Name: _____

1. Suppose $\overrightarrow{u} = \langle u_1, u_2, u_3 \rangle$ and $\overrightarrow{v} = \langle v_1, v_2, v_3 \rangle$. (a) Compute $\overrightarrow{u} \times \overrightarrow{v}$.

(b) Compute (and expand) $\|\overrightarrow{u} \times \overrightarrow{v}\|^2$

(c) Now, compute (and expand) $\|\vec{u}\|^2 \cdot \|\vec{v}\|^2 - (\vec{u} \cdot \vec{v})^2$

(d) How do these last two expressions compare?

- 2. Suppose θ is the angle between \overrightarrow{u} and \overrightarrow{u} .
 - (a) Use the property of the dot product derived on the last worksheet to rewrite

 $\|\overrightarrow{u}\|^2 \cdot \|\overrightarrow{v}\|^2 - (\overrightarrow{u} \cdot \overrightarrow{v})^2$

(b) Rewrite this using another trigonometry function.

(c) Simplify as much as possible.

3. We have just proved the following formula:

 $\|\overrightarrow{u} \times \overrightarrow{v}\| =$

4. Suppose \overrightarrow{u} and \overrightarrow{v} are vectors in \mathbb{R}^3 in standard position. Compute the area of the resulting parallelogram.

5. Suppose \vec{u} , \vec{v} and \vec{w} are vectors in \mathbb{R}^3 in standard position. These three vectors form a *parallelipiped*. Compute its volume.