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ABSTRACT

Gueli, Ryan J., A Generalization of Surgery to Cellular Complexes. Masters of Science in

Mathematics, March, 2018, Sam Houston State University, Huntsville, Texas.

In the 1990s Robin Forman carefully generalized Morse theory to cellular complexes.

In this thesis we are concerned with the connection Morse theory provides in surgery the-

ory. There exists a theorem linking surgery on embedded spheres to cobordisms whose

proof relies on smooth Morse theory. Therefore, we examine if a similar theorem exists

on cellular complexes whose proof relies on discrete Morse theory. In order to accomplish

this we will provide a way to perform surgery on cellular complexes as well as a possibility

for defining cellular cobordism.

KEY WORDS: Differential Geometry, Smooth Morse Theory, Discrete Morse Theory,
Surgery, Cobordism, Cellular Surgery, Locally Cellular Cobordant.
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CHAPTER 1

Introduction

This thesis examines a connection between the discrete and the continuous in math-

ematics. In most instances, there are natural connections between both discrete and con-

tinuous mathematics. Sometimes when working in a discrete setting, there are natural

continuous settings that also apply. For instance, consider the discrete probability model

and notice as the size of the population increases it approaches the continuous probability

distribution model. Other discrete analogues of continuous mathematics are discrete cal-

culus, discrete Fourier transforms, discrete geometry, discrete dynamical systems and most

importantly for our purposes, discrete Morse theory.

The discrete and continuous connection we value in this thesis is between discrete

and smooth Morse theory. Smooth Morse theory has several applications, but for the pur-

poses of this thesis, we focus on its application to surgery theory. A classic theorem relates

surgery theory to cobordism, in which the proof of this theorem relies on smooth (or con-

tinuous) Morse theory. Therefore, since we know there is a discrete analogue for smooth

Morse theory we may ask, “Is there a notion of discrete surgery, and if so is there a notion

of discrete cobordisms?”

In this thesis we show how through discrete Morse theory that we can extend surgery

to cellular complexes. This extension provides a way to construct a discrete cobordism.

Through construction, we found our generalizations will preserve the same results found

in the smooth case.

We will begin by introducing some basic topology definitions, and defining smooth

Morse theory as well as give some simple results in the field. We will do the same with

discrete Morse theory before moving into surgery on embedded spheres. We will explore
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examples of surgery in the continuous case, and then will define cobordism as well as list

examples. After defining cobordism, we will state a classic theorem that shows the con-

nection between surgery theory and cobordism, whose proof will rely on smooth Morse

theory. We will finish by sharing our algorithm for generalizing surgery to CW-complexes,

as well as defining discrete cobordism.
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CHAPTER 2

Background Topology

In order to define smooth and discrete Morse theory, we must first familiarize our-

selves with some basic definitions in topology. We begin by defining basic point set topo-

logical ideas, then move into classifying “sameness” using homeomorphisms and homo-

topy equivalences. Then we will define a topological manifold as well as a smooth mani-

fold, before finally defining how to create a CW-complex.

2.1 Point-set Topology Definitions

First, we introduce a topology.

Definition 1 (Topology). A topology on a set X denoted T , is a nonempty collection of

subsets of X , called open sets denoted On where n ∈ N, such that the following are true :

1. If {O1,O2, . . . ,On, . . .} ∈T then
⋃

i Oi ∈T where Oi ∈ {O1,O2, . . . ,On, . . .}.

2. If {O1,O2, . . . ,On, . . .} ∈T then
⋂n

i=1 Oi ∈T where Oi ∈ {O1,O2, . . . ,On, . . .}.

3. X ∈T and /0 ∈T

A set together with a topology is called a topological space.

For purposes of this thesis the topology we consider is the standard topology on a

space. The standard topology defines the subsets of Rn for n ∈ N as the open sets in T .

Example 2 (Standard Topology on R). Let X = R and let T = { /0,B,R} where B is the

collection of all open intervals of R. This is called the standard topology on R.

Now that we know what it means for sets in our space to be defined open, we can

define a closed set.
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Definition 3 (Closed). A set X is closed if its complement Xc ∈T .

Now we have the necessary and sufficient definitions in order to define what a con-

tinuous function is on a topological sense.

Definition 4 (Continuous Function). Let X and Y be topological spaces, and define a

function f : X → Y . Then we say that f is a continuous function if for each open subset

V ⊆ Y , f−1(V ) is open in X .

This definition is consistent with the definition of continuous in an analytical sense.

Consider the following example:

Example 5. Let X ,Y = R with the standard topology, and consider the constant function

f : X→Y where f (x) = y for all x∈ X . We know from analysis that the constant function is

continuous, and we will show this is also true for our topological definition of continuous.

Let V ⊆ Y be open, then f−1(V ) = /0 if y /∈V and f−1(V ) = X if y ∈V . We know since X

is a topological space, both /0 and X are open. Therefore, f is continuous.

Continuous functions are necessary in defining a homeomorphism as well as homo-

topy equivalences. We also must recall what it means for a space to be compact. Later in

this thesis, we will refer to compact manifolds.

Definition 6 (Open Cover). Let X be a topological space and let A = {O1,O2, . . . ,Oi, . . .}

be a collection of open sets with Oi ⊆ X for each i. Then A is an open cover of X if

∪iOi = X .

Definition 7 (Compact). A topological space X is compact if every open covering of X

has a finite subcovering.
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That is if A is an open cover of X , then if there exists {O1,O2, . . . ,On} ⊆A where

∪n
i Oi = X , then X is compact.

This definition can be quite difficult to show sometimes, therefore we state the fol-

lowing theorem without proof, to help more easily define when a space is compact.

Theorem 8. A space X ⊆ Rn is compact if and only if X is closed and bounded. [1]

When we refer to a space being compact in this thesis, our space will be a subset of

Euclidean space. Therefore, Theorem 8 more easily allows us to analyze when a space is

compact.

Example 9. Consider a circle or S1 defined by {(x,y) | x2 + y2 = 1}. We will prove this

space is compact using Theorem 8. First, we note that by our definition, S1 is a subset

of R2. When looking at the complement of {(x,y) | x2 + y2 = 1} we have R2 without S1

around the origin. We know this space is open, and therefore S1 is closed. Also we note

that S1 is bounded by definition. Therefore, S1 is closed and bounded; thus by Theorem 8,

S1 is compact.

Compactness is an invariant of topological spaces. Another invariant we need is that

of connectedness. We will use connectedness as a homotopic invariant later in this thesis.

Definition 10 (Connected). A space X is connected if whenever X =A∪B of two nonempty

subsets A,B, then A∩B 6= /0 or A∩B 6= /0. We note that A,B is the closure of A and B re-

spectively.

We now state a theorem without proof that allows for us to more easily show when X

is connected.
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Theorem 11. Let X be a topological space then X is connected if and only if X cannot be

expressed as the union of two disjoint nonempty open sets. [1]

We say that if X can be expressed as the union of two disjoint nonempty open sets,

then we can create a separation of X .

Example 12. Let X = S1. We cannot create a separation of S1. This is because when taking

open sets on S1, we are taking open arcs on S1. Therefore, if we tried to make a separation

we would either not obtain the entire space, or the intersection of our open sets would not

be empty. Therefore, by Theorem 11, S1 is connected.

Example 13. Let X = S1t S1 that is, X is the disjoint union of two copies of S1. We can

create a separation of this space. Let A be one copy of S1 and let B be the other copy. We

note that A and B must be open. We see because X is the disjoint union of the circles that

A∩B = /0. Therefore, we have provided a separation for X . Thus by Theorem 11, X is

disconnected.

Now that we have recalled various point set topology definitions, we can define

“sameness” of topological spaces.

2.2 Homeomorphisms

We begin by defining topological equivalence, a homeomorphism. Throughout this

thesis we will refer to spaces being homeomorphic to one another, when we do this we

mean the following :

Definition 14 (Homeomorphism). Let X and Y be topological spaces. A function h : X→

Y is a homeomorphism if h is a bijective, continuous function such that h−1 : Y → X is also

continuous. We say two sets are homeomorphic if there exists a homeomorphism between

the sets.
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The intuition of a homeomorphism is that we can stretch and morph one object into

another without tears or breaks. We cannot collapse an object to a point, or cut and break an

object and preserve a homeomorphism. We will consider the following examples to better

understand the notion of a homeomorphism.

Example 15. Let X be a square where X = {(x,y) : |x|= 1, |y| ≤ 1}∪

{(x,y) : |x| ≤ 1, |y| = 1}. Let Y be the circle where Y = {(x,y) : x2 + y2 = 1}. Consider

Figure 1 of Y inscribed within X . We notice that in each quadrant we can normalize points

Figure 1: A circle inscribed in a square

on X to points on Y using the function f : X → Y defined by (x,y) 7→
(

x√
x2+y2

, y√
x2+y2

)
.

Through basic analysis, we know the function that normalizes points is a continuous bi-

jective function whose inverse is also continuous. Therefore, X and Y are homeomorphic.

That is a square and a circle are homeomorphic.

Example 16. We can further Example 15 by letting X be the unit cube and Y the unit

sphere. As before we have the sphere embedded in the cube, and again define a function

that normalizes points of the cube onto the sphere. Just like Example 15 the function will
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be a bijective continuous function with a continuous inverse, thus a cube and sphere are

homeomorphic to one another.

