
Chen et al. BMC Genomics 2011, 12(Suppl 5):S7
http://www.biomedcentral.com/1471-2164/12/S5/S7

RESEARCH Open Access

A gene selection method for GeneChip array data 
with small sample sizes
Zhongxue Chen1*, Qingzhong Liu1 1 2 3 3, Monnie McGee3*, Megan Kong4, Xudong Huang5, Youping Deng6,

1Biostatistics Epidemiology Research Design Core, Center for Clinical and 
Translational Sciences, The University of Texas Health Science Center at
Houston, Houston, TX 77030, USA
3Statistical Science Department, Southern Methodist University, Dallas, TX
75275, USA
Full list of author information is available at the end of the article

Richard H Scheuermann4

From BIOCOMP 2010. The 2010 International Conference on Bioinformatics and Computational Biology
Las Vegas, NV, USA. 12-15 July 2010

Abstract

Background: In microarray experiments with small sample sizes, it is a challenge to estimate p-values accurately 
and decide cutoff p-values for gene selection appropriately. Although permutation-based methods have proved to 
have greater sensitivity and specificity than the regular t-test, their p-values are highly discrete due to the limited 
number of permutations available in very small sample sizes. Furthermore, estimated permutation-based p-values 
for true nulls are highly correlated and not uniformly distributed between zero and one, making it difficult to use 
current false discovery rate (FDR)-controlling methods.
Results: We propose a model-based information sharing method (MBIS) that, after an appropriate data 
transformation, utilizes information shared among genes. We use a normal distribution to model the mean 
differences of true nulls across two experimental conditions. The parameters of the model are then estimated 
using all data in hand. Based on this model, p-values, which are uniformly distributed from true nulls, are 
calculated. Then, since FDR-controlling methods are generally not well suited to microarray data with very small 
sample sizes, we select genes for a given cutoff p-value and then estimate the false discovery rate.
Conclusion: Simulation studies and analysis using real microarray data show that the proposed method, MBIS, is 
more powerful and reliable than current methods. It has wide application to a variety of situations.

Background
Microarray technology has been successfully used by 
biological and biomedical researchers to investigate gene 
expression profiles at the genome-wide level. Usually, 
the sample sizes are small compared to the number of 
genes to be investigated, making estimation of standard 
error for statistical tests very inaccurate. Furthermore, 
thousands of hypotheses (one corresponding to each 
gene or set of genes, in general) are tested at once, 
which greatly increases the probability of Type I error. 
This problem is also called the “multiple comparison 
problem” in hypothesis testing. A very small cutoff p-

* Correspondence: Zhongxue.Chen@uth.tmc.edu; mmcgee@smu.edu 

value is then needed to avoid picking a large number of 
false positives (FP); however, the price of that decision is 
failing to find many true positives whose p-values are 
larger than the cutoff value. When the sample sizes are 
extremely small, the problem worsens because as the 
sample size decreases so do the detection power and the 
ability to estimate p-values.

When the sample sizes are large enough, even if the 
data across two conditions are not normally distributed, 
we can still use a two-sample t-test to estimate the p- 
value for each gene. In practice, to avoid the normal dis­
tribution assumption, we may also choose non-para­
metric (rank-based) or permutation-based procedures. 
However, when sample sizes are very small, the t-test is 
not reliable due to the poor estimation for variances; 
many genes will have small p-values only because their 
estimated variances are too small. Furthermore, the 
t-test method treats each gene independently and does 
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not utilize information shared among them. To borrow 
information from other genes, modified t-test methods 
have been proposed [1,2]. The modified t-test statistic is:

(1)

where di is the difference of means under two condi­
tions for gene i; sei is the estimated standard error for di 
and s0 is a constant, which is used to avoid too large 
absolute values of regular t-statistics due to very small 
estimated standard errors.

When we use test statistics in (1), we will lose the 
information about the distribution of true nulls since we 
do not know the distribution of (1). To overcome this 
problem, permutation-based procedures have been pro­
posed [2]. One extensively used method in microarray 
data analysis is called SAM for “Significance Analysis of 
Microarray” [2]. SAM uses test statistics in (1) and then 
permutes sample labels to estimate the p-value for each 
gene.

