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ABSTRACT
Nguyen, Thao N., Investigation of Diazaborole Formation and Diazaborole-Linked
Macrocycles with EthylHexyl Ester Substituents. Master of Science (Chemistry), August,
2018, Sam Houston State University, Huntsville, Texas.

Boron-containing polymers and macrocycles are currently an exciting field of study
due to their wide variety of potential applications. The exploration of the dynamic covalent
behavior of 2-phenyl-1,3,2-benzodiazaborole (DAB) under different solvent and
temperature conditions may provide insight into the synthesis of larger diazaborole-based
frameworks. The effects of solvent and temperature on the condensation of DAB were
explored. The results showed that the DAB product formed faster in DMSO than in
toluene. However, DAB formation showed higher percent conversion in toluene. In
addition, Raman spectroscopy was used for in situ reaction monitoring of DAB formation.
By using a calibration curve, we found that the formation of DAB in chloroform at 50 °C
can achieve up to 68% conversion. However, the use of Raman spectroscopy for reaction
monitoring of DAB formation was limited by solubility and by the baseline noise.

Furthermore, our research group is investigating the use of diazaboroles as the
active linking unit in shape-persistent macrocycles. The present study describes the
continuing efforts towards improving the solubility of monomers, oligomeric
intermediates, and macrocyclic products. Ethylhexyl ester functional groups were installed
on the monomer to improve solubility. The results illustrated that although the presence
of branched 2-ethylhexyl ester had a positive effect on solubility of the monomer, the side
chain interactions were not strong enough to overcome the pi-stacking forces of the
macrocycles. The poor solubility of the co-reactant benzene-1,4-diboronic acid (BDBA)

is a limiting factor for the formation of the macrocycle product. To overcome this issue,

v



we investigated the use of BDBA-based esters instead of BDBA. The results revealed that
the reactions between BDBA-based esters with various di- and tetraamines in chloroform
at room temperature were slow and intramolecular reactions to form the macrocycle could
not compete with the stability of the BDBA-based esters.

KEY WORDS: Diazaborole, Dimethyl sulfoxide, Toluene, Temperature, Raman
spectroscopy, Macrocycle, DC,C.
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CHAPTER |
Introduction

1.1 Shape persistent arylene ethynylene macrocycles

Shape persistent arylene ethynylene macrocycles (SPAEMSs) have attracted
noticeable research attention in supramolecular chemistry and materials science because
they possess several advantages compared to their polymeric counterparts.! SPAEMSs are
typically composed of aromatic building blocks, which are linked by alkene or alkyne
bridges. Since the repeating units have limited conformational freedom, their rigid
backbones allow large molecular surfaces to organize into higher order structures.! The
rigidity and planarity of SPAEMs has led to assemblies such as 2D monolayers,? liquid
crystals, and nanotubes with well-defined inner pores.3#

Traditional methods, such as cross-coupling reactions, have been widely applied to
the synthesis of SPAEMSs. The first synthesis of SPAEMs was introduced by Staab and
Neunhoeffer in 1974.> Through a six-fold Stephens-Castro coupling of copper m-
iodophenyl acetylide, the formation of a hexameric phenylene ethynylene macrocycle was

accomplished in one-step (Figure 1).



I CsHsN/N,, heat

@%CCU 4.6% -

Figure 1. Stabb’s synthesis of SPAEMSs.®

However, the irreversible nature of these reactions leads to the formation of
oligomeric, polymeric, and macrocyclic products of various sizes. The chain elongation
competes with macrocyclization, which results in the low yield of the target macrocycles.®
Hence, the overshooting to side products poses a problem during the synthesis of

macrocycles using this method.

1.2 Dynamic covalent chemistry

Recently, dynamic covalent chemistry (DC\C) has emerged as a strategy to
assemble thermodynamically stable macrocyclic architectures.” It involves reversible
covalent bond formation, which is necessary to facilitate equilibrium between monomers,
oligomers, and macrocycles. During the reaction, these components experience dynamic
exchange with each other. Overshoot products are reintegrated into the process, allowing
the system to “self-correct” to yield the most thermodynamically stable products, which

are dependent on the bonding angles of the rigid monomer units (Figure 2).’



DC,C C DC,C

———
— —
O —

\QJ macrocycles

oligomers

monomers

Figure 2. DC\C and ring-chain equilibrium lead to the most thermodynamically stable
macrocyclic product.

Typical dynamic covalent reactions involve (1) the formation of new functional
groups and (2) exchange reactions between reacting species to give products having
identical bond types.®® The types of dynamic covalent bonds may be divided into three
categories: C-C, C-heteroatom, and heteroatom-heteroatom.®

Well-known covalent reactions that involve the formation of the dynamic C-C
bonds include aldol, Diels-Alder, and Friedel-Crafts reactions. More recently, olefin and
alkyne metathesis have been widely applied to the synthesis of complex macrocycles and
cages. The assembly of SPAEMSs using dynamic alkyne metathesis was first reported by
Zhang and Moore in 2004 (Figure 3).1° The precipitation of the diarylacetylene byproduct

facilitates a shift in the reaction towards the macrocycle products.
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Figure 3. Synthesis of a SPAEM using alkyne metathesis.°

Imine formation between aldehydes and amines is a classic example of a C-
heteroatom dynamic covalent reaction. Chavez and Dichtel have recently reported the
formation of imine-linked macrocycles (Figure 4).1' The starting materials are converted
to the macrocycles, which aggregate into layered structures, driving macrocycle formation

in high yield.
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Figure 4. Synthesis of an imine-linked macrocycle.**
Dynamic heteroatom-heteroatom bonds have received great research attention,

specifically the B-O bond. Commonly used reactions for the formation of the B-O bond



include boroxine anhydride formation from the self-condensation of boronic acids, and
boronate ester formation from the condensation of boronic acids with diols (Figure 5). The
use of boronic acids in the construction of macrocycles and polymeric systems will be

discussed in the subsequent section.

a) Self-condensation of boronic acids

R
OH -3H,0 0-B
/ / \

3 R-B R-B O
OH 0-B

R

boroxine anhydride

b) Condensation of boronic acids and diols

OH HO R’ -2H,0 fe
R-B + I R-B I
OH o)

HO”™ R

Rll
boronate ester

Figure 5. Dynamic B-O bond.

1.3 Boronic acid in DC,C

In general, the unique and advantageous chemistry of boronic acids arise from their
properties as Lewis acids. Due to the low valency and the empty p orbital of the boron
center, boronic acids can accept electron density from most Lewis bases, such as fluorides
or hydroxides, or electron-donating centers, such as nitrogen or oxygen.*?> The binding of
a Lewis base at the boron center results in a change in hybridization from sp? to sp?, with

the boronic acid becoming a tetrahedral anionic hydroxyl coordinate species (Figure 6).1?

/OH OH _/OH
R-B ~ R-B-OH
OH H3O0 OH

Figure 6. Boronic acid in the anionic tetrahedral form.



As discussed in section 1.2, boronic acids can form esters when reacted with diols.
The boronate esterification has played an important role in the development of COFs.
COFs are a class of porous materials that contain lightweight elements (H, B, C, N, and
O) and strong covalent bonds. Porous COFs have high thermal stability and high surface
area.’®* They have shown potential applications in gas storage,® catalysis,'* and separa-
tion.’> Yaghi and his research group were the first to report the successful synthesis of

COF-1 (Figure 7) through boroxine formation and COF-5 through boronate esterification

(Figure 8).1

HO.__OH
B

/B\
o™ 0
B. _B
T Lo . Ly
5" 58
o.__0O o.__0O
B B

COF-1

o0 00
5%
O\B/O

-H,0

B
HO™  ~OH

Figure 7. Synthesis of COF-1 through boroxine formation.



COF-5

Figure 8. Synthesis of COF-5 through boronate esterification.



These reactions have also been well studied for the preparation of macrocycles,
cages, and polymeric frameworks. Northrop and his group reported the synthesis of soluble
dioxaborole-based macrocycles from linear bis-catechols and benzene-1,4-diboronic acid
(Figure 9).17 The increased m-conjugation in these rectangles showed absorption and

fluorescence properties.
CeH130  OCgHq3
o._0O
B
/B\
(O Ne)
Hiz

X X

QX
Q Q O\ /O
B
HO OH HO OH  CDCly/CD3OH
. -
10:1
/B\
o o
o=

X
HQ OH
HO OH
X
CgHi30  OCq
X =single bond, —=—
Figure 9. Synthesis of macrocycles via boronate ester formation.
Also through boronate esterification, Beuerler and coworkers synthesized molec-

ular cubes by crosslinking of catechol-functionalized tribenzotriquinacenes and diboronic

acids in a one-pot procedure (Figure 10).®

HO. __OH
B molecular
R sieves
+ - molecular cubes
R THF, RT
B.
HO”™ "OH
R = H, n-butyl

Figure 10. Synthesis of molecular cubes via boronate ester formation.
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Boronic acids can also self-assemble with diamines to form diazaboroles.
Diazaboroles represent a sub-category of B-N containing heterocyclic compounds. The
formation of the B-N bonds has been explored for the synthesis of small molecule-based
systems due to their potential application in linear and nonlinear optics,*® signal

amplification in sensory materials,?® and in organic light emitting devices.?

1.4 Diazaboroles

2-Phenyl-1,3,2-benzodiazaborole, also known as diazaborole (DAB), is an
aromatic organic molecule that consists of two phenyl rings and a 5-membered B-N
containing ring. Due to their extended m-conjugation, diazaboroles have attractive optical?
and electrochemical properties.?3

Diazaboroles are formed through the condensation of o-phenylenediamine (OPD)
and phenylboronic acid (PBA) (Figure 11).2* In order to drive the equilibrium toward the

DAB product, water can easily be removed by using a Dean-Stark trap.

© + Q _— /B\ + 2 Hzo

HN" NH
_B. H,N  NH,
HO™ “OH
OPD

PBA
DAB

Figure 11. Formation of DAB.

The incorporation of DAB sub-unit has been used in the construction of polymers,
and macrocycles. However, there are very few reported examples. In 1962, Marvel and
his group reported syntheses of the first diazaborole polymers (Figure 12).2° These

polymers exhibit good thermal stability.
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a) n-Bu—Q /O—n-Bu
/B B\
O-Q
Hl/\l I\\IH
+ —_— B B

“N N
H H

HoN NH,

n-Bu/O\I?) $/O\n-Bu
n-Bu” ~n-Bu / . . \

“N N~
H H

H,N NH,
Figure 12. Synthesis of diazaborole-based polymers.

Since then, there have been reports of the formation of various oligodiazaboroles

by condensing boronic acid derivatives with suitable amines (Figure 13a-b).2
a) H H
/OH HoN NH, /N N\
O 00— OO
) N N
OH HoN NH, N N

NH,

°) H H
HO OH N N
HO OH NH, N N

H H

Figure 13. Oligodiazaborole-based materials.

Recently, EI-Kaderi and his research group reported the syntheses of three highly
porous diazaborole-linked polymers (DBLPs) by condensation reactions between a

hexaamine and aryl boronic acids (Figure 14).22 These polymers demonstrated high gas
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uptake (CO2 and H>), high surface area and high thermal stability. In addition, they are

emissive upon UV irradiation, which could be useful for sensing anions.

