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To the Instructor

These notes are designed for use in a 15-week, 4-crediteiftenential cal-

culus course with students from both mathematics and tkases. While a
strong background in algebra is of course preferred, fewraptions about
student knowledge of trigonometric, exponential and ldlyaric functions

are made. All preliminary concepts are thoroughly definedughout the
chapters, and the development of these definitions are n@aetan inte-
gral part of their use within differential calculus.

Chapter 0 is meant to be used as a review of general functitogscs
include a rigorous presentation of properties of functigdhe slope of a
line, and the distance function dd. However, in those classrooms that
meet fewer than 4 hours per week or less than 15 weeks per sgnibe
problems may be assigned to be completed before the clags foe¢he
first time. Chapter 6 includes related rates problems andausgsion of the
Mean Value Theorem. It could be omitted in the interest oktonassigned
as “bonus” material to be turned in at the end of the term. Hewdroblem
193 should be discussed before starting Chapter 7.

There are a few topics typically included in a lecture-basaftulus
course that do not appear in these notes. L'Hospital’'s silene of these
topics. Area between curves is another. Topics such as #nesevaluable
in later calculus courses, and should not necessarily lregin The author
has taken advantage of those class periods in which no pnshiere ready
to be presented to discuss these popular topics that araatatied.

These notes have been successfully used in a classroom ¢h wach
student was expected to provide a complete, concise wsttlertion to each
problem. Volunteers were asked to present correct sokitiorthe rest of
the class each day. In order to provide incentive for stigdemivork on
problems outside of class, more points were awarded to éewrsolution
turned in to the instructor before that solution was presgnd the class.
Student assessment consisted of four components:

e Class presentations (20%) — Each day volunteers were foyresent
the solution to the next problem. Four points were assigoed pre-
sentation, correct or not. Class members that providedhitisil com-
ments or helpful questions were awarded one point each. #ticee
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curve was applied at the end of the semester to determinad¢iserp
tation grade of each student.

e Written work (30%) — Every student is expected to turn in a plate
solution to each problem. Corrected solutions will be mne¢grthe next
day with comments, marked as either “correct” or “reworktudents
are permitted to turn in reworked solutions as often as ieseary. If
a correct written solution is provided before it has beers@néed to
the class, 6 points will be earned. If turned in after the @néstion, 2
points will be earned. A creative curve was applied at the @ritie
semester to determine this component for each student.

e Student participation (10%) — Each student is expectedendievery
class and fully participate in a professional manner. Pdalitestions
and comments are expected on a daily basis.

e Two exams (20% each) — One midterm and one non-comprehensive

final exam.

At various points during the semester, the instructor ioaraged to de-
velop several collections of problems for the students teesg@ither alone
or in a group) throughout the semester. For example, if tloelymt rule
has been derived near the end of the week, students may hdgutovith a
worksheet (or an improvised set) of 10-12 derivatives tomat@ during the
last 20 minutes of Friday’s class. Students could be exgeotering their
solutions to Monday’s class, and the first 20 minutes may leatsiook-
ing at solutions on the board written by individual studeptsints can be
earned towards each presenter’s presentation grade. feaidyoter prob-
lem sets may be preferred, although spending an entire d&ssvorking
on problems from each of nine chapters may be unwise.

In order to increase time efficiency, solutions to severabf@ms may be
asked to be written on the board at the same time with studesgéptations
conducted after all writing is finished. This strategy isexsally helpful at
those points in the notes in which several similar problerasacountered,
such as when the product or quotient rules are discovered.

A typical mid-semester day may start off with Alan, BonniadeClaire
having already written their solutions to problems 43, 44 45. Alan and
Bonnie emailed the instructor the night before asking pssian to present
#'s 43 and 44, while Claire claimed #45 earlier that morningry office
hours. Any students wishing to turn in their written work bese problems
have already placed their solutions on the desk at the fricthiearoom.

After all writing has ceased, Alan explains his solution tolifem #43
to the class while standing at the board. He answers two ignssirom
attentive audience members (who each earn a point towagdptiesenta-
tion grade), and the instructor thanks Alan. From her desknige quickly
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To the Instructor Y,

tells the class that the technique she used in her solutithetsecond prob-
lem is similar to Alan’s. There were no questions. Clairentpeoceeds to
explain her solution to #45 at the board, but several questimm the au-
dience convince her that she has made a mistake. Anothergtoffiers his
solution, but Claire insists that she will be able to repa& imistake if she
has more time. The instructor asks her to try again the nextadtel Claire
agrees.

After several minutes of discussion among the studentsingteuctor
asks for a volunteer to present the solution to the next prab#46. At the
end of the class period, the instructor suggests that bythertext meeting,
solutions be ready for at least the next four problems, akd @t Claire
have her corrected solution to #45 written on the board bytithe class
begins.

Brian M. Loft www.jiblm.org



Introduction

These notes are intended to be used in a one semester codiferantial

calculus. Rather than having the structure of a typicalbtesk (lecture,
examples, practice problems at home), each chapter consiatcarefully
designed sequence of problems and questions that — if ctetypkolved

and understood — will deliberately lead each student tol@dmhprehension
of the material of differential calculus.

This student-centered (as opposed to instructor-cernjtargmuction has
proven to be highly effective at all levels of learning. Coomty referred to
as Inquiry- or Discovery-Based Learning, this method wasmeered sev-
eral decades ago at UT-Austin by R. L. Moore. A controvelfgjaire, Dr.
Moore championed the philosophy that the level to whichetisican learn
mathematics should not be damped by the knowledge of theuatst. In
other words, it should be possible for a student to learn rtiae the in-
structor knows. This style of teaching (or rather of leaghimore than
allows for this possibility.

Read each problem carefully. Some may be solved quickly enaortwo
minutes. Some may take several days. Do not move on to thegraxem
without having a complete understanding of every previahst®n. These
problems are designed to prompt discussion in the classtioarwill reveal
some of the biggest ideas in calculus. That is, attendanckass each day
is essential for even the most basic understanding. In sifigiou don’t
work on these problems several hours each week outsidess atawell as
attend each and every class, it will be impossible to recgipassing grade
in this course.

As the instructor of this course and the author of these ndtean
promise you several things. First, this course will be vesyndnding. |
expect quite a bit from my students in all of my courses, big tme in
particular will require more time and effort than usual. &wdly, this ef-
fort will be rewarded. | can guarantee a more complete unaedgg of
differential calculus to any student that does what is etgzecAnd lastly, |
promise that this class will be fun. This atypical methodeafrhing fosters
a collegial environment among student and instructor. Thesntime you
spend working either alone or with classmates outside aiscéand in my
office, the more you will get out of the semester. Have fun!!

Vi
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These notes would not have been possible without generadsiiyiand
encouragement from the Educational Advancement Foundatid in par-
ticular the Academy of Inquiry-Based Learning. For mor@iniation, visit
http://www.inquirybasedlearning.org. | encourage each student to
spend twenty minutes viewing the three “Videos about IBLEegsible at
this webpage.
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Chapter O

Preliminaries

Mathematics is not a careful march down a well-cleared higjaw
but a journey into a strange wilderness, where the exploséen
get lost. Rigour should be a signal to the historian that thegpm
have been made, and the real explorers have gone elsewhere.
—W. S. Anglin

Differential calculus may be thought of as the study of fiot$, how
their values change, and their application to the naturaldvd herefore, in
order to learn calculus in any meaningful manner, we musg laafrm un-
derstanding of functions and their properties. Throughioistsemester, we
will use calculus to analyze the properties and uses of poiyal, rational,
trigonometric, exponential, and logarithmic functions.

In this introductory chapter, we will be reminded of the loagperations
of functions, without concentrating on any one particuygure of function.
We will begin later chapters with a review of some of the intpot func-
tions (trigonometric, exponential, logarithmic) that reasalculus such a
useful tool. For now, however, we will need only to examine absolute
value functiorand the definition of thaverage rate of changef a function
over an interval.