The absolute values of statistics in (1) are usually 
smaller than that of regular t-statistics. When sample 
sizes are extremely small, the total number of distin­
guished permutations is limited and, therefore, permuta­
tion-based methods, such as SAM, will have larger p- 
values than those from regular t-test, especially for dif­
ferentially expressed (DE) genes. For example, in experi­
ments where there are only three replicates for two 
conditions (a typical scenario) there exist only ten differ­
ent available permutations. The coarseness of the possi­
ble selections creates a problem for finding a reasonable 
cut-off p-value.

To select DE genes, we use a cutoff p-value and pick 
those genes whose p-values are smaller than the given 
cutoff value. Understood in this process and in any gene 
selection is the trade-off between false positives (type I 
error) and false negatives (type II error). If we want to 
control family-wise error rate (FWER), we need a very 
small cutoff p-value that will fail to find many true posi­
tives. Some researchers have proposed a strategy of, 
instead of controlling FWER, controlling false discovery 
rate (FDR) to allow some FPs in the set of selected 
genes, but to control the mean of the ratio of number 
of FPs to the number of total declared DE genes [3-5]. 
To control FDR, we need to estimate the number and 
the distribution of true nulls, which is quite difficult. 
Since it is difficult to separate non-DE genes from DE 
genes when doing permutations, the resulting estimated 
number and the distribution of the p-values for true 
nulls may not be accurate. Although several improve­
ments for SAM have been proposed [6-8], Qiu et al 
showed that the permutation-based methods may have 
large variance and, therefore, are not reliable [9]. Yang 

and Churchill have noticed the problem of permutation­
based methods when applied to small microarray experi­
ments [8].

As part of SAM, Storey’s FDR-controlling method has 
been proven to be more accurate than Benjamini and 
Hochberg’s procedure and has been used extensively in 
microarray data analysis [4]. They defined a quantity 
called q-value. Similar to p-value, “a q-value threshold 
can be phrased in practical terms as the proportion of 
significant features that turn out to be false leads” [5]. 
Its R package, “qvalue,” is publicly available [10]. “qva- 
lue” first estimates the q-value for each p-value (gene) 
based on all p-values and then calculates the cutoff p- 
value for a given cutoff q-value. Although the authors 
claimed that “qvalue” usually conservatively controls the 
FDR in that its true false discovery rate is smaller than 
the given cutoff q-value [11], Jung and Jang have found 
that it could also be anti-conservative for small cutoff q- 
values [12]. In some cases, when the given cutoff q- 
values are small, “qvalue” may select very few or no DE 
genes.

In this paper, we show that when sample sizes are 
extremely small, the t-test has poor performance in 
terms of sensitivity and specificity and SAM (and “qva- 
lue”) may not be applicable due to the difficulty of con­
trolling FDR for GeneChip array data. To circumvent 
those problems, we propose a new model-based method 
we call model-based information sharing method 
(MBIS). To evaluate the performance of our new 
method, we compare it with others by using both simu­
lation data and real data.

Method
Fold change, equal variance, and data transformation 
The ratio of the expression levels across two conditions 
is called fold change (FC); it has been used in the early 
comparative experiments [13,14]. This criterion is argu­
able since, depending on the decision-makers, choosing 
cutoff FC is arbitrary. Furthermore, the FC method does 
not take into account the variability with gene expres­
sion measurements, or, even worse, it assumes that the 
variability for all expression measurements is the same, 
which is likely to be false for most gene expression 
experiments. However, FC criteria have their own 
advantages. First, they are biologically meaningful and 
easily interpreted. Second, more importantly, many stu­
dies have shown that FC-based methods, if used appro­
priately, outperform other methods [15-19].

One way to obtain equal variance from gene to gene is 
to transform the data, usually with a logarithmic trans­
formation. After this transformation, a FC (log scale) 
can be calculated from the difference of means across 
two conditions. However, different data sets may require 
different variance-stabilization transformations. Several 
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variance-stabilization and normalization transformation 
methods, which try to transform expression values to be 
equal variance and normally distributed for each gene, 
have been proposed [19-23].

Model-based information sharing (MBIS)
MBIS makes the assumption that an appropriate data 
transformation is available and has been applied to the 
raw gene expression data. This transformation has 
furthermore stabilized the variance. Therefore, the var­
iance for each gene is a constant, denoted by s2, after 
transformation. If we can estimate s2 from data, then we 
can calculate p-value easily for each gene.