HO.__OH
B

130 °C, DMF
3 days

HN_ _NH
B

H O H
N\I? N
NH

B~
\
HN
DBLP

Figure 14. Synthesis of a highly porous DBLP.

1.5 Previous work
Previously a diazaborole-based rectangular-shaped macrocycle (DBM-TM) was
synthesized by Sanjaya Lokugama using a dimethyl tetraamine monomer (TA-DM) and

benzene-1,4-diboronic acid (BDBA) (Figure 15).%’
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NH2 N\ /N
HO. _OH BOB
NH2 B N/ \N
DMSO-dj H H
I + W’ l I
H H
H,N I N, N
HO" "~ “OH O /BOB\ O
H,N N N
2 BDBA H H
TA-DM DBM-TM

Figure 15. Synthesis of a diazaborole-based rectangular shaped macrocycle, DBM-TM.

The reaction was run in dimethyl sulfoxide (DMSQO) because neither the BDBA nor
the products were soluble in other common aprotic solvents. These limitations have
inhibited characterization of intermediates during the reaction. Improving the solubility
may not only help the self-assembly of the reactants, but also provide insight into the
dynamics and kinetics of macrocycle formation.

To address the solubility limitation of intermediates during monomer and
macrocycle synthesis, we propose to introduce solubilizing groups. Previously, a triethyl-

ene glycol (Tg) based ester was examined by Chamila Manankandayalage (Figure 16).2

R § § R
O
N N
H H
Il It
H H
N, N
T e )= 1)
R ” l’){ R

DBM-TTg
R= COZTg
Tg= j"—f\/o\/\o/\/o\

Figure 16. Diazaborole-based Tg functionalized macrocycle (DBM-TTQg).
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Chamila observed the successful formation of the Tg functionalized macrocycle
(DBM-TTQg) in DMSO as well as toluene. However, neither the macrocycle nor the
oligomeric intermediates were found to be soluble in chloroform. The solubilizing power
of the Tg ester sidechains was not enough to overcome the pi-pi stacking interactions

among the aromatic cores of the macrocycles.?

1.6 Aims of this research

In general, reflux under harsh conditions has been applied to the synthesis of
various diazaboroles. However, the effect of elevated temperature and different organic
solvents on product formation has yet to be fully realized. Understanding the impact of
these conditions on diazaborole formation allows for their effective synthesis. Therefore,
the influence of solvent and temperature on diazaborole formation was investigated.
Moreover, real-time reaction monitoring of diazaborole formation using Raman
spectroscopy as a convenient, cost-effective, and portable method was explored.

We introduced 2-ethylhexyl ester side chains as substituents to the tetraamine
monomer in hopes of improving the overall solubility of the macrocycle unit. In
addition, we investigated methods to enhance solubility of the co-reactant BDBA by

using soluble BDBA-based esters.
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CHAPTER 11
Examination of the Synthesis of 2-Phenyl-1,3,2-Benzodiazaborole

2.1 Introduction

In the late 1950s, Letsinger demonstrated that 2-phenyl-1,3,2-benzodiazaborole
(DAB, 1) formed readily by refluxing o-phenylenediamine (OPD, 2) and phenylboronic
acid (PBA, 3) in toluene.?* Since then, many studies have been reported using this method
(toluene, reflux) as a simple and efficient way to synthesize various diazaboroles.”2%-32
During the reflux, the azeotropic removal of water from the reaction medium facilitates
product formation by shifting the equilibrium.

Solvents may affect reactions by stabilizing reactants, intermediates, or products,
which can limit reversibility of the reaction.® Previously, our research group has examined
the reaction of benzodiazaborole formation in CDCl; and DMSO-ds (Figure 17).2” The
reaction carried out in CDCls at 50 °C resulted in 72% benzodiazaborole formation after
200 h. On the other hand, the reaction carried out in DMSO-de at 100 °C established
equilibrium after 60 h, ultimately reaching 80% conversion.

CDCl3, 50 °C
H,N

H
pH or N
O ) e O e
OH H,N DMSO-d,, 100 °C N

H
PBA
OPD DAB

Figure 17. Benzodiazaborole formation in CDClz at 50 °C and in DMSO-ds at 100 °C.

2.2 Objectives
In order to optimize the yield of DAB, we need to know how different solvents and
temperature affect the reaction. Although toluene and DMSO are commonly used solvents

for diazaborole synthesis, their effect on diazaborole formation under milder conditions
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were unknown at the time. 'H NMR was used to monitor the reaction in each solvent,

toluene and dimethyl sulfoxide, at 80, 100, and 120 °C oil-bath temperatures (Figurer 18).

/OH HoN solvent /H
O+ D) s (8,10 e

OH HoN temperature N

OPD H

PBA DAB

Figure 18. The reaction of PBA and OPD under different solvents and temperature
conditions.

Additionally, even though a number of studies have been reported regarding diaza-
boroles, there are very few reports of the in situ reaction monitoring of its formation.
Considering its advantages, Raman spectroscopy was utilized for real-time reaction

monitoring. These efforts will be described in this chapter.

2.3 Results and discussion

2.3.1 The influence of solvents and temperature on DAB formation

Initial attempts to examine the formation of DAB between PBA and OPD were
performed in toluene-ds. To begin, PBA was mixed with a stoichiometric amount of OPD

in toluene-ds and heated to 80 °C (Figure 19).

OH HoN toluene-dg H
O D e T e
OH H,N 80 °C N

PBA OPD DAB

Figure 19. The reaction of PBA and OPD in toluene-ds at 80 °C.

!H NMR analysis provided both qualitative and quantitative evidence of the
conversion of PBA and OPD to DAB. The reaction progress was monitored by integrating
the change of the aromatic signals corresponding to OPD (Ha.) and DAB (Hb) (Figure 20).

These signals were chosen because they are distinct and well separated from the others,
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which allows for the quantification of conversion. The consumption of the starting material

OPD (Ha) and formation of the product DAB (Hp) was observed.

Odr ey
N
N HoN
DAB OPD
Hb
70 h ~ MMIA A
55h . M A PV
46 h A WA o
32h N
26 h WA
21h A H,
9h BV
7h . AU VW A
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45h o " o
4 h VSV A A MU
3.5h - o A
25h s e e
2h BTN IS e
15h o VIV JUN TV
1h SN MU VIV
0.5h P o B
Oh P ML Ju
7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2 6.1
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Figure 20. Partial *H NMR spectra (aromatic region) for DAB formation in toluene-ds at

80 °C.

A similar procedure was carried out in toluene-dg at 100 and 120 °C and in

DMSO-ds at 80, 100, and 120 °C. The percent conversions are summarized in Figure 21.
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Figure 21. Formation of DAB at a) 80, b) 100 and c) 120 °C.

Figure 21 shows that the starting materials were consumed faster in DMSO
compared to toluene. DMSO is a very polar, aprotic solvent and is capable of accepting
hydrogen bonds. This can help stabilize the charged intermediates (and transition states)

and facilitate proton transfers during the reaction, which results in an increase in rate.
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As time progressed, however, the formation of DAB was greater in toluene (Figure
22). The reaction reached 100% conversion after heating for 23 h at 120 °C oil-bath. Since
toluene is a less hygroscopic solvent, increasing the reaction temperature may have allowed
water to evaporate from the system more easily than from DMSO, helping shift the
equilibrium toward the product side. For the reaction in DMSO, the increasing presence
of water in the medium is evident due to the increasing integral values at 6 3.32 ppm (Figure

23). We hypothesized that this caused the reactions to establish equilibrium at ~70%

conversion.
Toluene DMSO
100% 100%
= 80% = 80%
n / » —_
o 60% o 60%
> >
5 5
o 40% o 40%
= =
] (] {
° 20% © 20% O
(] (]
o b o
0% ¢ 0%
0 20 40 60 0 20 40 60
Time (h) Time (h)
—e—380°C —e—100°C 120 °C —e—80 °C 100 °C 120 °C

Figure 22. Formation of DAB in toluene-ds (left) and DMSO-ds (right).
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Figure 23. Partial *H NMR spectra for the reaction in DMSO-ds at 120 °C with
increasing integral values of the water signal.

The results in this experiment are similar with earlier studies done in DMSO by
Sanjaya Lokugama,?’ where DAB formation in DMSO at 100 °C only reached ~80% after
60 h of reaction. These results further support that the presence of water in hygroscopic
solvents hinders the complete formation of diazaborole.

The use of NMR spectroscopy for reaction monitoring of organic syntheses is
widely applied because it is powerful and sensitive. However, it often requires complex
sample preparation and serial analysis steps that are time consuming. In addition, con-

ventional NMR instruments are not portable and expensive. Raman spectroscopy is a
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technique that provides the potential for portable, sensitive, and real-time analysis of
organic reactions.

2.3.2 Monitor DAB formation using Raman spectroscopy

Raman spectroscopy probes vibrational transitions by exciting the sample with an
intense beam of light, and monitoring the inelastic scattering of that light.*® It has become
a technique for in situ reaction monitoring in chemical syntheses. The chemical reaction
investigated in this study mainly involves three compounds that may be Raman active, the
starting materials OPD and PBA and the target product DAB. During the reaction, the
main structural molecular change is the conversion of C-B-O into C-B-N. As a result, the
appearance and disappearance of peaks or change in intensities of the peaks associated with
the structural changes will be utilized for reaction monitoring.

In order to mitigate the influence of polar aprotic solvents on DAB formation and
also to ensure the greater solubility of all participating analytes, chloroform was chosen
over DMSO and toluene. Chloroform is relatively nonreactive and will not affect the
working solutes. Since room temperature condensation of diazaboroles in chloroform is
relatively slow,”% the temperature is elevated for this reaction to increase the rate.

The first set of experiments was carried out to obtain Raman spectra of pure
reactants and products (OPD, PBA, and DAB) and pristine chloroform (Figure 24).
Raman spectra were collected using the assembled Raman system with the Bayspec probe
shown in Figure 25. The Raman spectrum of DAB in Figure 24 shows Raman-active
stretching mode at 850 cm™ while the OPD and PBA starting materials show minimal
Raman activity in this area. In addition, the peak at 1016 cm™ is overlapping with

neighboring peaks and the one at 1426 cm™ had baseline correction complications.
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Therefore, the peak at 850 cm™ was identified as a potential signal to monitor reaction

progress.

1426 cm™

850 cm™*
-1
1016 cm

relative Raman intensity

saturated DAB
(~0.5 M)
0.5 M PBA

0.5 M OPD

800 1000 1200 1400 chloroform
Raman shift (cm)

Figure 24. Raman spectra for OPD, PBA, and DAB in chloroform and pristine
chloroform. The spectra were offset for clarity.