While reading each chapter, itis important that each dedsmand exam-
ple is written down to the point of complete understandindneéWa problem
is encounteredi complete solution must be written down before moving
on to the next problem These problems have been carefully designed to
lead each student to a thorough understanding of all of themah

Definition 1. A function f is a set of ordered pairéx,y) in the planeR?,
no two of which are on the same vertical line. We often write) £y to
indicate the particular ordered paifx,y) in f. The collection of all real
numbers x from the ordered paifs, y) is called thedomain of the function,
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while the collection of all real numbers y is called ttaage of the function.

One way to think of a function might be as a machine that takeswaber
from the domain and — using the rule of the function — “cors/eittto a
number in the range. Each time a particular number from timeadiois put
into this machine, the sammeimber from the range is produced. It may be
convenient to think of the domain of a function as the set bpastsible
“inputs” into this machine while the range is the collectmfrall “outputs.”

Since a function is defined as a collection of ordered pairgeaif num-
bers, and any ordered pair of real numbers may be considgreithan the
x-y plane, there is no distinction between a functfoand itsgraph in the
plane.

Example 2. The ordered pairg(1,7),(2,8),(3,9), (4,8) } define a function
f, with

f1)=7 f(2)=8 (3 =9  f(4)=8

Note that each of the four “inputs” has exactly one outputshote that
one output (in this case 8) could be the function value forenthan one
input. That is to say, one range element may correspond te than one
domain element.

Problem 3. Do the ordered pair$(3,—3),(4,1),(5,0),(3,7)} define afunc-
tion? Explain your answer.

A quick remark on some notation that we will use throughoets&mester:
we use the symbolk” to denote the phrase “is an element of.” Sa i an
element of the se&, we would writex € A.

Problem 4. Do the ordered pairg (x,x?) : x € R} define a function? Ex-
plain your answer.

Problem 5. Consider the function f defined Byx, f(x))}, where f{x) =
X2 —3x— 4.

(a.) What is the largest collection of real numbers that dolé consid-
ered the domain of f?

(b.) Find all x such that fx) = 6.
(c.) Find all x such that fx) = —6.

Brian M. Loft www.jiblm.org



Preliminaries 3

(d.) What is the range of f?

Problem 6. Suppose the function g is defined by the rule below. What is the
largest collection of real numbers that could be considetezldomain of
g?
o) = X2+ 10
X—5

One way to find out if two functions are the same is to compaee tho-
mains (or ranges). If they have different domains, for exantpey cannot
be the same function.

Problem 7. Compare the functions defined by the rul¢g)a= ’;2%3? and
b(x) = x+ 3. How are they similar? Do these rules define the same func-
tion? Be able to explain your answer.

Some functions may have more than number as an input. Forgeam
the collection of orderettiples {(x,y, f(x,y)} wheref (x,y) = x? —y+ 6x —
9 contains the triples

(2,0,7) and(0,1,—-10), since f(2,0)=7 andf(0,1) = —10.

So in this case the domain would be a collection of orderedspaithe
plane, and the range would be a subset of real numbers.

Problem 8. Consider the functions defined by the rules below. Can the
same values of x and h be used as inputs in both functions? i3 harte
their domains the same?
—3h -3
and x,h) =
h(x+h—2)(x+2) Dby (Xx+h—-2)(x+2)

A(x,h) =

Problem 9. For the function defined by the rule(X) = x> — 2x+5,
(a.) Whatis {3)?
(b.) What is {3+ h), where h is some unknown real number?
(c.) Calculate and simplify the differencé3f+ h) — f(3).

(d.) Calculate and simplify the “difference quotient”f (3+ hr)] — f(g)_

Brian M. Loft www.jiblm.org
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Problem 10. For the function defined by the rule(wy = %’
(a.) What is w1)?
(b.) What is w1+ h), where h is some unknown real number?

(c.) Calculate and simplify the difference s h) —w(1).

(d.) Calculate and simplify the difference quotier\‘{\tl(1+ hr)] _W<l>.

Problem 11. For the function gx) = v/x— 3,
(a.) What is ¢412)?
(b.) Whatis g12+ h), where h could banyreal number?
(c.) Calculate and simplify the difference quotieg.l.(tlz+ h—g(12) by
h
rationalizing the numerator.

What we've done in the last few problems is compute diféerence
guotient for a few functions at particular points. We’'ll see this agaext
chapter, when we’ll notice that we’re actually computing tlope of a
line....

Recall theslopeof a line in thex-y plane: it is the ratio “rise over run”
between any two points on that line. More specifically, if tp@ints are
given as(a,b) and(c,d), the slopem of the line (if it exists) between them
may be found as:

rise Ay d-—b

run Ax c—a

Problem 12. Find the slope of the line between the points:
(@) (1,4) and(3,—6)
(b) (-2,7)and(4,7)
(c) (5,—1)and(5,4)
(d) on the graph of the function(£) = x? + 5 with x= —1 and x= 2.

Brian M. Loft www.jiblm.org



Preliminaries 5

Now let’s look at a special case of the slope of a line: suppesgoints
are on the graph of a function The slope of thatraightline between these
points will be called theverage rate of change

Definition 13. Suppose f is a function and a & b are two numbers in the
domain of f. Theverage rate of change of betweenaandb is the slope
of the straight line between the poirits f (a)) and (b, f(b)). That s,

Af f(b)—f(a)

AX b—a

Problem 14. Consider the function (k) = x* — 3x?> — 6x+ 8.

(a.) Sketch the graph of the function f.

(b.) Compute the average rate of change between2xand x= 6 and
sketch the line between these points on the graph of f.

(c.) Do the same for x 2 and x= 3.

(d.) Do the same for x 2 and x= 2.1.

There is one more function which will be used throughout @thesters
of calculus: the absolute value function. This functiomal us to calculate
the distance between two points. The following sequenceaiestipns will
help us define this function.

Problem 15. Answer the following questions in order.

(a.) How far apart are 12 and 37 on the number line?
(b.) How was this distance found?

(c.) Perform exactly the same calculation to compute théadce be-
tween 52 and 16.

(d.) A negative number was probably obtained as the prewsolgion.
What is done to reconcile this addsstanc®

(e.) How far apart are-13and 8?

(f.) What is the distance between the real numbers x and y?

Brian M. Loft www.jiblm.org



Preliminaries 6

We therefore need a function that does the following: if thpgut is pos-
itive, do nothing; if the input is negative, force the outpatbe positive.
(How can this be done? Why would this be useful?)

Definition 16. For any real number X, define tlasolute valuefunction

X, forx>0
—X, forx<O0

abs(x) = [x| = {
The range of this function is the intervi@l o).

Problem 17. Define the function g with domalk as gx) = v/x2.

(a.) Show that @) = abgx) for all x > 0.
(b.) Show that (x) = abgx) for all x < 0.

Problem 18. Sketch the graph of the function aks= |x|. Find the average
rate of change of this function over the interyal2, 5].

Problem 19. Write the rule for a function (x,y) which will provide the
distance between the numbers x and y.

There are several ways to obtain a new function from two givees.
Some are based on standard arithmetic operations, whikhemmay be
less familiar. Supposé andg are two functions such thatx) # 0 for all

x € R. We define the four functions+g, f - g, andé as follows:

(f+M=f+gx) (9N =fx-gx) Lx="1®

A final fifth function only makes sense if every number in thega of the
functiong is also in the domain of. In this case, define theomposition

functionfogas
(fog)(x) = f(a(x)).
In the special case in whichandg are two functions which satisfy
(fog)(¥) =x and (go f)(x) =x,

we sayf andg areinverse functions

Brian M. Loft www.jiblm.org



Chapter 1

The Derivative

The function Kx) = 0.4 (sin(z5 — 3) + 35 — 3) + 5.25 may be
used to describe the height of a 4cm seedling that is planted a
noon, where x is the number of hours after planting.

Is the plant always growing? When does it grow the most? The
least? According to the model, how much does it grow each day?