Estimation of s2
Suppose there are n1 and n2 replicates for condition one 
and two, respectively, and G genes to be tested. Under 
the assumptions of normality and equal variance, the 
estimated variance from each individual gene is an 
unbiased estimate for s2 and has a Chi-square distribu­
tion with degrees of freedom n1 + n2 - 2. Therefore the 
average of the estimated variances from all genes is also 
an unbiased estimate for s2:

(2)

where s2 is the estimated variance from individual 
gene i and G is the number of genes. Then we use the 
square root of 52, s, as the estimated standard variance 
for each gene. From the equal variance assumption, we 
can use a normal distribution to approximate the mean 
difference of non-DE genes:

where di is the difference of the means for gene i 
across two conditions and F(.) is the cumulative distri­
bution function (CDF) of the standard normal 
distribution.

Estimation of total number of non-DE genes G0
For a given value ^ (0 <^ < 1), we count the number 
(Nu) of genes with p-values greater than or equal to ^. 
Then an estimate of G0 is N^/(1-μ). To reduce the influ­
ence of DE genes since they have relatively small p- 
values, a relatively large ^ is preferable. We can also use 

a vector of μ’s and calculate the corresponding esti­
mated G0’s and then take their (weighted) mean as the 
final estimate for G0.

Gene selection and estimations for false positives and 
FDR
For a given cutoff p-value, p0, we pick those genes with 
p-values smaller than p0 as DE genes. Suppose S genes 
are selected. Then we can estimate the number of false 
positives, fp = g0 x p0, and the false discovery rate, 
FDR = G0 x p0/S.

SAM, t-test and q-value
For the SAM method, we use the R package, SAMr [10], 
and choose different values for s0.perc (percentile of esti­
mated se’s): -1 (t-test only, i.e. s0 = 0 in (1)), 20, 40, 60, 80 
and 100. SAM will calculate p-values by permutation. For 
the t-test method, we calculate p-values from the regular 
t-test statistics (i.e. s0 = 0 in (1)) without permutation. We 
then use the calculated p-values for each method as the 
input for R package “qvalue” and then get the output of 
selected DE genes with different preset q-values.

Simulation design
To restrict ourselves to small experiments, we assume the 
sample sizes for both conditions are 3, 5 and 8. We simu­
late 10,000 genes with normal distributions for two condi­
tions. For non-DE genes, we assume they are normally 
distributed with a mean equal to 0; for DE genes, their 
absolute mean difference is uniformly distributed: with 
three ranges representing different degrees of differential 
expression: U(1,3), low, U(3,6), middle, and U(6,9), high. 
We assume the standard deviations are uniformly distribu­
ted as U(1,b), where b is greater than or equal to one. In 
the ideal situation, i.e. equal variance, b = 1. However, 
even after trying several variance-stabilization transforma­
tions, sometimes this assumption may be too strong for 
real data, and we therefore choose different b’s in our 
simulations: b = 1, 1.5 and 2. In other words, we simulate 
data with equal or near equal variance. The proportion of 
DE genes among all genes may also affect the gene selec­
tion results; we then choose three levels of proportions: 
0.1, 0.3 and 0.5 (i.e. the numbers of DE genes are 1000, 
3000 and 5000, respectively). The output of selected genes 
from “qvalue” for each method with different preset cutoff 
q-values: 0.05, 0.10, 0.15, 0.20 and 0.25, are compared.

Real data set
We use Affymetrix GeneChip data sets selected from 
the GSE2350 series [24], downloaded from the NCBI 
GEO database [25] to compare our new method with 
others. We use the first three samples from both “con­
trol” (GSM44051, GSM44052 and GSM44053) and 
“CD40L treatment” (GSM44057, GSM44058 and 
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GSM44059) groups. For the raw intensity data, we use 
the “rma” function in R package “affy” [10] to do back­
ground correction, normalization, and summarization 
[26]. Then we apply different methods to the summar­
ized expression values (already on log base 2 scale) to 
estimate p-values that are the input for the “qvalue.”

To see which method gives more biologically mean­
ingful results, we use the web-based tool, CLASSIFI 
algorithm [27-29], that uses Gene Ontology (GO) [30] 
annotation to classify groups of genes defined by gene 
cluster analysis using the statistical analysis of GO anno­
tation co-clustering. We compare the median p-values 
of “topfile” from the output of CLASSIFI. In general, the 
smaller the p-value is, the more reasonable the results 
in terms of GO classification [27].

