Symplectic groups, symmetric designs, and line ovals, J. Algebra 33

(1975), 43–58. MR 363934

[13] , Exponential numbers of two-weight codes, difference sets and symmetric

designs, Discrete Math. 46 (1983), no. 1, 95–98. MR 708168

[14] P. J. Olver and Shakiban, Applied linear algebra, Springer International Publilshing

AG., 2006. MR 1138725

[15] C. Parker, E. Spence, and V. D. Tonchev, Designs with the symmetric difference prop-

erty on 64 points and their groups, J. Combin. Theory Ser. A 67 (1994), no. 1, 23–43.

MR 1280597

[16] J. H. van Lint and R. M. Wilson, A course in combinatorics, second ed., Cambridge

University Press, Cambridge, 2001. MR 1871828

62

APPENDIX

All of these codes were written by the supervisor, Dr. Kenneth W. Smith. The codes

that listed in this Appendix are the following:

Three Procedures Program

Rank of Matrix Program

Generalized Product Procedures

Difference Set Procedure

Programs that Creates Semi-Direct Products using (16,6,2) Difference Sets

Program that Analyzes Difference Sets where v=256

Program that gives the Non-Isomorphic SDP designs where v=256

These codes are essential to this thesis because they were used to verify or check the

examples used. They also helped establish the major result of this research, specifically the

last five programs that are listed above.

Three Procedures Program: This is a separate code that is used to find the rank of

an incidence matrix. The first part of the code shown below takes a design (a set of sets)

and creates an isomorphic design on the point set [1..v]. The second part of the code here

reads in a group and a subset ’sublist’ of the group and creates the collection of all images

of ’sublist’ under the action LEFT multiplication. The third and final part of the code here

takes a design (a set of sets) on [1..v] and creates an incidence matrix. This function works

on designs that incorporate integers or other symbols.

PointsToInterval := function(design)

local blocks, v, k, points, intDesign, i, j, s;

blocks := Size(design);

points := Set(Union(design));

63

v := Size(points);

intDesign := [];

for i in [1..blocks] do

Add(intDesign, ShallowCopy(design[i]));

od;

for i in [1..blocks] do

k := Size(design[i]);

for j in [1..k] do

for s in [1..v] do

if design[i][j] = points[s] then

intDesign[i][j] := s; fi;

od;

od;

od;

return intDesign;

end;

The second part of the code here.

LeftTranslates_Nums := function(group, sublist)

local k, elements, g, design, i, block;

k := Size(sublist);

elements := Elements(group);

64

design := [];

for g in elements do

block := [];

for i in [1..k] do

Add(block, g*elements[sublist[i]]);

od;

Add(design, block);

od;

return design;

end;

The third and final part of the code here.

IncidenceMatrix := function(design)

local blocks, v, k, incMat, intDesign, i, j;

intDesign := PointsToInterval(design); #PointsToInterval comes from the

first line in first part of code.

blocks := Size(intDesign);

v := Size(Set(Flat(intDesign)));

k := Size(intDesign[1]);

65

incMat := NullMat(blocks,v);

for i in [1..blocks] do

for j in [1..k] do

incMat[i][intDesign[i][j]]:=1;

od;

od;

return incMat;

end;

Rank of Matrix Program: This is a program that is used to directly find the rank of

an incidence matrix obtained from the previous code above (Three Procedures Program).

lt:=LeftTranslates_Nums(g, gap_difset); #LeftTranslates_Num comes from

the first line of the second part of the Three Procedures code.

design:=PointsToInterval(lt) ; #PointsToInterval comes from the first

line in first part of Three Procedures code.

mat:=IncidenceMatrix(design) ; #IncidenceMatrix comes from the first

line in the third part of Three Procedures code.

snf:=Collected(DiagonalOfMat(SmithNormalFormIntegerMat(mat)));

Generalized Product Procedures: This code uses a number of procedures to find

difference sets in groups via a product construction. The first procedures takes a group and

returning a set of lists. Second procedure takes a group and a list of PTAs (Perfect Ternary

Array or Hadamard difference set in group ring notation) of length 4 and combines them

to create products of size 16. Third procedure takes a group and a list of pairs of PTAs

66

of size 4 that gave a product of size 16 and cleans the list up. Fourth procedure takes a

group and runs through the list of sets of size 16 until it finds a pair so that the group is the

product of this pair of lists. Fifth procedure takes a group and a list of sets of size 4 that

form a PTA of size 4 and hunts for Hadamard subgroups h of size 64 so that the group is

the product of h and that list. Sixth procedure takes a group and a set of size sixteen equal

to the support of the product of two PTAs of size 4. The last procedure takes a group and

two PTA’s consisting of indices in the group where the lists have coefficients ±1. Then, it

multiplies the two elements in the group ring.

###

This procedure takes a group and returns a set of lists.

Each list has size four, of the form [1, i1, i2, i3] where

the elements ’identity’, e[i1], e[i2] and e[i3] form the support

of a PTA of length 4.

###

PTA4 := function(group)

local e, foursets, v, i1, i2;

e := Elements(group);

v := Size(e);

foursets := [];

for i1 in [2..v] do for i2 in [i1+1..v] do

if Order(e[i1])= 2 and e[i1]*e[i2]=e[i2]*e[i1] then Add(foursets, [1,

i1, i2, Position(e, e[i1]*e[i2])]); fi;

if Order(e[i1])= 4 and Order(e[i2])= 4 then

67

if IdGroup(Group(e[i1],e[i2]))=[8,4] then Add(foursets, [1, i1, i2,

Position(e, e[i1]*e[i2])]); fi;

fi;

od; od;

foursets := Set(foursets);

return foursets;

end;

###

This procedure takes a group and a list of PTAs of length 4

and combines them to create products of size 16. It returns

a list of lists; each list is a pair [i1, i2, [pta4[i1], pta4[i2]]].

###

PTA16 := function(group, pta4)

local e, v, sizepta4, i1, i2, pairsofpta4;

e := Elements(group);

v := Size(e);

sizepta4 := Size(pta4);

pairsofpta4 := [];

for i1 in [1..sizepta4] do for i2 in [i1+1..sizepta4] do

if Size(Intersection(pta4[i1], pta4[i2])) = 1 then

Add(pairsofpta4 , [i1, i2, [pta4[i1], pta4[i2]]]);

fi;

od; od;

68

return pairsofpta4;

end;

###

This procedure takes a group and a list of pairs of PTAs of

size 4 that gave a product of size 16 and then cleans up this

list in two ways" (1) making sure that the list of size 16 has

no repetitions and so is a genuine PTA of length 16 and (2)

removing duplicates from the final list of genuine PTA-16s.