In this chapter we will use the average rate of change of atiumd
to develop a definition for théerivativeof f. This derivative will be a
function in its own right, and will give us the means to detgrenmany
characteristics of the original functioh For example, we will be able to
find the largest (or smallest) function valuesfothe intervals of the domain
on whichf is increasing (or decreasing), and many more applications.

First, we will recall the definition of average rate of charigan last
chapter. Then, we will quickly examine what happens to thie as the in-
terval gets smaller. Details about “what happens” will beesifor our next
chapter on limits.

Definition 20 (A restatement of Definition 13). Suppose f is a function
and a & b are two numbers in the domain of f. Tdherage rate of change

7



The Derivative 8

of f betweena and b is the slope of the straight line between the points
(a f(a)) and(b, f(b)):

Af f(b) - f(a)

AX  b-a

That is to say, the average rate of change of f over the intdeva] is the
slope of thesecantline between the point&, f(a)) and (b, f(b)) on the
graph of f.

Problem 21. Suppose the cost of producing g leather smartphone cases can
be found with the function (@) = 100+ 2q— 0.019°.

(a.) What is the average rate of change of this function okerinterval
[2,5]?

(b.) What are the units of this measurement?

(c.) Consider the average rate of change of the producti@tscover the
invervals[2,5], [3,6], and[4,7]. Does the average rate of change re-
main constant as the interval changes? Explain.

Problem 22. Please refer to the cost function from Problem 21.

(a.) How much does it cost to produce théMdase?

(b.) Can this be expressed as the average rate of change oveteaval?

Problem 23. Sketch the graph of(k) = —x3 + 7x? — 10x+ 2. Find the av-
erage rate of change of f over the interval between2and b= 3. Repeat
forb=25,2.1,1.9,1.99

Problem 24. Compute the average rate of change ¢K)f= —x3 + 7x% —
10x+ 2 over the interval2, 2+ Ax], whereAx is any small nonzero number.
Simplify this expression as much as possible. Why is it itapbthatAx be
nonzero?

Problem 25. In the previous problem, the value &k could be any small
nonzero number. What would happen to the average rates oigehi& we
were to forceAx to be closer and closer to zero? Describe what happens to
the secant lines aAx gets closer to zero.

Brian M. Loft www.jiblm.org



The Derivative 9

Problem 26. Compute the average rate of change @f)g= )—1( over the in-
terval [1,1+ Ax]. Simplify the expression as much as possible.

Problem 27. Compute the average rate of change ¢%)h= /x over the
interval [3, 3+ Ax]. Simplify the expression as much as possible.

Problem 28. Compute the average rate of change aiim= x* over the
interval [a,a+ Ax]. Simplify the expression as much as possible. Give a
description of this expression.

Problem 29. For the functions ¢h, and m above, describe what happens
to the expressions for the average rate of chang&xaapproaches — but is
never exactly — zero. What do these describe?

Definition 30. A straight line is said to b&angentto the graph of f at x=a
if that line contains the pointa, f(a)) and is that line which is “closest to”
the graph of f at that point. We might call the tangent line ‘thest linear
approximation” of the graph of f at x a.

Problem 31. Consider the graph of some function below that containspeak
valleys, and one sharp corner. Sketch the lines tangenta@taph at the
points Xx=a, x= b and x= c. Are there any values of x at which the tangent
lines are horizontal? Are there any values of x at which thenmo tangent
line?

;\/\Jéé

Problem 32. Sketch the graph of the functiorixj = —x? + 4x — 1. Find
the equation of the line that is tangent to this graph at thinp@, 3).

Problem 33. If the graph of a function g weren’t readily available, how
would we go about finding the slope a line tangent to its graph?

Brian M. Loft www.jiblm.org
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1
X

Problem 34. What is the slope of the line tangent to the graph ©d g-
atx=17?

Problem 35. What is the slope of the line tangent to the graph(ed b= /X
atx=37?

Definition 36. Let f be a function with the numberxa in its domain. We
say thederivative of f at x = a existsif there is a line tangent to the graph
of f at x=a. In this case, we call the slope of this litiee derivative of f
atx=a.

Problem 37. What is the derivative of(g) = % at x= 1?

X

Problem 38. What is the derivative of(lx) = /X at x= 3?

Problem 39. What must be true about the function f neaa if the
derivative of f at a igositive? What if the derivative isiegativethere?
In Figure 31 above, find the values of x at which the derivabivihe func-
tion is positive. Negative? What can be said about f at pdimi$ have
derivative equal to zero?

We are often able to find the slopes of infinitely many tangieetsl at the
same time, producing a new function. The next two problentiggwide the
reader through the discovery of this function.

Problem 40. Consider the function B) = x? 4 6x — 5.

(a.) Compute the average rate of change of E over the intéavah- Ax|,
simplifying as much as possible.

(b.) What happens to this expression for the average ratbarfige ag\x
approaches zero?

(c.) Use this to find the derivative of E atx—1,0,1, 2.

Problem 41. Whatis the derivative of the functiorB = 2, atx=a? Use
this to find the slope of the lines tangent to the graph of B-atx1,0, 1, 2.

Now we're ready for a rigorous definition of the derivativeadiunction.
We’'ll see an even more mathematical (and hence more comgheteon-
cise) definition in Chapter 3.

Brian M. Loft www.jiblm.org



The Derivative 11

Definition 42. Let f be any function. The functiohthat assigns to a value
x the slope of the line tangent to the graph of f is called dieeivative
function of f. Itis found by first finding an expression for the averagerat
of change of f%, over the intervalx, x+ Ax], then forcingAx to approach
zero.

Problem 43. If f (x) = x? —5x+ 7, calculate the derivative of f. Give it the
name f. Compare the domains of the functions f aid f

Problem 44. If h(x) = /X, then calculate 1ix). Compare the domains of
the functions h and’h

Problem 45. Recall Definition 16. If &) = |x|, then calculate &Xx).

Problem 46. For the cost function of Problem 21, compute the derivative
function C(x). In this context, we call this function timearginal costfunc-
tion. What do these function values describe? What are tlts tor the
function values Gx)?

Brian M. Loft www.jiblm.org



Chapter 2

Limits

The most difficult subjects can be explained to the most slow-
witted man if he has not formed any idea of them already; kit th
simplest thing cannot be made clear to the most intelligeart m
if he is firmly persuaded that he knows already, without a siaad
of doubt, what is laid before him.

— Tolstoy, 1897

In the last chapter, we developed the derivative functiothasresult
of a process This process can be summarized as: letting the width of an
interval get smaller (towards zero), while keeping tracknbfat happens
to the average rate of change over this interval. This is @amgke of the
procedure called “taking a limit.” We defined the derivatagea particular
limit of a particular function.

Before learning about the properties and uses of the demryate will
look more closely at the concept of limits. Not only will liteiallow us to
give a precise definition (and interpretation) of the demaof a function,
it will serve as the backbone of calculus. Every concept imfatalculus
(usually three semesters!) is based on limits, and no raatileg of calcu-
lus can be had without a firm understanding of limits.

Problem 47. Consider the function(x) = )—1( for x> 0. As the values of x
get closer to zero, is there a number to which the correspangalues of
r(x) get closer? That is, as x approaches zero (from the righthése a

number that the values ofx) approach?

12



Limits 13

Problem 48. Consider the function(g) = %‘ for x# 0. As the values of
x approachO, is there a number that the corresponding values(gj get
closer to? How do you know?

Problem 49. Consider the functionk) = Xz*jfxgm, for x# 5. As the values
of x get closer to 5, is there a number that the correspondaiges of {x)
get closer to? That is, as x approaches 5, do the value&phipproach a
number?

Problem 50. Consider the function (k) = szgfxs;?‘, for x# 3. As the values

of x get closer to 3, is there a number that the correspondaiges of {x)
get closer to? That is, as x approaches 3, do the valuegxfapproach a
number?

. . 2_ oy
Problem 51. Consider the functions(k) = ;22 and gx) = **.

(a.) Are these the same functions? If not, how do they differ?
(b.) For what values of x will the function value$xj and g x) be equal?
(c.) How do their graphs differ?