So far we have presented numerous spaces that are homeomorphic to one another.

However there exists spaces that are not homeomorphic to one another thus illustrating

limits to homeomorphisms.

Example 17. Let X = {0} and Y = [0,1]. Then any f : X → Y is not a homeomorphism

since any f would not be injective.

Example 18. Let X = [0,1] and Y = S1. Consider the function f : X → Y given by

f (x) = e2πix. It is clear that this function is not injective since {0} and {1} are mapped to

the same point on S1. Therefore, we see that f is not a homeomorphism between X and Y .

Example 19. Let X = S2 and Y = T 2 (the torus). X and Y are not homeomorphic to one

another. However, we do not have the necessary definitions to prove this yet. We will prove

this later in the chapter.

2.3 Homotopy Equivalence

We now define a weaker notion of topological equivalence called a homotopy equiv-

alence.

Definition 20 (Homotopy). Let f and f ′ be continuous maps from X to Y . We say f is

homotopic to f ′, denoted f ' f ′, if there is a continuous map F : X × [0,1]→ Y such that

F(x,0) = f (x) and F(x,1) = f ′(x). The map F is called a homotopy.

This definition says that two maps f and f ′ are homotopic, if we can find a map F

that takes a point x ∈ X and identifies that point through a deformation from f (x) to f ′(x).

We can imagine for x∈ X that as we let t increase from 0 to 1, we are traveling from f (x) to
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f ′(x), therefore it is convenient to imagine the interval as a time-lapse between functions.

Consider the following example:

Example 21. Let f : [0,1]→ [0,1] by f (x) = x, for all x ∈ [0,1]. Let f ′ : [0,1]→ [0,1] by

f ′(x) = 0, for all x ∈ [0,1]. We then define a homotopy F : [0,1]× I→ [0,1] by F(x, t) =

(1− t)x. We see that F(x,0) = (1−0)x = x = f (x), also we see F(x,1) = (1−1)x = 0x =

0 = f ′(x). Finally, we note that F(x, t) is a polynomial function, and by basic analysis we

know the function is continuous. Therefore, we say f and f ′ are homotopic to one another

where F(x, t) is the homotopy.

Now using this notion of homotopy we have the following definition :

Definition 22 (Homotopy Equivalence). Two spaces X and Y have the same homotopy

type, or are homotopy equivalent, if there exists maps f : X → Y and g : Y → X such that

g◦ f ' 1X and f ◦g' 1Y .

That is, two spaces are homotopy equivalent if when we compose two maps

f : X → Y and g : Y → X we obtain the identity homotopy. A more intuitive way to ana-

lyze this definition is that two spaces are homotopy equivalent if one can be continuously

deformed into the other. At first glance, one might ask what is the difference between a ho-

motopy equivalence and a homeomorphism? With a homotopy equivalence, we again have

that shrinking and stretching (without tearing) allowed, however parts of the space may be

contracted to a point. Recall that in the definition of a homeomorphism, contracting down

to a point was prohibited. Consider the following examples:
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Example 23. First note that any homeomorphism is a homotopy equivalence. That is

because if f : X→Y is a homeomorphism then letting g= f−1 we trivially have a homotopy

equivalence.

Example 24. Let X = [0,1] and Y = {0}. Also let f : [0,1] → {0} by f (x) = x, and

g : {0}→ [0,1] by g(0) = 0.

We see that ( f ◦ g) : {0} → {0} is the identity map, which is clearly homotopic to itself.

Also we have (g ◦ f )(x) = 0, for all x which we know by Example 21 that (g ◦ f )(x) = 0,

for all x is homotopic to the identity.

Therefore by definition we have that X and Y are in the same homotopy class. This means

that a point and an interval are homotopy equivalent. Which we know in the case of home-

omorphisms was not true.

We notice that the definition of homotopy equivalence expands the notion of same-

ness originally created by a homeomorphism. However just as in the case of homeomor-

phism, there are limits to homotopy equivalences.

Example 25. A circle and an interval are not homotopy equivalent. In order to obtain an

interval from a circle we must cut or break the circle, which would not be a continuous

mapping. Therefore just as in the case of homeomorphisms a circle and an interval are not

consider the same.

Example 26. Let X = S1 and Y = S1t S1. We recall from Examples 12 and 13 that X is

connected while Y is not connected. Connectedness is a homotopy invariant. Therefore X

and Y are not homotopic.

Therefore, we notice that there are numerous spaces that are still not homotopy equiv-

alent to one another.
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Now that we have background for classifying sameness, we will now define a mani-

fold. Manifolds will be heavily referred to in smooth Morse theory.

2.4 Manifolds

Definition 27 (Neighborhood). A neighborhood V of a point p is a set V ⊆ X , such that

there exists U ∈T where p ∈U ⊆V .

Definition 28 (Manifold). A n -dimensional manifold, Mn is a space so that for each point

x ∈Mn there exists a neighborhood U containing x that is homeomorphic to Rn. That is, a

manifold is a space that is locally Euclidean.

Example 29. We will first show that Rn is a manifold. Let p ∈ Rn with neighborhood U

such that p ∈U . We know that open sets of Rn are open n-disks by definition. Therefore

U ∼= Dn. We then can define f : Rn→U by f (x) = x
‖x‖+1 . It is a straightforward exercise

to show that f is a homeomorphism. Therefore we see that a neighborhood around a point

in Rn is homeomorphic to Rn. Therefore Rn is a manifold.

Example 30. Another example of a manifold is the (n)-sphere that is defined to be the

boundary of the (n+1)-disk. That is,

Sn =
{
(x1,x2, . . . ,xn+1) ∈ Rn+1 : x2

1 + x2
2 + · · ·+ x2

n+1 = 1
}

In order to show this, we consider the stereographic projection from Rn+1 to Sn. That

is Sn =UN ∪US where UN = Sn/{(0,0, . . . ,0,1} and US = Sn/{(0,0, . . . ,0,−1)} which are

both open under the induced topology from the standard topology on Rn+1.

We then define φN : UN → Rn by φN(x1,x2, . . . ,xn+1) =
(

x1
1−xn+1

, x2
1−xn+1

, . . . , xn
1−xn+1

)



12

and φS :US→Rn by φS(x1,x2, . . . ,xn+1)=
(

x1
1+xn+1

, x2
1+xn+1

, . . . , xn
1+xn+1

)
. Again it is straight-

forward exercise to show φN and φS are homeomorphisms. Therefore, we have a neighbor-

hood around any point in Sn is homeomorphic to Rn. Therefore, Sn is a manifold.

Example 31. Through Examples 29 and 30 we have examples of one dimensional mani-

folds are S1 or R. In these cases we let n = 1 in Examples 29 and 30.

Figure 2: Manifolds of dimension 1

Example 32. Manifolds of dimension two are usually referred to as surfaces. First, we

know that by Examples 29 and 30 that S2 and R2 are manifolds. We also know that T 2

is a manifold. We will provide intuition why this is true. Let p ∈ T 2, and let U be a

neighborhood where U ⊂ T 2 with p ∈ U . Then if we were to “cut out” U from T 2 we

would notice that it flattens. We note that U is an open disk in R2 and thus homeomorphic

to R2. This gives us that T 2 is locally Euclidean and thus a manifold.
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Figure 3: Manifolds of dimension 2, or surfaces

In smooth Morse theory we will be working on smooth manifolds. However, we

must first define what a coordinate chart is, and then we can move onto defining a smooth

manifold.

Definition 33 (Coordinate Charts). Let M be a topological space. A homeomorphism

φ : U→V of an open set U ⊂M onto an open set V ⊂Rd will be called a coordinate chart.

Definition 34 (Smooth Manifold). [10] Let M be a topological space. Let A be an indexing

set, where α,β ∈ A, with α 6= β . We say that M is a smooth manifold if we can equip M

with a differentiable structure C∞. A differentiable structure, or smooth structure on M is a

collection of coordinate charts φα : Uα →Vα , where Vα ⊆ Rd such that :

1. M = ∪αUα

2. For every α,β the change of local coordinates φβ ◦φ−1
α is homeomorphism.
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3. If for every α,β the change of local coordinates φβ ◦φ−1
α is of class C∞ then M is of

class C∞

We see that manifolds are restrictive. Therefore we define how to create cellular

complexes which allows us to generalize spaces. With cellular complexes we may construct

both manifolds and spaces that are not manifolds.

2.5 CW-Complexes

A CW-complex is a collection of n-cells.

Definition 35 (n− cell [5]). An n− cell (denoted en) is homeomorphic to the interior of

an n-disk, where the n-disk, Dn is defined to be the collection of points in Rn which satisfy

the inequality

x2
1 + x2

2 + · · ·+ x2
n ≤ 1.

Some simple examples of cells are the 0-cell which a point, a 1-cell which is homeo-

morphic to a interval and a 2-cell which is homeomorphic to a disk. Also, it is important to

note that throughout this paper when we refer to the word face, that we are referring to the

boundary of a cell. For example the face of a 2-cell is a collection of 1-cells. We denote a

face by τ � σ where τ is a face of σ .