Figure 25. a) Raman spectrometer set-up for Raman sampling. b) During the reaction,
the glass vial was insulated in the aluminum block heaters to maintain the temperature.
c¢) The glass vial was centered to the laser probe tip for Raman sampling. d) A black
velvet fabric was used to cover the glass vial and the probe tip to avoid light interference
during the analysis.
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With this signal in mind, the reaction was ran at 308 mM in chloroform in a glass

vial. The reaction was heated to 50 °C with stirring and Raman spectra were obtained over

time (Figure 26).
HoN H
OH 2 CHCls N
O+ WD o O30 - 2w
OH H,N 50 °C N
OPD
PBA DAB

Figure 26. The reaction of PBA and OPD in chloroform at 50 °C.

The Raman spectra obtained during the reaction of PBA and OPD are shown in
Figure 27 (top left). Normalization was performed using Microsoft Excel, where the
baseline (831 cm™) was set to zero near the peak of interest (850 cm™) and the solvent peak
(1215 cm™) was set to 1 (Figure 27, top right). The changes in Raman intensities at 850
cm? (Hsso) were then plotted versus time (Figure 27, bottom right). The sharp change in
Raman intensity during the first 12 h of the reaction suggests the relatively fast product
formation. Since little change was observed in the Raman signal after 12-38 h of reaction,
the reaction may have established equilibrium. Molecular sieves (3 A) were added at the
48 hour mark in an attempt to remove the water byproduct and shift the reaction to the
products. This led to the formation of a white precipitate at 56 h of reaction. After 68 h,
the reaction mixture became more turbid, indicating the formation of more precipitate. The
solution turbidity increases Rayleigh scattering, which interferes with the Raman signal
detection by varying the baseline. Therefore the reaction vial was removed from heating
at the 68 h mark. The precipitate was isolated (see Experimental Methods) and identified

as DAB (61% yield) using *H NMR.
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Figure 27. Raman spectra during the formation of DAB (308 mM); top left: raw data; top
right: normalized; bottom left: zoom; bottom right: peak heights at 850 cm™ vs. time.

Since the addition of molecular sieves seemed to help with product formation, the
experiment was repeated with the inclusion of molecular sieves (3 A, 2 equiv by mass
relative to PBA) at the onset. Spectra were obtained every 2-4 h to better observe the
change in product formation during the first 12 h of reaction (Figure 28, top left). Similar
normalization was performed (Figure 28, top right) and the changes in Raman intensities

at 850 cm™ (Hsso) were plotted versus time (Figure 28, bottom right).
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Figure 28 (bottom right) shows a gradual change in Raman intensities during the
first 30 h of reaction. After 49 h, the reaction mixture became turbid due to precipitation
and the Raman spectrum obtained had a less intense solvent signals as well as the signal at
850 cm than the same bands recorded at 24 h of reaction. The turbidity of the solution
leads to the decrease in the amount of product exposed to the light coming from the laser.
This causes the intensity of Raman scattering to reduce. After 73.5 h, the reaction mixture
became very turbid and therefore, was removed from heating. The precipitate was isolated

(see Experimental Methods) and identified as DAB (57% yield) using *H NMR.
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Figure 28. Raman spectra during the formation of DAB (308 mM) in presence of
molecular sieves at the onset; top left: raw data; top right: normalized; bottom left: zoom;
bottom right: peak heights at 850 cm™ vs. time.

For the reaction with molecular sieves added at the onset, DAB formation was fast
within the first 6 h of reaction (Figure 29, right). After 24 h, small changes in Raman in-

tensities were observed. The inclusion of molecular sieves at the onset allowed for the

gradual removal of water from the reaction medium, leading to the continuing shift in
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equilibrium to the right of the reaction shown in Figure 26. However, this resulted in little

change in reaction outcome (Figure 29).

0.4
0.3
I§ 0.2 sieves added at 48 h
0.1 sieves added at the onset
0
0 20 40 60 80

Time (h)

Figure 29. Peak heights at 850 cm™ vs. time for the reactions with molecular sieves
added at 48 h and at the onset.

In an attempt to quantify DAB formation in solution, a calibration curve was ob-
tained to relate the Raman intensity to units of concentration. To achieve this, solutions of
DAB having various concentrations were prepared and measured. The spectra were
normalized in the same manner, where the baseline (831 cm™) was set to zero near the peak
of interest (850 cm™) and the solvent peak (1215 cm™) was set to one. When the signal
intensity at 850 cm™ (Hsso) was plotted against concentration [DAB], it showed a linear

relationship (Figure 30).

0.16
[DAB] Hsso
(mM) (relative Raman intensity)
0.12
0 0
6.25 0.010 I£ 0.08
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y =0.00142x + 0.00066
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100 0.141 0 20 40 60 80 100
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Figure 30. Peak heights at 850 cm™ for various DAB dilutions (left) and calibration curve
(right).
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A least linear squares fit for the data in Figure 30 yielded the concentration
calibration equation shown on the graph, which can be written in terms of the peak height
Hsso and concentration [DAB] for each solution, as shown in the equation below.

Hgso = 0.0014 [DAB] + 0.00066 (Equation 1)

The equation can be rearranged in terms of DAB concentration.

__ Hgso— 0.00066 .
[DAB] = ~ooois (Equation 2)

Using Equation 2, the concentration of DAB was estimated for the first reaction
between OPD and PBA, where molecular sieves were added at 48 h of reaction in Table
1. From this data, its ratio with the expected concentration of the product (308 mM) gives
percent conversion values. Since the reaction mixture showed turbidity at 56 h, the
saturation concentration of DAB is estimated to be less than or equal to 190 mM.

Table 1

Raman data for the reaction of OPD and PBA in chloroform (308 mM)

Time Haso [DAB] Conversion
(h (rel. Raman intensity) (mM) (%)
Oh 0 0 0%

12 h 0.24 173 56 %

24 h 0.25 179 58 %

36 h 0.27 190 62 %

48 h 0.25 179 58 %

56 h 0.27 190 62 %

68 h 0.29 209 68 %

Similarly, the concentration of DAB was estimated for the second reaction, where

molecular sieves were included at the onset (Table 2). Since the reaction mixture showed
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turbidity at 49 h, the saturation concentration of DAB is estimated to be in between 169 to
181 mM. Due to the surface of the molecular sieves, their presence at the onset induced
crystallization, causing DAB to precipitate sooner than the previous experiment.

Table 2

Raman data for the reaction of OPD and PBA in chloroform with the inclusion of

molecular sieves at the onset (308 mM)

Time Heso [DAB] Conversion
(h) (mM) (%)
Oh 0.00 0 0%
2h 0.09 61 20%
4h 0.13 90 29%
6h 0.15 106 34%
10 h 0.18 130 42%
24 h 0.23 163 53%

29.5h 0.24 169 55%
49 h 0.25 181 59%

73.5h 0.27 190 62%

Despite the change in turbidity of the reaction mixture, DAB formation in these
conditions is estimated to reach up to 68% conversion. These results are similar with earlier
studies of DAB in chloroform at 50 °C, where DAB reached 70% after 150 h.2” This means
that using the solvent peak at 1215 cm™ as internal standard, variation in the laser intensity
can be corrected for and change in turbidity of the reaction mixture can be overcome. Also,
the isolated yield of pure DAB for these reactions, which are 61% and 57%, respectively,

are in agreement with the estimates.
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It should be noted that the above concentrations (>100 mM) are not in the range of
the calibration standards (1-100 mM), and this is only an estimate for the amount of DAB
formed in the reaction mixture. Therefore, a new set of experiments was performed at a
lower concentration within the range of the calibration standards. Equimolar amounts of
OPD and PBA (100 mM) in chloroform were allowed to react at 50 °C and Raman spectra
were obtained over time (Figure 31, top left). At the 68 h mark, unlike the previous reac-
tions, a red precipitate was observed, indicating side reactions may have taken place. The
reaction vial was then removed from heating. Normalization at the baseline (831 cm™)
near the peak of interest (850 cm™) and the solvent peak (1215 cm™) was performed using
Microsoft Excel (Figure 31, top right). The changes in Raman intensities at 850 cm™ were

plotted versus time (Figure 31, bottom right).
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Figure 31. Raman spectra during the formation of DAB (100 mM); top left: raw data; top
right: normalized; bottom left: zoom; bottom right: peak heights at 850 cm™ vs. time.

Using Equation 2, the concentration of DAB was estimated (Table 3).
Table 3

Raman data for the reaction of OPD and PBA in chloroform (100 mM)

Time Heso [DAB] Conversion
(h) (mM) (%)
Oh 0.000 0 0%
2h 0.017 11 11%
4h 0.054 38 38 %

(continued)
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Time Haso [DAB] Conversion
(h) (mM) (%)

10 h 0.074 52 52 %

22 h 0.079 56 56 %

47 h 0.080 57 57%

67 h 0.094 67 67 %

The reaction was repeated with the inclusion of molecular sieves at the onset.

Similar data processing was performed to obtain the data shown in Figure 32.
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Figure 32. Raman spectra during the formation of DAB with molecular sieves (100 mM);
top left: raw data; top right: normalized; bottom left: zoom; bottom right: peak heights at
850 cm? vs. time.
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Using Equation 2 established from the calibration curve, the concentration of DAB
was estimated (Table 4).
Table 4
Raman data for the reaction of OPD and PBA in chloroform with the inclusion of

molecular sieves at the onset (100 mM)

Time Heso [DAB] Conversion
(h) (mM) (%)
Oh 0.000 0 0%
2h 0.013 9 9%
4h 0.047 33 33%
10 h 0.051 36 36%
22 h 0.068 48 48%

47 h 0.083 59 59%
67 h 0.085 60 60%

Similarly, DAB formation under these conditions is estimated to reach up to 67%
conversion. Overall, these results are in agreement with the results of the reaction
monitoring using *H NMR. However, the baseline noise in the Raman experiments is
almost as large as some of the signals. This will limit not only the accuracy for the
estimates of percent conversions, but also the range of concentrations that may be used for
reaction monitoring.

The incomplete conversion of OPD and PBA to DAB may be due to limitation on
the stability of the product under these conditions. This prediction was examined by
heating DAB in CDCls at 50 °C and *H NMR spectra were obtained for 10 days (Figures
33 and 34). The 'H NMR spectra reveal that peaks corresponding to OPD (Hjx) and

boroxine (4, Ha and Hcq), which is an anhydride form of PBA, appear over time. This
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indicates that hydrolysis of the DAB occurred. Although no water was added to the DAB
sample, ambient moisture or water present in the deuterated solvent caused the molecule
to hydrolyze overtime. By integrating the signals related to DAB (7.74 ppm, Hp) and those
of boroxine (8.25 ppm, Ha), hydrolysis of DAB was estimated to be 12%. The result
suggests that the potential reversibility of the DAB in solution under these conditions
precluded the forward reaction from going to completion. Future investigations may

involve the addition of water to the DAB sample to examine the equilibration point of the

reaction.
H H,N
N CDCl; 2 OH
O 10 =2 " - O
” 50 °C HoN CBA OH
DAB OPD
_B.
0 "0

Figure 33. DAB was heated in CDCls at 50 °C.
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Figure 34. Partial *H NMR spectra of DAB in CDCls at 50 °C for 10 days.