Problem 52. What happens to the values qfxf = XZX%Z)EO,;S as x— 0?

Problem 53. What happens to the values dkih= "2%_?5 as x— 3?

Problem 54. What happens to the values dkih= % as x— —3?

Definition 55 (Informal definition of existence of a limit). We say the
limit of f asx approachesa is equal to L if, as x gets closer to a, the cor-
responding values of(k) get closer to L. We writgma[f(x)] =L.

This definition says that if the inputs df get as close as they want to
a, the outputs aréorcedto get close to a numbér. Let’'s be more careful
when we use the phrase “gets closer to....”

Problem 56. Consider the function f) = 2’;2*550. Give an educated guess

for Iirr15[F(x)]. If we require the values of () to be within 0.1 of this guess,
X—
how close must our values of x be to 5? [Drawing a picture malydpful.]
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Problem 57. Consider the function &) = 2>§(2_‘55°. If we require the values

of F(x) to be within 0.01 of this guess, how close must our values eftg b
5?

Problem 58. Consider the function &) = ijgo. If we require the values

of F(X) to be within some tiny positive numberof this guess, how close
must our values of x be to 5?

Problem 59. Consider the function () = 2414105 Gijye an educated

guess fodimS[G(x)]. If we require the values of @) to be within some tiny
X—
positive numbet of this guess, how close must our values of x be to 3?

Here we give dormaldefinition of the existence of a limit. We’ll use the
absolute value function to help us compute distance.

Definition 60 (Formal definition of the existence of a limit.) Lete > 0 be
any small number. We say thae limit of f(x) asx approachesais equal
toL (denotec!(ima[f(x)] = L) if we can find a positive numbé@rso that for

any values of x which satisfy
0<|x—al <9,

it must be true that the function value&xf satisfy
[f(x)—L|<e.

That is, in order for the limit off (x) to be equal to the numbérasx
approaches, the following must be true: no matter how close we require
our function valued (x) be to the numbek (here, close is defined by the
value of¢), there is some interval arouadof width ) so that any value of
xinside this interval will have function valugx) that close td_.

This is a complicated definition, but it allows us to providguantifiable
definition of the phrase “close to.” Let’s use this rigoroesinition toprove
something we earlier suspected was true.
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Problem 61. Fill in the blanks in the following proof that

. . [2x2—-50
DI S I
Lete > 0 be any small number.
Setd equal to the positive number
For those x which satisfy < [x—_ | < J, we have
2x2% —
Foo-— =B
_ ‘2( ) ) ‘
X—95 -
= [2( )—20
= |
=2.| |
<20
=2
=€
So,aslongasxiswithid=___  of 5, the values of Ex) will be within

€ of 20, for ANY positive value et

Problem 62. Provide an educated guess for the valuelitmﬁ7 [E(X)], where
X——
2
E(x) = ¥4512028
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Problem 63. Fill in the blanks in the following proof that your educated
guess in Problem 62 is correct.

Lete > 0 be any small number.

Setd equal to the positive number :

For those x which satisf§ < [x— | < 8, we have
C ) ) '
E(X) — = _
- I=|S
_ |« ) _
> .
=3l )+3|
=3 |
<35
_ 1.
=2
=€
So, as long as x is withid = of —7, the values of Ex) will be
within € of , for ANY positive value .
2 _
Problem 64. Give an educated guess fdim 2 X 12 . Prove that
X—— 5x + 20

your guess is the correct one.

There are many properties of limits that will help us both neith the
computation of limits as well as later in the developmenthef derivative.
The first one states that the limit of the sum (or differendeiw@ func-
tions is equal to the sum (or difference) of the limits of #dgnctions,
as long as these limits existWe've actually been using this property for
some time without actually seeing it stated:

If lim [f(x)] =L and Xirg[g(x)] =K, then Xirg[f(x) +9(x)] =L+K.

X—a

The same is true for products, quotients, and scalar medtipWe will sum-
marize this in the statement of a theorem.
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Theorem 65. Suppose that

)I(ana[f(x)] =Land )I(ana[g(x)] = K. Then we know

(a.) )I(igla[f(x) +9(x)] =LxK.

(b.) lim [f(x)-g(x)] =L-K.

X—a

(c.) lim [%] = % as long as K+ 0.

(d.) For any real number q(jma[c- f(x)]=c-L.

Problem 66. Compute the following limit by rationalizing the numerator

o[ 22

x—4| X—4

Problem 67. Compute each of the following limits:

lim [(4x+5)%]  lim [\&_3} lim [XS_S]

X——1 x—=9| X—9 x—2 | X4 — 16

There are several strategies we can use to compute the firh{txp as
X — a. If the value ofais not in the domain of the function, the strategy
used most often up to this point has been to try and “cancet’ghrt of the
function which prevents from being in the domain. Another strategy is
outlined below. Commonly known as the Sandwich or Squeeza®iEm,
it allows us to find the limit of a function that finds itself boded between
two other functions. In other parts of the world it is also wmoas the “two
policemen and a drunk” theorem.
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Theorem 68 (The Sandwich Theorem)Suppose f, g, and h are functions
which satisfy

(i) f(x) <g(x) <h(x) forallvalues of x that are “near” a, and
(i) lim [f()] = L= lim [n(x)].

Then)l(ima [9(x)] = L as well.

Before we make use of the Sandwich Theorem, it may be usefattil
some facts from a trigonometry course regarding a sectocutke.

Problem 69. Suppose that in a circle of radius r, an angle of sfzeadians
creates a sector. What is the area of this sector?

Let’s use the Sandwich Theorem to find a very important limrbiving
trigonometric functions. Consider the construction behlich was made
based on some angfebetween 0 andi/2 radians. The larger arc has been
drawn to have radius equal to 1. (That@B = 1.)

B=(x,y)

Problem 70. Using the construction above, answer the following questio

(a.) Use the diagram above to rank the sector OBD, the sectk@nd
the triangle OBA in order from smallest to largest area

(b.) What is the area of the triangle OBA?
(c.) What is the area of the sectors OBD and OCA?
sine}

Problem 71. Use the Sandwich Theorem to compgm% [T
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sin40
Probl 72.C teli —_
roblem ompu ee'Lno[ 20 }

sin40
Problem 73. Computelim | ——
f Py el_>o[ 76 }

Problem 74. Use a relevant trigonometric identity to compute the limit
[cose - 1}

l
Im 0

6—0

Problem 75. Computelim [x?cog1)]
x—0
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Chapter 3

Uses of the Derivative

The calculus is the greatest aid we have to the appreciatfon o
physical truth in the broadest sense of the word.
—W. F. Osgood

In Chapter 2 we defined the derivatiféas that function whose value
f/(x) at x is the slope of the line tangent to the graphfoht the point
(x, f(x)). Now that we know about the existence of limits, we are able to
develop a more concise definition of the derivative functiBat this level
of rigor comes at the cost of being less intuitive.

Definition 76. For a function f, thederivative f’ of f at x is the function
defined by the following limit, provided that it exists:

[f(x+h)—f(x)
/ p—
) = rlwano [ h '
Thatis, f = lim Af . We often write f= E
Ax—0 | AX dx

If this limit does not exist, we say the derivative of f doetsemest at x.

Definition 77. If the function f has a derivative at x, we say the function is
differentiable at x. If a function is differentiable at every point in a partic-
ular set (e.g., its domain), we say the function is diffaedie on that set.

Problem 78. Suppose f is the linear functior(X) = mx+ b for some con-
stants m and b. Use the definition above to calculate the avi .

Definition 79. In the special case in which the linear functiofxf = mx+b
has m= 1 and b= 0, we have {x) = x. We call this particular functiothe
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Uses of the Derivative 21

identity function.

Problem 80. Suppose g is the quadratic functiofxj= ax® + bx+ ¢ for
some constants b and c. Compute the derivativé g

Problem 81. Compute the derivative of each of the following functions.
f(x)=7x—4 g(x)=5-10x  h(x) =42 —7x+8
k() =1—10%  4(x) = (1—2x)?