Now using this definition of n-cells, we create cellular complexes. We define an

n-dimensional complex as follows :

Definition 36 (n-dimensional Cellular Complex (or n-complex)[5]). Let X be a collec-

tion of k-cells, for k = 0,1, . . . ,n.

1. The collection of 0-cells is called the 0-skeleton of the complex.
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2. Attach the set of 1-cells, one at a time, to the 0-skeleton as follows: identify (or

glue) each edge of each 1-cell to one of the 0-cells. The resulting object is called

the 1-skeleton of the complex.

3. Repeat for k = 2,3, . . . ,n: For each k-cell, identify this boundary to either (a.) a

homeomorphic copy of Sn−1 in the (n - 1)-skeleton or (b.) a 0-cell in the 1-skeleton.

It is important to note that when we attach a p-cell to a complex X , we denote this

as ep ∪X . However, when we use this notation we do not mean the classic definition of

union. We have that there is an applied attaching map. That is we really mean ep ∪ f X ,

where f : Sp→ X .

With the definitions we have provided we can construct the manifolds we listed in

the previous section.

Example 37. The 2-sphere, S2 can be created using one e0, one e1 and two e2. First, attach

e0 and e1 to create a circle. Then, we attach the two e2 to the circle to create a sphere.

Therefore, we say S2 has the following cellular decomposition e0∪ e1∪ e2∪ e2.

Example 38. The torus can be created using one e0, two e1 and one e2. We can attach

the two e1 to e0 to obtain two circles who share exactly one point. Then, attach the e2 to

the resulting 1-skeleton to obtain the torus. Therefore, we say the torus has the following

cellular decomposition e0∪ e1∪ e1∪ e2.

The cellular decomposition of a complex provides useful information that helps dis-

tinguish spaces. In order to do this we have the following definition.

Definition 39 (Euler Characteristic). Let Y be an n-dimensional cellular complex. We

denote the number of j-cells in the complex as c j. Then the Euler Characteristic is defined
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as :

χ(Y ) =
n

∑
j=0

(−1) jc j

Example 40. For the 2-sphere, we saw in Example 37 that our decomposition was e0 ∪

e1∪ e2∪ e2. Therefore,

χ(S2) = c0− c1 + c2 = 1−1+2 = 2

Therefore, the Euler characteristic of S2 is 2.

Example 41. For a torus or T 2, we saw in Example 38 that our decomposition was e0 ∪

e1∪ e1∪ e2. Therefore,

χ(T 2) = c0− c1 + c2 = 1−2+1 = 0

Therefore, the Euler characteristic of the torus is 0.

We will now state but not prove a theorem that will show the usefulness of the Euler

characteristic.

Theorem 42. If X and Y are closed surfaces with χ(X) 6= χ(Y ) then X is not homeomor-

phic to Y . [7]

Example 43. Recall in Example 20 we wanted to show that S2 and T 2 were not homeo-

morphic to one another. We will prove this using Theorem 42.

Let X = S2 and let Y = T 2. We know by Examples 40 and 41 that χ(X) = 2 and

χ(Y ) = 0. We have that χ(X) 6= χ(Y ), and therefore by Theorem 42, S2 6∼= T 2.



17

Therefore, we see that the Euler characteristic can serve to help classify sameness of

spaces.

Cellular complexes allow a great degree of freedom. We can, create spaces that are

not manifolds. Using the definitions above we can construct two cubes who share exactly

one 0-cell, which is a space that is not a manifold. We would like to be able to classify

these spaces.

Now that we have topological knowledge, we will move forward into smooth Morse

theory. In the next chapter, we will give an overview of smooth Morse theory since it will

later serve as a tool to prove a theorem involving surgery theory.
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CHAPTER 3

Smooth Morse Theory

Smooth Morse theory heavily relies on the critical point of a smooth function on a

manifold. We will classify the critical points of a smooth function in a particular way in

order to define a Morse function on a space. Therefore, we begin this chapter with defining

what a critical point is and how to classify critical points. Then, we will define the Hessian

matrix and show how it is used in defining a smooth Morse function on a manifold. Finally,

we will list some classical results in Morse theory that directly correlate to our focus on

surgery theory.

3.1 Critical Points and their Index

In this chapter, when we refer to a manifold, we will be referring to smooth manifolds

as defined in the previous chapter. We first define a smooth map.

Definition 44 (Smooth Map). [10] Let M be a smooth manifold. A function f : M→R is

smooth if for each point x ∈M f is of class C∞ with respect to a local coordinate system;

that is if φ−1
α : Vα →Uα is a smooth coordinate system at x, then the composition

f ◦φ−1
α : Vα → R is of class C∞.

Now that we know what we mean when we say smooth map, we will define a critical

point, and explain how to find them for a given function.

Definition 45 (Critical Point, Critical Value). Consider the function f : Rn→R, then the

point ~p = (x1,x2, · · · ,xn) is a critical point of f if

∂ f
∂xi

(p) = 0 for all i = 1,2, . . . ,n.
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If p is a critical point for f , we call the value f (p) the critical value of p.

Example 46. Consider the function f (x,y) = x2 + cos(2y) on M = R2.

We see

∂ f
∂x

= 2x and
∂ f
∂y

=−2sin2y

Notice that ∂ f
∂x = ∂ f

∂y = 0 only at the origin of R2. That means that the origin (0,0) is a

critical point of f on M.

Also, we notice that f (0,0) = 1. Therefore, 1 is the critical value for the critical point

(0,0).

Example 47. Consider the function f (x,y) = x4−5x2y3 on M = R2.

We see

∂ f
∂x

= 4x3−10xy3 and
∂ f
∂y

=−15x2y2

Notice that ∂ f
∂x = ∂ f

∂y = 0 only at the origin of R2. That means that the origin (0,0) is a

critical point of f on M.

Also, we notice that f (0,0) = 0. Therefore, 0 is the critical value for the critical point

(0,0).

We now define a way to classify critical points. This classification is essential to

defining a Morse function. In order to classify critical points we first need to define the

Hessian of a function.

Definition 48 (Hessian). [8] Let f : M → R be a smooth function on the n-dimensional

manifold M and let p be a point on M. Choose local coordinates (x1,x2, . . . ,xn) near p.

The Hessian of f at p is the n×n matrix of second partial derivatives of f at p. We denote
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H f (p) its determinant

H f (p) = det
(

∂ 2 f
∂xi∂x j

(p)
)

Example 49. Consider the function f (x,y) = x2 + cos(2y) on M = R2.

We know from before that (0,0) is a critical point of f on M.

Computing the Hessian we have that

H f (x,y) = det

2 0

0 −4cos(2y)

=−8cos(2y)

We know then at our critical point (0,0) that H f (0,0) =−8.

Example 50. Consider the function f (x,y) = x4−5x2y3 on M = R2.

We see know from before that (0,0) is a critical point of f on M.

Computing the Hessian we have that

H f (x,y) = det

12x2−10y3 −30xy2

−30xy2 −30x2y

=−900x2y4−360x4y+300x2y4

We know then at our critical point (0,0) that H f (0,0) = 0.

We are now able to compute the Hessian of a function, therefore it is important to

show why we care about the value of the Hessian at a critical point. This value provides a

classification of critical points as degenerate or nondegenerate critical points.

Definition 51 (Degenerate & Nondegenerate Critical Points). [9] A critical point p of

f : M → R is nondegenerate if H f (p) 6= 0. Since this condition is independent of the

coordinate system of the coordinate system near p, this notion is well-defined. Moreover,
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since coordinate changes are described by multiplication by a matrix and its transpose, the

sign H f (p) is independent of the coordinate system.

With degenerate critical points we have infinitely many directions of increase and

decrease. For our purposes, we want to avoid degenerate critical points in order to define a

Morse function on a space. However, we will discuss this in more detail later.

The Hessian provides more information than if a critical point is degenerate vs nonde-

generate. It also provides the index of a critical point which plays a role in the handlebody

decomposition of a space that we will touch on later. In order to find the index of a critical

point we will need to recall the definition of eigenvalues and eigenvectors of a matrix.

Definition 52 (Eigenvalues and Eigenvectors). Let A be an n× n matrix with entries in

R. The nonzero vector~v is an eigenvector of A if there is a number λ such that

A~v = λ~v.

The eigenvalues λ of A are found by solving the following characteristic equation for λ :

det(A−λ I) = 0.

Definition 53 (Index of a Nondegenerate Critical Point). Suppose p is a nondegenerate

critical point of a smooth function f : Rn→ R. The index of p is the number of negative

eigenvalues of the Hessian of f evaluated at p.

Example 54. Consider the function f (x,y) = x2 + cos(2y) on M = R2.

We know from before that (0,0) is a critical point of f on M.
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Computing the Hessian we have that

H f (x,y) =

2 0

0 −4cos(2y)


We know then at our critical point (0,0) that

H f (0,0) =

2 0

0 −4


Therefore, we see there is 1 negative eigenvalue of H f (p). Therefore, the index of p is 1.

3.2 Morse Functions

Now that we have a thorough understanding of critical points, we move into defining

a Morse function on a space.

Definition 55 (Morse function). [9] A smooth function f : M→ R defined on a subset of

points M ⊆ Rn is said to be a Morse function if all of its critical points are nondegenerate.

