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Abstract
Background: Gene microarray technology is an effective tool to investigate the simultaneous 
activity of multiple cellular pathways from hundreds to thousands of genes. However, because data 
in the colossal amounts generated by DNA microarray technology are usually complex, noisy, high­
dimensional, and often hindered by low statistical power, their exploitation is difficult. To 
overcome these problems, two kinds of unsupervised analysis methods for microarray data: 
principal component analysis (PCA) and independent component analysis (ICA) have been 
developed to accomplish the task. PCA projects the data into a new space spanned by the principal 
components that are mutually orthonormal to each other. The constraint of mutual orthogonality 
and second-order statistics technique within PCA algorithms, however, may not be applied to the 
biological systems studied. Extracting and characterizing the most informative features of the 
biological signals, however, require higher-order statistics.

Results: ICA is one of the unsupervised algorithms that can extract higher-order statistical 
structures from data and has been applied to DNA microarray gene expression data analysis. We 
performed FastICA method on DNA microarray gene expression data from Alzheimer's disease 
(AD) hippocampal tissue samples and consequential gene clustering. Experimental results showed 
that the ICA method can improve the clustering results of AD samples and identify significant 
genes. More than 50 significant genes with high expression levels in severe AD were extracted, 
representing immunity-related protein, metal-related protein, membrane protein, lipoprotein, 
neuropeptide, cytoskeleton protein, cellular binding protein, and ribosomal protein. Within the 
aforementioned categories, our method also found 37 significant genes with low expression levels. 
Moreover, it is worth noting that some oncogenes and phosphorylation-related proteins are 
expressed in low levels. In comparison to the PCA and support vector machine recursive feature 
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elimination (SVM-RFE) methods, which are widely used in microarray data analysis, ICA can identify 
more AD-related genes. Furthermore, we have validated and identified many genes that are 
associated with AD pathogenesis.

Conclusion: We demonstrated that ICA exploits higher-order statistics to identify gene 
expression profiles as linear combinations of elementary expression patterns that lead to the 
construction of potential AD-related pathogenic pathways. Our computing results also validated 
that the ICA model outperformed PCA and the SVM-RFE method. This report shows that ICA as 
a microarray data analysis tool can help us to elucidate the molecular taxonomy of AD and other 
multifactorial and polygenic complex diseases.

Background
Since microarray technology can determine the expres­
sion levels of thousands of genes from a single array of 
chemical sensors, it has become a popular gene expres­
sion screening tool in the molecular investigation of vari­
ous diseases. This technology allows for two main types of 
descriptive analyses: firstly, the identification of genes that 
may be responsible for a clinicopathological feature or 
phenotype, and secondly, the genomic classification of 
tissue.

Its ultimate goal is to improve clinical outcome by adapt­
ing therapy based on the molecular characteristics of 
human diseases such as a tumor [1,2]. Various methods 
have been developed to accomplish these tasks. However, 
most methods only consider individual genes, making the 
results difficult for biologists to interpret due to the large 
number of genes, their complex underlying inter-gene 
dependency, and the high co-linearity among the gene 
expression profiles.

Therefore, to understand the coordinated effects of multi­
ple genes, researchers need to extract the underlying fea­
tures from the multi-variable dataset and thereby reduce 
dimensionality and redundancy inherent in the measured 
data. To extract these features, however, any microarray 
technology, to be truly effective, must address the issue of 
noise in the array systems that lead to imperfection in 
experimental design. Additionally, to discover functional 
modules involved in gene regulatory or signaling path­
ways, powerful mathematical and computational meth­
ods are needed for modeling and analyzing the 
microarray data of interest.

Two kinds of unsupervised analysis methods for microar­
ray data analysis, principal component analysis (PCA) 
and independent component analysis (ICA), have been 
developed to accomplish the tasks. PCA projects the data 
into a new space spanned by the principal components. 
Each successive principal component is selected to be 
orthonormal to the previous ones and to capture the max­
imum information that is not already present in the pre­
vious components. The constraint of mutual 

orthogonality of components implied in classical PCA 
methods, however, may not be suitable for biological sys­
tems. Biological model components are usually statisti­
cally independent and without the constraint of 
orthogonality. Hence, ICA is well suited to biological data 
because it assumes that the gene expression data gener­
ated from the DNA microarray technology is a linear com­
bination of some independent components having 
specific biological interpretations. Another useful advan­
tage of ICA is that it does not use any training data and a 
priori knowledge about a parameter of its data filtering 
and mixing.

Hori in 2001 [3,4] and Liebermeister in 2002 [5] showed 
that the ICA model can effectively classify gene expres­
sions into biologically meaningful groups and relate them 
to distinct biological processes. Thus ICA has been widely 
used in DNA microarray data analysis for feature extrac­
tion, clustering, and the classification of gene regulation 
analysis. Most published literature on the use of ICA anal­
ysis for microarray data are about yeast cells' cycle [6-8] 
and cancer data such as: ovarian cancer [9], breast cancer 
[10-13], endometrial cancer [14], colon and prostate can­
cer [15,16], and acute myeloid leukemia [17], etc.

Although the exact causes of AD are not fully revealed, 
DNA microarray technique has been applied to AD- 
related gene profiling. However, in our knowledge, appli­
cation of ICA in AD-related DNA microarray data analysis 
has not been reported before. Since ICA can both identify 
gene expression patterns and group genes into expression 
classes that might provide much greater insight into bio­
logical function and relevance, we employed ICA meth­
ods to uncover biologically meaningful patterns in AD 
microarray gene expression data. Herein, we present a 
new computational approach to reveal AD-related molec­
ular taxonomy and to identify AD pathogenesis-related 
genes.