The output should then be a list of lists, each list being

a set of size 16 that is the support for a genuine PTA 16.

###

CleanUpPTA16 := function(group, pairsofpta4)

local e, v, cleansixteensets, sizepta16, index,pta16, list1, list2,

finallist, i1, i2;

e := Elements(group);

v := Size(e);

cleansixteensets := [];

sizepta16 := Size(pairsofpta4);

for index in [1..sizepta16] do

pta16 := pairsofpta4[index];

list1 := pta16[3][1];

list2 := pta16[3][2];

finallist := [1, list1[2], list1[3], list1[4], list2[2],

69

list2[3], list2[4]];

for i1 in [2..4] do for i2 in [2..4] do

Add(finallist, Position(e, e[list1[i1]]*e[list2[i2]]));

od; od;

finallist := Set(finallist);

if Size(finallist) = 16 then Add(cleansixteensets, finallist); fi;

od;

cleansixteensets := Set(cleansixteensets); # There could be duplicate,

different products that give the same 16-set.

return cleansixteensets;

end;

###

This procedure takes a group and a list of sets of size 16 and

hunts for a pair, ’list1’ and ’list2’ whose supports factor the

group g, so that g = list1*list2

###

GeneralizedProduct256 := function(group, cleansixteensets)

local e, solution, sizepta16, min, max, breakflag, i1, i2, list1, list2,

inter, product, j1, j2;

e := Elements(group);

solution := [];

sizepta16 := Size(cleansixteensets);

min := 16; max := 0; breakflag := 0;

70

for i1 in [1..sizepta16] do for i2 in [1..sizepta16] do

list1 := cleansixteensets[i1]; list2 := cleansixteensets[i2];

inter :=Size(Intersection(list1, list2));

if inter < min then min:=inter;

Print("Minimum of ", min," at ",i1," & ", i2,"\n"); fi;

if inter = 1 then

##########

Here we check that the product does not collapse:

product := [];

for j1 in [1..Size(list1)] do for j2 in [1..Size(list2)] do

Add(product, (Position(e, e[list1[j1]]*e[list2[j2]])));

od; od;

product := Set(product);

##########

if Size(product) > max then max := Size(product);

Print("Found product of size ", max,".\n"); fi;

if Size(product) = 256 then

Print(" *** Solution!\n");

Add(solution, [[i1,i2],[list1, list2]]); breakflag := 1; break;

fi;

fi;

od;

if breakflag = 1 then break; fi;

71

od;

return solution;

end;

###

This procedure takes a group identified by a catalogue number ’cn’

and a list of sets of size 4 that would form a PTA4 and

hunts for Hadamard subgroups h of size 64 so that

group g, so that g = h*list.

This procedure takes a fraction of a second up to 10 seconds or more

per group

depending on the number of subgroups of the group.

It worked through 3780 groups (left to check from the earlier product

constructions) in fifteen hours.

###

GeneralizedProduct_H64xT:= function(cn, pta4)

local solution, breakflag, intersectionsize, forbidden_64, g, e, sub,

size, max, i1, h1, eh, x, fourset, product, j1, j2;

solution := [];

breakflag := 0;

forbidden_64 := [1, 38, 47, 50, 52, 53, 54, 186]; # These are catalogue

numbers of groups of order 64 without difference sets

g:=SmallGroup(256, cn); e :=Elements(g);

sub := AllSubgroups(g); sub:=SortedList(sub);

72

size := Size(sub); # We construct group and subgroups

breakflag := 0;

for i1 in [2..size] do # We hunt for a good group of order 64.

h1 := sub[i1];

if Size(h1) = 64 then

max := 99;

if not (IdGroup(h1)[2] in forbidden_64) then # This group is good!

Print("Good group found! ", IdGroup(h1)[2],"\n");

eh := []; for x in Elements(h1) do Add(eh, Position(e, x)); od;

for fourset in pta4 do

intersectionsize :=Size(Intersection(eh, fourset));

if intersectionsize < max then max := intersectionsize; Print(" ",max,"\n");fi;

if intersectionsize = 1 then # This looks promising

#Print("Good intersection size at ", fourset,"\n");

##########

Here we check that the product does not collapse:

product := []; for j1 in [1..64] do for j2 in [1..4] do

Add(product, (Position(e, e[eh[j1]]*e[fourset[j2]])));

od; od;

product := Set(product);

##########

if Size(product) > max then max := Size(product);

Print("Found product of size ", max,".\n"); fi;

73

if Size(product) = 256 then

Print(" *** Solution! ", [i1, fourset], " ", IdGroup(h1),"\n");

Replace Add(solution, [i1,fourset]);

solution := [i1, fourset];

breakflag := 1; break;

fi; # if Size(product) ...

fi; # if Size(Intersection...

if breakflag = 1 then break; fi;

od; # for fourset in ...

fi; # if not...

fi; # if Size(h1) = ...

if breakflag = 1 then break; fi;

od; # for i1 in ...

return solution;

end;

###

###

GeneralizedProduct_H16xT1xT2(cn, cleansixteensets);

###

This procedure takes a group identified by a catalogue number ’cn’

and a list of sets of size 4 that would form a PTA4 and

hunts for Hadamard subgroups h of size 64 so that

group g, so that g = h*list

74

This procedure takes a fraction of a second up to 10 seconds or more per group

depending on the number of subgroups of the group.

It worked through 875 groups (left to check from the earlier product

constructions) in ?? hours.

###

GeneralizedProduct_H16xT1xT2:= function(cn, cleansixteensets)

local solution, breakflag, pta16, intersectionsize, forbidden_16, forbidden_64, g, e, sub, size, max, i1, h1, eh, x, fourset, product, j1, j2;

solution := [];

breakflag := 0;

forbidden_16 := [1, 7]; # These are catalogue numbers of groups of order

16 without difference sets

g:=SmallGroup(256, cn); e :=Elements(g);

sub := AllSubgroups(g); sub := SortedList(sub);

size := Size(sub); # We construct group and subgroups

breakflag := 0;

for i1 in [2..size] do # We hunt for a good group of order 16.

h1 := sub[i1];

if Size(h1) = 16 then

max := 99;

if not (IdGroup(h1)[2] in forbidden_16) then # This group is good!