Example 56. Note that from last section the function f (x,y) = x2 + cos(2y) on M = R2 is

a Morse function since its critical points are nondegenerate.

Example 57. We use angles θ to indicate points on the circle S1, where θ and θ + 2π

correspond to the same point on S1. Define a function f : S1×S1→ R on the torus S1×S1

by f (θ ,φ) = (R+ r cosφ)cosθ , where R and r are positive constants with R > r. We will

show this function is a Morse function on the torus.

We see, ∂ f
∂θ

= −(R+ r cosφ)cosθ , and ∂ f
∂φ

= −r sinφ cosθ . Which gives us the

critical points (0,0),(0,π),(π,0) and (π,π). It is clear that the Hessian at each of these
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points is nonzero, and therefore the critical points are nondegenerate. Therefore, f (θ ,φ) is

a Morse function. Also, we see that (0,0) has index 0, (0,π) and (π,π) have index 1, and

finally (π,0) has index 2.

In this example we see that T 2 has four critical points of indices 0,1,1,2. Another

way of seeing this is through the height function f (x,y,z) = z on T 2. Using the height

function and parameterizing the function leads to the same critical points of the same index.

In the image below we have the four critical points labeled, where they have index value

2,1,1,0 from top to bottom.

Figure 4: Height function with critical points on the torus.

Example 58. [8] Let S3 be the unit sphere in R3. That is

S3 = {(x,y,z,) ∈ R3 : x2 + y2 + z2 = 1}. Now let f (x,y,z) = z be the height function as

above. We again see geometrically that the height function of a sphere would have two

critical points, that of the north and south pole. We can parametrize our function to show

that indeed the north and south pole of the sphere are critical points of the function f
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defined on S3. In particular we note that the index of the critical point at the north pole is 2

while the index of the critical point at the south pole is 0.

We have shown examples of Morse functions on surfaces, but the following results

will help us understand how useful Morse theory is on higher dimension manifolds. We

note that the following results are stated without proof. We begin with the Morse Lemma;

it states that near each critical point a Morse function may be transformed into a function

that is well-behaved and well-understood.

Theorem 59 (The Morse Lemma). [8] Suppose M is a collection of points in Rn and

f : M→ R is a Morse function defined on M. Then at each nondegenerate critical point p

of f , there is a neighborhood U of p so that at each point ~x = (x1,x2, . . . ,xn) of U, f has

the form

f (~x) =−x2
1− x2

2−·· ·− x2
j + x2

j+1 + · · ·+ x2
n,

where j is the index of the critical point p.

In other words, near its critical points, a Morse function closely resembles a well-

behaved function. At any critical point of a Morse function, the index dictates precisely

what the set of points near that critical point looks like. Therefore, we begin to see the

necessity of the index of a critical point.

The following corollary helps us see that critical points on a Morse function dictate

global information as a whole.

Corollary 60. [9] Critical points of any Morse function are isolated.
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3.3 Results of Morse Theory

Up to now we have focused on results that help us determine if we have a Morse

function or not. We will now move into revealing how a Morse function provides a handle-

body decomposition of a space. This will be done by relating the indices of critical points

of a Morse function defined on M to the cellular decomposition of M. In order to do this

we must have the following notation in mind.

Suppose f : M→R is a Morse function. Given a value t in the image of f , define the

set

Mt = {p ∈M : f (p)≤ t}.

We will now examine what happens to Mt as t increases.

Theorem 61. [8] If f has no critical values in the closed interval [a,b], then Ma is homeo-

morphic to Mb.

This theorem tells us that the general shape of M does not change as t increases

through non-critical values of f . Therefore, any changes to the topology of M must corre-

spond to the critical points of f .

Definition 62 (n-cell of Index λ , or λ -Handle). [9] For any positive integers n ≥ λ , an

n-cell of index λ is homeomorphic to the product of the λ -disk and the (n−λ )-disk, Dλ ×

Dn−λ , where

Dλ ∼= Dλ ×~0 = {x1,x2, . . . ,xλ ,0, · · · ,0) : x2
1 + · · ·+ x2

λ
≤ ε}

Dn−λ ∼=~0×Dn−λ = {0, . . . ,0,xλ+1,xλ+2, . . . ,xn) : x2
λ+1 + · · ·+ x2

n ≤ δ � ε}
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The next theorem tells us precisely how each nondegenerate critical point of f : M→

R affects the cellular decomposition of M.

Theorem 63. [9] Suppose f : M → R is a Morse function defined on an n-dimensional

space. Suppose also that c is a critical point of f with index λ . Then there is an ε > 0 with

Mc+ε homeomorphic to the space obtained by attaching an n-cell of index λ to Mc−ε .

This theorem tells us that if we know all nondegenerate critical points, and their

indices of f : M→ R, then we have a complete cellular decomposition of M. Therefore,

for any manifold we can find the handlebody decomposition of the space.

Theorem 64 (Handle decomposition). [9] Any Morse function on a closed manifold M

defines a cellular decomposition of M. Each handle corresponds to a different critical

point, and the index of each critical point dictates the index of the handle.

Example 65. Recall that we found a Morse function on S2 whose critical points are of

index 2 and 0. By Theorem 64 we have that a sphere can be decomposed into a 2-handle

and 0-handle.

Example 66. Recall that we found a Morse function on the Torus whose critical points are

of index 2, 1, 1, 0. By Theorem 64 we have that a torus can be decomposed into a 2-handle,

two 1-handles and a 0-handle.

This decomposition will be directly used to help us prove a result in surgery theory.

However, before we move into surgery theory it is natural to define discrete Morse theory

first. In the next chapter we will discuss discrete Morse theory while paying close attention

to the parallels to smooth Morse theory.
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CHAPTER 4

Discrete Morse Theory

In the 1990’s Robin Forman carefully extended smooth Morse theory to construct

discrete Morse theory. In this chapter, we examine his extension to discrete Morse theory.

While smooth Morse theory relates the cellular decomposition of a space to the critical

points of a smooth function defined on the space, discrete Morse theory accomplishes the

same goal using discrete functions defined on the individual cells of the decomposition.

The major difference between these theories is found in their uses of equivalence.

When working in smooth Morse theory we rely heavily on the use of homeomorphisms,

while in discrete Morse theory we rely heavily on the use of homotopy equivalences.

We begin this chapter by defining what is a discrete Morse function on a cellular

complex. We will then show how we can define critical points on a cellular complex, and

then state some classical results in discrete Morse theory.

4.1 Discrete Morse Function and Critical Points

Definition 67 (Discrete Morse function[3]). The “discrete function” that assigns numeri-

cal values to the individual cells of M (where M is a complex) is a discrete Morse function

on M if the following conditions are held for each p-cell σ p ⊂M.

1. #{τ p+1 � σ p : f (τ)≤ f (σ)} ≤ 1, and

2. #{ρ p−1 ≺ σ p : f (ρ)≥ f (σ)} ≤ 1.

This discrete function on the cells of M is a discrete Morse function if the valuess

assigned to each cell follow the rule: faces of a cell have smaller function values, with at

most one exception allowed for each cell.

Let us consider the following examples:
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Figure 5: Discrete functions on simple complexes.

Example 68. Consider the three complexes in Figure 5 constructed by four 0-cells and four

1-cells. Each complex has a “discrete function” defined on its cells, where the function

assigns numerical values to the individual cells.

We then see that the first two functions on the complexes are discrete Morse functions

while the third function is not. The third function is not a discrete Morse function since the

0-cell with weight 5. The 0-cell is a face of two 1-cells who have smaller weights than 5 in

particular 3 and 4. (Examples from [5])

Now just like with smooth Morse theory we must have a notion of a critical point.

That is the following :

Definition 69 (Critical and Regular Points of a Discrete Morse Function [5]). Suppose

f : M→ R is a discrete Morse function. The p-cell σ p is a critical point of f if the follow-

ing conditions are held:

1. #{τ p+1 � σ p : f (τ)≤ f (σ)}= 0, and

2. #{ρ p−1 ≺ σ p : f (τ)≥ f (σ)}= 0.

A cell that is not critical is said to be regular.
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A cell in a discrete Morse function is critical if the numbers assigned to the cell follow

the rule: faces of a cell have smaller function values, with no exceptions allowed for each

cell.

From Example 68, we see that for the first complex every cell is critical except for

the 0-cell with weight 4 and the 1-cell with weight 3. While in the second complex, every

cell is critical. We do not consider the third complex since we know the function defined

on the complex is not a discrete Morse function.

Now that we know what it means to have a discrete Morse function on a complex,

and what a critical cell is in regards to a discrete Morse function, we can define some of the

main results of discrete Morse theory.

4.2 Results from Discrete Morse Theory

We will now state the first main result of discrete Morse theory. In order to do this we

must model the smooth case and observe the following notation. For any cellular complex

X , suppose f is a discrete Morse function defined on X . For any real number c, define the

level subcomplex Xc to be

Xc :=
⋃

f (α)≤c

⋃
β�α

β .

That is, the level subcomplex Xc is the set of all cells together with their faces, whose

function values are no more than c. We will use this definition in the following two lemmas

which lead to the main result of discrete Morse theory.