Since the derivative is simply the limit of a special functigve may use
the properties of limits to develop similar properties faridatives. The
next theorem is simply a restatement of the properties fioenprrevious
chapter in the context of derivative functions.

Theorem 82. Suppose that f and g are functions which have a derivative
at x. Then for any constant k,

@) (f£g)'(x) =f'(x)+d(x
(0.) (k- ) (x) =k- f/(x)

Problem 83. Use Definition 76 and properties of limits to prove the previ-
ous theorem.

Problem 84. Calculate the derivative of the functione@ = 4x, b(x) = 3x,
and x) = 12x2.

Problem 85. Is it true that(f - g)’ = f’- d for any differentiable functions
f and g?

Problem 86. Suppose f and g are differentiable functions. Use Definition
76 to compute the derivative of the functiongfby adding and subtracting
the quantity £x) - g(x+ h) at the appropriate time.

Theorem 87 (The Product Rule).For any functions f and g which have a
derivative x, we havéf -g)'(x) = ...
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Problem 88. Use the Product Rule to compute the derivative @6 f= x°.

Problem 89. Compute the derivative of the functiofxf = x*.

It may be useful now to recall what we know about positive peaed
binomials: (x+y)", wheren > 1. The coefficients for the terms in this
expansion correspond to th® row of what is commonly known as Pascal’s
triangle (if we start counting rows at 0). The coefficientdriont of each
term of (x+y)? we know are

1 2 1
while the coefficients in front of each term o+ y)® will be
1 5 10 10 5 1

But we can do even better than this. Each of these coefficieais be
written as acombination () = (n or» Wherek=0,1,...n. So

(x+)° = (5) X+ () Xy + (3) Y+ (3) Y+ (3) %+ () Y
=%+ 5y + 10S3y? + 10¢%y3 4 5xy* + y°
That is, thek™ coefficient in the expansion dk+y)" is equal to(}) for
k=1,2,...n. Use this to solve the next problem.

Problem 90. Let n be a positive integer. Computgiff f (x) = x".

Theorem 91 (The Power Rule for positive integer powers)Let n be a
positive integer. The derivative of the monomi&k)f=x"is .. ..

Problem 92. Calculate the derivative of the functiori) = (5x° + 2x% —
10x+5) - (x* +6x2 - 1).

Problem 93. Calculate the derivative of the functiorf) = (3x?+x—1)3.

We now know how to differentiate products of functions. Befave
see the technique for finding the derivative of the quotiéivo functions
(or other combinations of functions), we pause to learn tfs¢ fise of the
derivative.

Brian M. Loft www.jiblm.org



Uses of the Derivative 23

Problem 94. What must be true about a function f neasa if f'(a) > 0?
If f'(a) < 0? What about f(a) = 0?

Definition 95. The point(c, f(c)) is alocal maximum for the function f if
f(c) > f(x) for all values of x that are “near” c.

Definition 96. The point(c, f(c)) is alocal minimum for the function f if
f(c) < f(x) for all values of x that are “near” c.

Problem 97. Is it possible for a function to have a local max. or min. at
X = ¢ but not have a derivative atx c?

Problem 98. If x = c is a local maximum (or minimum) for f and(¢)
exists, then what must be true about the value @f) P

Problem 99. State the results of the previous problem as a theorem. Give
this theorem a name.

Problem 100. Is the converse of the theorem from Problem 99 true? If not,
provide a counterexample.

Definition 101. Suppose c is in the domain of the function f. We say c is a
critical point for f if either f'(c) = 0 or f’(c) does not exist.

Problem 102. Sketch the graph of a function with four critical points, one
local maximum, two local minima, and one point with no detiixe

Problem 103. Sketch the graph of a function with five critical points at
x=—-2,0,2,4,7, one local maximum at 7, two local minima at x= +2,
and one point with no derivative.

Problem 104. Determine all critical points for the function(k) = %x5 —
34 _ 10,3
4 3%

Problem 105. Determine all critical points for the function(k) = %x5 —

3 10
X+ 33,
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Problem 106. Determine all critical points for the function

{x2 forx<1

g0) = 3—2x forx>1

Problem 107. Determine all critical points for the function f if’fx) =
X2 —X—6
X2 +X

Problem 108. Suppose the function g is differentiable for all values df x.
g has exactly two critical points a and b, then

(a.) what can be said about the values &6 for x € (a,b)?

(b.) what can be said about the function g fog Xa, b)?

Problem 109. If c is a critical point for a function f, how could it be deter-
mined if ¢ is a local maximum or local minimum?

Problem 110. Develop a test for finding all local maxima and minima for a
differentiable function. Give this test a name.

Problem 111.Use the test from Problem 110 to find all extrema on the func-
tion g(x) = x3 +x? — 8x+5.

Problem 112. Use the test from Problem 110 to find all extrema on the func-
tion f from Problem 107.

Problem 113. Geotech Industries owns an oil rig 12 miles off the shore of
Galveston. This rig needs to be connected to the closesergfia0 miles
down the coast from the rig. If underwater pipe co$s0,000 per mile
and above-ground pipe cos$800,000 per mile, the company would like to
know which combination of the two will cost Geotech the leasbunt of
money. Find a function that may be minimized to find this cost.

Problem 114. What would have to be true about the graph of a function f
if the derivative of f was increasing near x?

Problem 115. If f had a local maximum at the critical point=¢ c, then
what can be said about the value df(€)? And if x= ¢ were a local mini-
mum?
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Problem 116. Develop another (quicker?) test for finding all local maxima
and minima for a function. Give this test a name.

Problem 117.Use the test from Problem 116 to find all extrema on the func-
tion f(x) = —2x3+6x° — 3.

Problem 118. Use the test from Problem 116 to find all extrema on the func-
tion g(x) = 43 — x4,

Problem 119. Suppose we know the derivative of a function h'{g)h=
x(x—3)2. Sketch the general shape of the graph of h.
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Chapter 4

Trigonometric Functions

A particular species of hibiscus plant grows at a rate thah ca
be calculated using the modekh0.2t 4+ 0.03sin(2mt), where t
is measured in days (and O corresponds to midnight on the
first day). Interpret the validity of this model. When is tpiant
growing the fastest? The slowest?

In the previous chapters, we learned how to find the derieativany
polynomial function, as well as products of polynomials.ttis chapter,
not only will we learn how to differentiatguotientsof functions, we’ll also
discover the derivatives of trigonometric functions.

First, a review of the definitions of the basic trigonomefuiiections. The
“input” for these functions will be real numbers denotgd

For any real numbe#), form an angle obP radianswhose initial side is
the positivex-axis. Choosany point with coordinate$x,y) on the terminal
side of this angle. Lat be the distance from this point to the oridi®y 0).

terminal

side

-

initial side

Definition 120. Using the above construction — for any real numier
define thesine and cosine functiongy the following ratios:

sin(0) :%/ coq0) = )F(
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Trigonometric Functions 27

Problem 121. Use the preceding definition to comptite exact valuesof
each of the following:

sin(0) cog0) sin( 1) coqn)
sin(7t/2) cogq1t/4) sin(m/4) coq3rm/2)

Problem 122. Does it matter if the poinfx,y) or another point(u,v) on the
terminal side of the angle is chosen when defining theseitums& What
principle of geometry can be used to justify your answer?

Problem 123. Use the definitions of sine and cosine to compute and sim-
plify the quantitysir? 6 + co 6 for anyangle®.

In the next theorem, we are reminded of several identitiesiwing the
sine and cosine functions. We will use each of these severasi so learn
them well. One of them may be proven from the constructiond tiseefine
the functions.

Theorem 124.For any angles A and B, the following are all satisfied:
sin(A+ B) = sin(A) cogB) £ sin(B) cogA)
cogA+£B) = cogA) cogB) Fsin(A) sin(B)

Problem 125. Use the definition of the derivative (and maybe a trig. iden-
tity?) to find the derivative ddinx.

Problem 126. Use the definition of the derivative to calculate the derixat
of cosx.