Print("Good group found! ", IdGroup(h1)[2],"\n");

eh := []; for x in Elements(h1) do Add(eh, Position(e, x)); od;

75

for pta16 in cleansixteensets do

intersectionsize :=Size(Intersection(eh, pta16));

if intersectionsize < max then max := intersectionsize;

Print(" ",max,"\n");

fi;

if intersectionsize = 1 then # This looks promising

Print("Good intersection size at ", pta16,"\n");

##########

Here we check that the product does not collapse:

product := []; for j1 in [1..16] do for j2 in [1..16] do

Add(product, (Position(e, e[eh[j1]]*e[pta16[j2]])));

od; od;

product := Set(product);

##########

if Size(product) > max then max := Size(product);

Print("Found product of size ", max,".\n"); fi;

if Size(product) = 256 then

Print(" *** Solution! ", [i1, pta16], " ", IdGroup(h1),"\n");

Add(solution, [i1,pta16]);

solution := [i1,pta16];

breakflag := 1;

break;

fi; # if Size(product) ...

76

fi; # if Size(Intersection...

if breakflag = 1 then break; fi;

od; # for fourset in ...

fi; # if not...

fi; # if Size(h1) = ...

if breakflag = 1 then break; fi;

od; # for i1 in ...

return solution;

end;

###

###

ReverseSixteen(groupid, sixteenset);

###

This procedure takes a group identified by a catalogue number ’cn’

and a set of size sixteen equal to the support of the product

of two PTA4s. It then recovers the (not necessarily unique)

PTA4s used to create the product.

###

ReverseSixteen := function(groupid , sixteenset)

local v, cn ,g, e, foursets, size, breakflag, i1, i2, j1, j2, list1,

list2, finallist,

solution, dsneg, dspos;

v := groupid[1]; cn := groupid[2]; g:=SmallGroup(v,cn); e:=Elements(g);

77

foursets := PTA4(g);

size := Size(foursets);

breakflag := 0;

for i1 in [1..size] do

for i2 in [i1+1..size] do

list1 := foursets[i1]; list2 := foursets[i2];

finallist := [1, list1[2], list1[3], list1[4], list2[2], list2[3],

list2[4]];

for j1 in [2..4] do for j2 in [2..4] do

Add(finallist, Position(e, e[list1[j1]]*e[list2[j2]]));

od; od;

finallist := Set(finallist);

if finallist = sixteenset then

solution := [i1, i2];

dsneg := [list1[2], list1[3], list1[4], list2[2], list2[3], list2[4]];

Sort(dsneg);

dspos := finallist; SubtractSet(dspos, dsneg);

breakflag := 1;

break;

fi;

od;

if breakflag=1 then break; fi;

od;

78

return [solution, [dspos,dsneg]];

end;

sixteenset := [1, 2, 5, 6, 12, 13, 26, 28, 47, 49, 76, 79, 111, 114,

150, 185];

groupid := [256, 323];

rev := ReverseSixteen(groupid, sixteenset);

###

This procedure takes a group identified by a ’GroupId’ (of the

form [v, cn]) and two PTAs, each given by a list [pos1, neg1] or

[pos2, neg2] consisting of indices in the group where pta1 or pta2

has coefficient +1 and indices where the pta has coefficient -1.

The procedure then multiplies the two elements in the group

ring and returns the results in the form [newpos, newneg].

At this time there is NO error checking!

###

ProductPTAs := function(groupid, pta1, pta2)

local v, cn, g, e, pos1, pos2, neg1, neg2, newpos, newneg, index1, index2;

v := groupid[1]; cn := groupid[2]; g:=SmallGroup(v,cn); e:=Elements(g);

pos1 := pta1[1]; neg1 := pta1[2];

pos2 := pta2[1]; neg2 := pta2[2];

newpos := []; newneg := [];

79

for index1 in pos1 do

for index2 in pos2 do

Add(newpos, Position(e, e[index1]*e[index2]));

od;

for index2 in neg2 do

Add(newneg, Position(e, e[index1]*e[index2]));

od;

od;

for index1 in neg1 do

for index2 in pos2 do

Add(newneg, Position(e, e[index1]*e[index2]));

od;

for index2 in neg2 do

Add(newpos, Position(e, e[index1]*e[index2]));

od;

od;

return [newpos,newneg];

end;

Difference Set Procedure: This code contains a large collection of procedures. This

code is used in later programs listed in the Appendix. The first and second procedures

takes a group G, a sorted list of elements from G and a function of those elements to give a

(v,k,λ) design. Third procedure uses the same group, a sorted list of elements of the group,

and a subgroup to find the coset representatives of the subgroup. Fourth procedure turns an

80

integer base into a list. Fifth procedure turns a list of positive integers into one integer. The

next six procedures are used to creates an incidence matrix of a design and finds its rank.

The twelve procedure takes the incidence matrix of the design and creates a list of triple

intersections involving the first row. The thirteenth procedure takes the incidence matrix of

a design and creates a list of triple intersections and quadruple intersections involving the

first row. The fourth procedure finds all the hyperplanes of the group. The fifteenth pro-

cedure finds a new difference set using hyperplane construction. The sixteenth procedure

creates a new incidence matrix of the new difference set by switching the entries of the old

incidence matrix. The seventeenth procedure creates a list quadruple intersections formed

from the rows of the new incidence matrix. The eighteenth procedure finds the design

obtained from new difference set. The nineteenth procedure attempts to takes a subgroup

acting transitively on a set [1..2m] and find all 2-groups acting regularly on the set.

###

1. ConvolutionTable_f(group, elements, func)

###

This procedure takes a group, a sorted list of the elements

of the group and ’func’, a function previously defined on

the elements of the group.

It returns a table whose (i,j) entry is the

positive integer k such that e[i] * f(e[j]) = e[k].