Theorem 70. [3] If there are no critical values of the discrete Morse function f : X → R

on the interval [a,b], then Xa is homotopy equivalent to Xb.
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Again we notice the parallel to the smooth case but instead of a homeomorphism we

have a homotopy equivalence.

Theorem 71. [3] Let X be a complex with discrete Morse function f : X → R. If there is

a single critical cell αk of with f (α) ∈ (a,b], then Xb is homotopy equivalent to the space

obtained by attaching a k-cell ek to Xa. That is, Xb = Xa∪ ek.

Applying these theorems to each of the critical points of a discrete Morse function,

we obtain the main theorem of discrete Morse Theory.

Theorem 72. [3] Let X be a cellular complex with discrete Morse function f : X → R.

Then X is homotopy equivalent to the cellular complex with decomposition consisting of

one n-cell for each critical cell of dimension n.

Again we notice that there are parallels between smooth and discrete Morse theory.

Most notably they both have the same form of main result.

One of the easiest ways we can work with discrete Morse functions is defining a

vector field on our complex. These vector fields will simulate cellular collapse.

4.3 Discrete Vector Fields

Definition 73 (Discrete Vector Field [4]). A discrete vector field V on a complex X is a

collection of pairs of cells {(α p,β p+1)} such that α ≺ β and no cell in X belongs to more

than one pair in V . We often write V (α) = β to signify that the pair (α,β ) ∈V .

When we define a discrete vector field on a complex, the vectors tell us how to per-

form cellular collapse.

Example 74. Figure 6 illustrates a simple vector field on a cellular complex constructed

using six 0-cells, seven 1-cells and one 2-cell. Notice how the vector path indicates cellular

collapse.
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Figure 6: A simple example of a vector path.

Figure 7: Result of the vector path above.

Thus we see that vector paths of a Morse function show the “flow” or how the cells

collapse on each other giving a homotopy equivalence between complexes. With this defi-

nition, we immediately get the following definition and theorem.

Definition 75 (Non-trivial Closed V -paths [4]). Let V be a discrete vector field defined

on the cells of a complex X . A V -path is a sequence of cells

α
p
0 , β

p+1
0 , α

p
1 , β

p+1
1 , . . . , α

p
r , β

p+1
r , α

p
r+1
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such that for each i = 0,1, . . .r we have (α p
i ,β

p+1
i ) ∈V and β

p+1
i � α

p
i+1 6= α

p
i . A V -path

is said to be nontrivial and closed if r ≥ 0 and α
p
0 = α

p
r+1.

Theorem 76. A discrete vector field V is associated to some discrete Morse function if and

only if it contains no nontrivial closed V -paths. [4]

These vector path can become quite complex. Consider the torus constructed using

seven 0-cells, twenty-three 1-cells and eighteen 2-cells as pictured in Figure 8 together with

the discrete vector path in Example 77. The vector path shows us our critical points as well

as the cellular decomposition of the torus which as we know is a 0-cell, two 1-cells and a

2-cell.

Example 77. [8] In Figure 8 we see is a cellular decomposition of the torus with opposite

edges of the space identified, together with a discrete vector field V . First notice that

there are no closed vector paths on the torus. Therefore by Theorem 76 we know the

resulting vector field identifies a discrete Morse function on our complex. Also notice any

cell that does not have a vector emanating from it or into it is considered critical in our

complex. In this particular example we have one critical 0-cell, two critical 1-cells, and

one critical 2-cell. Thus, we know by Theorem 72 the torus represented in Figure 8 has

cellular decomposition e0∪ e1∪ e1∪ e2 which is what we expected.

Now that we have a strong foundation in both smooth and discrete Morse theory we

switch our attention to surgery theory. First we will analyze surgery on embedded spheres

which we will connect to cobordisms through a theorem that has a proof that relies on

smooth Morse theory. This will lead us to believe that a similar theorem exists in the more

general case using discrete Morse theory.
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Figure 8: A vector field on a torus.
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CHAPTER 5

Surgery Theory on Manifolds

5.1 Construction of Surgery Theory on Manifolds

Surgery theory on manifolds is a process in which pieces of a manifold are removed

and replaced with pieces of another space, gluing the pieces along the boundary.

How do we decide what to remove and what to glue back? In order to do this we will

locate spheres embedded in our manifold. We will then make clever use of the boundary

operator to ensure that what is removed shares the same boundary of what is to be attached.

Consider an n-dimensional sphere Sn, which is the boundary of a disk of dimension

n+ 1 is a n-dimensional sphere. That is Sn = ∂ (Dn+1). However we also note that for

k ∈ N, k ≤ n then Dk+1 ∼= Dk×Dn−k+1 therefore ∂ (Dn+1) = ∂ (Dk×Dn−k+1).

Applying the boundary operator above we have

∂ (Dn+1) = ∂ (Dk×Dn−k+1) = (Sk−1×Dn−k+1)∪ (Dk×Sn−k).

From this information we can describe the process of surgery on a manifold as fol-

lows:

1. If Sk−1 is embedded in Mn then there exists a neighborhood U ⊂Mn where

U ∼= Sk−1×Dn−k+1. Thus we identify (Sk−1×Dn−k+1) on our manifold Mn and

remove it.

2. Due to our choice of U the boundary of Mn−U is exactly ∂ (Sk−1×Dn−k+1).

3. Since the boundary of (Dk× Sn−k) is the same as (Sk−1×Dn−k+1) we may attach

(Dk×Sn−k) along the boundary of Mn−U via the identity map on (Sk−1×Sn−k).
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This process creates a new manifold M′ that is also of dimension n, where M′ can be

defined with the following equation [2] :

M′ = (Mn− (Sk−1×Dn−k+1))∪ (Dk×Sn−k).

Note that we union via the identity map on (Sk−1×Sn−k).

5.2 Examples

In order to better understand how this process works let us consider the following

examples:

Example 78. Let Mn = S2 with k = 1. Since Mn = S2 we know that n = 2. Plugging in our

values to the above equation we have

M′ = (S2− (S0×D2))∪ (D1×S1).

First remove (S0×D2) which is two copies of disks from Mn, and thus the boundary

we are left with is a pair of circles. We then attach (D1×S1) or a cylinder, whose boundary

is also pair of circles. This in effect attaches a 1-handle to S2. In Figure 9 we notice that

M′ resembles a kettle ball from the gym, which is homeomorphic to a torus.

Example 79. Let Mn = T 2 with k = 1. Since Mn = T 2 we know that n = 2. Plugging in

our values to the above equation we have

M′ = (T 2− (S0×D2))∪ (D1×S1).

First remove (S0×D2) which is two copies of disks, and thus the boundary we are
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Figure 9: An example of surgery on a sphere.

left with is a pair of circles. We then attach (D1×S1) or a cylinder, whose boundary is also

pair of circles. This in effect attaches a 1-handle to T 2. In Figure 10 we notice that M′ is

homeomorphic to a genus two surface.

Figure 10: An example of surgery on a torus.

Example 80. Let Mn = S2 with k = 2. Since Mn = S2 we know that n = 2. Plugging in our

values to the above equation we have

M′ = (S2− (S1×D1))∪ (D2×S0).

First remove (S1×D1) which is a small collar on the surface. After removing (S1×
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D1) the boundary we are left with is a pair of circles. We then attach (D2× S0) or a pair

of disks whose boundary is also pair of circles. In this process w are locating an embedded

1-sphere in S2. This in effect removes a handle to S2. In Figure 11 we notice that M′ is the

upper and lower hemispheres of S2 which is homeomorphic to a pair of spheres, or S2tS2.

Figure 11: Removing a handle on a sphere.

Example 81. Let Mn = T 2 with k = 2. Since Mn = T 2 we know that n = 2. Plugging in

our values to the above equation we have

M′ = (T 2− (S1×D1))∪ (D2×S0).
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First remove (S1×D1) which is a small collar on the surface. After removing (S1×

D1) the boundary we are left with is a pair of circles. We then attach (D2×S0) or a pair of

disks whose boundary is also pair of circles. In this process we are locating an embedded

1-sphere in T 2. This in effect removes a handle of T 2. In Figure 12 we notice that M′

is the torus with a portion removed, or a hollow cylinder. We know a hollow cylinder is

homeomorphic to S2.

Figure 12: Removing a handle on a torus.

Surgery is much more difficult in higher dimensions. However we notice that ,in any

dimension surgery drastically changes the homeomorphism type of the original manifold.

Because the surgery we perform is controlled, some information is preserved.
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5.3 Cobordism

Now that we have a grasp on surgery theory we will examine corbordism, which will

be the tool used with surgery theory to classify manifolds of the same dimension.

Definition 82 (Cobordant). Let M and N be n -dimensional manifolds. We say M and

N are cobordant if there is a compact manifold W of degree n+ 1, whose boundary is the

disjoint union of M, and N i.e. ∂ (W ) = M t N. We say W is a cobordism between M and

N.

It is immediately clear that for given n the notion of cobordism is an equivalence rela-

tion, dividing the set of n-manifolds into cobordism classes. Because the relation of cobor-

dism is much weaker than that of homeomorphism, the cobordism classes of n-manifolds

are much larger than homeomorphism classes of n-manifolds.