Results
To perform ICA application in AD gene expression data 
analysis, we used a dataset from GEO DataSets deposited 
by Blalock et al that featured hippocampal gene expres­
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sion from control and AD samples [18]. The hippocampal 
specimens were obtained through the Brain Bank of the 
Alzheimer's Disease Research Center at the University of 
Kentucky. The human GeneChips (HG-U133A) of 
Affymetrix and Microarray Suite 5 were used in the micro­
array data collection. The procedures for total RNA isola­
tion, labeling, and microarray were described in [18] and 
[19].

We excluded the samples with significant noise and chose 
8 control and 5 severe AD samples for ICA application, 
with each sample containing 22283 gene expressions. In 
addition, since microarray data often yield "unregulated" 
genes, whose expression profile does not contain much 
information, we filtered out unregulated genes prior to 
applying ICA. Finally, to perform ICA, we selected 13 sam­
ples (8 control and 5 severe AD samples) and 3617 genes 
from each sample.

ICA Decomposed AD Microarray Data into Biological 
Processes
The main modeling hypothesis underlying the applica­
tion of ICA to gene expression data analysis is that the 
gene expression level is determined by a linear combina­
tion of biological processes, many of which may up-regu- 
late or down-regulate gene expression. It is assumed that 
these biological processes correspond to activation or 
inhibition of single pathways or a network of highly cor­
related pathways, and that each of these pathways only 
affects a relatively small percentage of all genes. Because of 
the statistical independence assumption inherent in the 
ICA inference process, we would expect ICA components 
to map closer to pathways.

Figure 1 gives the ICA decomposition results of the 13 x 
3617 AD microarray data matrix X. Each observed sample 
was considered a linear combination of gene signatures

m genes

A’, latent variables Rows ofS: gene signatures

Figu rec 1 mposition results of AD microarray gene expression data
ICA decomposition results of AD microarray gene expression data. FastICA was applied to the AD microarray data 
matrix X with 13 samples and 3617 genes. Using the ICA method, X = AS, FastICA algorithm decomposes matrix X (13 x 
3617) into latent variable matrix A (13 x 13) and gene signature matrix S (13 x 3617).
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captured by ICA under the weights of rows of matrix A. 
Here, FastICA, presented by Hyvarinen [20]http:// 
www.cis.hut.fi/proj ects/ica/fastica/, was applied to the AD 
microarray data matrix X with rows corresponding to n 
(13) samples and columns corresponding to m (3617) 
genes. It decomposes matrix X into latent variable matrix 
A (13 x 13) and gene signature matrix S (13 x 3617). In 
FastICA algorithm, nonlinear function g(u) = tanh(a1*u) 
was used as the probability density distribution of the out­
puts u during the iteration, where here a1 is a constant. As 
the FastICA algorithm relies on random initializations for 
its maximization and faces the problem of convergence to 
local optima, Chiappetta et al. [10] presented consensus 
components by rerunning the FastICA algorithm with 
random initializations and Himberg et al. [21] proposed 
resampling of ICA components and used estimated cen­
trotypes as the representatives of ICA components. In our 
study, we iterated FastICA 50 times to alleviate the insta­
bility of the slightly different results generated from each 
iteration. The final components were estimated as the cen­
trotypes of the iterated estimates for each component.

ICA Improved Gene Clustering Results of AD Samples 
Sample clustering by matrix A
ICA essentially seeks a new representation of the observed 
expression profile matrix X with the columns of matrix A 
representing the new basis vectors (latent variables). Each 
row of A contains the weight with which gene signatures 
contribute to observed expression profiles.

Unsupervised hierarchical clustering was applied to rows 
of A to validate the efficiency of ICA outputs (Figure 2A). 
The clustering method was performed on rows of matrix 
A with the last two latent variables removed that were con­
sidered noise or, since their values are similar across all 
samples, to have no biological relevance to AD. See the 
graphical representation of matrix A in Figure 1. As can be 
seen from the clustering dendrogram, the first 11 ICA 
latent variables captured sufficient biologically significant 
information from samples data. The control and severe 
AD samples can be clearly discriminated. Similar hierar­
chical clustering was done on the principal components 
(PCs) outputted by PCA on the same original data (where 
the gene expression measurements are the variables and 
the samples are the observations) in Figure 2B. In the PCA 
method, the observed samples were represented as a lin­
ear combination of the PCs with associated gene scores. 
Here, the first 10 PCs capturing 95.5% variance were 
selected to represent the original data, and the remaining 
PCs with lower variance that contained noise were 
removed for the clustering. Figure 2B showed that it can 
cluster some of the control samples and severe AD sam­
ples, however, the severe AD sample 'AD-2' cannot be dis­
criminated from control samples.

Figure2cal clustering of the ICA and PCA outputs 
Hierarchical clustering of the ICA and PCA outputs. 
(A) Hierarchical clustering of the ICA outputs with the last 
two 'common' components of matrix A removed. To display 
the cluster dendrogram conveniently, we transposed matrix 
A in the graph. That is, the columns of the graphical represen­
tation correspond to the rows of matrix A, denoting samples, 
and the rows of the graphical representation correspond to 
the columns of matrix A, denoting the ICA latent variables. 
(B) Hierarchical clustering of the principle components, with 
the number of the principle components k = 10. Similarly, the 
rows and columns of the graph denote the principle compo­
nent and samples, respectively.