This is especially useful for difference sets if

the function ’f’ was defined by

f:= x-> x^-1;

81

Example:

> g:=SmallGroup(4,1); e:= Elements(g);

> CL := ConvolutionTable_f(g, e, x->x);

[[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]]

#

> CL_inv := ConvolutionTable_f(g, e, x->x^-1);

[[1, 4, 3, 2], [2, 1, 4, 3], [3, 2, 1, 4], [4, 3, 2, 1]]

###

ConvolutionTable_f := function(group, elements, func)

local order, CL, i0, i1, i2;

order := Size(group);

CL := [];

for i0 in [1..order] do CL[i0] := []; od;

for i0 in [1..order] do

for i1 in [1..order] do

for i2 in [1..order] do

if elements[i1]*func(elements[i2]) = elements[i0] then

CL[i1][i2] := i0; fi;

od;

od;

od;

return CL;

end;

82

###

Example:

> g:=SmallGroup(4,1); e:= Elements(g); CL := ConvolutionTable_f(g, e, x->x);

[[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]]

#

> CL_inv := ConvolutionTable_f(g, e, x->x^-1);

[[1, 4, 3, 2], [2, 1, 4, 3], [3, 2, 1, 4], [4, 3, 2, 1]]

###

2. Convolution(MT, list1, list2)

###

This procedure takes table MT (created, say, by

ConvolutionTable_f(g, e, f) and two lists, list1 and list2,

(Members of the integer group ring Zg here are represented as

a list of coefficients, so for example, the set e[1]+2*e[3]

in Z(C_5) will appear as [1,0,2,0,0].)

It then uses the convolution list MT to quickly compute

list1*list2 in Zg and returns that answer as a list.

###

Convolution := function(MT, list1, list2)

local sizeMT, conprod, i1, i2, i3;

sizeMT := Size(MT);

conprod := ListWithIdenticalEntries(sizeMT, 0); # This will be

the final answer.

83

for i1 in [1..sizeMT] do for i2 in [1..sizeMT] do

i3 := MT[i1][i2];

conprod[i3] := conprod[i3]+list1[i1]*list2[i2];

od; od;

return conprod;

end;

###

> g:=SmallGroup(4,1); e:= Elements(g);

> CL := ConvolutionTable_f(g, e, x->x);

[[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]]

###

3. LeftTransversalList(group, elements, subgroup)

###

This procedure takes a group, a sorted list of elements

of the group, a subgroup, and returns a list of left coset

representatives of the subgroup in the group. The coset representatives

are positive integers; if the integer i0 is listed then e[i0]

is in that coset.

###

LeftTransversalList := function(group, elements, subgroup)

local rt, lt_list, t;

rt := RightTransversal(group, subgroup);

84

lt_list := [];

for t in rt do Add(lt_list, Position(elements,t^-1)); od;

return lt_list;

end;

###

Example:

> g:=SmallGroup(8,3); e:= Elements(g); h:=Group(e[2]);

lt := LeftTransversalList(g,e,h);

#[1, 3, 4, 7]

###

3B. LeftCosetList(group, elements, subgroup)

###

This procedure takes a group, a sorted list of elements

of the group, a subgroup, and returns a list of left cosets of

the subgroup in the group. The elements of the cosets

are positive integers; if the integer i0 is listed then e[i0]

is in that coset.

###

LeftCosetList := function(group, elements, subgroup)

local lt, leftcosets, j, coset, x;

lt := LeftTransversalList(group, elements, subgroup);

leftcosets := [];

for j in lt do

85

coset := [];

for x in subgroup do

Add(coset, Position(elements, elements[j]*x));

od;

Add(leftcosets, coset);

od;

return leftcosets;

end;

###

Example:

> g:=SmallGroup(8,3); e:= Elements(g); h:=Group(e[2]);

lt := LeftTransversalList(g,e,h);

#[1, 3, 4, 7]

###

###

The procedure ’ListToInteger’ turns a positive integer into a

list of a certain length.

Using base 3, the integer 14 becomes [1,1,2] with length 3

or [0,0,0,0,0,1,1,2] with length 8.

The procedure ’IntegerToList’ reverses that process.

###

4. IntegerToList(intIn, length, base)

###

86

This procedure turns an integer base ’base’ into a list

Convert decimal integer to list

’intIn’ is the integer we read in;

’base’ is the base for the computation.

’length’ is the length of the output vector

###

IntegerToList := function(intIn, length, base)

local vector, i, minLength, quotient, remainder;

minLength := LogInt(intIn, base) + 1;

if minLength > length then minLength := length; fi;

vector := ListWithIdenticalEntries(length, 0);

for i in [1 .. minLength] do

quotient := QuoInt(intIn, base);

remainder := RemInt(intIn, base);

intIn := quotient;

vector[length + 1 - i] := remainder;

od;

return vector;

end;

###

5. ListToInteger(vector, base)

###

This procedure turns a string (as a list) of positive integers

87

into an integer. This undoes the IntegerToList function.

###

ListToInteger := function(vector, base)

local int_val, i, length;

int_val := 0;

length := Size(vector);

for i in [1 .. length] do

int_val := int_val + vector[i] * base ^ (length - i);

od;

return int_val;

end;

###

Example:

> IntegerToList(14, 4, 3);

#[0, 1, 1, 2]

IntegerToList(6, 3, 2);

#[1, 1, 0]

ListToInteger([1,2,3,4], 10);

1234

ListToInteger([0,1,1,2], 3);

14

###

This next five procedures are used to create incidence matrices from

88

the output of Dylan Peifer’s DifSet package.

They require > LoadPackage("difset");

###

6. PointsToInterval(design)

###

This procedure takes a design (a set of sets) and creates

an isomorphic design on the point set [1..v].

i, j, and s are iterates.

###

PointsToInterval := function(design)

local blocks, v, k, points, intDesign, i, j, s;

blocks := Size(design);

points := Set(Union(design));

v := Size(points);

intDesign := [];

for i in [1..blocks] do

Add(intDesign, ShallowCopy(design[i]));

od;

for i in [1..blocks] do

k := Size(design[i]);

for j in [1..k] do

for s in [1..v] do

if design[i][j] = points[s] then

89

intDesign[i][j] := s; fi;

od;

od;

od;

return intDesign;

end;

###

7. LeftTranslates_Nums(group, sublist)

###

This procedure reads in a group and a subset ’sublist’

of integers representing members of the group and creates the

collection of all images of ’sublist’ under the action LEFT multiplication.

I’ve added a line that allows one to work from the numbers [1..v];

###

LeftTranslates_Nums := function(group, sublist)

local k, elements, g, design, i, block;

k := Size(sublist);

elements := Elements(group);

design := [];

for g in elements do

block := [];

for i in [1..k] do Add(block, g*elements[sublist[i]]); od;

Add(design, block);

90

od;

return design;

end;

###

8. IncidenceMatrix(design)

###

This procedure takes a design (a set of sets) on [1..v]

and creates an incidence matrix. This function works on

designs that incorporate integers or other symbols.