Results
Simulation results
Figure 1 plots the Receiver Operating Characteristic 
(ROC) curves from different methods for our simulated 
data. The curves from regular t-test (without 

permutation) and SAM with s0 = 0 (T-Permut, i.e. t-test 
with permutation) are almost identical and perform 
worst in terms of sensitivity and specificity. Figure 1 
clearly shows that information-sharing methods (SAM 
with s0>0 and MBIS) perform better. Our new method, 
MBIS, outperforms all SAM and t-test methods.

Table 1 gives the numbers of true positives (TP), false 
positives (FP), and the observed false discovery rates 
(Obs. FDR), FP/(FP+TP), obtained by “qvalue” with pre­
set q-values: 0.05, 0.10, 0.15, 0.20 and 0.25, respectively, 
from a simulation. In this simulation, there are 1,000 
DE genes out of 10,000 genes, three replicates for both 
conditions, b = 1.5, and the absolute mean differences 
for DE genes are uniformly distributed between three 
and six. For MBIS and t-test without permutation, we 
know the distribution of all nulls and, therefore, we can 
estimate the number of false positives (Est.FP) for a 
given cutoff p-value (calculated from given q-values by 
“qvalue”). As the ROC curves show, the regular t-test 
method performs more poorly than MBIS. For example, 
with preset q-value 0.05, the t-test method can only

ROC curves

Figure 1 ROC Curves. ROC curves of MBIS, SAM with s0.perc = -1, 20, 40, 60, 80 and 100, and t-test from a simulated data set. There are three 
replicates for each condition. One thousand out of 10,000 genes are simulated differentially expressed with mean differences uniformly 
distributed between 3 and 6. The simulated variance for each gene is uniformly distributed between 1 and 1.5.
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Table 1 Simulation results of numbers of TPs, and FPs 
from different methods (nde = 1000, rep = 3, b = 1.5, 
diff = c(3,6))

q-value MBIS SAM-T

SO = 0 20 40 60 80 100

0.05 TP 957 244 0 0 0 0 0 0

FP 94 19 0 0 0 0 0 0

Est. FP 95 16

Obs. FDR 0.09 0.07 0 0 0 0 0 0

0.10 TP 976 669 0 0 0 0 0 0

FP 203 99 0 0 0 0 0 0

Est. FP 211 106

Obs. FDR 0.17 0.13 0 0 0 0 0 0

0.15 TP 983 821 0 771 835 821 877 891

FP 324 228 0 16 26 16 27 26

Est. FP 289 232

Obs. FDR 0.25 0.22 0 0 0.02 0.03 0.02 0.03

0.20 TP 992 896 474 893 910 909 917 932

FP 488 379 44 80 92 81 85 75

Est. FP 474 388

Obs. FDR 0.33 0.30 0.08 0.08 0.09 0.08 0.08 0.07

0.25 TP 994 924 704 916 926 929 935 949

FP 632 529 116 145 142 134 141 129

Est. FP 620 552

Obs. FDR 0.39 0.36 0.14 0.14 0.13 0.13 0.13 0.12

select 244 out of 1000 true positives at the price of 19 
false positives. However, MBIS can obtain more than 
95% true positives with only 94 false positives. Table 1 
also shows that the numbers of estimated false positives 
from t-test and MBIS are very close to the true numbers 
of false positives, indicating that the estimated number 
and the distribution for true nulls are accurate for both 
the t-test and MBIS.

For the SAM methods with various s0.perc, when the 
preset q-value is small, we failed to get any true posi­
tives. For example, when given q-value 0.1, none of the 
SAM methods can get any true positives. Interestingly, 
when the given q-value is small, a regular t-test per­
forms better than a t-test with a permutation in SAM; 
this implies permutation-based methods are not appro­
priate in this situation. Table 1 also indicates that SAM 
methods are usually conservative, as the authors of “qva- 
lue” claimed [4]. However, it is not the case for MBIS 
and regular t-test. In general, the observed false discov­
ery rates (Obs. FDR in Table 1) from MBIS and regular 
t-test methods are larger than the preset q-values, while 
SAM methods are usually too conservative and need 
large q-values to get a reasonable proportion of true 
positives. For different setups in our simulations, we 
obtained similar comparison results.

Results from real data set
For the real data set, we use MBIS, regular t-test, and 
SAM to calculate the p-values for each gene and then 
use “qvalue” to select DE genes with cutoff q-values 
equal to 0.01, 0.025, 0.05, 0.075 and 0.1, respectively. By 
using “qvalue,” we calculate the corresponding cutoff p- 
values from each cutoff q-value for these three methods. 
Since we know the distributions of nulls from MBIS and 
t-test (they have a uniform distribution for the p-values 
of nulls), and we can also estimate the number of true 
negatives for a given cutoff p-value, we can estimate the 
number of false positives and the false positive rates.