Sample clustering by reconstructed data
ICA transfer is an adaptive process in which the independ­
ent components are as sparse as possible. Lee et al. (18) 
demonstrated that the underlying biological processes are 
more super-Gaussian than original inputs microarray 
gene data. For this property, one may assume that the 
activities of components with small absolute values are 
noisy or have redundancy information and must be set to 
zero, retaining just a few components with large activities, 
S ^ Snew. Then the newly reconstructed data are obtained 
by Xnew = A Snew. Figure 3 shows the unsupervised hierar­
chical clustering was applied to the normalized raw data, 
with the data reconstructed by PCA and FastICA, respec­
tively.

For the original data (Figure 3A), some of the control sam­
ples and severe AD samples have been clustered together, 
but the highest hierarchical split did not separate the two 
classes as would have been expected. For the data recon­
structed by both PCA and ICA, the clustering results were 
greatly improved (Figure 3B and 3C). In PCA method, the 
first 10 components associated with a larger variance were 
selected to reconstruct data that captured most of the 
information (the cumulative contribution of their eigen­
values exceeded 95.5%) of original data whereas the 
remaining components with lower variance contained 
noise and were removed. The ICA method extracted m
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Figure3ised hierarchical clustering of the normalized raw 
Unsupervised hierarchical clustering of the normal­
ized raw data. (A) Data reconstructed by PCA; (B) and 
the data reconstructed by FastICA; (C) C1-8: control sam­
ples, AD1-5: severe AD samples. Red and green blocks rep­
resent signal increase and decrease from the mean 
respectively. For the PCA reconstructed data, the first 10 
principle components were applied and their cumulative con­
tribution of the corresponding eigenvalues was 95.5%. For 
ICA-derived data, the genes with loadings that exceed the 
threshold (= 2) were considered significant, and the remain­
ing genes with lower values were considered as noises and 
set to zero. Here, by comparing them to the original data, 
both PCA and ICA-derived data greatly improved the clus­
tering results of AD microarray data.

Figu reit4el0y PCs and ICs extracted by PCA and ICA methods 
The first 10 PCs and ICs extracted by PCA and ICA 
methods respectively. (A) The first 10 PCs obtained by 
PCA that capture 95.5% information of original AD microar­
ray data. (B) The first 10 ICs (gene signatures) uncovered by 
ICA from AD microarray data in which only a few relevant 
genes were significantly affected, leaving the majority of 
genes unaffected. The x-axis in each graph denotes genes, 
and the y-axis represents relative signal intensity.

(13) gene signatures (rows of matrix S) that were mutually 
statistically independent as underlying biological proc­
esses. Each independent component was as sparse as pos­
sible, in which only a few relevant genes were significantly 
affected, leaving the majority of genes relatively unaf­
fected. The filtering capacity of ICA was achieved by set­
ting the entries in each gene signature with values that are 
less than the threshold = 0. Then, the reconstructed data 
gave a clearer clustering result to discriminate control and 
severe AD samples from original data.

Although ICA produced similar results to PCA on AD 
sample clustering, it extracted sparser gene signatures that, 
since each gene signature only affects a relatively small 
percentage of all genes, were more useful for finding sig­
nificant genes related to AD. Figure 4 showed the graphi­
cal representation of gene signatures unveiled by PCA (A) 
and ICA (B). We would expect the identified ICs to map 
more closely to known pathways than PCA that does not 
use the statistical independence criterion (we will discuss 
the discovery of co-regulated genes associated with AD in 
the next section). Figure 5 showed the histogram of the 
corresponding PCs and ICs. The underlying biological 
processes extracted by ICA are more super-Gaussian 
(sparser) than the PCs.

Fig ureg5ersepo4nding histograms of the first 10 PCs (A) and ICs 
The corresponding histograms of the first 10 PCs (A) 
and ICs (B) in figure 4. The histograms of ICs in (B) dis­
played more super-Gaussian than did that of the PCs (A). 
ICA extracted sparser gene signatures, and, since each of 
gene signature only affects a relatively small percentage of all 
genes, we can expect that ICA found more significant genes 
related to AD.
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ICA Identified Significant Genes for AD
In the ICA outputs matrix, each row of matrix A contained 
the weights with which the expression levels of the m 
genes contribute to the corresponding observed expres­
sion profile (row of matrix X). Therefore, the profile order 
of rows of A is the same as that of the observed expression 
profiles, and each column of A is associated with the cor­
responding gene signature (IC). Figure 6 shows the Hin­
ton diagram representation of matrix A derived by 
FastICA.

The original data set consisted of 5 severe AD microarray 
gene expressions (first 5 rows) and 8 control samples (last 
8 rows), so this assignment is also valid for the rows of A. 
In Figure 6, since the sign of the values are distinctly dif­
ferent, the 4-th and 5-th columns of A (red circles) dis­
criminate between severe AD and the control samples. For 
example, the values of the 4-th latent variable (4-th col­
umns of A) are all negative for severe AD samples (first 5 
rows) and positive for most of the control samples (last 8 
rows) and the values of the 5-th latent variable (5-th col­
umns of A) are all positive for severe AD samples (first 5 
rows) and positive for all the control samples (last 8 
rows). So the identified latent variables can be related to 
their corresponding gene signatures (the 4-th and 5-th 
row of matrix S) to find those individual genes that 
strongly contribute to that component. In addition, the 
last two columns of matrix A seem to have no biological 
relevance to AD because their values are similar across all

Figure 6agram representation of latent variable matrix A 
Hinton diagram representation of latent variable 
matrix A. The size of each square corresponds to the 
amount anm of component m in sample n. White and black 
represent positive and negative values, respectively.

the samples (blue circle). These 'common' components 
can be ignored from the later investigation. Figure 7 
shows the corresponding gene signatures in matrix S (4-th 
and 5-th row of S) for the 4-th and 5-th component in 
matrix A.