###

IncidenceMatrix := function(design)

local blocks, v, k, incMat, intDesign, i, j;

intDesign := PointsToInterval(design);

blocks := Size(intDesign);

v := Size(Set(Flat(intDesign)));

k := Size(intDesign[1]);

incMat := NullMat(blocks,v);

for i in [1..blocks] do

for j in [1..k] do

incMat[i][intDesign[i][j]]:=1;

od;

od;

return incMat;

91

end;

###

Example:

> g:=SmallGroup(16,2);

> ds := [1, 2, 3, 4, 8, 15];

> design := LeftTranslates_Nums(g, ds);

> mat := IncidenceMatrix(design); # mat is the incidence matrix

> snf:=Collected(DiagonalOfMat(SmithNormalFormIntegerMat(mat)));

The 2-rank, the dimension of the row space of ’mat’ over GF(2) is

> snf[1][2];

design1 := LeftTranslates_Nums(g1, ds);

pti1 := PointsToInterval(design1);

This is an unsorted list of the blocks.

blocklist1 := [];

for list in pti1 do Sort(list); Add(blocklist1, list); od;

We sort the blocks.

SBIBD1 := BlockDesign(64, blocklist1);

###

9. CodeRank(mat, p)

###

92

This procedure takes a matrix ’mat’ and finds its rank

in characteristic ’p’.

###

CodeRank := function(mat, p)

local rank, x, snf, r;

rank := 0;

snf:=Collected(DiagonalOfMat(SmithNormalFormIntegerMat(mat)));

for x in snf do

r := x[1] mod p;

if not (r=0) then rank := rank + x[2]; fi;

od;

return rank;

end;

###

10. IncidenceMatToDesign(mat)

###

This procedure takes a (0,1)-matrix ’mat’ and builds a design

(a set of subsets of [1..v]) corresponding to the matrix.

###

IncidenceMatToDesign := function(mat)

local v, blocklist, row, col, list;

v := Size(mat);

blocklist := [];

93

for row in [1..v] do

list := [];

for col in [1..v] do

if mat[row][col] = 1 then Add(list, col); fi;

od;

Sort(list);

Add(blocklist, list);

od;

return blocklist;

end;

###

11. IncidenceMatrixOfDifferenceSet(idgroup, ds);

###

IncidenceMatrixOfDifferenceSet := function(idgroup, ds)

local g, design, mat;

g:=SmallGroup(idgroup[1], idgroup[2]);

design := LeftTranslates_Nums(g, ds);

mat := IncidenceMatrix(design); # mat is the incidence matrix

return mat;

end;

###

12. IntersectionTriples(mat)

###

94

This procedure takes the (0,1) incidence matrix of a design

and creates the list of triple intersections involving the first row.

###

IntersectionTriples := function(mat)

local v, row1, triples, i2, i3, row2, row3, sum, j;

v := Size(mat);

row1 := mat[1];

triples := [];

for i2 in [2..v] do for i3 in [i2+1..v] do

row2 := mat[i2]; row3 := mat[i3];

sum := 0;

for j in [1..v] do sum := sum+row1[j]*row2[j]*row3[j]; od;

Add(triples, sum);

od;od;

return Collected(triples);

end;

###

13. IntersectionQuadruples(mat)

###

This procedure takes the (0,1) incidence matrix of a design

and creates the list of triple intersections and quadruple intersections

involving the first row.

###

95

IntersectionQuadruples := function(mat)

local v, row1, quadruples, i2, i3, i4, row2, row3, row4, sum, j;

v := Size(mat);

row1 := mat[1];

quadruples := [];

for i2 in [2..v] do for i3 in [i2+1..v] do for i4 in [i3+1..v] do

row2 := mat[i2]; row3 := mat[i3]; row4 := mat[i4];

sum := 0;

for j in [1..v] do sum := sum+row1[j]*row2[j]*row3[j]*row4[j]; od;

Add(quadruples, sum);

od;od;od;

return Collected(quadruples);

end;

###

14A. CentralInvolutions(g)

###

This finds all central involutions. The central involutions,

along with the identity, form a central elementary abelian 2-subgroup

If Z(G) is the center of G then this subgroup is Omega_1(Z(G)).

But this is not Omega(G):

https://en.wikipedia.org/wiki/Omega_and_agemo_subgroup

The central involutions are returned as a list of integers,

representing their position in the list Elements(g).

96

###

CentralInvolutions := function(g)

local e, inv, cent, x;

e := Elements(g); inv := []; cent := Center(g);

for x in e do if Order(x)=2 and x in cent then Add(inv, Position(e,x));

fi; od; return inv;

end;

###

14B. CentralInvolutions_Subgroup(g)

###

This finds all central involutions. The central involutions,

along with the identity, form a central elementary abelian 2-subgroup

If Z(G) is the center of G then this subgroup is Omega_1(Z(G)).

But this is not Omega(G):

https://en.wikipedia.org/wiki/Omega_and_agemo_subgroup

The central involutions are returned as a list of integers,

representing their position in the list Elements(g).

###

CentralInvolutions_Subgroup := function(g)

local e, inv, cent, x;

e := Elements(g); inv := []; cent := Center(g);

for x in e do if Order(x)=2 and x in cent then Add(inv, x); fi; od;

return Group(inv);

97

end;

###

15. CosetDistribution(group, subgroup, subsetlist)

###

This procedure finds the intersection numbers of the subset

of ’group’ corresponding to the indices in ’subgrouplist’

with the cosets of ’subgroup’ in a group ’group’.

###

CosetDistribution := function(group, subgroup, subsetlist)

local e, cosets, cosetdistribution, cos;

e := Elements(group);

list := []; for i in subsetlist do Add(list, e[i]); od;

cosets := LeftCosetList(group, e, subgroup);

cosetdistribution := [];

for cos in cosets do

Add(cosetdistribution, Size(Intersection(cos, subsetlist)));

od;

return Collected(cosetdistribution);

end;

###

16. Switching(list, mat)

###

This procedure ’switches’ the entries of ’mat’ on rows

98

identified in ’list’.

###

Switching := function(list, mat)

local size, m, switchingset, errormessage, verifyflag, col, row, sum,

newmat;

size := Size(mat[1]);

m := Size(list);

switchingset := [];

errormessage := [];

Below we decide which columns require complementation.

These columns are the ’switchingset’, with sum = m/2

We also check that all column sums are 0, m/2 or m.