2.4 Conclusions

In summary, DAB formation is influenced by the nature of the solvent and
temperature. The starting materials were consumed and products formed faster in DMSO
than in toluene because DMSO is more polar, which results in stabilization of charged
intermediates. This can help stabilize the charged intermediates and facilitate the proton
transfers during the reaction, which results in an increase in rate. However, the percent

conversion was lower in DMSO since the water byproduct was less able to leave the
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reaction medium under these conditions. As a result, the reactions in DMSO established
equilibrium at ~70% conversion. On the other hand, DAB formation favored reaction
conditions in less polar toluene and at higher temperatures, where complete formation of
DAB can be achieved within 23 h reaction time at an oil-bath temperature of 120 °C.

By using a calibration curve, product formation was determined from Raman
spectral data. The saturation concentration of DAB is estimated to be less than or equal to
190 mM in chloroform at 50 °C. The use of molecular sieves had little effect in the overall
yield of DAB. However, their presence in the reaction medium induces crystallization,
thus decreasing the homogeneity of the reaction mixture. Using solvent as an internal
standard, variations due to the change in turbidity of the reaction mixture can be overcome.
The reactions between OPD and PBA in chloroform at 50 °C can achieve up to 68%
conversion. The potential reversibility of DAB due to presence of water in the reaction

medium may hinder the complete formation of DAB.

2.5 Experimental

All starting materials and reagents were purchased from commercial sources
(Frontier Scientific, Alfa Aesar, Macron, J.T.Baker, and Cambridge Isotope Laboratories)
and used without further purification, unless otherwise mentioned. The NMR solvents,
CDCls, toluene-ds and DMSO-ds, were stored over activated 3 A molecular sieves. These
sieves were activated by heating at 130 °C under vacuum for 3 hours.

!H NMR spectra were collected using JEOL Eclipse 300+ spectrometer. The
Raman spectra were collected using a BaySpec Agility 785 nm Raman spectrometer.

Reactions in different solvents and temperatures. An equimolar amount of o-

phenylenediamine (OPD, 4.0 mg, 0.037 mmol, 1 equiv) and phenylboronic acid (PBA, 4.5
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mg, 0.037 mmol, 1 equiv) were mixed inan NMR tube in toluene-ds (0.8 mL). The reaction
tube was submerged in an oil bath at 80 °C. H NMR spectra were obtained over time.
This reaction was repeated (using the same amounts) in the same solvent at oil-bath
temperatures of 100 and 120 °C, and in DMSO-ds at oil-bath temperatures of 80, 100, and
120 °C.

Synthesis of 2-phenyl-1,3,2-benzodiazaborole (DAB, 3). A mixture of OPD
(0.68 g, 6.2 mmol, 1 equiv) and PBA (0.75 g, 6.2 mmol, 1 equiv) were dissolved in toluene
(50 mL) and refluxed using a Dean-Stark trap for 20 h. Then, the solution was concentrated
and cooled to room temperature. The resulting crystals were isolated by vacuum filtration
and washed with cold toluene (10 mL) and cold hexane (5 mL) to give a white solid (0.94
g, 78%). 'H NMR (301 MHz, CDCls) & 7.75-7.72 (m, 2H), 7.46-7.41 (m, 3H), 7.16-1.10
(m, 2H), 7.00-6.95 (m, 2H), 6.78 (br. s, 2H).

Pure solutions in chloroform. Each of the pure solutions of OPD, PBA, and DAB
was freshly prepared in a glass vial. OPD (0.5 M) was prepared by dissolving OPD (540.5
mg, 0.005 mol) in chloroform (10 mL) in a glass vial (20 mL). PBA (0.5 M) was prepared
by dissolving PBA (121.9 mg, 0.001 mol) in chloroform (2 mL) in a glass vial (20 mL).
A saturated solution of DAB (~0.5 M) was prepared by mixing DAB (194.0 mg, 0.001
mol) in chloroform (2 mL) in a glass vial (20 mL). Raman spectra were obtained and
exported to Microsoft Excel for processing.

Reaction in chloroform at 50 °C (308 mM). PBA (333.4 mg, 3.083 mmol, 1
equiv) and OPD (375.9 mg, 3.083 mmol, 1 equiv) were dissolved in chloroform (10 mL)
in a 20 mL glass vial. The reaction mixture was stirred at 50 °C. The reaction progress

was monitored using the Raman spectrometer. After 48 h of reaction, molecular sieves (3
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A, ~800 mg) were added. At 68 h of reaction, the glass vial was removed from heating.
The white precipitate that formed was filtered and washed with a small amount of
chloroform. This product was collected as crop 1 and identified as DAB (362.6 mg, 61%
yield) using *H NMR in CDCl; (Figure 35). Any crystals formed on the edge of the filter
paper that were visibly different in color were collected as crop 2 (46.7 mg). All washings
and filtrate were combined and solvent was removed to obtain crop 3 (202.3 mg). *H NMR
analyses of crops 2 and 3 were obtained in CDCls. The results revealed that these two
crops contained mostly DAB, with a small amount of boroxine (4) and starting material

OPD.
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Figure 35. Partial *H NMR spectra of the isolated products from the reaction of OPD and
PBA (308 mM) in chloroform at 50 °C.

Reaction in chloroform at 50 °C with molecular sieves at the onset (308 mM).
PBA (333.4 mg, 3.083 mmol, 1 equiv) and OPD (375.9 mg, 3.083 mmol, 1 equiv) were
dissolved in chloroform (10 mL) in a 20 mL glass vial. Molecular sieves (3 A: 754.7 mg)
were added to the reaction mixture, which was stirred at 50 °C. The reaction progress was
monitored over time using the Raman spectrometer. At 73.5 h of reaction, the glass vial
was removed from heating. After the removal of the molecular sieves, the white precipitate

that formed was filtered and washed with a small amount of chloroform. This product was
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collected as crop 1 and identified as DAB (340.3 mg, 57 % yield) by 'H NMR analysis in
CDCls. All washings and filtrate were combined and solvent was removed to obtain crop
2 (109.5 mg). *H NMR analysis of crop 2 in CDClIs revealed the presence of DAB and a
small amount of boroxine (4) and OPD.

Serial dilutions for DAB concentration calibration curve. Chloroform was
heated to 50 °C for 1 h before use. A 100 mM DAB stock solution was prepared by
completely dissolving DAB (194.0 mg, 1.0 mmol) to the mark with 50 °C chloroformin a
volumetric flask (10 mL). From this stock solution, DAB calibration standards ranging
from 6.25 to 50 mM were prepared by serial dilution. Each standard solution (5 mL) was
transferred into glass vials (20 mL). The collection of Raman spectra began immediately
after completing the preparation of the calibration solutions. Linear least squares
regression was used to fit a line to the data in Microsoft Excel.

Reaction in chloroform at 50 °C (100mM). PBA (122.0 mg, 1.000 mmol, 1
equiv) and OPD (108.3 mg, 1.000 mmol, 1 equiv) were dissolved in chloroform (10 mL)
in a 20 mL glass vial. The reaction mixture was stirred at 50 °C. The reaction progress
was monitored periodically using the Raman spectrometer. At 67 h of reaction, a red
precipitate was observed. The glass vial was removed from heating. The red precipitate
was filtered and isolated as crop 1. Chloroform was evaporated from the filtrate under
vacuum until the volume was reduced by half. The crystals which formed were filtered
and washed with chloroform (2 mL). This product was collected as crop 2 and identified

as DAB (125.0 mg, 64% yield) using *H NMR analysis in CDCls.
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All washings and filtrate were combined with crop 1. Chloroform was removed
under vacuum to give a dark brown solid mixture (23.0 mg), which was identified as a
combination of DAB, boroxine (4), and unreacted OPD using *H NMR analysis in CDCl.

Reaction in chloroform at 50 °C with molecular sieves (100mM). PBA (122.0
mg, 1.000 mmol, 1 equiv) and OPD (108.3 mg, 1.000 mmol, 1 equiv) were dissolved in
chloroform (10 mL) in a glass vial (20 mL). Molecular sieves (3 A: 195.6 mg) were added
to the reaction mixture, which was stirred at 50 °C. The reaction progress was monitored
using Raman spectrometer. At 67 h of reaction, a red precipitate was observed. The glass
vial was removed from heating. After the removal of the molecular sieves, the red
precipitate was isolated as crop 1. Chloroform was evaporated from the filtrate under
vacuum until the volume was reduced by half. The crystals which formed were filtered
and washed with chloroform (2 mL). This product was collected as crop 2 and identified
as DAB (107.4 mg, 55% yield) using *H NMR (CDCls).

All washings and filtrate were combined with crop 1. Chloroform was removed
under vacuum to give a dark brown solid mixture (42.5 mg), which was identified as a
combination of DAB, boroxine (4), and unreacted OPD using *H NMR analysis in

CDCls.
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CHAPTER 111
Synthesis and Reactions of an Ethylhexyl-Ester Substituted Tetraamine Monomer

3.1 Introduction

The use of diazaboroles in oligomeric systems such as macrocycles and covalent
organic frameworks is being investigated by our research group. Herein, we introduce a
2-ethylhexyl side chain to increase the solubility of the tetraamine (TA) monomer in
common organic solvents such as chloroform, tetrahydrofuran, and ethyl acetate, as
discussed in chapter 1. It was predicted that the 2-ethylhexyl groups may increase the
stacking distance between the target macrocycles due to steric hindrance allowing for
greater solubility.

The solubility of the co-monomer BDBA is also another limiting factor due to the
formation of polymeric boroxine structure. Instead, using ester precursor may overcome

this solubility problem.

3.2 Objectives

The work described in this chapter is aimed at the development of a diazaborole-
based macrocyclic system with improved solubility by incorporating 2-ethylhexyl groups.
The following retrosynthetic analysis shows the undoing of an ethylhexyl ester substituted
tetraamine monomer (TA-DEH) to a commercially available derivative of benzoic acid 5

(Figure 36). The synthetic details will be discussed in the results and discussion section.
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Figure 36. Retrosynthetic analysis of TA-DEH.

Additionally, the poor solubility of benzene-1,4-diboronic acid (BDBA) is a
limiting factor in the formation of complex macrocyclic systems. To overcome this issue,
the ability of monomer TA-DEH to participate in the dynamic exchange with

functionalized BDBA-based esters to form macrocyclic diazaboroles was explored.

3.3 Results and discussion

The synthesis of an ethylhexyl ester substituted tetraamine monomer (TA-DEH)
started with 4-amino-3-nitrobenzoic acid (5) (Figure 37). Fischer esterification gave 2-
ethylhexyl 4-amino-3-nitrobenzoate (6) as a dark yellow solid in 83% yield. Subsequent
bromination in dichloromethane (DCM) resulted in 2-ethylhexyl 4-amino-3-bromo-5-

nitrobenzoate (7) as a yellow solid in 80% yield.
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Figure 37. Synthesis of 2-ethylhexyl 4-amino-3-bromo-5-nitrobenzoate (7).