Problem 127.1f f (x) = x- cosx, then calculate 't

Problem 128. If f (x) = sinx- cosx, then calculate 't
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Problem 129. If g(x) = cosx- (x* — 6x+ 8), compute the derivative of g.

Problem 130. Consider the function (k) = sinx on the interval—rt, 371.
Find all local maxima and minima on this interval. Find allluas of x such
that the tangent line at x has slope 1.

Definition 131. We define théangent, cotangent, secant, and cosecant
functions as follows:
sinx

1 1
tanx = —— sexX = —— CSCX = —— COtX = ——
COSX COSX Sinx tanx

Note that the domain of each of these function consists sE&tlialues of x
for which the denominators are nonzero.

In order to calculate the derivative of each of these newtfans, we
will need to know how to find the derivative of tlguotientof two func-
tions. But first, we’ll examine a very particular quotient.

Problem 132. Suppose ) # 0. Use Definition 76 to compute the deriva-
. .1
tive of the quotient—

g(x)’

Problem 133.1f x > 0and f(x) = %, then calculate %

Problem 134. Suppose ) # 0. Use a strategy similar to what was used
when proving the Product Rule to compute the derivative efchotient

Theorem 135 (The Quotient Rule).For any functions f and g, the deriva-

tive of the quotient@ is....

a(x)
Problem 136. Differentiate the functions

x4 X3 4 6x2 — 2x X2
v WeTa o W

r(x)

Problem 137. Compute (and simplify) the derivatives of the functions de-
fined in Definition 131.
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Problem 138. Differentiate the functions

a(x) = %); . b(x)=sirfx,  c¢(x)=xtarx

We may now use the Quotient Rule to extend our Power Rule {Eneo

140) to include negative exponents.

Problem 139. Let n be a positive integer. Use the Quotient Rule to compute
(and simplify) the derivative of the functiorix) = x".

Theorem 140 (The Power Rule for integer powers)Let n be any integer.
The derivative of the monomial(X) = x"is ....

Problem 141. Compute the derivative of the functiorixf = x* — 2x3 +
1_3_,7
8X+ X T2 + v

Problem 142. Compute the derivative of the functiofxy= X;ng without
explicitly using the Quotient Rule.

Problem 143. Compute the derivative of the function®a = secftanf
and h(0) = sinB csch.
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Chapter 5

Exponential and Logarithmic Functions

Who has not been amazed to learn that the functiergy, like a
phoenix rising from its own ashes, is its own derivative?
— Francois le Lionnaise

In this chapter, we expand our circle of functions that weabke dif-
ferentiate to include two new classes of functions: exptakfunctions
and logarithmic functions. These functions are perhapst wadsable to
biologists (e.g., in population models) and to chemistg.(ehe decay of
radioactive elements). In addition, we see how to find thevdteve of the
composition of two (or more) functions.

Problem 144. On the same set of axes, sketch the graphs of the functions
g(x) = 2¢and h(x) = 3*.

h_

Problem 145. Use a calculator to estimate the valuelwh to three

h—0
decimal places. Use this estimate to compute the derivafiggx) = 2*.
What is the slope of the tangent line at0?

h

h
decimal places. Use this estimate to compute the derivafivgx) = 3*.

What is the slope of the tangent line at0?

Problem 146. Use a calculator to estimate the value!]'nn‘l0 to three

Definition 147. To simplify later computations, we will introduce some no-
tation. We definéhe number w, to be

ph —
Wy = lim
b h—0 h
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Definition 148. We definghe number e to be that number which causes
We = lim —— = =1.
€ h—0 h

Problem 149. Use the previous definition to estimate the value of the num-
ber e to three decimal places.

Problem 150. Sketch the graph of the functior{xj = €. Compute the
derivative f.

Problem 151. Compute the derivative for each of the following:
y=10% y=x10, y=10%

Problem 152. Compute the derivative for each of the following:

y=xe&, y=5 = y=xe,  y=x2

Problem 153. Compute the derivative Jor each of the following:

y = e'sinx, y:%(, y= e~ y =X

For the remainder of this chapter, it may be useful to reballdefinition
of the identity functiorirom the beginning of Chapter 3.

Problem 154. Let f(x) = 7x+ 3.

(a.) Describe in words the rule of this function.

(b.) Is there a sequence of mathematical steps that woulddtmvhat
the function f does to x? If so, write these steps as a funciaomed
f.

(c.) Define a new function with the rule “do f, followed by Can this
rule be simplified?
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(d.) Define a new function with the rule “db, followed by f.” Can this
rule be simplified?

Problem 155. If possible, repeat each part of the previous problem wiéh th
function gx) = x2. If not, explain the reason it is not possible.

Definition 156. Suppose there are two functions f ahguch that f fol-
lowed byf and f followed by f are both the same as the identity function
i(x) =x. Then we say f anflareinverse functions

Problem 157. Which of the following functions have an inverse?

X2 X sinxk & xX+x2-2x  tanx  10°

We have just discovered a theorem about the existence afsmvenc-
tions:

Theorem 158. The function f has an inverse precisely when ....

Since we know any exponential function of the fofifx) = b*forb £ 0
is “invertible”, we can give its inverse function a speciahme:

Definition 159. The inverse of the exponential functiofxf = b* is called
thelogarithmic function in base b and is writtenf (x) = log,(X).

Problem 160. Complete the following

(a.) 4°%(6) =2 4109409 = 7
(b.) log,(7°) = ? log,(7) =2
(c)53="? logs(125) = ?

d) P =2 logy(1) = ?

(e) bt="2 log,,(b) = ?

(f) Ine="? In1="7
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The following should be a review of some of the concepts vingl log-
arithmic functions seen in a precalculus course.

Theorem 161. The following three properties are true for all logarithms,
regardless of the base b.

(a.) For any positive x and y, it is true thlig,(xy) = log,(X) +log,(y).
(b.) For any positive x and y, it is true thhigb(§) =log,(X) —logy,(y).

(c.) For any positive x and any@R, it is true thatlog,(x") = n-logy,(X).

Now that we know (and have given names to) the inverse of egub+e
nential function, let’s find their derivative. We'll actdsalse a tool that will
help us find the derivative @nyinverse function, in terms of the derivative
of the original function. This tool tells us how to find the dative of the
compositiorof two functions. The proof is beyond the scope of this class,
so it will have to wait until an elementary analysis course.

Theorem 162 (The Chain Rule).Given two functions f and u, consider
their composition & u defined by the rule

(fou)(x) = f(u(x)).
The derivative of this function is defined by the product
(fouw)(x) = f'(u(x))-u'(x).

That is, the derivative of the composition of two functiangdqual to the
derivative of the “outside” function evaluated at the “in&” function,
times the derivative of the “inside” function.

Problem 163. Compute the derivative Jor each of the following:
(a.) y=sin(x?)
(b.) y=¢e*
(C.) y= (4x® —6x+7)°
(d) y=vx+1
(e.) y=secH
(1) y =5
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Now we're ready to use the Chain Rule to develop a procediunedahe
derivative of thanverseof a function. We’'ll use this procedure to compute
the derivative of all logarithm functions.

Problem 164. If f is the inverse of the function f, we know thaf fx)) = x
for every x (in the domain of, of course). Differentiate both sides of this
equation and solve for the derivative fof

Problem 165. Use Problem 164 for the special caséxf= b* to find the
derivative off (x) = logy(X).

Problem 166. Find the derivative Yfor the following functions:

y = 10g,(X) y = l0g;0(X) y = logy (X% +4)

y = In(x) y = cosX-log,(X)

Often we encounter equations involving two variabteandy in which
(1.) we knowy depends on gomehow, but (2.) we can't solve the equation
for y to see this dependence explicitly. If we still want to see hlogvvari-
ablex affects the variablg, however, we need to calculate the derivative of
y. We can do this using an application of the Chain Rule, a m®called
implicit differentiation

Problem 167. Consider the equations¢ X2 - siny.

(a.) Treaty as simply some unknown functi¢x)yand use the Chain Rule
to differentiate both sides of the equation.