(If not, the column is placed in ’errormessage’.

for col in [1..size] do

sum := 0; for row in list do sum := sum + mat[row][col]; od;

verifyflag := 0;

if sum = m/2 then verifyflag := 1; Add(switchingset, col); fi;

if sum = m or sum = 0 then verifyflag := 1; fi;

if verifyflag = 0 then Add(errormessage, col); fi;

Print(col," ", sum, "\n");

od;

newmat := [];

if errormessage = [] then

99

for row in [1..Size(mat)] do Add(newmat, ShallowCopy(mat[row])); od;

for col in switchingset do for row in list do

newmat[row][col] := 1-newmat[row][col];

od; od;

Print(switchingset,"\n");

else Print("Errors at ", errormessage,"\n");

fi;

return newmat;

end;

###

17. SpecialQuadruples(idgroup, difset)

###

SpecialQuadruples := function(idgroup, difset)

local v, mat, quadrupleslist, row2, row3, row4, sum;

v := idgroup[1];

mat := IncidenceMatrixOfDifferenceSet(idgroup, difset);

quadrupleslist := [[],[]];

for row2 in [2..v] do for row3 in [row2+1..v] do for row4 in [row3+1..v] do

sum := (mat[1]+mat[row2]+mat[row3]+mat[row4]) mod 2;

if Collected(sum)=[[0,64]] then Add(quadrupleslist[1],

[1,row2, row3, row4]); fi;

if Collected(sum)=[[1,64]] then Add(quadrupleslist[2],

[1,row2, row3, row4]); fi;

100

od; od; od;

return quadrupleslist;

end;

###

18. AutomorphismGroupOfDifferenceSetDesign(idgroup, ds);

###

AutomorphismGroupOfDifferenceSetDesign := function(idgroup, ds)

local g, design, pti, blocklist, list, symmetricdesign, aut;

g:=SmallGroup(idgroup[1], idgroup[2]);

design := LeftTranslates_Nums(g, ds);

pti := PointsToInterval(design); # This is an unsorted list of the blocks.

blocklist := [];

for list in pti do Sort(list); Add(blocklist, list); od; # We sort the blocks.

symmetricdesign := BlockDesign(Size(blocklist), blocklist);

mat := IncidenceMatrix(design); # mat is the incidence matrix

aut := AutomorphismGroup(symmetricdesign);

return aut;

end;

design1 := LeftTranslates_Nums(g1, ds);

##

###

DEMO:

101

LoadPackage("design");

aut := AutomorphismGroupOfDifferenceSetDesign([16,2], [1, 2, 3, 4, 8, 15]);

path := "gap4r8/KensGap/2021/DifSetProcedures/"; filename0 :=

Concatenation(path,"RegularAutomorphismGroup.txt");

Read(filename0);

LoadPackage("design");

###

19A. RegularSubgroup(set,aut, max)

###

This procedure attempts to take a subgroup ’aut’ acting transitively

on a set [1..2^m] and find all 2-groups acting regularly on the set.

The procedure assumes that we seek groups of order 2^m, for some m

The parameter max gives an upper bound for the exponent on 2 in

the order of the Sylow-2 subgroup of ’aut’. If the exponent is

higher than ’max’, the procedure gives up and returns a message

"upper bound exceeded".

###

##

##

local syl, target, m, currentexp, solutions, level1, level2,g,

maxsubs, size1, size2, h;

syl:=SylowSubgroup(aut,2);

target := Collected(Factors(Size(set)))[1][2];

102

m:=Collected(Factors(Size(syl)))[1][2];

currentexp := m;

Print("Working on a group of order ", Size(aut), " with Sylow 2-subgroup

of size ", Size(syl)," = 2^", m,".\n");

solutions := [];

level1 := [syl];

level2 := [];

currentexp := Collected(Factors(Size(syl)))[1][2];

if currentexp <= max then

###################################

While loop begins here.

###################################

while currentexp > target do

for g in level1 do

maxsubs := MaximalNormalSubgroups(g);

level2 := Concatenation(level2, maxsubs);

level2 := Set(level2);

od; # for g in level1 do

size1 := Size(level2);

level2 := Set(level2);

size2 := Size(level2);

103

level1 := []; for h in level2 do if IsTransitive(h, set) then

Add(level1, h); fi; od;

Print(" Completing level ", currentexp," with ", Size(level1), " new

subgroups.\n");

level2 := [];

currentexp := currentexp-1;

od; # while...

for g in level1 do Add(solutions, IdGroup(g)[2]); od;

solutions := Set(solutions);

else solutions := "Upper bound exceeded.";

fi;

Print(solutions,"\n");

return solutions;

end;

##

###

19B. RegularSubgroup_SpaceSaver(set,aut, max)

###

This procedure attempts to take a subgroup ’aut’ acting transitively

on a set [1..2^m] and find all 2-groups acting regularly on the set.

104

The procedure assumes that we seek groups of order 2^m, for some m

The parameter max gives an upper bound for the exponent on 2 in

the order of the Sylow-2 subgroup of ’aut’. If the exponent is

higher than ’max’, the procedure gives up and returns a message

"upper bound exceeded".

This program adds a line ’level2 := Set(level2);’ after a

’Concatenation’ command to move up the removal of duplicate groups.

This presumably slows the program down but preserves space.

###

##

RegularSubgroup_SpaceSaver := function(set, aut, max)

##

local syl, target, m, currentexp, solutions, level1, level2,g,

maxsubs, size1, size2, h;

syl:=SylowSubgroup(aut,2);

target := Collected(Factors(Size(set)))[1][2];

m:=Collected(Factors(Size(syl)))[1][2];

currentexp := m;

Print("Working on a group of order ", Size(aut), " with Sylow 2-subgroup

of size ", Size(syl)," = 2^", m,".\n");

solutions := [];

level1 := [syl];

105

level2 := [];

currentexp := Collected(Factors(Size(syl)))[1][2];

if currentexp <= max then

###################################

While loop begins here.