Genes with loading that exceed the chosen threshold (red 
line) were considered significant. Here, the threshold = 2 
was used for reconstructing the gene expression profile. 
All of the items whose absolute values in matrix S were 
less than this threshold were set to zero. By testing multi­
ple times, we achieved the threshold = 2 by which the 
reconstructed gene expression profile data can be success­
fully clustered with much fewer significant genes. The pos­
itive and negative loadings correspond to up- and down­
regulation of expression, respectively. Figure 8 shows the 
selected significant genes.

Table 1 and 2 show the significant up- and down-regu­
lated genes selected by the ICA method. To help further 
analysis, we display the gene names, their descriptions 
and the corresponding chromosomal locations.

Discussion
Significant genes found by ICA
Even though the immune system tends to work less effec­
tively in older adults than in younger ones, the elderly are 
prone to neuroinflammation. In fact, even though recent 
studies have indicated that certain aspects of the inflam­
matory response may have therapeutic potential [22-24], 
neuroinflammation is commonly believed to be a culprit 
in AD pathogenesis. Associated with this robust inflam­
matory response is the extracellular deposition of amyloid 
β-protein (Aβ) [25] that together are the characteristic
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Figuree8sted significant genes for 4-th (A) and 5-th (B) gene 
The selected significant genes for 4-th (A) and 5-th 
(B) gene signatures. Here, the threshold = 2. For recon­
structing the gene expression profile, all the items whose 
absolute values in matrix S were less than this threshold 
were set to zero.

pathological features of AD. are To validate the strong link 
between neuroinflammation and AD, we found that 
many inflammation-related genes are highly expressed, 
such as AMIGO2, BTG1, CD24, CD44, CDC42EP4, 
IFITM1, IFITM2, IRF7, FI44L, IL4R, IRAK1, NFKBIA, as 
Table 1 shows.

B-cell translocation gene 1 (BTG1) is a member of the 
anti-proliferative gene family that regulates cell growth 
and differentiation. Anti-proliferative, BTG1 may partici­
pate in the activation-induced cell death of microglia by 
lowering the threshold for apoptosis; BTG1 increases the 
sensitivity of microglia to the apoptogenic action of the 
autocrine cytotoxic mediator [26].

CD24 is a cell adhesion molecule and a cell surface glyco­
protein that is expressed on both immune cells and the 
cells of the CNS. Literature showed that CD24 is required 
for the induction of experimental autoimmune encepha­
lomyelitis (EAE), an experimental model for the human 
disease multiple sclerosis (MS). The development of EAE 
requires CD24 expression on both T cells and non-T host 
cells in the CNS [27].

CD44 is a multifunctional cell surface glycoprotein that 
serves as a receptor for hyaluronic acid, collagen types I 
and VI, and mucosal vascular addressin. The localization 
of CD44 was investigated immunohistochemically in 
postmortem human brain tissue of control subjects and 
patients with AD. Morphological diversities of CD44 pos­
itive astrocytes were in the cerebral cortex of normal sub­
jects and patients with AD. In the AD brain, the number 
of CD44 positive astrocytes increased dramatically. There­
fore, CD44 may be an important adhesion molecule for 
these astrocytic processes [28,29].

CD22 (in Table 2) is a regulatory molecule that prevents 
the over-activation of the immune system and the devel­
opment of autoimmune diseases. Our results exhibited 
that CD22 is a down-expression that suggests overinflam­
mation in AD.

Rho GTPases (Cdc42) are one of the targets in Aβ-induced 
neurodegeneration in AD pathology; they have a role in 
mediating changes in the actin cytoskeletal dynamics. The 
Rho family of small GTPases (Rho, Rac and Cdc42) are 
regulators of F-actin polymerization [30], acting as molec­
ular switches by cycling between an inactive GDP-bound 
state and an active GTP-bound state. Rac1 and Cdc42 pro­
mote polymerization at the leading edge, orchestrating 
the formation of lamellipodia and membrane ruffles [31], 
as well as peripheral actin microspikes and filopodia 
[32,33]. RhoA is an antagonist, promoting retraction of 
the leading edge and assembly of stress fibers [34].

Our ICA selected results exhibited NF-kB (NFKBIA) at a 
high expression in severe AD (see Table 1). NF-kB plays a 
key role in regulating the immune response to infection. 
Consistent with this role, incorrect regulation of NF-kB 
has been linked to cancer, inflammatory and autoim­
mune diseases, septic shock, viral infection, and improper 
immune development. NF-kB has also been implicated in 
processes of synaptic plasticity and memory. The NF-kB 
activation provides the potential link between inflamma­
tion and hyperplasia.

Table 1 also shows many genes related to metal protein 
were up-regulated in severe AD including CAMK2B, 
CALM1, CAPZA2, CHGB, LOC728320/LTF, MPPE1, 
MT1F, MT1M, SCGN, ZIC1, ZBTB20, ZNF500, ZNF580, 
ZNF652, ZNF710, SLC24A3 and SLC7A11. Literature 
showed that the level of metal ion metabolism is closely 
associated with AD. For example, changes in Ca2+ home­
ostasis, as occurring after Aβ addition, may influence sev­
eral physiological responses contributing to neuronal 
imbalance [35]. CaMKII is a holoenzyme composed of 12 
monomers, primarily a and β subunits in neurons. Auto­
phosphorylation of CaMKIIa at Thr286 is required for 
normal spatial memory and place-cell representation, pre­
sumably through the triggering of its calcium-independ­
ent kinase activity [36]. Ca2+ influx through the N-methyl- 
D-aspartate (NMDA) type glutamate receptor leads to 
activation and postsynaptic accumulation of Ca2+/cal- 
modulin-dependent protein kinase II. NR1 and NR2B 
subunits of the NMDA receptor serve as high-affinity 
Ca2+/calmodulin-dependent protein kinase II docking 
sites in dendritic spines on autophosphorylation of Ca2+/ 
calmodulin-dependent protein kinase II. Research [37,38] 
showed a reduction of NR1 and phosphorylated Ca2+/cal- 
modulin-dependent protein kinase II levels in the frontal 
cortex and hippocampus of AD brains. On the other
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Table 1: Selected genes up-regulated in severe AD