(b.) Solve for ¥

Problem 168. Use implicit differentiation to find’yif xy? + 3xy+ 5y = e’V.

Problem 169. Use implicit differentiation to find'yif y = x*/3.

We may now use the Chain Rule to extend our Power Rule (Theorem
140) to include rationa¢xponents. Provide a proof of the following theo-
rem.
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Theorem 170 (The Power Rule for rational powers).Suppos% is a ra-
tional number. The derivative of the functiofxf = xP/9is .. ..

Problem 171.Use implicit differentiation to find'yif y = 10%, by first taking
the natural log of both sides of the given equation.

Problem 172. Use the previous problem to compute a better definition of
the number wo.

Problem 173. Use implicit differentiation to find'yif y = b*, by first taking
the natural log of both sides of the given equation.

Problem 174. Use the previous problem to compute a better definition of
the number .

The procedure used in the last few problems is cdtigdrithmic differ-
entiation in which the natural logarithm (and its properties) is &plto
both sides of an equation, and implicit differentiations&d to compute the
derivative.

Theorem 175 (The Power Rule for real powers).Suppose r is any real
number. The derivative of the functiofxj = X" is . ...

Problem 176. Compute the derivative of the functiofxj = x*.
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Chapter 6

More Applications of the Derivative

Calculus is the most powerful weapon of thought yet deviged b
the wit of man— W.B. Smith

Now that we can compute as many derivatives as we pleases algle
to put them to use in some more applications.

Problem 177.1f r is a function that gives the distance a particle has moved
(in meters) after t seconds, what does r measure? What anerite of the
function values’ft)? What about the units fof'(t)? What does this second
derivative measure?

Problem 178. A boy on the top of a ladder throws a ball upwards. The
function r(t) = 100+ 13t — 16t2 describes the height of the ball in feet t
seconds after the boy throws the ball.

(a.) How tall is the ladder? How irresponsible are the pasht
(b.) How fast is the ball moving the instant it leaves his Hand

(c.) How long does it take for the ball to reach its highestn@i How
high does it go?

(d.) How long until the ball reaches the ground?

When a quantity changes over time, we may think »fas a function
of a time parameter. That is, we may writex as a function of: x(t). The
derivative ofx with respect td, or X (t), will therefore measure thete of
change ofx with respect tot. That is,X(t) is a function that tells usow
fastthe quantityx is changing.
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Problem 179. Write the area of a circle in terms of its radius. Assuming
the radius changes over time (i.e. is a function of t), writeeguation that
relates the rate at which the area changes to the rate at wttiehradius
changes.

Problem 180. A prisoner escapes on foot at the center of a large metropoli-
tan area. The police department wants to specify a circleigwiwill of
course expand over time) in which to search for the missiggite. If the
fugitive can be assumed to move at a rate no more than 6 milelsque,
how fast is the area of this “search circle” expanding two In®after es-
cape?

Problem 181. A vertical cylindrical tank allows liquid to be drained ateh
rate of 200 L/min. How fast will the level of the fluid drop? €Tanswer
will depend on the radius of the cylinder.)

Problem 182. A spherical balloon is inflated at a rate of 208/fhin. How
fast is its radius changing at the instant its radius is 2 feAt the instant it
Is 5 feet?

Problem 183. A tanker 50 miles from the shore is leaking oil at the rate of
2000 n¥/min. Assuming the oil disperses in a circular pattern 1 meep,
how fast will the oil be moving when it hits shore?

Theserelated rategproblems obviously can be very useful. Another ap-
plication of the derivative will be useful later in calculu&/e will spend the
rest of this chapter developing this new application. Fitsdugh, we need
a definition that could have been encountered earlier.

Definition 184. A function f is said to beontinuous atx = a if )I(ima[f (x)] =

f(a). If f is continuous at every point in its domain, we say it isoatinu-
ous function.

It will be proven in a later course (elementary analysis2t #ny func-
tion f that is differentiable at = a is also continuous at= a. Therefore,
any statement that assumes a functios differentiable inherently includes
the assumption thdt is continuous.

Problem 185. Complete the statement: Suppose p is a differentiable func-
tion with a< b and fa) = p(b). Then there must be some value of ¢ between

Brian M. Loft www.jiblm.org
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a and b such that’gc). ...

Problem 186. Verify the previous statement for the functiofx)p= x> —
3x2 — 4x with a= 0 and b= 4.

Problem 187. Are there any horozontal tangent lines on the graph(aj -
x> — 3x* — 3x3 — 3x? — 4x between x= —1 and x= 0?

Problem 188. If f (x) = 4x>4x3 + 7x— 2, find the number of roots of f:

(a.) Compare {0) with f(1). What does this say about the number of
roots of f?

(b.) Use Problem 185 to show that f has exactly one real root.

Problem 189. Suppose (X) is a function that is continuous on the interval
[a,b]. Define the function h as follows:

(a.) Whatis h(x)?
(b.) What s fa)?
(c.) What is ib)?

(d.) What does this (and Problem 185) tell you about the bienai the
function f between a and b?

Theorem 190.For any function f that is differentiable on the interyalb],
there must be a point ¢ between a and b such th@) = ... ..

Problem 191. The first two toll stations on the Hardy Toll Road are 8 miles
apart. Dr. Loft's EasyPass says it took 6 minutes to get fromto the other
on a Sunday drive last week. A few days later, a ticket camteeimiail for
exceeding the 75 mph speed limit. Can he fight this ticket?

Problem 192. Use Problem 190 to show that if(k) = 0 for all x € [a, b],
then f must be a constant function [@b].

Problem 193.If f and g are differentiable functions and(k) = g'(x) for
all x, what can be said about the functions f and g?
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Problem 194. Find all functions g that satisfy' ¢x) = x + 6x — 10.
Problem 195. Find all functions h that satisfy’[x) = x- sin(x?).
Problem 196. Find all functions f that satisfy’fx) = 2- f(x).

Problem 197. Find all functions f that satisfy’f(x) = — f (x).
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Chapter 7

Antiderivatives

—“What's the integral of - with respect to cabin?”
—"“Alog cabin”
—“No, a houseboat. You forgot to add the C”

Being able to calculate the derivative of a functibimas many uses, as
we have seen in earlier chapters. Alternatively, it is oftaluable to find a
function whose derivative i§. In this chapter we will see how this is done,
and save the first application of this process for the nexptena Many
more applications will be seen next semester in Calculumtégral Cal-
culus. First, a review of some of the derivatives we learmeithé previous
chapters.

Problem 198. Compute the derivatives of each of the following:
(a.) a(x) = e
(b)) b(x) = Vx*+x?
() ox) = HE—8x+(X—T7)2+ 5 — 4

(d.) d(x) = tarP(10x— 7)

Definition 199. Let f be a function. We say the function F isantideriva-
tive for f if F/(x) = f(x) for all x.

Problem 200. Find two antiderivatives for each of the following functson

f)=x*-x+2 gX)=x+3%-3  h(x) =x+1
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Antiderivatives 41

Problem 201. Find two antiderivatives for each of the following functson

f(X) = cosx g(X) = 2xcogx?) h(x) = coq6x)

Problem 202. Find two antiderivatives for each of the following functson

f(x) =sed(x) g(x)=sed2x)tan2x)  h(x) = x*cogX°)

Problem 203. Find two antiderivatives for each of the following functson

f(x)=€ gx)=e!®*  h(x)=5

Problem 204. Find ALL antiderivatives for each of the following functson

f(x) = %( a(x) = \/7x1——6 h(x) =V 7x—6

You may have noticed that there were many correct solutioesth of
these antiderivatives. In fact, if one antiderivative &fer a function, then
there are actuallinfinitely manysuch antiderivatives. In this case, we have
a special term for this collection of antiderivatives.

Definition 205. If a function f contains an antiderivative, we call the col-
lection of all such antiderivative functions tgeneral antiderivativefor f,

and we write
/ f(x)dx

Another name for this collection of functionghe indefinite integral of f.