###################################

while currentexp > target do

for g in level1 do

maxsubs := MaximalNormalSubgroups(g);

level2 := Concatenation(level2, maxsubs);

#

level2 := Set(level2);

od; # for g in level1 do

size1 := Size(level2);

level2 := Set(level2);

size2 := Size(level2);

level1 := []; for h in level2 do if IsTransitive(h, set) then

Add(level1, h); fi; od;

Print("Completing level ", currentexp," with ", Size(level1), " new

subgroups.\n");

level2 := [];

106

currentexp := currentexp-1;

od; # while...

for g in level1 do Add(solutions, IdGroup(g)[2]); od;

solutions := Set(solutions);

else solutions := "Upper bound exceeded.";

fi;

Print(solutions,"\n");

return solutions;

end;

##

###

DEMO:

LoadPackage("design");

aut := AutomorphismGroupOfDifferenceSetDesign([16,2], [1, 2, 3, 4, 8, 15]);

The program on ’aut’ above crashes after five full garbage collections,

brk> Size(level1); # 40760 at size 2^12?

brk> Size(level2); # 849532

Programs that Creates Semi-Direct Products using (16,6,2) Difference Sets: This

file reads in a list of 16 by 16 semidirect products, previously created, and creates, from

them, (256, 120, 56) difference sets using the product construction.

LoadPackage("difset"); # Load Peifer’s ’difset’ package which

verifies difference sets

107

filename1 := Concatenation(path,"/GeneralizedProductProcedures_2021_10.txt");

#GeneralizedProductProcedure code is shown above.

Read(filename1);

filename2 := Concatenation(path, "/0_Data_SemidirectProducts16in256.txt");

#0_Data_SemidirectProducts16in256.txt is a GAP code that contains all

semi-direct products of two groups with order 16.

Read(filename2);

outputfile := Concatenation(path, "/1_Output_Difsets_16by16.txt") #This

is the output file of the results obtained from this code.

Print("We use semidirect products,

16 by 16 (first subgroup is normal) to create\n");

Print("difference sets in groups of order 256.\n\n");

SDP16 := [

[],

[[1, 2, 3, 4, 8, 15], [1, 2, 3, 4, 10, 14], [1, 2, 3, 8, 9, 11]],

[[1, 2, 3, 4, 8, 15], [1, 2, 3, 4, 10, 14], [1, 2, 3, 5, 7, 15],

[1, 2, 3, 7, 10, 11]],

[[1, 2, 3, 4, 8, 15], [1, 2, 3, 4, 10, 14], [1, 2, 3, 5, 7, 15]],

[[1, 2, 3, 4, 8, 15]],

[[1, 2, 3, 4, 8, 15], [1, 2, 3, 8, 9, 11]],

[],

108

[[1, 2, 3, 4, 7, 10], [1, 2, 3, 4, 10, 14]],

[[1, 2, 3, 4, 7, 10], [1, 2, 3, 4, 8, 9]],

[[1, 2, 3, 4, 5, 16]],

[[1, 2, 3, 4, 8, 15], [1, 2, 3, 4, 8, 15], [1, 2, 3, 5, 7, 15]],

[[1, 2, 3, 4, 8, 15]],

[[1, 2, 3, 4, 8, 15]],

[[1, 2, 3, 4, 5, 16]]

];

difsetlist := [];

for cn in [1..56092] do

semidplist := semidirectproducts16in256[cn]; #Reads the list of

semi-direct products given in 0_Data_SemidirectProducts16in256.txt

if Size(semidplist)>0 then

v := 256; g:= SmallGroup(v, cn); e:= Elements(g);

norm := NormalSubgroups(g); subs := AllSubgroups(g);

norm := SortedList(norm); subs := SortedList(subs);

for x in semidplist do

k := norm[x[1][1]]; vk := x[1][2][1]; idk := x[1][2][2];

h := subs[x[2][1]]; vh := x[2][2][1]; idh := x[2][2][2];

109

groupk:=SmallGroup(vk, idk); ek:=Elements(groupk);

fk:=IsomorphismGroups(groupk, k);

grouph:=SmallGroup(vh, idh); eh:=Elements(grouph);

fh:=IsomorphismGroups(grouph, h);

dsk := SDP16[idk];

dsh := SDP16[idh];

for ds1 in dsk do for ds2 in dsh do

Print(ds1," ",ds2,"\n");

negk := [1..vk]; SubtractSet(negk, ds1);

negh := [1..vh]; SubtractSet(negh, ds2);

neg1:=[]; neg2:=[]; pos1:=[]; pos2:=[];

for index in negk do Add(neg1, Position(e,Image(fk, ek[index]))); od;

for index in ds1 do Add(pos1, Position(e,Image(fk, ek[index]))); od;

for index in negh do Add(neg2, Position(e,Image(fh, eh[index]))); od;

for index in ds2 do Add(pos2, Position(e,Image(fh, eh[index]))); od;

prod := ProductPTAs([256,cn], [neg1, pos1], [neg2, pos2]);

ds := prod[2];

dstest := IsDifferenceSet(g, ds);

Print(dstest,"\n");

if dstest then

Add(difsetlist, [cn, [[vk, idk],[vh, idh]], ds]);

110

Print(cn,". ",[[vk, idk],[vh, idh]]," ", dstest,"\n");

else Print("*** Error! ", x," ***\n");

fi;

od; od;

od;

fi;

if RemInt(cn, 1000) = 0 then # Let’s record results from time to time

Print(cn,". ", Size(difsetlist),"\n");

PrintTo(outputfile, "difsetlist := ", difsetlist,";\n");

fi;

od; # for cn in ...

PrintTo(outputfile, "difsetlist := ", difsetlist,";\n");

Program that Analyzes Difference Sets where v=256: This file reads in difference

sets created by semidirect products and then sifts them for those that create a design with

rank equal to 10 (and thus SDP.) Thus, it essentially takes the results of the first program

and goes through all of the difference sets to see which ones give SDP designs.

LoadPackage("design");

Read(Concatenation(path,"DifSetProcedures_2021_08.txt"));

Read(Concatenation(path,"GeneralizedProductProcedures_2021_10.txt"));

inputfile := Concatenation(path,"1_Output_Difsets_16by16.txt");

Read(inputfile);

111

outputfile := Concatenation(path,"2_Output_sdplist.txt");

Print("We read in difference sets constructed by 16 by 16 semidirect products\n

");

Print("and sift them for SDP difference sets, that is, difference sets\n");

Print("with binary rank equal to 10.\n\n");

Print("Reading in storage file ", inputfile, " with ", Size(difsetlist),

" difference sets.\n");

ranklist := []; sdplist := []; sdpcounter := 0;

counter := 0;

for x in difsetlist do

counter := counter + 1;

cn := x[1];

ds := x[3];

mat := IncidenceMatrixOfDifferenceSet([256,cn], ds); #This comes from

Difference Set Procedure code

rank := CodeRank(mat, 2);

Add(ranklist, rank);

if RemInt(counter,500) = 0 then # from time to time we record &

store the current results.