1

Gene name Description Chromosomal location

Immunity-related protein
AMIGO2 adhesion molecule with Ig-like domain 2 chr12q13.11
BTG1 B-cell translocation gene 1, anti-proliferative chr12q22
CD24 CD24 molecule chr6q21
CD44 CD44 molecule (Indian blood group) chr11p13
CDC42EP4 CDC42 effector protein (Rho GTPase binding) 4 chr17q24-q25
IFITM1 interferon-induced transmembrane protein 1 (9-27) chr11p15.5
IFITM2 interferon-induced transmembrane protein 2 (1-8D) chr11p15.5
IRF7 interferon regulatory factor 7 chr11p15.5
IFI44L interferon-induced protein 44-like chr1p31.1
IL4R interleukin 4 receptor chr16p12.1-p11.2
IRAK1 interleukin-1 receptor-associated kinase 1 chrXq28
NFKBIA nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, alpha
chr14q13

Metal-related protein
CAMK2B calcium/calmodulin-dependent protein kinase (CaM 

kinase) II beta
chr22q12|7p14.3-p14.1

CALM1 calmodulin 1 (phosphorylase kinase, delta) chr14q24-q31
CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2 chr7q31.2-q31.3
CHGB chromogranin B (secretogranin 1) chr20pter-p12
LOC728320/LTF lactotransferrin/similar to lactotransferrin chr3q21-q23
MPPE1 metallophosphoesterase 1 chr18p11.21
MT1F metallothionein 1F chr16q13
MT1M metallothionein 1M chr16q13
MBP myelin basic protein chr18q23
SCGN secretagogin, EF-hand calcium binding protein chr6p22.3-p22.1
SLC24A3 solute carrier family 24(sodium/potassium/calcium 

exchanger), member 3
chr20p13

SLC7A11 solute carrier family 7, (cationic amino acid 
transporter, y+ system) member 11

chr4q28-q32

ZIC1 zinc family member 1 
(odd-paired homolog, Drosophila)

chr3q24

ZBTB20 zinc finger and BTB domain containing 20 chr3q13.2
ZNF500 zinc finger protein 500 chr16p13.3
ZNF580 zinc finger protein 580 chr19q13.42
ZNF652 zinc finger protein 652 chr17q21.32
ZNF710 zinc finger protein 710 chr15q26.1

Neuropeptide
NMB neuromedin B chr15q22-qter

Ribosomal Protein
LOC644166/LO C644191/LOC728937/RPS26 ribosomal protein S26/similar to 40S ribosomal chr12q13/chr17q21.31/chr2q31.1/

protein S26 chr4q26
SORBS3 sorbin and SH3 domain containing 3 chr8p21.3

Cytoskeleton Protein
COL21A1 collagen, type XXI, alpha 1 chr6p12.3-p11.2|6p12.3-p11.2
CTBP1 C-terminal binding protein 1 chr4p16
CAPZA2 capping protein (actin filament) muscle Z-line, alpha 2 chr7q31.2-q31.3
FLNA filamin A, alpha (actin binding protein 280) chrXq28

Cholesterol metabolism
APOC2/APOC4 apolipoprotein C-II/apolipoprotein C-IV chr19q13.2
APOE apolipoprotein E chr19q13.2
ABCA1 ATP-binding cassette, sub-family A (ABC1), member chr9q31.1

Lipoprotein
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Table 1: Selected genes up-regulated in severe AD (Continued)

GAD2 glutamate decarboxylase 2
(pancreatic islets and brain, 65 kDa)

chr10p11.23

LDLRAP1 low density lipoprotein receptor adaptor protein 1 chr1p36-p35

Binding protein
AEBP1 AE binding protein 1 chr7p13
TAP1 transporter 1, ATP-binding cassette, sub-family B 

(MDR/TAP)
chr6p21.3

UBAP2L ubiquitin associated protein 2-like chr1q21.3

Membrane Protein
HLA-DRB4 major histocompatibility complex, class II, DR beta 4 chr6p21.3
TRHDE thyrotropin-releasing hormone degrading enzyme chr12q15-q21
TMEM92 Transmembrane protein 92 chr17q21.33
SERPINA3 serpin peptidase inhibitor, clade A (alpha-1 

antiproteinase, antitrypsin), member 3
chr14q32.1

Others
CDKN1C cyclin-dependent kinase inhibitor 1C (p57, Kip2) chr11p15.5
GSTM5 glutathione S-transferase M5 chr1p13.3
SPARC secreted protein, acidic, cysteine-rich (osteonectin) chr5q31.3-q32

hand, Ca2+ conveyed proteins CABP1, CACNG3, 
CAMK2B, CAMK1G, CAPZB (in Table 2) that were at low 
expressions in severe AD. Some primary neuron-specific 
transcriptional regulators that may be involved in mediat­
ing early neural development are also zinc finger-based.