Example 83. Consider the simple example of two manifolds of degree 0, that is let M =

{0} and N = {1}. Now consider the degree 1 manifold W = [0,1]. Notice that ∂ (W ) =

{0}t{1}, thus W is a cobordism between M and N.

Example 84. A less trivial example would be between a pair of circles and just one copy

of a circle. That is let M = S1tS1, while N = S1. The cobordism W would look like a “pair

of pants”, as pictured in Figure 13. We note how ∂ (W ) is exactly N tM. Thus we would

say a pair of circles is cobordant to a single circle.

Example 85. We can find a degree 3 manifold whose boundary is the disjoint union of a

torus and a sphere. That is, consider a solid D2×S1 where you delete an open ball or D3,

from the interior of D2×S1. Thus we know there exists a cobordism between a torus and a

sphere, and we noticed before that we could obtain one from the other through surgery.
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Figure 13: Cobordism W between a circle and a pair of circles.

Example 85 presents a connection between surgery and cobordism. There is an ex-

plicit connection between cobordism and surgery on embedded spheres; Morse theory pro-

vides that connection.

5.4 The link between surgery and cobordisms

Theorem 86 ([2]). Let M and N be manifolds of the same dimension. Then M and N are

cobordant if and only if M and N can be obtained from one other through a sequence of

surgeries.

We will not rigorously prove this result, but rather sketch the main idea of the proof

in order to show how Morse theory is used.

Sketch of Proof

Suppose M and N are two n-dimensional cobordant manifolds. That is, there exists

a (n+1)-dimensional manifold W , where ∂ (W ) = MtN. Through Morse theory we can

identify a Morse function f on W that identifies the critical points of W . Thus using this

information we can find the handlebody decomposition of W . Through this decomposition

we can analyze what handles were added, or removed to give the cobordism W . Therefore

this decomposition will show us the surgeries that were involved to obtain M from N or
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vice versa.

Conversely if we can show that two n-dimensional manifolds M and N can be ob-

tained from one another through a series of surgeries then the surgeries give us a “blueprint”

on how to create our cobordism W . That is we simply analyze what handles were deleted

or added to obtain N from M or vice versa. Then this can be considered our handlebody

decomposition of W and through Morse theory we can glue our handles together to obtain

W .
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CHAPTER 6

Cellular Surgery

The previous chapter provided a connection between surgery theory on embedded

spheres in a manifold to the equivalence relation known as cobordism. This connection

was due to Morse theory. The discovery of discrete Morse theory begs the question : are

there similar notions of surgery and cobordism on complexes that can be connected by

discrete Morse theory?

This is not an innovative idea. In 2010 Bruno Benedetti submitted a paper to the

Arxiv entitled “Discrete Morse Theory Is At Least As Perfect As Morse Theory”, in which

he translates some applications of smooth Morse theory into the discrete setting. Currently

there are no notions for surgery on a cellular complex. Therefore, we create an algorithm

for performing surgery on a cellular complex. In this chapter, we define a discrete version

of surgery on a complex, allowing us to make a conjecture about the discrete version of the

link between surgery and cobordism like Theorem 86.

6.1 An Algorithm for Cellular Surgery

Recall that in our discussion of discrete Morse theory that vector paths play an im-

portant role. If a vector path is not closed, then the path simulates cellular collapse. Also,

if a vector path is closed we are prohibited from performing discrete Morse theory. There-

fore, we avoid closed vector paths on a cellular complexes. Through this, we discover that

a closed vector path invokes a natural way to define surgery on a cellular complex. In order

to describe our algorithm for cellular surgery we must first note the following definitions.

Definition 87 (Plain Faces). Let V be a vector path on a cellular complex X . Let V be the

collection of cells in our vector path V , also let τ ∈ V . Then we say
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γ ∈F ⇐⇒ γ ≺ τ and γ /∈ V . We call F the set of plain faces of V .

Definition 88 (Pure Vector Path). Let V be a closed (k,k + 1) vector path of length m

where τ1,τ2, . . . ,τ2m are the cells in V , where τ2m+1 is a k-cell and τ2m is a (k+1)-cell. We

say a vector path is pure if for each τi, the only cells of co-dimension 1 that τi shares a face

with are τi−2 or τi+2. Otherwise we say the vector path is pure.

In order to visualize what we mean by a pure vector path consider the following

example of a vector path that is not pure.

Example 89. In Figure 14 we have a vector path that is not pure. Notice if we consider the

blue 1-cell FH the starting point of our closed (1,2) vector path then the 2-cells CEFD and

DFKJ share a face DF . However CEFD is the fourth cell in our vector path, while DFKJ

is the tenth cell in our vector path. Therefore since they share a face but are not consecutive

of each other then they are not pure vector paths.

Figure 14: A not pure vector path

Now that we have the required definitions, we have the following algorithm:
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Cellular Surgery

Let X be a CW-complex of dimension n. Let k ∈ N where k < n−1. Then :

1. Find a pure (k,k+1) vector path on X.

2. Remove all cell in V .

3. Also remove any cells who lost their face.

That is, say σ is a k-cell that was removed, and τ1,τ2, . . . ,τp are (k+ 1)-cells that

are not in the vector path, where σ is the face of τ1,τ2, . . . ,τp. Then we remove

τ1,τ2, . . . ,τp as well.

4. Claim : The deleted cells form (S1×Dk). Therefore the boundary of the (S1×Dk)

form the cells in F . Thus the boundary of a (D2× Sk−1) would have the same

boundary as the (S1×Dk).

5. Attach (D2×Sk−1) to F .

Proof of Claim. We recall that from smooth surgery we located and removed

(Sk−1×Dn−k+1) then attached (Dk× Sn−k). We could do this since (Sk−1×Dn−k+1) and

(Dk× Sn−k) shared the same boundary. We will show that by mimicking surgery on em-

bedded spheres our claim is true.

Since we are locating a closed vector path, the path (k,k+1) by definition identifies

a S1. Therefore, our (k,k+1) vector path identifies an embedded 1-sphere in our complex.

Thus since we are mimicking surgery on embedded spheres we identify a sub-complex of

X that is homotopy equivalent to (S1×Dm) for some m.

However, since we are finding a (k,k+ 1) vector path the total dimension of what
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we remove must be k+1. Therefore we see (S1×Dm) has total dimension m+1. Thus we

must have m = k.

Now since we are mimicking smooth surgery we know since we remove (S1×Dk)

we have that (k− 1) = 1 and (n− k+ 1) = k. Therefore, we have that k = 2 and n− k =

k− 1. Thus we attach (D2 × Sk−1), since it shares a boundary, mainly (S1 × Sk−1) as

(S1×Dk).

We see that because of the above proof, our proposed algorithm for extending surgery

to the discrete setting is consistent with notions that are established in the smooth case.

Also, it is worth noting that if we have a CW-complex that is a manifold, we can perform

surgery on the complex in the exact same way as we would in the smooth case. That means

that our new algorithm is an extension of surgery to non-manifolds. However, we will

see in a few examples that if we operate on a manifold, cellular surgery resembles smooth

surgery when n = 2 and k = 2.

6.2 Examples of Discrete Surgery

Example 90. Consider the cube constructed from eight 0-cells, twelve 1-cells and six 2-

cells as pictured in Figure 15.

Now choose a closed (1,2)-vector path on our complex, which is pictured in figure

16 in green. Since we are choosing a (1,2) vector path our we are identifying and removing

(S1×D1) while attaching (D2×S0). We know from Example 80 that applying this process

to a sphere results in a space that is homeomorphic to two copies of a sphere.

Now due to our choice of vector path we have that the 1-cells DC,EF, JI, and HG

are in set V . Also we have the 2-cells DCFE,EFIJ,JIGH,HGCD are in set V .

We note due to our choice of vector path that the 0-cells D,H,J,E, I,F,C,G are in
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Figure 15: A cube

F , as well as 1-cells CG, GI, IF , FC, DH, HJ, JE, ED. In Figure 16 we colored these

cells blue.

Figure 16: Vector path on a cube
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Remove all cells in the set V . Then attach (D2×S0) along the blue cells. This is rep-

resented by the red bubbles in Figure 17. We notice the resulting complex is homeomorphic

to two copies of spheres, as we expected.

Figure 17: Resulting surgery on a cube

For the next example we will consider a complex which is homeomorphic to a torus,

see Figure 18.

Figure 18: A subdivided torus before the yellow 1-cells are identified.
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Example 91. Again we perform cellular surgery on a space that we know the outcome

produced by smooth surgery. That is we perform cellular surgery on a complex that is

homeomorphic to a torus.

Choose a closed (1,2)-vector path on our complex, which is pictured in Figure 19.

Since we are choosing a (1,2)-vector path we are identifying and removing (S1×D1) while

attaching (D2×S0). We know from before that applying this process to a torus results in a

space that is homeomorphic to a sphere.

Now due to our choice of vector path we have that the 1-cells OQ,PR,NW , and MS

are in set V . Also we have the 2-cells OQRP,PNWR,NWSM,MSQO are in set V .

We see due to our choice of vector path that the 0-cells O,P,R,Q,W,N,M,S are in

F , as well as 1-cells OP, PN, NM, MO, SQ, QR, RW , WS. In Figure 19 we colored these

cells blue.