Table 2 summarizes the results. For a given cutoff q- 
value, the cutoff p-values calculated from “qvalue” for 
our new method and t-test are usually similar, but both 
are larger than that for SAM. Our new method usually 
selects more genes than the t-test does, which selects 
more genes than SAM does. In fact, for small cutoff q- 
values, for example, 0.01 and 0.025, SAM fails to select 
any genes due to the fact that the minimum of the esti­
mated q-values from “qvalue” for SAM is 0.04, larger 
than 0.01 and 0.025. However, when the cutoff q-value 
increases to 0.05, the number of genes selected by SAM 
jumps to 3695. On the other hand, although the num­
bers of selected genes by our new method and the t-test 
increase as the cutoff q-values increase, as expected, the 
increments are more stable. All these observations are 
consistent with what we have observed in our 
simulations.

The selected gene sets from MBIS and the t-test are 
usually different. For example, when the cutoff q-value 
is equal to 0.05, MBIS and the t-test select 5550 and 
4748 genes, respectively; the number of common genes 
by these two methods is 3694. In other words, about 
1000 genes are selected by the t-test that are not in the 
list from the MBIS. However, SAM selected genes also 
usually selected by MBIS.

Table 2 Results from real data for given cutoff q-values
q-value 0.01 0.025 0.05 0.075 0.1

p- cutoff 
(from “qvalue”)

MBIS 0.00685 0.0240 0.0617 0.108 0.162

T 0.00144 0.0155 0.0613 0.123 0.192
SAM 0 0 0.00741 0.0560 0.0969

# DE genes MBIS 3075 4306 5550 6458 7276

T 561 2402 4748 6345 7435

SAM 0 0 3695 4734 5335

# common 
DE genes

MBIS, T 459 1954 3861 5261 6330

MBIS, SAM 0 0 3694 4734 5335
T, SAM 0 0 3327 4504 5228

Est. FDR MBIS 0.0177 0.0443 0.0884 0.133 0.177

T 0.0186 0.0468 0.0937 0.141 0.187
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From the CLASSIFI output with cutoff q-value 0.05, 
the median p-values (-log10 scale) are 15.30, 7.05 and 
6.01 for MBIS, SAM, and t-test, respectively, indicating 
that SAM performs better than the t-test but worse 
than MBIS in terms of co-clustering for genes with 
similar function according to GO.

Since the cutoff p-values from the same cutoff q-value 
are different for these three methods, we then use the 
same cutoff p-values for each method and compare 
their selected genes. Table 3 gives the comparisons with 
cutoff p-values equal to 0.05, 0.025, 0.01, 0.005, and 
0.0025. The corresponding cutoff q-values obtained by 
“qvalue” are always larger for SAM than for t-test and 
MBIS. But the number of selected genes by SAM is 
much smaller than those by t-test, and MBIS for each 
given cutoff p-value. Again, for a given cutoff p-value, 
the gene sets selected by t-test and MBIS are different, 
while SAM still selects almost a subset of genes 
obtained by MBIS. The observed FDRs from the t-test 
and MBIS are always larger than those estimated from 
the “qvalue,” a finding that is consistent with our obser­
vations in simulations. The median p-values (-log10 
scale) from CLASSIFI are 16.32, 8.31, and 6.76 for 
MBIS, SAM, and t-test, respectively, when the cutoff p- 
value is 0.01, indicating that MBIS outperforms SAM 
that, in turn, performs better than the t-test.

Discussion
When sample sizes are small, information shared by 
genes is helpful and should be used. While t-test treats 
each gene independently, both SAM and MBIS, use 
information shared among genes. When the equal var­
iance assumption in MBIS is met, the estimated variance 
for gene i in the t-test has a Chi-square distribution 
with degrees of freedom of n1 + n2 -2:

Table 3 Results from real data for given cutoff p-values
p-value 0.05 0.025 0.01 0.005 0.0025

q-cutoff MBIS 0.0422 0.0257 0.0132 0.00788 0.00468
(from “qvalue”)

T 0.0446 0.0313 0.0210 0.0158 0.0122
SAM 0.0738 0.0600 0.0556 0.0546 0.0544

# DE genes MBIS 5290 4352 3383 2835 2383

T 4355 3096 1849 1230 792

SAM 3613 2223 958 482 242

# common MBIS, T 3503 2411 1371 890 556
DE genes

MBIS, SAM 3608 2223 958 482 242
T, SAM 3145 1870 767 396 202

Est. FDR MBIS 0.0742 0.0451 0.0232 0.0138 0.00823

T 0.0834 0.0586 0.0393 0.0295 0.0229

In a typical microarray experiment, the number of 
genes, G, is usually between 10K and 50K, indicating 
that the variance in (9) is very close to 0 and the esti­
mated value in (2) is close to the true value; therefore a 
normal distribution is appropriate to approximate the 
mean differences of the true nulls.