Brown et al. found the level of neurofilament gene expres­
sion seems to directly control axonal diameter that in turn 
controls how fast electrical signals travel down the axon 
[39]. Our ICA selected genes (in Table 2): APLP2, 
CYP26B1, NEFH, NPY, NTRK2, SERPINI1, OLIG2 and 
NRSN2, showed that the neurofilament family is low in 
expression in severe AD symptoms presenting at the 
clinic.

To maintain cellular homeostasis, all cells must continu­
ally synthesize new proteins. Ribosomes (polyribosomes) 
are specialized complexes composed of nucleic acids and 
proteins that are responsible for mediating all protein syn­
thesis. Impairments in protein synthesis occur in the ear­
liest stages of AD. They occur in affected cortical regions 
but not the cerebellum, with impairments in protein syn­
thesis apparently mediated by both alterations in ribos­
omal nucleic acids as well as the polyribosomal complex 
itself that suggests a novel role for alterations in protein 
synthesis as a potential mediator of AD pathogenesis [40]. 
See Table 2, the ribosomal protein: CSPG5, C1orf115, 
C20orf149, C9orf16, and HNRPA2/HNRPA3P1 are 
down-regulated in severe AD.

The changes of the cytoskeleton protein expression leads 
to the formation of disease, with actin filament-based 
structures being identified as important players in the 
complex pathology of AD and related dementias. A direct 
interaction between Tau and actin has been shown in

[41,42]; actin may be a critical mediator of Tau-induced 
neurotoxicity in AD and related disorders. These kinds of 
abnormalities also showed in our ICA results for cytoskel­
eton protein. Some genes like COL21A1, CTBP1, CAPZA2 
and FLNA were up-regulated (Table 1), whereas some 
genes like ACTB and SMARCA4 were down-regulated 
(Table 2).

APOE, which has three alleles: APOE ε2, APOE ε3 and 
APOE ε4, is a protein that helps to carry cholesterol and 
fat in the blood. APOE ε4 is regarded as the best known 
genetic risk factor for late-onset sporadic AD [43-47]. 
Aberrant cholesterol metabolism has been implicated in 
AD and other neurological disorders. Oxysterols and 
other cholesterol oxidation products are effective ligands 
of liver X activated receptor (LXR) nuclear receptors and 
major regulators of genes subserving cholesterol homeos­
tasis. LXR receptors act as molecular sensors of cellular 
cholesterol concentrations and effectors of tissue choles­
terol reduction. Following their interaction with oxyster­
ols, activation of LXRs induce the expression of ATP- 
binding cassette, sub-family A member 1, and a pivotal 
modulator of cholesterol efflux. The relative solubility of 
oxysterols facilitate lipid flux among brain compartments 
and egress across the blood-brain barrier [48]. The high 
expression levels of APOC2/APOC4, APOE and ABCA1 
can be seen in Table 1.

In addition, ICA also found some significant genes of 
lipoprotein, binding protein, and membrane protein etc. 
were up-regulated in severe AD (Table 1), such as: GAD2, 
LDLRAP1, AEBP1, TAP1, UBAP2L, HLA-DRB4, TRHDE, 
TMEM92, SPARC and SERPINA3; and some significant 
genes were down-regulated, such as: CABP1, RIMS3, 
PCSK1, RIMS2, GRIN1, MBP, MOBP, PIP3-E, PLD3,
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Table 2: Selected genes down-regulated in severe AD

Gene name Description Chromosomal location

Immunity
CD22/MAG CD22 molecule/myelin associated glycoprotein chr19q13.1

Metal-related protein
CABP1 calcium-binding protein 1 chr12q24.31
CACNG3 calcium channel, voltage-dependent, gamma subunit 3 chr16p12-p13.1
CAMK2B calcium/calmodulin-dependent protein kinase (CaM kinase) II beta chr22q12|7p14.3-p14.1
CAMK1G calcium/calmodulin-dependent protein kinase IG chr1q32-q41
CAPZB capping protein (actin filament) muscle Z-line, beta chr1p36.1
MET met proto-oncogene (hepatocyte growth factor receptor) chr7q31
ZNF365 zinc finger protein 365 chr10q21.2
TFRC transferrin receptor (p90, CD71) chr3q29

Neuropeptide
APLP2 amyloid beta (A4) precursor-like protein 2 chr11q23-q25|11 q24
CYP26B1 cytochrome P450, family 26, subfamily B, polypeptide 1 chr2p13.3
NEFH neurofilament, heavy polypeptide 200 kDa chr22q12.2
NEFL neurofilament, light polypeptide 68 kDa chr8p21
NPY neuropeptide Y chr7p15.1
NTRK2 neurotrophic tyrosine kinase, receptor, type 2 chr9q22.1
SERPINI1 serpin peptidase inhibitor, clade I (neuroserpin), member 1 chr3q26.1
OLIG2 oligodendrocyte lineage transcription factor 2 chr21q22.11
NRSN2 neurensin 2 chr20p13

Ribosomal Protein
CSPG5 chondroitin sulfate proteoglycan 5 (neuroglycan C) chr3p21.3
C1orf115 chromosome 1 open reading frame 115 chr1q41
C20orf149 chromosome 20 open reading frame 149 chr20q13.33
C9orf16 chromosome 9 open reading frame 16 chr9q34.1
HNRPA3/ heterogeneous nuclear ribonucleoprotein A3 pseudogene 1/heterogeneous nuclear chr10q11.21/chr2q31.2
HNRPA3P1 ribonucleoprotein A3