Figure 19: Our chosen vector path on our torus.

Remove all cells in the set V . Then attach (D2×S0) along the blue cells. Therefore

we have the red walls in Figure 20. We notice the resulting complex is a cylinder with caps
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on the ends, which is homeomorphic to a sphere, which again is what we expect.

Figure 20: Resulting surgery on a torus

Now we will move into examples of cellular surgery on CW-complexes that are not

manifolds. An example of a non-manifold is pictured in Figure 21 which we will call a

“Torus with Rooms”. Notice how there are walls that divide the torus into “rooms”, in this

example our “Torus with Rooms” has a total of 6 rooms.

Figure 21: “A Torus with Rooms” before the yellow walls are identified.
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Example 92. Choose a closed (1,2)-vector path which is in green in Figure 22. Since we

have chosen a a closed (1,2)-vector path on our complex we are identifying and removing

(S1×D1) while attaching (D2×S0).

Due to our choice of vector path we have that the 1-cells OQ,PR,NW , and MS are in

set V . Also we have the 2-cells OQRP,PNWR,NWSM,MSQO in set V .

Also we see due to our choice of vector path that the 0-cells O,P,R,Q,W,N,M,S are

in F , as well as 1-cells OP, PN, NM, MO, SQ, QR, RW , WS. In Figure 22 we colored

these cells blue.

Figure 22: A closed vector path on a “Torus with Rooms”

Remove all cells in the set V . Then attach (D2×S0) along the blue cells. Therefore

we have the red bubbles in Figure 23. Essentially this surgery deleted one “room” and

created two new “rooms”.

Example 93. Choose a different closed (1,2)-vector path on the “Torus with Rooms”

which is in green in Figure 24 below. Note since we are choosing a (1,2) vector path

we are identifying and removing (S1×D1) and attaching (D2×S0).
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Figure 23: A surgery on a torus with rooms

Due to our choice of vector path we have that the 1-cells OM,QS,RW , and PN are in

set V . Also we have the 2-cells PNMO,OQSM,QWR,RWNP are in set V .

We see due to our choice of vector path that the 0-cells O,P,R,Q,W,N,M,S are in

F , as well as 1-cells OP, PR, RQ, QO, WS, SM, MN, NW . In Figure 24 we colored these

cells blue.

Figure 24: A different vector path on the “Torus with Rooms”

Remove all cells in the set V . However by our algorithm, the listed 1-cells in V are
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faces of higher dimensional cells. Therefore the higher dimensional cells must be removed

as well. That is the 2-cells whose faces are JOML,KXNP,RUZW,SY T Q are removed.

Then attach (D2× S0) along the blue cells. Therefore we have the red bubbles in Figure

25. Essentially this surgery deleted three “rooms” and created two new “rooms”.

Figure 25: Another surgery on a “Torus with Rooms”

Example 94. Choose a different closed (1,2)-vector path on the “Torus with Rooms”

which is in green on the Figure 26. Since we are choosing a (1,2) vector path we are

identifying and removing (S1×D1) and attaching (D2×S0).

By our choice of vector path we have that the 1-cells OM,QS,RW , PN, KX , and JL

are in set V . Also we have the 2-cells JOML,OQSM,QSWR,RWNP,PKXN,KJLX are in

set V .

Lastly we see due to our choice of vector path that the 0-cells J,O,Q,R,P,K,L,M,S,W,N,X

are in F , as well as 1-cells JO, OQ, QR, RP, PK, KJ LM, MS, SW , WN, NX , XL. In Fig-

ure 26 we colored these cells blue.

Remove all cells in the set V . However by our algorithm, the listed 1-cells in V are
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Figure 26: A vector path on a “Torus with Rooms”

faces of higher dimensional cells. Therefore the higher dimensional cells must be removed

as well. That is the 2-cells EHLJ,GKXI,RUZW,SY T Q,OPNM are removed. Then attach

(D2×S0) along the blue cells. Therefore we have the red bubbles in Figure 27. Essentially

this surgery deleted four “rooms” and created two new “rooms”.

Figure 27: A different surgery on a torus with rooms
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Example 95. Choose a different closed (1,2)-vector path on the “Torus with Rooms”

which is in green on the Figure 28. This one may be harder to picture, but our path re-

volves on the inner circle of the “torus with rooms”. Note since we are choosing a (1,2)

vector path we are identifying and removing (S1×D1) while attaching (D2×S0).

By our choice of vector path we have that the 1-cells BD, EH, JL, OM, QS, TY are

in our set V . Also we have the 2-cells BOHE,EHLJ, JLMO,OMSQ, QSY T,TY DB are in

set V .

Finally we see due to our choice of vector path that the 0-cells B,E,J,O,Q, T,D,H,L,M,S,Y

are in F , as well as 1-cells BE, EJ, JO, QT , T B, DH, HL,LM,MS, ST , T D. In figure 28

we colored these cells blue.

Figure 28: Another closed vector path on the “Torus with Rooms”

Remove all cells in the set V . However by our algorithm, the listed 1-cells in V are

faces of higher dimensional cells. Therefore the higher dimensional cells must be removed

as well. That is the 2-cells BDCA,EHIG,JKXL,OPNM,QRWS,TUZY are removed. Then

attach (D2× S0) along the blue cells. Therefore we have the red bubbles in Figure 29.

Essentially this surgery deleted all “rooms” and adds one “room”.
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Figure 29: One more surgery on a “Torus with Rooms”

Now we consider a different CW complex that is not a manifold. This time we

consider a tetrahedron and a cube sharing only one 1-cell as pictured in Figure 30.

Figure 30: A cube and tetrahedron connected by a line

Example 96. Choose a closed (1,2)-vector path which is in green in Figure 31. Note since

we are choosing a (1,2)-vector path we are identifying and removing (S1 ×D1) while
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attaching (D2×S0).

By our choice of vector path we have that the 1-cells DC,EF JI GH are in set V .

Also the 2-cells DCHG,EFIJ,GHIJ,DCFE are in set V .

Finally, we see due to our choice of vector path the 0-cells D,E,J,G,C,H,F, I are

in set F as well as the 1-cells CH, HI, IF , FC, DE, EJ, JG, GD. In figure 31 we colored

these cells blue.

Figure 31: A vector path on a cube and tetrahedron connected by a line.

Remove all cells in the set V . Then attach (D2×S0) along the blue cells. Therefore

we have the red bubbles in Figure 32. Essentially this surgery deleted one “room” and adds

two “rooms”.
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Figure 32: Surgery on a cube and tetrahedron connected by a line

Example 97. Choose a different closed (1,2)-vector path on a cube and tetrahedron sharing

only one 1-cell which is in green in Figure 33. Note since we are choosing a (1,2) vector

path we are identifying and removing (S1×D1) and attaching (D2×S0).

By our choice of vector path we have that the 1-cells KN,MN NL are in set V . Also

the 2-cells NLK,KNM,NLM are in set V .

Finally we see due to our choice of vector path the 0-cells N,L,K,M are in set F as

well as the 1-cells KL, LM, MK. In figure 33 we colored these cells blue.

Remove all cells in the set V . Then attach (D2×S0) along the blue cells. Therefore

we have the red bubbles in Figure 34. Essentially this surgery deleted one “room” and adds

two “rooms”.

We will consider one last example of a space that is not a manifold. We consider

4 tetrahedra who share exactly one point, which we call a wedge of tetrahedra, which is

homeomorphic to a wedge of 4 spheres, see Figure 35.
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Figure 33: A different vector path on a cube and tetrahedron connected by a line.

Figure 34: Different surgery on a cube and tetrahedron connected by a line.

Example 98. Choose closed (1,2)-vector path which is in green in Figure 36, notice no

matter the choice of vector path we will have the same result. Note since we are choosing
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Figure 35: Wedge of tetrahedra

a (1,2) vector path we are identifying and removing (S1×D1) and attaching (D2×S0).

By our choice of vector path we have that the 1-cells LM,LO LN are in set V . Also

the 2-cells LMO,LMN,NLO are in set V .

Finally we see due to our choice of vector path the 0-cells L,M,N,O are in set F as

well as the 1-cells MO, ON, NM. In figure 36 we colored these cells blue.

Remove all cells in the set V . Then attach (D2×S0) along the blue cells. Therefore

we have the red bubbles in Figure 37. Essentially this surgery deleted one “room” and adds

two “rooms”.
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Figure 36: A closed vector path on a wedge of tetrahedra.

Figure 37: Surgery on a wedge of tetrahedron
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CHAPTER 7

Expanding Cobordism

In the previous chapter we constructed an algorithm for generalizing surgery to cel-

lular complexes. We recall that in the smooth case cobordisms and surgery were connected

through smooth Morse theory. Therefore we require our generalization of cobordant to be

connected cellular surgery. We will use the definition of cellular surgery to help define our

generalized definition of cobordism.

We will begin by stating the definition for our generalization of cobordant. Then we

will describe how to construct our cobordism before finally giving some examples.

7.1 Locally Cellular Cobordism

Definition 99 (Locally Cellular Cobordant). Let M, N be two CW-complexes with X and

Y sub-complexes of M and N respectively. Then we say M and N are locally cellular cobordant

if we can find a cellular complex W where X and Y are sub-complexes of W .