Next, bromide 7 was subjected to Sonogashira coupling conditions with trimethyl-
silylacetylene (TMSA, Figure 38). Initially, the reaction was carried out using bis(tri-
phenylphosphine)palladium(ll) dichloride (Pd(PPhs).Cl2) and copper iodide (Cul) as the
catalyst system. 2-Ethylhexyl 4-amino-3-((trimethylsilyl)ethynyl)-5-nitrobenzoate (8) was
isolated in 37% yield. The low vyield of the reaction was likely due to the premature
decomposition of the palladium catalyst. Therefore, additional triphenylphosphine (PPhsz)
ligand was included in the reaction to help stabilize the palladium. This resulted in an

increased yield of 82%. The formation of the product was verified using *H NMR analysis.

O
o TMSA, Et;N, THF EtHex . NO;
EtHex\O NO, 66 °C, Ar
- NH;
NH, A) Pd(PPh3),Cl, (0.05 equiv), | ’
Br Cul (0.09 equiv) (37%)
7 B) PPh3 (01 equiv), SI(CH3)3

Pd(PPh3)20|2 (005 eqUiV),
Cul (0.05 equiv) (82%)

Figure 38. Synthesis of 2-ethylhexyl 4-amino-3-((trimethylsilyl)ethynyl)-5-nitrobenzoate
(8).
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Subsequent deprotection of the trimethylsilyl group gave 2-ethylhexyl 4-amino-3-
ethynyl-5-nitrobenzoate (9) as a brown oil in 68% yield (Figure 39). Alkyne 9 was then
coupled with the previously synthesized bromoarene 7 under Sonogashira coupling
reaction conditions. 3,3’-(Ethyne-1,2-diyl)bis(2-ethylhexyl 5-nitro-4-aminobenzoate) (10)
was isolated as a yellow solid in 67% yield. Finally, tin based reduction of the nitro group
resulted in the formation of the tetraamine monomer TA-DEH having ethylhexyl ester side

chains in 71% yield. *H NMR analysis supported the formation and purity of the expected

product (Figure 40).
© o}
EtHex NO
ex o 2 EtHex\O NO,
TBAF 7, EtsN
NH, ———> NH, -
THF Pd(PPh3), (0.05 equiv),
I 68% I Cul (0.05 equiv)
_ 70 °C, Ar
SI(CH3)3 H 67%
8 9
o} o}

EtHex _ NO EtHex _ NH
RACH "L,
NH, NH,

SnCl, - 2H,0 (20 equiv) | ‘
EtOAc, 80 °C

NH, 71% NH,
o L e
EtHex” NO, EtHex” NH,

O O
10 TA-DEH

Figure 39. Synthetic route to TA-DEH from 8.
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Figure 40. *H NMR spectrum of TA-DEH.

Improved solubility of TA-DEH, as well as intermediates 8, 9 and 10 in common
organic solvents such as ethyl acetate, chloroform, and tetrahydrofuran, was observed
throughout the multi-step synthesis toward TA-DEH. To probe to solubility further, a
qualitative solubility study with chloroform was performed with the TA-DEH, TA-DM?’

and TA-DTg?® (Figure 41).

R NH,
O NH, TA-DEH R = CO,EtHex EtHex = }{\i\/\

TA-DM R =Me

HoN O TA-DTg R = CO,Tg Tg =% OO
R

H,N
TA

Figure 41. Monomers with various pendent groups (TA-DEH, TA-DM and TA-DTg).
Equal moles of each material were dissolved in chloroform (see Experimental

Methods) and the results were recorded in Table 5. The estimated solubilities of the
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monomers were calculated as their saturated concentration in chloroform in terms of
molality.
Table 5.

Solubilities of tetraamine monomers in chloroform

Monomer Mols of the Amount of Estimated saturated
monomer CHClIs used concentration
(mol) (kg) (molality, mol/kg)
TA-DEH 4.2 x 10 4.8 x10° 8.8 x 102
TA-DM 4.1 x 106 5.0 x 10 8.2 x 103
TA-DTg 4.2x10° 1.3x10° 3.2x10°8

We expected the TA-DTg monomer to be more soluble in chloroform compared to
TA-DM monomer because of the solubilizing Tg ester sidechains. However, the estimated
solubility of TA-DTg was lower than that of TA-DM. TA-DEH was more soluble than
TA-DM and TA-DTg by greater than a factor of 10 in terms of molality. This can be
attributed to the presence of branched 2-ethylhexyl ester side chains instead of methyl or
Tg ester groups in the monomer.

With the more soluble tetraamine monomer (TA-DEH) in hand, the reaction with
benzene-1,4-diboronic acid (BDBA) to form the ethylhexyl ester substituted diazaborole-
based macrocycle (DBM-TEH) was performed under reflux conditions using a Dean-Stark
apparatus (Figure 42). The starting materials were initially dissolved in ethanol to improve

solubility of the BDBA.*’
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Figure 42. Synthesis of DBM-TEH from TA-DEH.

After 5 days of refluxing, the reaction mixture was concentrated and cooled to room
temperature to induce precipitation. Upon filtering, a light color solid was obtained. *H
NMR analysis was initially attempted in chloroform. However, unlike the tetraamine mo-
nomer starting material, the solid was not soluble. We suspect this is due to the formation
of oligomers. This also indicates that the addition of the ethylhexyl groups was not enough
to overcome solubility issues. *H NMR analysis was again attempted in DMSO-ds. After
2 h of sonication and heating to 100 °C, evidence for formation of the macrocycle was

observed by *H NMR (Figure 43).
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Figure 43. *H NMR spectrum of the product mixture from Figure 42.

The *H signals at 10.26 and 9.80 ppm are attributed to the NH protons. The aro-
matic protons of the phenylene groups appear at 8.35, 7.80, and 7.72 ppm (Ha, Hp, and H,
respectively). The CH. directly linked to the oxygen of the ethylhexyl ester side chains are
assigned to the signal at 4.21 ppm. All other CH, CH2 and CHz protons of the ethylhexyl
sidechains show signals in the range 1.71-0.88 ppm. The shoulder off of the signal for NH
at 9.80 ppm as well as overlapping signals in the aromatic region 8.22-7.42 ppm suggest
the presence of oligomeric intermediates. Despite the contamination of potential oligo-
mers, it is clear that macrocycle formation occurred. Furthermore, MALDI mass spectra
analysis of the reaction mixture reveals the presence of the macrocycle due to the signal at

m/z = 1288.752 [M]", which is in agreement with the calculated value of 1288.84.
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Figure 44. MALDI mass spectrum of the reaction mixture from Figure 42.
The same reaction was carried out in DMSO-dg at 100 °C in an NMR tube (Figure
45). This experiment allowed for the direct examination of the reaction progress using *H

NMR (Figure 46) and to observe the potential oligomeric intermediates.

EtHex\ /EtHex
o) o]
o) 0
; (=
EtHex\O NH,
O HO\B/OH HN\B/NH HN\B/NH
NH DMSO-dg
l + —
100 °C
NH; B B B
o O HO™~ ~OH HN" "NH HN™ "NH
EtHex” NH, BDBA
: )=
TA-DEH
EtHex = o o) o o
EtHex/ \EtHex
DBM-TEH

Figure 45. Reaction of TA-DEH and BDBA in DMSO-de.
Figure 46 shows the consumption of the starting materials in the *H NMR spectra

over time. After 11 h, evidence for formation of diazaborole was observed due to the broad
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singlets at 6 10.26 and 9.80 ppm, which correspond to the protons of the NH groups.
Oligomeric intermediates were also observed with many overlapping signals in the
aromatic region. For this reason, it was difficult to identify oligomeric intermediates only
by analyzing the *H NMR. However, distinct peaks started to become more prevalent with
time. This is evidence that oligomeric products experienced self-assembly to form the
more symmetric and thermodynamically stable macrocycle. At 121 h, the reaction did not
progress further. The signals related to the macrocycle actually decreased at 412 h of
reaction, which was likely due to hydrolysis due to the increasing presence of water in the
reaction medium. In addition, the proton signals from this experiment correlate to the
proton signals in the earlier experiment performed in toluene under reflux conditions

(Figure 43). This further confirms the formation of DBM-TEH in DMSO.
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Figure 46. 'H NMR spectra of the reaction progress of TA-DEH and BDBA in DMSO-
de.

The formation of the macrocycle product is limited in part by the poor solubility of
benzene-1,4-diboronic acid (BDBA). To overcome this, we pursued more soluble BDBA-
based esters, which can easily be obtained from the esterification of BDBA and commercial
inexpensive diols, such as catechol, tert-butyl catechol, and diethyl tartrate.

The dynamic exchange of simple catechol ester (7) and o-phenylenediamine (OPD)

was previously examined in our group.® In this study, the reagents were mixed at room
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temperature in chloroform, and the reaction progress was monitored using 'H NMR

spectroscopy.
o) HO
1 12

Figure 47. Reaction of benzodioxaborole 11 and OPD.

Under these conditions, the reaction was very slow and only 10% of the reactants
had converted to DAB and catechol 12. For our purpose, macrocyclization might
overcome the 10% conversion due to intra vs. intermolecular reactions. At room temper-
ature, the TA-DEH monomer may participate in dynamic covalent exchange with 2,2'-

(1,4-phenylene)bis(1,3,2-benzodioxaborole) (13), instead of BDBA (Figure 48).

EtHex EtHex
; H -
EtHex\O NH,
O 3.0 HN.NH  HN._ NH
NH B
: &
O - '
RT HO OH
NH2 B 12
o 0 HN ‘NH HN ‘NH
O
EtHex” NH,
5 O O
TA-DEH 13
EtHex EtHex
DBM-TEH

Figure 48. The exchange reaction of monomer TA-DEH and BDBA-based ester 13.
First, the synthesis of 2,2’-(1,4-phenylene)bis(1,3,2-benzodioxaborole) (13) was

accomplished by following a reported procedure.®” BDBA and catechol 12 were mixed in
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toluene under reflux conditions for 90 min using a Dean-Stark apparatus. Methanol was
added to increase the solubility of BDBA, and 3 A molecular sieves were added to help
with the removal of water (Figure 49). After 90 min, a white precipitate formed in the
reaction mixture. The resulting solid was isolated by vacuum filtration and did not require
further purification. However, it was sparingly soluble in CDCls. Even though *H NMR
analysis revealed no trace of contaminants, the analysis was repeated at higher
concentration in DMSO-ds to verify the purity of the expected product.

o {9
©: toluene/ 0.,0

methanol
(9:1)

HO OH 3 A sieves

\B@B/ Piing o™0
HO OH 94%

&

Figure 49. Synthesis of 2,2’-(1,4-phenylene)bis(1,3,2-benzodioxaborole) (13).
To increase solubility, t-butyl catechol 14 and BDBA were reacted and isolated
under similar conditions to give a t-butyl substituted ester of BDBA (15). *H NMR analysis

of the resulting white solid in CDCIz supported the formation of the product.
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Figure 50. Synthesis of a t-butyl substituted ester of BDBA (15).

With the more soluble BDBA-based ester 15 in hand, the exchange reaction with
simple o-phenylenediamine (OPD) was first investigated (Figure 51). The reaction was
monitored for 9 days in CDCl; at room temperature using *H NMR. Since the potential
product, bis(diazaborole) 16, is not readily soluble in chloroform, it should precipitate from

the solution and help shift the equilibrium towards the products.
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Figure 51. Reaction of BDBA-based ester 15 and OPD.