Cytoskeleton Protein
ACTB actin, beta chr7p15-p12
SMARCA4 SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a, 

member 4
chr19p13.2

Oncogene
ABCA2 ATP-binding cassette, sub-family A (ABC1), member 2 chr9q34
ATP6V0C ATPase, H+ transporting, lysosomal 16 kDa, V0 subunit c chr16p13.3
ATP13A2 ATPase type 13A2 chr1p36
BCAS1 breast carcinoma amplified sequence 1 chr20q13.2-q13. 3

Binding Protein
CABP1 calcium-binding protein 1 chr12q24.31

Membrane Protein
RIMS3 regulating synaptic membrane exocytosis 3 chr1pter-p22.2
PCSK1 proprotein convertase subtilisin/kexin type 1 chr5q15-q21
RIMS2 regulating synaptic membrane exocytosis 2 chr8q22.3

Lipoprotein
GRIN1 glutamate receptor, ionotropic, N-methyl D-aspartate 1 chr9q34.3
MBP myelin basic protein chr18q23
MOBP myelin-associated oligodendrocyte basic protein chr3p22.1

Phosphorylation-related Protein
PIP3-E phosphoinositide-binding protein PIP3-E chr6q25.2
PLD3 phospholipase D family, member 3 chr19q13.2
PTPRT protein tyrosine phosphatase, receptor type, T chr20q12-q13
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Table 2: Selected genes down-regulated in severe AD (Continued)

Others
EIF5A eukaryotic translation initiation factor 5A
ISG15 ISG15 ubiquitin-like modifier
RCAN2 regulator of calcineurin 2
RGS4 regulator of G-protein signaling 4
SRD5A1 steroid-5-alpha-reductase, alpha polypeptide 1 

(3-oxo-5 alpha-steroid delta 4-dehydrogenase alpha 1)

chr17p13-p12 
chr1p36.33 
chr6p12.3 
chr1q23.3 
chr5p15

PTPRT, EIF5A, ISG15, RCAN2, RGS4, SRD5A1 (Table 2). 
Especially, some oncogenes like ABCA2, ATP6V0C, 
ATP13A2, BCAS1 had low expression levels in severe AD 
(Table 2).

Significant genes found by PCA
To compare PCA with ICA, the PCA method for finding 
differentially expressed genes proposed by Jonnalagadda 
in 2008 [49] was performed on the same AD microarray 
data. Firstly, we modeled the control microarray data 
(where the samples are the variables and the gene expres­
sion measurements are the observations) using PCA and 
represented the expression profile of each gene as a linear 
combination of the dominant principal components 
(PCs). Then, the severe AD microarray data were projected 
onto the developed PCA model, and the scores were 
extracted. The first 100 most varied genes between the 
scores obtained by control data and severe AD data were 
selected for further biological analysis.

PCA also extracted some significant genes in immunore­
actions, metal protein, membrane protein, lipoprotein, 
neuropeptide, cytoskeleton protein, binding protein, 
ribosomal protein and phosphorylation-related protein. 
But PCA extracted fewer genes than ICA. In immunity- 
related protein, PCA found only two significant genes: 
BCL6 and CD24 had high expression in severe AD. In 
metal-related protein, PCA found many up-regulated 
genes of the metallothionein family like: MT1P2, MT1E, 
MT1F, MT1G, MT1H/MT1P2, MT1X, MT2A; and 
CAMK2A, CALM1 and zinc finger ZBTB20, LDHA, 
LOC643287/PTMA. GPRC5B was the only gene found as 
membrane protein. In the category of lipoprotein, APOE 
was extracted as an important gene. For neuropeptide, 
NGFRAP1 and PPIA were extracted. ATP1B1 is the only 
phosphorylation-related protein found. Many down-reg­
ulated genes of cytoskeleton protein were extracted by the 
PCA method, such as: B2M, COL5A2, CSRP1, COX6A1, 
MAP1A, SPARC, TUBA1B, TUBA1C, TUBB, TUBB2A and 
TUBB2C. And PCA found many ribosomal proteins: 
LOC653737/LOC728501/LOC729402/LOC731567/
RPL21, RPL29, RPL30, LOC342994/LOC651249/ 
LOC729536/RPL34, RPL35, RPL4, RPL9, RPS10, RPS11, 
that were all down-regulated in severe AD, except one 
gene RPL13 that was up-regulated.

Significant genes found by SVM-RFE
By comparing the weights of the support vectors in a 
sequential backward elimination manner, the Support 
Vector Machine Recursive Feature Elimination (SVM-RFE) 
method is widely used in microarray data analysis. In our 
experiments, to keep track of variation in gene expression 
associated with the development of AD, and hence, to 
biologically analyze the significant genes with the devel­
opment of AD, the control data were treated as group 1, 
and the AD case data, at the first stage, were placed in 
group 2. With the use of SVM-RFE, by comparing the data 
in group 1 and group 2, the significant genes were identi­
fied; then the AD case data at the second stage (moderate) 
were treated as group 2, and, by comparing the gene 
expression data between group 1 and group 2, the signifi­
cant genes were extracted. Finally group 2 consists of the 
AD case data at the third stage (severe), by comparing data 
in groups 1 and 2, the significant genes are profiled.