We observe that in this definition we need to construct a new complex W where

X and Y are sub-complexes. In order to construct W we first define a specific form of

subdivision on a complex.

Definition 100 (Vector Path Subdivision). Let X be a CW-complex with a (k,k+1) vec-

tor path V of length m. Let τ1,τ2, . . . ,τ2m be the cells in our vector path, where τi is a k-cell

if i is odd, and a k+1 cell if i is even. Let v j ∈V be an individual vector in our path where

v j begins at τ j and ends at τ j+1 where j is odd.

We subdivide τ j into three components where τ j = α j∪γ j∪β j where α j and β j each

share a k−1 cell with γ j.

We also subdivide τ j+1 into three components where τ j+1 = α j+1 ∪ γ j+1 ∪ β j+1
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where α j+1 and β j+1 share a k cell with γ j+1.

Doing this for all v j ∈V we call this a vector path subdivision and denote our result-

ing complex ∆X .

Consider the following examples to better visualize the subdivision.

Example 101. Consider the cellular complex made of six 0-cells seven 1-cells and two

2-cells in Figure 38 below with a (1,2) vector path V in green.

Figure 38: Cellular complex with a vector path

We then apply our vector path subdivision to our complex. We see that the 1-cell BC,

becomes BG,GH,HC, and the 1-cells FE and AD become FI, IJ,JE and AK,KL,LD re-

spectively. Also the 2-cells FBCE and ADFE become FIBG, IJHG,JEHC and AKIF,KLJI,LDEJ

respectively.
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Note that {α j : j ∈ Z and 1≤ j ≤ 5}= BG,BGIF,FI,FIKA,AK,

{γ j : j ∈ Z and 1≤ j ≤ 5}= GH,GHJI, IJ, IJKLKL and

{β j : j ∈ Z and 1≤ j ≤ 5}= HC,HCEJ,JE,JEDL,DL.

The resulting complex is pictured in Figure 39.

Figure 39: Cellular complex with vector path subdivision

Example 102. Consider the cube created using six 0-cells, twelve 1-cells, and six 2-cells

with a (1,2) vector path V pictured in Figure 40.

Applying our vector path subdivision we obtain the complex in figure 41.

Notice that in Example 102 our V was a closed vector path which we utilized in

construction of our generalization of surgery to define what to remove and attach. Again

we utilize closed vector paths this time in regards to creating W . However, we require the

following lemma in order to show our construction of W is well defined.
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Figure 40: Cube with vector path

Figure 41: Cube with vector path subdivision

Lemma 103. Let X be a CW-complex with a closed (k,k+1) vector path V . Let †X be the

vector path subdivision with respect to V . Then {α j} j and {β j} each form sub-complexes

homeomorphic to S1×Dk.
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Proof of Lemma. Recall that we proved when defining surgery on cellular complexes that

our closed vector path locates (S1×Dk). Now, since we have a closed vector path V the

cells in out path identify (S1×Dk). When subdividing our complex {α j} j,{γ j} j,{β j} j

still follow our vector path by definition. Therefore by our definition of our generalization

of surgery {α j} j,{γ j} j,{β j} j are homeomorphic to (S1×Dk).

Note that a direct consequence of lemma 104 provides that we can attach (D1×Dk)

to each {α j} j and {β j} j. This is because ∂ (D1×Dk) = ∂ (S1×Dk).

Therefore we now have the necessary tools for constructing W .

Definition 104 (Constructing W ). Let X be a cellular complex with closed (k,k + 1)

vector path V . Let †X be the vector path subdivision of X with respect to V . Then attach

(D1×Dk) to each {α j} j and {β j} j.

Finally, attach (D2×Dk) to the sub-complex C where C is {γ j} j, {α j} j ∩{γ j} j ∩

{β j} j and the newly attached (D1×Dk). This is possible since C ∼= S2×Dk and ∂ (S2×

Dk) = ∂ (D2×Dk). We call the resulting complex W .

7.2 Examples

Recall that in Example 80 we could perform surgery on S2 to obtain S2tS2. We then

recall that by Theorem 86 that if we could perform surgery on a manifold to obtain another

manifold then the spaces are cobordant. Therefore S2 and S2t S2 are cobordant. We also

recall that by Example 19 a cube and sphere are homeomorphic. Therefore we will show a

cube and a pair of cubes are locally cellular cobordant.

Example 105. Let M be the cube as described in Example 102. Let N be two copies of the

cube described in Example 102. For this example we will take the sub complexes X = M,

and Y = N.
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Therefore consider †X in Figure 41. Then attach (D1×D1) to each {α j} j and {β j} j.

We see this in Figure 42.

Figure 42: Cube with vector path subdivision and attached 2-cells.

Finally, attach (D2×D1) to the sub-complex C where C is {γ j} j, {α j} j ∩{γ j} j ∩

{β j} j and the newly attached (D1×D1). We see this in Figure 43, where the yellow is the

(D2×D1).

Notice that in our figure we have a cube as well as a pair of cubes as sub-complexes

of W . Therefore we say a cube is locally cellular cobordant to a pair of cubes.

We have shown above that our cube constructed is locally cellular cobordant to a pair

of our cubes. This is expected since surgery and cobordant is connected through Theorem

86. Therefore we wish to examine examples of cellular surgery and show we can create a

cobordism between the original space and the resulting space of the cellular surgery.

We notice that in our definition of locally cellular cobordant we only need to focus
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Figure 43: W for cube and two cubes

on the parts of the complexes that differ. That is if M is our complex before cellular surgery,

and N is the complex after then we need only to analyze where M and N differ.

Example 106. Recall that in Examples 90, 92, 96, 97 and 98 the parts of our complex that

differ are homeomorphic to a sphere and a pair of spheres. We have shown in the Example

105 that we can construct W for those spaces. Therefore, we say the complex we start with

in each of those examples is locally cellular cobordant to the complexes resulting from

cellular surgery, which is again what we would expect.

Example 107. Consider the torus as pictured in Figure 18. Now choose the same closed

(1,2)-vector path on the torus pictured in Figure 19. Then we create the following vector

path subdivision as we see in Figure 44.

Now attach (D1×D1) to each {α j} j and {β j} j. Finally we attach (D2×D1) to the

sub-complex C where C is {γ j} j, {α j} j∩{γ j} j∩{β j} j and the newly attached (D1×D1).

We see this in figure 45 below.
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Figure 44: Torus with vector path subdivision

Figure 45: Cobordism for the torus and a cylinder.

We see that the above W in Figure 45 has both the torus from figure 18 and a cylinder

as sub-complexes. Therefore we say a torus and a cylinder are locally cellular cobordant.

Example 108. Consider our torus with rooms in Figure 21. Choose the same closed (1,2)-

vector path on the “torus with rooms as pictured” in Figure 26. Then we create the follow-

ing vector path subdivision.

We attach (D1×D1) to each {α j} j and {β j} j. We also attach (D2×D1) to the sub-

complex C where C is {γ j} j, {α j} j ∩ {γ j} j ∩ {β j} j and the newly attached (D1×D1).

However we cannot picture what this would look like. At first glance we might try to draw
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Figure 46: Torus with rooms vector path subdivision.

in the pieces on the complex above. However it would seem that (D1×D1) and (D2×D1)

intersect the complex. However we need a fourth dimension to show this intersection is not

actually occurring.

We notice that our W can quickly become difficult to construct. In our last example

we need higher dimensions in order to accurately represent our new complex W .

Also, we notice that our definition of cobordant is related to our generalization of

surgery. Therefore, by this definition we have the exact same result as Theorem 87. The

idea is to obtain one or the other we simply choose the same closed vector path. Therefore,

this result is not interesting since it does not require discrete Morse theory as we hoped it

would.
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CHAPTER 8

Links to Smooth Case and Future Research

8.1 Future Research

As we noted at the end of Chapter 7, our generalization of cobordism and

surgery were deliberately related to one another. We note that since the connection does

not need discrete Morse theory to connect the definitions. Therefore, we would like to gen-

eralize our definition of cobordant, in a way that does not rely on the definition of surgery.

In the smooth case we noticed that surgery theory and cobordism are not immedi-

ately clear on their connection to one another. However, we found there was a connection

between the two through smooth Morse theory. Therefore we want to find a way to continue

our generalization of cobordism. As of now our definition relies heavily on our general-

ization of surgery. We would like to find a way to define our generalization of cobordism

without using closed vector paths. Therefore, we would not have the immediate connection

we have now. We want this generalization to allow for the possibility discrete Morse theory

to provide the connection.

A theorem exists [6] stating that if a spin manifold of dimension at least 5 admits

a metric with positive scalar curvature, performing surgery on that manifold preserves the

positivity of the scalar curvature. The proof of this theorem relies heavily on the connection

between cobordism and surgery. We are hoping this result or a form of this result holds for

our generalization.

In order to further investigate this problem we must have find a consistent metric

for curvature on a cellular complex. There have been attempts by Robin Forman, however

none that help solve this specific problem.
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We also would like to analyze how the topology is changing after performing our

generalization of surgery on a cellular complex. We would like to know what invariants are

preserved if any. Generally speaking we would like to analyze the results that came from

smooth surgery, and analyze them if they hold for our generalization of surgery.
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