Analysis by *H NMR spectroscopy revealed a decrease of the aromatic signals of
the starting materials (Ha-f, Figure 52). There was no evidence of the target bis(diazabo-
role) 16 even after 9 days, neither by visible observation of any precipitation nor by
analyzing the 'H NMR spectra. The appearance of the signals at § = 8.06 (Hg) and 7.78
(Hn) ppm may result from the monosubstituted diazaborole 17 (Figure 53). This inter-
mediate is a less symmetrical molecule than the reactant 15 and therefore there are two
doublets associated with the phenylene protons (Hg and Hp). By integrating these *H NMR
signals and those of 15 (8.17 ppm, Ha), we estimate 22% conversion of 15 to 17 or 11%

overall conversion of dioxaborole to diazaborole.
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Figure 52. 'H NMR spectra of the reaction progress of t-butyl BDBA-based ester 15 and
OPD.
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Figure 53. Monosubstituted diazaborole 17.

Even though the target product bis(diazaborole) 16 did not form, we still pursued
the reaction between bis(dioxaborole) 15 with monomer TA-DEH since the intramolec-
ular macrocyclization vs. intermolecular reactions may act as a driving force. Therefore,

the reactants were mixed under similar conditions (Figure 54).
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Figure 54. Reaction of monomer TA-DEH and BDBA-based ester 15.
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'H NMR analysis showed the appearance of signals at & 6.77-6.89 ppm (Hg-)
consistent with the formation of t-butyl catechol 14. The appearance of 14 could be due to
the hydrolysis of the BDBA-based ester 15 (Figure 55). Although the signals related to the
starting materials have broadened, they showed no significant changes even after 357 h.
No distinct peaks related to the macrocycle were observed in the aromatic region.

Additionally, there was no precipitation to indicate the formation of the target DBM-TEH.
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Figure 55. 'H NMR spectra of reaction progress of t-butyl BDBA-based ester 15 and
monomer TA-DEH.

Tartrate based boronate esters are known to have low stability due to the steric
repulsions between the substituents.®® This may lead to faster dynamic exchange with

monomer TA-DEH. Furthermore, Letsinger and Hamilton serendipitously prepared 2-
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phenyl-1,3,2-benzodiazaborole (DAB) in an attempt to accelerate amide formation
between ethyl tartrate ester of phenylboronic acid (18) and o-phenylenediamine (OPD)
(Figure 56).2* It was observed that the B-N compound was formed readily even at room
temperature by cleavage of a B-O bond. This was assumed to be caused by the unusual
reactivity of the o-phenylenediamine due to its particular geometry and the stability of the

ring system that was formed.

L expected
0] //O amide
/\O/ZZI" O\ H2N o=, O\
O D e O
~ O o HoN o
H

O 18 OPD

10
HoN

H

O-=10

H
DAB

S

Figure 56. Early study of the formation of B-N bonds by Letsinger.?*

Therefore, a strategy for formation of the B-N bond between a tartrate ester of
BDBA and an aromatic amine was employed for larger macrocyclic systems. First, the
synthesis of tartrate ester 19 was performed. BDBA and (2R,3R)-diethyl tartrate (20) were
mixed in toluene under reflux conditions for 90 min using a Dean-Stark apparatus (Figure
57). The reaction was facilitated by the addition of ethanol to help dissolve the BDBA.
The reaction mixture was concentrated and cooled to induce precipitation. Diboronate

ester 19 was then isolated by vacuum filtration and washed with cold toluene to remove
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unreacted diethyl tartrate. 'H NMR analysis of the resulting white solid in CDCIs

supported the formation of the expected product.
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Figure 57. Synthesis of BDBA-based ester 19.

The exchange reaction of BDBA-based ester 19 and monomer TA-DEH was then

studied in a similar manner (Figure 58). Mixing an equimolar amount of each of the

reagents resulted in very slow exchange. Analysis by *H NMR spectroscopy revealed the

decrease of aromatic signals at & = 7.67 (He) and 7.38 ppm (Hs) related to the tetraamine

along with the appearance of the signal at 6 = 4.62 ppm (Hg) consistent with the formation

of the diethyl tartrate 20 byproduct (Figure 59). Similar to the exchange reaction of TA-

DEH and ester 15, however, no distinct peaks related to the target DBM-TEH were

observed in the aromatic region even after 6 days. In addition, there was no precipitate to

indicate the formation of the macrocycle.
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Figure 59. 'H NMR spectra of the reaction progress of monomer TA-DEH and BDBA-
based ester 19 with increasing signal of 20 over time.

To investigate this further, bis(dioxaborolane) 19 was reacted with simple OPD

under the same reaction conditions (Figure 60).
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Figure 60. Reaction of 19 and OPD.

Analysis using *H NMR spectroscopy revealed a decrease of the aromatic signals
of the starting materials (Ha and Hes, Figure 61). There was no evidence of the target
bis(diazaborole) 16 even after 2 weeks, neither by visible observation of any precipitation
nor by examination of the *H NMR spectra. The appearance of the signals at § = 7.94 (H,)
and 7.75 (Hn) ppm may result from the potential monosubstituted diazaborole 21 (Figure
62). By integrating these *H NMR signals and those of 17 (Ha), we estimate 28%

conversion of 19 to 21 or 14% overall conversion of dioxabhorole to diazaborole.
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Figure 61. 'H NMR spectra of the reaction progress of BDBA-based ester 19 and OPD.
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Figure 62. Monosubstituted diazaborole 21.

The results from these experiments suggest that the BDBA-based tartrate esters are
more stable than the corresponding diazaborole. To investigate this further, the reaction of
ethyl tartrate ester of benzeneboronic acid 18 and OPD (Figure 56) was reproduced
according to Letsinger and Hamilton’s reported experimental method.?* The precursor
boronate ester 18 was also prepared based on his reported procedure (Figure 63). Diethyl
tartrate 20 and PBA were allowed to reflux in toluene for 6 h using a Dean-Stark apparatus.

After the removal of solvent, a white solid was obtained. H NMR analysis in CDCls

supported the formation of boronate ester 18.
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Figure 63. Synthesis of boronate ester 18.
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Next, we attempted to reproduce the synthesis of DAB by using the reaction of
boronate ester 18 and OPD. An equimolar mixture of each of the starting materials in
benzene was reacted at room temperature for one hour in a glass vial. The solvent was
then removed under reduced pressure at room temperature until the volume was reduced
by half. The resulting precipitate was filtered and washed with benzene. The process of
concentration, filtration and washing was repeated five times. *H NMR analysis of the
resulting product was identified as DAB. Under these conditions, DAB synthesis was
achieved in 60% yield. This may be due to the removal of solvent, which induced

precipitation of the DAB product, driving the reaction toward the products.
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Figure 64. Synthesis of DAB from 18 and OPD.
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Figure 65. 'H NMR spectrum for the product of the reaction in Figure 64.
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In order to examine the reaction without any external manipulation, the reaction
was studied in benzene-de in an NMR tube. The reaction was also repeated in CDCls in

order to understand the impact of solvent on the reaction (Figure 66).
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Figure 66. Reaction of 18 and OPD in different solvents.

The reaction progress was monitored by integrating the *H NMR signals associated
with the protons ortho and meta to nitrogen of OPD (benzene-ds: 6 = 6.70 and 6.39 ppm;
CDCl3: 6 =6.72 ppm) and DAB (benzene-ds: 6 = 7.02 and 6.83 ppm; CDClz: 6 =7.12 and
6.95 ppm) (Figure 67). After 10 days, the reaction reached 35% conversion in benzene,
which is similar to the same reaction in chloroform, where 31% conversion was observed.
These results are different from the former reaction using Letsinger’s method where 60%
conversion was observed and the equilibration time was significantly shorter. This
confirms that the formation of the DAB product was promoted by precipitation, which was

caused by the removal of solvent under reduced pressure.
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Figure 67. Partial tH NMR spectra for the reaction in Figure 66 after 10 days in benzene-
de and CDCls.

3.4 Conclusions

The increased solubility of intermediates 8-10 in common organic solvents revealed
that incorporating an ethylhexyl ester into the monomer improves solubility in chloroform.
Synthesis of the ethylhexyl ester substituted monomer TA-DEH was achieved in multiple
steps from benzoic acid 5. The synthesized monomer TA-DEH was more soluble in

chloroform than previously studied monomers TA-DM and TA-DTg by a factor of 10 in
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terms of molality. This result confirms the presence of branched 2-ethylhexyl ester in
monomer TA-DEH has a positive effect on solubility.

The formation of macrocycle DBM-TEH from the condensation reaction of
monomer TA-DEH with BDBA was observed in toluene as well as DMSO. Nevertheless,
neither the macrocycle nor oligomeric intermediates were soluble in chloroform.
Interchain interaction of the branched alkyl is not efficient enough to cause large pi-
stacking distance among the aromatic cores of these diazaborole-based macrocycles.

The reactions between BDBA-based esters with various di- and tetraamines in
chloroform at room temperature was slow. The reaction between simple OPD with t-butyl
BDBA-based ester 15 gave the corresponding intermediate in 22% after 9 days, while the
tartrate ester moiety 19 gave similar result, reaching 28% conversion after 11 days. The
reactions between monomer TA-DEH with the same BDBA-based esters under similar
conditions did not favor the DBM-TEH product. No significant progress was observed
for up to 2 weeks. On the other hand, DAB synthesis between an ethyl tartrate boronate
ester 14 and OPD was achieved in 60% conversion following Letsinger and Hamilton’s
method. While the same reaction only reached 35% conversion in benzene and 28%
conversion in chloroform for 10 days at room temperature. The results indicate that the
simple DAB product can be achieved by the removal of solvent to induce precipitation. In
the case of diazaborole-linked macrocycles, intramolecular reactions to cyclize could not

compete with the stability of the BDBA-based esters.
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3.5 Experimental

All air or moisture sensitive reactions were performed using standard Schlenk
techniques under argon atmosphere. Glassware was oven dried before use to achieve the
same goal.

Thin layer chromatography (TLC) analyses were performed on silica gel coated
with fluorescent indicator F254 aluminum TLC plates. Visualization of TLC plates was
performed under a UV light (254 nm) to monitor the consumption of the starting materials
and formation of the products. Purification of the synthesized molecules were achieved
using silica gel (60 A) column chromatography.

All starting materials and reagents were purchased from commercial sources (Acros
organic, Alfa Aesar, Cambridge Isotope Laboratories, EMD Millipore, Frontier Scientific,
J. T. Baker, Oxchem, Sigma Aldrich, T.C.1., V.W.R) and used without further purification,
unless otherwise mentioned. The NMR solvents, CDCls and DMSO-ds, were stored over
activated 3 A molecular sieves. 3 A molecular sieves were activated by heating at 130 °C
under vacuum for 3 hours. Liquid reagents used for air or moisture sensitive reactions
were stored under argon.