112

Print("Counter = ", counter, ", Catalogue number = ",cn,".

ranks = ", Collected(ranklist),"\n");

PrintTo(outputfile, "sdplist := ", sdplist,";\n");

fi;

if rank = 10 then

Add(sdplist, x); sdpcounter:=sdpcounter+1;

fi;

od;

Print(Collected(ranklist),"\n");

PrintTo(outputfile, "sdplist := ", sdplist,";\n");

Program that gives the Non-Isomorphic SDP designs where v=256: This file runs

through all of the SDP designs that were given in previous program and gives all of the

designs are non-isomorphic from each other.

LoadPackage("design");

Read(Concatenation(path,"/DifSetProcedures_2021_08.txt"));

Read(Concatenation(path,"/GeneralizedProductProcedures_2021_10.txt"));

Print("We examine difference sets with 2-rank equal to 10 and record\n");

Print("one difference set per isomorphism class of design.\n\n");

v := 256;

113

outputfile := Concatenation(path,"/3_Output_NonisomorphicSDP256.txt");

inputfile := Concatenation(path,"/2_Output_sdplist.txt");

Read(inputfile);

Print("Input file is ", inputfile, " with ", Size(sdplist),"

difference sets.\n");

NonIsomorphicSDP := []; DifSetRepresentatives := [];

dscounter := 0;

for ds in sdplist do

dscounter := dscounter+1;

cn := ds[1]; difset := ds[3];

g := SmallGroup(v, cn);

design := PointsToInterval(LeftTranslates_Nums(g, difset));

blocklist := []; for list in design do Sort(list); Add(blocklist, list); od;

SBIBD2 := BlockDesign(Size(blocklist), blocklist); #

newflag :=1;

for SBIBD in NonIsomorphicSDP do

iso := IsIsomorphicBlockDesign(SBIBD, SBIBD2);

if iso then newflag := 0; fi; #

od;

114

if newflag = 1 then

Add(NonIsomorphicSDP , SBIBD2);

Add(DifSetRepresentatives, ds);

autsize := Size(AutomorphismGroup(SBIBD2));

Print("Adding new SBIBD with automorphism group of order ",

Collected(Factors(autsize)),"\n");

fi;

if RemInt(dscounter, 100)=0 then # From time to time we store our work.

Print("Completing ", dscounter, " difference sets, with

", Size(NonIsomorphicSDP)," different designs.\n");

fi;

od; # for ds in ...

PrintTo(outputfile,"NonIsomorphicSDP := ",NonIsomorphicSDP,";\n");

AppendTo(outputfile,"DifSetRepresentatives :=",DifSetRepresentatives,";\n");

All of these codes were made using codes and programming found in GAP-systerm.org.[9]

115

VITA

Matthew Williams

EDUCATION

Master of Science student in Mathematics at Sam Houston State University, Fall 2020

– present. Thesis title: “Difference Sets and the Symmetric Difference Property.”

Bachelor of Science (May 2020) in mathematics, Sam Houston State University, Huntsville,

Texas.

ACADEMIC EMPLOYMENT

Graduate Teaching Assistant, Department of Mathematics and Statistics, Sam Houston

State University, June 2021 - present. Worked with two professors, Dr. Scott Chapman and

Dr. Martin Malandro during the summer of 2021. Responsible for creating and hosting of-

fice/tutoring hours for students in need of assistance (Dr. Scott Chapman) or helped prepare

a course that was taught in the Fall 2021 semester by looking over all of the materials, text-

books and assignments given for that course (Dr. Martin Malandro). Become an instructor

(but not a formal professor) during the Fall 2021 semester. Responsible of delivering every

lecture, and all other aspects of course management, such as, creating activities to monitor

learning, grading and recording grades, suggesting solutions to assigned problems, address-

ing student performance issues, developing ways to improve learning and understanding,

assigning final grades. Currently an embedded tutor that works with students who come to

office/tutoring hours for students in need of assistance with assignments and/or topics that

are taught by professors/other instructors.

Graduate Assistant, Department of Mathematics and Statistics, Sam Houston State Uni-

versity, September 2020 - May 2021. Assigned to three professors in the department to

116

perform a variety of tasks for them throughout the year, which included grading papers and

tutoring students on certain topics when needed.

ACADEMIC AWARDS AND HONORS

National Society of Collegiate Scholars, Sam Houston State University, February 2018-

Lifetime

Alpha Lambda Delta, Sam Houston State University, January 2018-Present

Award for Academic Excellence (4.0 GPA), Fall 2017 and Spring 2018, Fall 2018 and

Spring 2019

International Dean’s List Society, February 2018-Lifetime

Alpha Chi National College Honor Society, Spring 2019-Present

National Society of Leadership and Success, Spring 2019-Present

Dean’s List, Fall 2017 thru Spring 2020

President’s List, Fall 2017 thru Spring 2020

2019 Outstanding Junior Mathematics Major, Spring 2019

2020 Outstanding Senior Mathematics Major, Spring 2020

Golden Key International Honor Society, Fall 2019

Avila Undergraduate Research Scholarship, Spring 2020 thru Summer 2020

Summa Cum Laude

2021 Outstanding Graduate Mathematics Major/Student, Spring 2021

Raven’s Scholars, Spring 2021

	493ebf92-10b5-4c4d-934c-341f027ba131.pdf
	DEDICATION
	ABSTRACT
	ACKNOWLEDGEMENTS
	PREFACE
	TABLE OF CONTENTS
	I INTRODUCTION
	SDP for difference sets
	Literature review

	II SYMMETRIC BLOCK DESIGNS
	(v,k,) symmetric block designs
	Bruck-Ryser Chowla Theorem
	Examples of symmetric block designs
	Incidence matrices for symmetric designs

	III DIFFERENCE SETS
	Definition and examples
	Multiplier conjecture
	Group rings
	Abelian and non-abelian difference sets

	IV HADAMARD DIFFERENCE SETS
	Basic definitions
	Definition of Hadamard difference sets
	Hyperplane construction
	Product construction

	V DESIGNS WITH THE SYMMETRIC DIFFERENCE PROPERTY
	SDP designs
	Examples of SDP and non-SDP difference sets
	Rank of a matrix
	Codes of a design
	Product construction theorem of difference sets
	Motivation and climax
	Difference sets in larger groups
	Future research

	REFERENCES
	APPENDIX
	VITA