The SVM-RFE method found significant genes in immu­
noreactions such as CD44, CD74, CDC42EP4, CDK2AP1, 
MAL, PTMA, among which CD74 and MAL were not 
found by the ICA and PCA methods. Many metal metab­
olism-related proteins were also selected by the SVM-RFE 
method: MT1F, MT1H/MT1P2, MT1M, MT1X, VEZF1, 
ZBTB20, ZNF91, ZDHHC11, ZHX3. APOC1, USP34 and 
SPARC were extracted in lipoprotein, neuropeptide and 
secreted protein, respectively. In cytoskeleton protein, 
COL21A1, FGFR3, ITGB4, TPPP3, GSN, GFAP, MFAP3 
were found up-regulated in severe AD. In ribosomal pro­
tein, the SVM-RFE method extracted many high expres­
sion genes like: RPL10, RPL13, RPL13A, RPL5, RPS4X, 
LOC387867, and two low expression genes: RNASE1 and 
RPL4. In the category of membrane protein, TMEM123 
and LAMP2 were extracted as important genes. In phos­
phorylation-related protein, PIP4K2A, PDE4C, PEA15, 
PTPN11, PTPRK, ATP8B1, ANP32B, ABCA1, CNP were 
found up-regulated in severe AD. The SVM-RFE method 
also selected some significant oncogenes, TPT1, 
GLTSCR2, GUSBP1, GDF1/LASS1 that were highly 
expressed, as opposed to MCAM that was found to have 
low expression levels in severe AD.

Figure 9 showed the number of the significant genes 
selected by the ICA, PCA and SVM-RFE methods on a dif­
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ferent chromosome. In contrast to PCA and SVM-RFE, ICA 
extracted more significant genes on chromosome 1, 3, 4, 
7, 8, 9, 11, 12, 14, 17, 18, 19, 20, 21 and 22. In particular, 
the genes numbered on chromosome 1, 3, 7 and 20, 
extracted by ICA, were significantly higher than ones 
obtained by PCA and SVM-RFE.

Conclusion
In summary, to the best of our knowledge, this work is the 
first attempt to explore the power of the ICA on analyzing 
AD-related microarray gene expression data. By validating 
and identifying known and novel genes in AD-related 
pathogenesis, it confirms the added value of ICA over PCA 
and the SVM-RFE methods Our results further indicate 
that ICA can give researchers the ability to extract poten­
tially disease-related genes from microarray gene expres­
sion data, and thus to delineate relevant molecular 
pathways of disease pathogenesis. Hence, ICA can help to 
elucidate the molecular taxonomy of AD and enable bet­
ter experimental design to further validate and identify 
potential biomarkers and therapeutic targets of AD.

Methods
Let the n x m matrix X denote the microarray gene expres­
sion data with m genes under n samples or conditions. xij 
in X is the expression level of the j-th gene in the i-th sam­
ple. Generally speaking, the number of genes m is much 
larger than that of the samples n, m>>n. Suppose that the 
data have been preprocessed and normalized, i.e. each 
sample has a zero mean and standard deviation, then the 
ICA model for gene expression data can be expressed as:

Figured9byerthoef tICheAs, iPgnCifAic antd gSeVnMes-RoFnEemacehthcohdros,mroespoemce- 
The number of the significant genes on each chromo­
some selected by the ICA, PCA and SVM-RFE meth­
ods, respectively. The ICA method extracted more 
significant genes on chromosome 1, 3, 4, 7, 8, 9, 11, 12, 14, 
17, 18, 19, 20, 21 and 22. Especially, the genes number on 
chromosome 1, 3, 7 and 20 extracted by ICA were signifi­
cantly higher than those obtained by PCA and SVM-RFE.

And it can also be rewritten in the vector format as:

X = AS (2)

In some documents, m x n matrix X was used to denote m 
genes under n samples. Then the transform, XT, was used 
in the ICA model: XT= AS. So, XT here denoted the same n 
x m matrix in the ICA model.

In the ICA model of microarray data, the columns of A = 
[a1, a2,..., an] are the n x n latent vectors of the gene micro­
array data, S denotes the n x m gene signature matrix or 
expression mode, in which, the rows of S are statistically 
independent to each other, and the gene profiles in X are 
considered to be a linear mixture of statistically independ­
ent components S combined by an unknown mixing 
matrix A. Figure 10 presents the vector framework of the 
ICA model.

The gene expression data provided by microarray technol­
ogy is considered a linear combination of some independ­
ent components having specific biological 
interpretations. Lee and Batzoglou [50], and Schachtner et 
al. [51] gave detailed analyses for matrix S and A. The n-th 
row matrix A contained the weights with which the 
expression levels of the m genes contribute to the n-th 
observed expression profile. Hence the assignment for the 
observed expression profiles with different classes is valid 
for the rows of A. Each column of A can be associated with 
one specific expression mode. For an example of two 
classes, suppose one of the independent expression 
modes sn is characteristic of a putative cellular gene regu­
lation process. It should contribute substantially to one of 
the class experiments whereas its contribution to another 
class experiments should be less, or vice versa. Since the n­
th column of A contains the weights with which sn con­
tributes to all observations, this column should show 
large or small entries according to the class labels. After 
such characteristically latent variables have been 
obtained, the corresponding elementary modes can be 
identified to yield useful information for classification. 
Also, the distribution of gene expression levels generally 
features a small number of significantly overexpressed or 
underexpressed genes that form very biologically coherent 
groups and may be interpreted in terms of regulatory 
pathways [3-5,10,51].

To obtain S and A, the demixing model can be expressed 
as

Y = WX (3)

Where W is an n x n demixing matrix. Figure 11 shows the 
processing of ICA algorithms on microarray gene expres­
sion data.
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Figu rec10 model of microarray gene expression data
ICA vector model of microarray gene expression data. Matrix X denotes the microarray gene expression data with m 
genes under n samples or conditions. The columns of A = [a 1, a2,..., an] are the n x n latent vectors of the gene microarray data, 
where S denotes the n x m gene signature matrix or expression mode, in which, the rows of S are statistically independent to 
each other. Each gene profile provided x(t) obtained by microarray technology that was considered to be a linear combination 
of statistically independent components S that have specific biological interpretations and latent variables A.
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