IH and *C NMR spectra were collected using JEOL Eclipse 300+ spectrometer.
Chemical shifts are reported in & (ppm) relative to the *H and 3C {(CDCls: & 7.26 for H,
CDCls: § 77.23 for 13C) or (DMSO-ds: 6 2.50 for *H, DMSO-ds: § 39.52 for 13C)}. The
splitting patterns are designated as s (singlet); d (doublet); t (triplet); q (quartet); dd
(doublet of doublets); td (triplet of doublets); m (multiplet); br. s (broaden singlet); ss

(slightly broaden singlet).
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MALDI-MS analysis was carried out by Michael Raulerson at Texas A&M
University using the Macroflex with the following parameters: laser beam attenuation
(57.778), laser repetition rate (60 Hz), number of shots (400), positive voltage polarity
(POS), ion source voltage 1 (19 kV), ion source voltage 2 (15.65 kV), linear detector
voltage (2.799 kV), reflector voltage 1 (20 kV), reflector detector voltage (1.845 kV).

Synthesis of 2-ethylhexyl 4-amino-3-nitrobenzoate (6). Commercially available
4-amino-3-nitrobenzoic acid (5, 10.6 g, 58.2 mmol, 1 equiv) was dissolved in 2-
ethylhexanol (100 mL, 640 mmol, 11 equiv) in a 250 mL round bottom flask. Concentrated
H2S04 (1 mL) was introduced dropwise to the solution with constant mixing. The reaction
mixture was refluxed for 4 h using a Vigreux column. The reaction flask was then moved
to a distillation apparatus to remove excess 2-ethylhexanol. The resulting dark yellow to
brown oil was purified using silica gel column chromatography starting with
EtOAc:hexanes (1:9 v/v) and increasing the polarity up to EtOAc:hexanes (1:4 viv). A
yellow solid (14.2 g, 83% yield) was obtained. *H NMR (301 MHz, CDCls): & 8.82 (d,1H),
7.96 (dd, 1H), 6.84 (d, 1H), 6.44 (br. s, 2H), 4.22 (d, 2H), 1.77-1.70 (m, 1H), 1.48-1.30 (m,
8H), 0.95-0.86 (m, 6H). *C NMR (75 MHz, CDCls): 8 165.2, 147.4, 135.9, 131.6, 129.0,
119.5, 118.6, 67.7, 39.0, 30.6, 29.1, 24.0, 23.1, 14.1, 11.1.

Synthesis of 2-ethylhexyl 4-amino-3-bromo-5-nitrobenzoate (7). Liquid
bromine (2.67 mL, 52.2 mmol, 1.3 equiv) was added dropwise to a methylene chloride
solution (200 mL) of 2-ethylhexyl 4-amino-3-nitrobenzoate (6, 11.8 g, 40.2 mmol, 1
equiv.). The reaction mixture was stirred for 24 h at room temperature. The product was
washed with sodium thiosulfate (54 mL), saturated sodium bicarbonate (35 mL), deionized

water (50 mL), and brine (50 mL). The organic layer was dried over anhydrous sodium
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sulfate and concentrated to a yellow oil. Diethyl ether (40 mL) was used to dissolve the
oil, which was transferred to a separatory funnel (250 mL) and washed with Na>COs
(saturated 30 mL x1, 25 mL x1), and brine (20 mL). The organic layer was dried over
anhydrous sodium sulfate and concentrated to a yellow oil. The product was purified using
silica gel column chromatography with EtOAc:hexanes (1:9, v/v) as the eluent. The
solvent was removed to give a yellow solid (12.0 g, 80% yield). *H NMR (301 MHz,
CDCls): 4 8.80 (d,1H), 8.30 (d, 1H), 6.99 (br. s, 2H), 4.21 (d, 2H), 1.75-1.67 (m, 1H), 1.48-
1.30 (m, 8H), 0.95-0.87 (m, 6H). *C NMR (75 MHz, CDCls): & 164.2, 144.8, 138.9, 132.0,
128.1,119.1, 111.8, 68.1, 38.9, 30.6, 29.1, 24.0, 23.0, 14.1, 11.1.

Synthesis of 2-ethylhexyl 4-amino-3-((trimethylsilyl)ethynyl)-5-nitrobenzoate
(8).
A) In an Ar atmosphere, 2-ethylhexyl 4-amino-3-bromo-5-nitrobenzoate (7, 8.64 g, 23.1
mmol, 1 equiv), Pd(PPhs).Cl> (0.741 g, 1.06 mmol, 0.05 equiv), and Cul (0.414 g, 2.17
mmol, 0.09 equiv) were added to an oven dried sealed-tube. The materials were dissolved
by adding EtsN (12 mL) and THF (100 mL). Trimethylsilylacetylene (TMSA, 4.5 mL, 31
mmol, 1.3 equiv) was added slowly for 30 min at room temperature under Ar. Then, the
mixture was stirred at 66 °C for 20 h. TLC analysis confirmed the consumption of starting
materials. The reaction mixture was then diluted with EtOAc (100 mL) and passed through
a silica plug. The EtOAc was removed and the collected organic compound was then
purified using silica gel column chromatography with EtOAc:hexanes (1:20, v/v) as the
eluent. The product was concentrated into a yellow oil (3.51 g, 37% yield). *H NMR (301
MHz, CDCls): 6 8.79 (d,1H), 8.15 (d, 1H), 7.5 (br. s, 2H), 4.20 (d, 2H), 1.75-1.67 (m, 1H),

1.46-1.24 (m, 8H), 0.96-0.87 (m, 6H), 0.29 (s, 9H). 3C NMR (75 MHz, CDCls): 5 164.7,
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147.8, 138.8, 131.5, 128.9, 118.4, 112.3, 104.4, 98.0, 67.9, 38.9, 30.6, 29.1, 24.0, 23.1,
14.1,11.1, 0.9.

B) In an Ar atmosphere, 2-ethylhexyl 4-amino-3-bromo-5-nitrobenzoate (7, 5.0 g, 13.4
mmol, 1 equiv), PPhz (0.353 g, 1.34 mmol, 0.1 equiv), Pd(PPh3).Cl> (0.471 g, 0.67 mmol,
0.05 equiv), and Cul (0.129 g, 0.67 mmol, 0.05 equiv) were added to an oven-dried sealed
tube. The materials were dissolved by adding EtsN (20 mL) and THF (50 mL).
Trimethylsilylacetylene (TMSA, 3 mL, 21.5 mmol, 1.6 equiv) was added slowly for 30
min at room temperature under Ar. Then, the mixture was stirred at 66 °C for 20 h. TLC
confirmed the consumption of starting materials. The reaction mixture was diluted with
EtOAc (100 mL) and passed through a silica plug. The collected organic compound was
distilled under vacuum, and then purified using silica gel column chromatography with
EtOAc:hexanes (1:9 v/v) as the eluent. The product was concentrated into a yellow oil
(4.29 g, 82% yield). 'H NMR (301 MHz, CDCl): & 8.79 (d,1H), 8.15 (d, 1H), 7.5 (br. s,
2H), 4.20 (d, 2H), 1.75-1.67 (m, 1H), 1.46-1.24 (m, 8H), 0.96-0.87 (m, 6H), 0.29 (s, 9H).
13C NMR (75 MHz, CDCls): § 164.7, 147.8, 138.8, 131.5, 128.9, 118.4, 112.3, 104.4, 98.0,
67.9, 38.9, 30.6, 29.1, 24.0, 23.1, 14.1, 11.1, 0.9.

Synthesis of 2-ethylhexyl 4-amino-3-ethynyl-5-nitrobenzoate (9). Tetrabutyl-
ammonium fluoride (TBAF, 8.25 mL, 1.0 M, 48.25 mmol, 1.3 equiv) was added to a
solution of 8 (2.37 g, 6.35 mmol, 1 equiv) in wet THF (50 mL). After 30 s of stirring, the
reaction mixture was filtered through a silica plug using EtOAc:hexanes (1:9 v/v) as the
diluent. The collected eluate was concentrated and purified by silica gel column
chromatography using EtOAc:hexanes (1:20 v/v) as the eluent to give a yellow solid (1.37

g, 68% yield). *H NMR (301 MHz, CDCls): & 8.82 (s, 1H), 8.19 (s, 1H), 4.20 (d, 2H), 3.59
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(s, 1H), 1.75-1.65 (m, 1H), 1.48-1.29 (m, 8H), 0.95-0.87 (m, 6H). 3C NMR (75 MHz,
CDCls): 6 164.5, 148.0, 139.3, 131.6, 129.4, 118.5, 111.0, 86.0, 67.9, 38.9, 30.6, 29.1, 24.0,
23.1,14.1, 11.1.

Synthesis of 3,3’-(ethyne-1,2-diyl)bis((2-ethylhexyl 5-nitro-4-aminobenzoate)
(20). In an Ar atmosphere, 2-ethylhexyl 4-amino-3-bromo-5-nitrobenzoate (7, 0.560 g,
1.76 mmol, 1 equiv), the deprotected alkyne (9, 0.694 g, 1.86 mmol, 1 equiv), Pd(PPh3)4
(0.106 g, 0.09 mmol, 0.05 equiv), and Cul (0.0168 g, 0.09 mmol, 0.05 equiv) were added
to a oven dried sealed-tube (50 mL). EtsN (9.0 mL, 64.6 mmol, 37 equiv) was added to
dissolve all of the reagents. The reaction mixture was stirred at 70 °C for 18 h. TLC
analysis confirmed the consumption of starting materials 7 and 9. The reaction mixture
was then cooled, diluted with EtOAc (50 mL), and passed through a silica plug. The
solvent was removed to reveal the crude product. *H NMR showed the presence of
impurities. The orange product was again suspended in EtOAc:hexanes (1:5 v/v), vacuum
filtered and washed with diethyl ether. After solvent was removed, the product obtained
was a bright yellow solid (0.756 g, 67% vyield). *H NMR (301 MHz, CDCls): & 8.86(s,
2H), 8.26 (s, 2H), 7.08 (br, 4H), 4.23 (d, 4H), 1.77-1.69 (m, 2H), 1.56-1.34 (m, 16H), 0.96-
0.88 (m, 12H). 3C NMR (75 MHz, CDCls): & 164.4, 147.5, 139.2, 131.9, 129.7, 118.9,
110.8, 90.6, 68.1, 38.9, 30.6, 29.1, 24.0, 23.1, 14.1, 11.1.

