\qquad

1. Suppose $\vec{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\vec{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$.
(a) Compute $\vec{u} \times \vec{v}$.
(b) Compute (and expand) $\|\vec{u} \times \vec{v}\|^{2}$
(c) Now, compute (and expand) $\|\vec{u}\|^{2} \cdot\|\vec{v}\|^{2}-(\vec{u} \cdot \vec{v})^{2}$
(d) How do these last two expressions compare?
2. Suppose θ is the angle between \vec{u} and \vec{u}.
(a) Use the property of the dot product derived on the last worksheet to rewrite

$$
\|\vec{u}\|^{2} \cdot\|\vec{v}\|^{2}-(\vec{u} \cdot \vec{v})^{2}
$$

(b) Rewrite this using another trigonometry function.
(c) Simplify as much as possible.
3. We have just proved the following formula:

$$
\|\vec{u} \times \vec{v}\|=
$$

4. Suppose \vec{u} and \vec{v} are vectors in \mathbb{R}^{3} in standard position. Compute the area of the resulting parallelogram.
5. Suppose \vec{u}, \vec{v} and \vec{w} are vectors in \mathbb{R}^{3} in standard position. These three vectors form a parallelipiped. Compute its volume.