Problem 206. Integrate the following functions. That is, compute the fol
lowing indefinite integrals:

(a)/x+§dx:
(b.) /cos(—3x) dx=
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() /1ddt:
d) /\/Gdu:

Before we learn a method for finding some slightly more coogéd
antiderivatives, let’s learn a simple application.

Problem 207. Find a function h that has derivative /() = x* —x% +1
and satisfies fi) = —1.

Problem 208.If y' = 2x+sinx and y= 2 when x= 0, then write y as a
function of x.

Problem 209. The acceleration due to the Earth’s gravity is approximyatel
9.8 m/$. If an object is thrown upwards with a velocity of 10 m/s, find a
function which gives the velocity of the object after t selsorif the object

is thrown from the top of a 150 m building, find a function whigtes the
height of the object after t seconds.

Problem 210. One of the lunar astronauts dropped a wrench from the top
of the space module (12 meters above the surface of the midom).long

did it take for the wrench to hit the ground¥ikipedia is an allowable
resource for this problem.]

We will now learn how to compute some slightly more compkchan-
tiderivatives. First, recall two of the solutions to Prahl&98:

ax)=e> =  d(x)=6&>

B 5 pon o B3H2x 234X
b(x) X+ + X = b'(x) N A
In each of these cases, the Chain Rule was used. As a resulietivative
of the “inside” function is a factor of the derivative. In @idto reverse this
process, we will need to locate (1.) an inside functicof x as well as (2.)
the derivativel’ as an additionafactor of the function we are trying to in-
tegrate. (Recall that we use the verb “integrate” to meanl‘tire indefinite
integral of.”)

For example, suppose we wish to integrate the functicitdgx*). If
we were to assign the “inside” functioft a new nameu(x) = x*. Then of
courseu' (x) = 4x°, and we could rewrite

4x3cogx*) = u'(x)coqu(x)).
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Antiderivatives 43

Consequently, it should by now be rather easy to computentiefinite
integral by “undoing” the Chain Rule involving the functian

/ 43 cogx) dx = / U (X) cog(u(x)) dx = sin(u(x)) +C = sin(x*) +C.

Let’s repeat this while computing another slightly mordidiflt indefinite
integral.

Problem 211. Consider the function (k) = 6x>(x® + 10)*.
(a.) If we define (x) = x8+ 10, then U(x) = - -

(b.) Use this to write/ f(x)dx in terms of the new function u.

(c.) We may now complete the procej(sf (X)dx=

We call this particular technique the Method of Substitatiave locate
a candidate for the “inside” functiom computel/, and then substitute ex-
pressions involvingl andy/, effectively reducing the “size” of the indefinite
integral. Let’s practice some more.

Problem 212. Compute/(Zx— 1) seé(x? —x) dx, letting u= x? — x.
Problem 213. Compute the indefinite integr?4(4x3 +1)(x*4+x)%dx.

Often the substitution we need to make is not as obvious, anada
ditional algebraic adjustment must be performed beforesthmstitution is
made.

Problem 214. Compute the indefinite integr%x?’\/x“jL 1dx.

Problem 215. Compute the following indefinite integrals

/(sinx)(cos><)3dx /N%dx /tanxdx

Problem 216. Compute the following indefinite integrals

/x\/ 6x2 + 1dx /;dx /sin(6x) cos’(6x) dx

(3x+1)3

Brian M. Loft www.jiblm.org



Chapter 8

The Fundamental Theorem of Calculus

If I have seen further it is only by standing on the shoulddrs o
giants.
— Sir Isaac Newton, 1676.

In this chapter we discover one of the most fascinating appbns of the
antiderivative: the Fundamental Theorem of Calculus,ighbt in 1669 by
Isaac Barrow. We currently teach calculus in the followimdes: limits,
derivatives, integrals. But history tells us that the cqtsevere developed
in the opposite of this order, with the concept of the defimtegral first.

Definition 217. Suppose f is a function that is positive for every x on the
interval [a,b]. The area of that region in teh xy-plane bounded on the sides
by the vertical lines x= a and x= b, above by the graph of f, and below by
the x-axis is written as )
/ f(x)dx
a

We call this thedefinite integral of f from ato b.

2 3
Problem 218. Sketch the graph of(k) = 3x. Find/ f(X) dx,/ f(x)dx,
0 2

3
and/ f(x) dx.
0

2
Problem 219. Sketch the graph of(k) = /. Estimate/ h(x) dx using a
0

triangle and a trapezoid, both with bases on the x-axis.

Problem 220. What could be done in Problem 219 to make the estimate a
better one?
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If we wish to find the sum of many terms that all have the sameigtn
form, we have some special notation. For example, all eviegérs take the
same form 8 for some integen. If we wish to add up all the reciprocals of
even positive integers, then we would write:

1 1 1 >
1
tate Tt + Z
We may use this notation to write an expression for the eséiloiéthe area
under a graph as follows.

1
n2

Problem 221. Consider the graph of (k) = sinx between x= 0 and x= 1.

We will divide this region into several (let’s say n) narroertical rectangles

— all with the same widtihx. Now choose any number in each subinterval.
Label these numbers.cFor example, the number we would choose in the
fifth subinterval would be calledsc

(a.) We may use each to define the height of a rectangle. What will the
dimensions of these rectangles be?

(b.) Write down an expression for the sum of the areas of tleesangles.

(c.) How could this sum be a better approximation for the attrea
T

/ sinxdx?
0

Problem 222. Write down an expression for a good approximation for the
area under the curve(g) = x3, between %= 1 and x=5.

Problem 223. Write down an expression (involving a limit) for the actual
area under the curve(l) = tanx, between x= 0 and x= 7.

b
Definition 224. For a function f> 0, the definite integray f(x)dx can

be found by the limit .. .. ?

Problem 225. What would be different about this process (k)f< O for all
b

x between a and b? That s, what could we say about the nu%bé(x) dx
a
if the function values for f were negative on the interaab]|?
T
Problem 226. Suppose it is known th?( sinxdx= 2. What can be said
0

0
about the value oy sinxdx?
—TT
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Problem 227. Compute the following using the graphs of each function:

4 /4 0
/ x3dx / tanx dx / 2xdx
4 —n/4 3

Problem 228. Let f be a function with x= a some number in the domain of
f. Define a new function A as follows: the numb¢t)As the signed area
bounded by the x-axis, the vertical lines»a and x=t, and the graph of f.

t
That is, At) = / f(x)dx. Let’s find the derivative of this new function A.
a

(a.) Describe At + h). Write down an expression for(&+ h).

(b.) Can the difference A+ h) — A(t) be simplified? How?

(c.) Try to write the difference quotier'?:t<t i h% —AY) without using the
integral.

(d.) What does this say about the relationship between tbdunctions
Aand f?

Theorem 229 (The Fundamental Theorem of Calculus, Part A)For any
continuous function f and any number a in its domain, ...

t
Problem 230. Let f(x) = cosx. Define At) :/ cosxdx. Then
0

At) = and A(4) =

t
Problem 231. Let G(t) = / 5x° 4+ 7dx. Use Theorem 229 to computé G
1

Vit
Problem 232. Let H(t) :/ 6sinxdx. Use Theorem 229 to computé H
1

Problem 233. Suppose f is a continuous function witk->a in its domain.

Part A of the Fundamental Theorem of Calculus gives us ondentative

Afor f. If we were able to findnotherantiderivative F for f, then write an
equation describing the relationship between F and A.
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Evaluating the equation from Problem 233 at both a andx = b tells
us something remarkable about the relationship betweeddfigite inte-
gral and the indefinite integral of a functidn

Theorem 234 (The Fundamental Theorem of Calculus, Part B)If F is
b

anyantiderivative for f, then/ f(x)dx=....
- a

Problem 235. Compute the following definite integrals using Part B of the
Fundamental Theorem of Calculus.

T 2 4
/ sinxdx / X2 dx / VXdx
0 0 0

Problem 236. Compute the following definite integrals.

I 2 1
/ 2xsin(x?) dx / X2 dx / 2xv/x2 + 1dx
. 0

-2
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