Synthesis of 3,3’-(ethyne-1,2-diyl)bis(2-ethylhexyl 4,5-diaminobenzoate) (TA-
DEH). Ina 100 mL round bottom flask, compound 10 (0.50 g, 0.82 mmol, 1 equiv) was
combined with SnCl, - 2H-0 (3.69 g, 16 mmol, 20 equiv) and EtOAc (50 mL). The solution
was stirred at 80 °C for 24 h. The reaction mixture was washed with a mixture of NaOH

(2 M, 30 mL) and water (15 mL). It was then passed through a vacuum filter to remove
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the white precipitate. EtOAc (10 mL x2) was used to wash the precipitate cake. The
washings were combined with the organic and aqueous filtrates into a separatory funnel.
After draining the aqueous layer, the organic layer was washed with water (30 mL x2),
brine (30 mL x2) and dried over anhydrous Na>SO4. The solvent was removed to reveal a
dark brown solid. The collected organic compound was purified by silica gel column
chromatography using EtOAc:hexanes (2:1 v/v) as the eluent. Solvent was then removed
to give a yellow solid (0.32 g, 71% vyield). *H NMR (301 MHz, CDCls) & 7.68 (s, 2H),
7.38 (s, 2H), 4.48 (br, 2H), 4.20-4.16 (m, 2H), 3.43 (br, 2H), 1.73-1.65 (m, 2H), 1.48-1.24
(m, 16H), 0.95-0.86 (m, 12H). 3C NMR (75 MHz, CDCl): & 166.6, 142.0, 132.7, 126.2,
120.7,118.4, 107.8, 90.5, 67.2, 39.0, 30.6, 29.1, 24.0, 23.1, 14.2, 11.2.

Solubility comparison of monomers TA-DEH, TA-DM, and TA-DTg. Into
each small test tube, TA-DEH (2.3 mg, 0.0042 mmol, 1 equiv), TA-DM (1.1 mg, 0.0041
mmol, 1 equiv), and TA-DTg (2.6 mg, 0.0042 mmol, 1 equiv) were added. Chloroform
was introduced dropwise. The weight of CHCIs drops it took to completely dissolve each

material was recorded.

Monomer Amount of CHCI3 used
(mg)
TA-DEH 48.5
TA-DM 504.7
TA-DTg 1289.5

Synthesis of macrocycle (DBM-DEH) in toluene. In a 65 mL round bottom flask,
monomer TA-DEH (83.0 mg, 0.15 mmol, 1 equiv) and BDBA (24.5 mg, 0.15 mmol, 1
equiv) were dissolved in ethanol (5 mL) for 5 minutes. After toluene (25 mL) was added,
the reaction was allowed to reflux for 5 days. The reaction mixture was then concentrated

and cooled to room temperature. A light-coral precipitate was filtered and washed with
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cold toluene (2 mL) and cold hexane (2 mL). The product was vacuum dried to obtain a
light-coral solid (84.0 mg). The following peaks correspond to the macrocycle product;
'H NMR (301 MHz, DMSO-ds) & 10.26 (s, 8H), 9.80 (s, 8H), 8.35 (s, 8H), 7.80 (s, 4H),
7.72 (s, 4H), 4.21 (d, 8H), 1.73-1.67 (m, 4H), 1.45-1.34 (m, 32H), 0.95-0.88 (m, 24H). *C
NMR (75 MHz, DMSO-dg) 6 166.5, 142.1, 138.2, 134.3, 125.4, 121.3, 112.1, 104.5, 90.2,
66.9, 38.3, 30.7, 29.0, 24.1, 23.0, 14.5, 11.5.

Reaction of monomer TA-DEH and BDBA in DMSO-ds. In an NMR tube,
monomer TA-DEH (6.8 mg, 0.01 mmol, 1 equiv) and BDBA (1.9 mg, 0.01 mmol, 1 equiv)
were dissolved in DMSO-ds. The reaction progress was monitored over time using H
NMR at 100 °C. The following peaks correspond to the macrocycle product; *H NMR
(301 MHz, DMSO-ds) & 10.26 (s, 8H), 9.80 (s, 8H), 8.35 (s, 8H), 7.80 (s, 4H), 7.72 (s, 4H),
4.21 (d, 8H), 1.73-1.67 (m, 4H), 1.45-1.34 (m, 32H), 0.95-0.88 (m, 24H).

Synthesis of 2,2°-(1,4-phenylene)bis(1,3,2-benzodioxaborole) (13). BDBA
(101.2 mg, 0.611 mmol, 1 equiv) was combined with catechol (12, 134.6 mg, 1.222 mmol,
2 equiv) and methanol (5 mL) ina 100 mL round bottom flask. After the starting materials
were mixed well to dissolve, toluene (50 mL) and 3 A molecular sieves were added. The
reaction mixture was allowed to reflux for 90 min with a Dean-Stark trap. Then, the
solution was concentrated and cooled to room temperature to induce precipitation.
Vacuum filtration was performed to obtain a white solid (181.0 mg, 94% yield). *H NMR
(301 MHz, CDCls) & 8.20 (s, 4H), 7.33, (dd, 4H), 7.14 (dd, 4H). *H NMR (301 MHz,
DMSO-ds) & 7.36 (s, 4H), 6.70, (dd, 4H), 6.57 (dd, 4H). *C NMR analysis could not be
obtained in CDCls due to the low solubility of the product. **C NMR (75 MHz, DMSO-

de) 6 152.0, 131.1, 119.2, 109.7.
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Synthesis of a t-butyl ester of BDBA 15. BDBA (95 mg, 0.57 mmol, 1 equiv)
was combined with tert-butyl catechol (14, 190.6 mg, 1.147 mmol, 2 equiv) and methanol
(5 mL) in a 100 mL round bottom flask. After the starting materials were mixed well to
dissolve, toluene (50 mL) and 3 A molecular sieves (about 10) were added. The reaction
mixture was allowed to reflux for 90 min with a Dean-Stark trap. Then, the solution was
concentrated and cooled to room temperature to induce precipitation. Vacuum filtration
was performed to obtain a white solid (219.8 mg, 94% yield). *H NMR (301 MHz, CDCls)
§ 8.17 (s, 4H), 7.38 (d, 2H), 7.22-7.15 (m, 4H), 1.36 (s, 18H). 3C NMR (75 MHz, CDCl)
0 148.4, 146.8, 146.2, 134.5, 119.7, 111.7, 110.1, 35.0, 31.8.

Reaction of BDBA-based ester 15 and OPD. Inan NMR tube, compound 15 (6.1
mg, 0.014 mmol, 1 equiv) and OPD (3.1 mg, 0.029 mmol, 2 equiv) were dissolved in
CDCls. The reaction progress was monitored using *H NMR at room temperature.

Reaction of BDBA-based ester 15 and monomer TA-DEH. In an NMR tube,
compound 15 (4.0 mg, 0.0094 mmol, 1 equiv) and monomer TA-DEH (5.2 mg, 0.0094
mmol, 1 equiv) were dissolved in CDCls. The reaction progress was monitored using *H
NMR at room temperature.

Synthesis of an ethyl tartrate ester of BDBA (19). BDBA (321.7 mg, 1.941
mmol, 1 equiv) was combined with (2R,3R)-diethyl tartrate (20, 800.4 mg, 3.882 mmol, 2
equiv) and ethanol (5 mL) in a 100 mL round bottom flask. After the starting materials
were mixed well to dissolve, toluene (50 mL) was added. The reaction mixture was
allowed to reflux for 90 min with a Dean-Stark trap. Then, the solution was concentrated
and cooled to room temperature before leaving in a freezer (-20 °C) for 6 h. The crystals

formed were isolated by vacuum filtration and washed with cold toluene and cold hexane



80

to give a white solid (973.8 mg, 99% vyield). *H NMR (301 MHz, CDCls) § 7.91 (s, 4H),
5.06 (s, 4H), 4.29 (g, 8H), 1.53 (t, 12H). 3C NMR (301 MHz, CDCl3) & 169.4, 134.6,
78.1,62.4, 14.2.

Reaction of BDBA-based ester 19 and monomer TA-DEH. In an NMR tube,
compound 19 (2.4 mg, 0.0058 mmol, 1 equiv) and monomer TA-DEH (3.2 mg, 0.0058
mmol, 1 equiv) were dissolved in CDCls. The reaction progress was monitored over time
using *H NMR at room temperature.

Reaction of BDBA-based ester 19 and OPD. Inan NMR tube, compound 16 (4.7
mg, 0.0093 mmol, 1 equiv) and OPD (2.0 mg, 0.018 mmol, 2 equiv) were dissolved in
CDCls. The reaction progress was monitored over time using *H NMR at room temper-
ature.

Synthesis of diethyl 2-phenyl-1,3,2-dioxaborolane-4,5-dicarboxylate (18). Ina
100 mL round bottom flask, a mixture of PBA (460.1 mg, 3.773 mmol, 1 equiv) and
(2R,3R)-diethyl tartrate (15, 778.0 mg, 3.773 mmol, 1 equiv) in toluene (50 mL) was heated
under reflux for 6 h using a Dean Stark apparatus. Then, the reaction flask was cooled to
room temperature and the solvent was removed to reveal a white solid (1.089 g, 99% yield).
IH NMR (301 MHz, CDCls) & 7.90 (d, 2H), 7.50 (m, 1H), 7.42 (m, 2H), 5.05 (s, 2H), 4.31
(g, 4H), 1.32 (t, 6H). 3C NMR (75 MHz, CDCls) § 169.6, 135.4, 132.3, 128.0, 78.1, 62.3,
14.2.

Synthesis of DAB from boronate ester 18 and OPD. In a 20 mL glass vial, OPD
(111.4 mg, 1.030 mmol, 1 equiv) in benzene (4 mL) was mixed with a solution of boronate
ester 18 (300.9 mg, 1.030 mmol, 1 equiv) in benzene (4 mL). After 1 h of mixing at room

temperature, benzene was removed under vacuum without raising the temperature until the
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volume was reduced by half. The resulting crystals were filtered and washed with benzene.

The process of concentration, filtration and washing was repeated five times. The obtained

product was a white solid. The total product formed was 120.4 mg (60% yield). It was

identified as DAB using *H NMR. *H NMR (301 MHz, CDCls) § 7.77-7.69 (m, 2H), 7.52-

7.43 (m, 3H), 7.22-7.11 (m, 2H), 7.03-6.90 (m, 2H), 6.79 (br. s, 2H). 3C NMR (75 MHz,

CDClz) ¢ 136.4, 133.1, 129.9, 128.3, 119.5, 111.3. All washings and filtrates were

combined and the solvent was removed. *H NMR analysis of the filtrate revealed a mixture

of the diethyl tartrate 15 byproduct and the leftover DAB product.
Reaction of boronate ester 18 and OPD in benzene-ds and CDCl:.

A) In an NMR tube, compound 18 (10.9 mg, 0.0037 mmol, 1 equiv) and OPD (4.0 mg,
0.037 mmol, 1 equiv) were dissolved in benzene-ds. The reaction progress was
monitored over time using *H NMR.

B) In an NMR tube, compound 18 (10.9 mg, 0.0037 mmol, 1 equiv) and OPD (4.0 mg,
0.037 mmol, 1 equiv) were dissolved in CDCIz. The reaction progress was monitored

over time using *H NMR.
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APPENDIX — NMR spectra for the synthesized compounds
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'H NMR of 2,2’-(1,4-phenylene)bis(1,3,2-benzodioxaborole) (13) in DMSO-ds
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13C NMR of 2,2°-(1,4-phenylene)bis(1,3,2-benzodioxaborole) (13) in DMSO-ds
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IH NMR of the t-butyl BDBA-based ester 15 in CDCls
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IH NMR of the ethyl tartrate ester of BDBA 19 in CDCls
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