In comparing (7) with (9), we can see that, while the 
regular t-test method gives a much larger variance for 
each estimated variance (each individual t-test will lose 
two degrees of freedom due to variance estimation), 
MBIS, a method that utilizes information among genes, 
has a more precise estimate for the common variance. 
Therefore, MBIS always outperforms the t-test.

On the other hand, the Chi-square distribution is right 
skewed, implying that its mean is larger than its median. If 
ssi2’s have a Chi-square distribution, they are more likely to 
have estimated values less than the mean (true value) than 
estimated values greater than the mean. In other words, ssi2 
are more probable to underestimate than overestimate the 
constant variance. Therefore many true nulls may have 
very small p-values from a t-test only because they have 
small estimated standard errors. This explains why there 
are so many FPs from t-test in our simulations; and conse­
quently t-test selects so many different DE genes than 
SAM and MBIS do in real data. Because of the same rea­
son, adding a common number to each individual sei in 
(1) will potentially decrease the bias (for small s0.perc in 
SAM) and/or decrease the relative difference of estimated 
variances for most genes; therefore SAM usually improves 
the test statistics, although still not as favorably as MBIS. 
This explains why SAM performs better than t-test but 
worse than MBIS in terms of sensitivity and specificity.

When sample sizes are extremely small, as we men­
tioned before, SAM will have relatively larger p-values 
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due to a limited number of permutations available, 
affecting the estimation of q-values by “qvalue”. “qvalue” 
does not perform very well in this situation. For a given 
cutoff q-value, the corresponding cutoff p-value calcu­
lated by “qvalue” could be too large (as seen in the 
results from t-test and MBIS in simulation and real 
data) or too conservative (as in the results from SAM), a 
finding consistent with those from Jung and Jang [12].

Another difficulty for “qvalue” is that the number of 
selected genes can be very sensitive to the cutoff q- 
value, especially the very small preset q-value (see Table 
2), that is desirable in practice; in this situation, SAM 
even performs worse than the regular t-test in terms of 
proportion of the DE genes selected. This raises the 
question of how to choose an appropriate q-value in 
practice to which there is no absolute answer. Some­
times, even for large q-values (as seen in the results 
from SAM in Table 1), the “qvalue” gives us a small 
proportion of true positives; on the other hand, we 
could select a large number of genes with a small q- 
value (as seen in the results from MBIS and t-test for 
real data in Table 2). We recommend that in this situa­
tion (small sample sizes), instead of using q-value only, 
one should choose a cutoff p-value to select DE genes 
first and then estimate FDR if desired.

Although we assume equal variance in the MBIS, we 
also evaluate this new method under situations when 
this assumption is violated. By simulation, we have 
shown that, when the variances of gene expressions are 
near constant, MBIS still outperforms both the t-test 
and SAM, making our method applicable in various 
situations.

From our experience, variances estimated from raw 
expression data are highly variable. We should trans­
form data before applying MBIS. Several variance-stabi­
lization and normalization transformation procedures, 
such as logarithm, Box-Cox transformation, generalized 
logarithm [19], variance stabilization [21] and data-dri­
ven Haar-Fisz transformation for microarrays (DDHFm) 
[22], are already available. In addition, choosing appro­
priate preprocessing procedures (background correction, 
normalization and summarization) is also very impor­
tant for downstream analyses, including gene selection 
[16,26,31-34].

Conclusions
For microarray data with extremely small sample sizes, a 
modified t-test like SAM performs better than a regular 
t-test in terms of sensitivity and specificity. However, to 
control FDR, for small preset q-values, SAM fails to 
select enough true positives and performs worse than 
the t-test. To circumvent this problem, we propose a 
model-based information sharing method (MBIS) that 

uses information shared by genes. We show, using both 
simulation and real microarray data, that this new 
method outperforms the t-test and SAM.
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