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Abstract

The Android operating system is currently the 
most prevalent mobile device operating system 
holding roughly 54 percent of the total global market 
share. Due to Android’s substantial presence, it has 
gained the attention of those with malicious intent, 
namely, malware authors. As such, there exists a 
need for validating and improving current malware 
detection techniques. Automated detection methods 
such as anti-virus programs are critical in protecting 
the wide variety of Android-powered mobile devices 
on the market. This research investigates 
effectiveness of four different machine learning 
algorithms in conjunction with features selected from 
Android manifest file permissions to classify 
applications as malicious or benign. Case study 
results, on a test set consisting of 5,243 samples, 
produce accuracy, recall, and precision rates above 
80%. Of the considered algorithms (Random Forest, 
Support Vector Machine, Gaussian Naïve Bayes, and 
K-Means), Random Forest performed the best with 
82.5% precision and 81.5% accuracy.

1. Introduction

The Android operating system has consistently 
been a significant contender in the mobile operating 
systems market. As of June 2018, the Google Play 
store features over 3.3 million apps [1], and as of 
December 2018, Android boasts 54.2% of the global 
market share [2]. Due to Androids’ consistent 
popularity, it has become a prime target for malware 

authors. In recent years, Android-powered devices 
have become increasingly targeted due in part to their 
increased use for business and financial tasks. Apps 
now routinely process sensitive financial and 
personal information as part of mobile banking, 
social media, and communication programs.

Norton Anti-virus (AV) defines malware as 
“software that is specifically designed to gain access 
to or damage a computer, usually without the 
knowledge of the owner” [3]. Norton further 
delineates types of malware as spyware, ransomware, 
viruses, worms, Trojan horses, and adware. In 2017, 
Kaspersky Labs reported the detection of 5,730,916 
malicious installation packages, 94,368 mobile 
banking Trojans, and 544,107 mobile ransomware 
Trojans [4]. As such, it can be said that there exists a 
strong need for accurate and reliable commercial 
anti-virus (AV) tools in the Android environment and 
that malware in mobile devices can be a substantial 
threat [5].

While academicians are interested in detecting 
malicious activity [17,30-31], opportunities abound 
to improve Android malware detection accuracy in 
commercial AV. Zhou and Jiang [7] evaluated 
Android malware detection using the following anti­
virus programs: AVG Antivirus Free v2.9 (AVG), 
Lookout Security & Antivirus v6.9 (or Lookout), 
Norton Mobile Security Lite v2.5.0.379 (Norton), 
and TrendMicro Mobile Security Personal Edition 
v2.0.0.1294 (TrendMicro). The anti-virus programs 
were used to scan separate devices afflicted with 
1,260 samples of malware. Of the 1,260 samples, 
AVG was able to detect 689 samples (54.7%), 
Lookout 1,003 samples (79.6%), Norton 254 samples 
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(20.2%), and TrendMicro was able to identify 966 
samples (76.7%). Nguyen et al. [17,30] reported 
similar results in a study of AV accuracy in detecting 
repackaged apps, where a newly repackaged botnet 
version of the popular Snapchat application was not 
detected by 12 different AV products including 
AVG, CM Security, Avast, Norton, Kaspersky, and 
others. In addition, the representative zero-day 
sample was not detected by online research engines 
such as Sandroid, AndroTotal, VirusTotal, and 
OPSWAT [17].

This overall environment spurs the need to 
improve the security of the large market share of end­
users. This research addresses whether malware can 
be detected by analyzing permissions that accompany 
Android binaries, supplementing prior work with 
smaller test data sets and similar machine learning 
(ML) algorithms [25,38-40]. A case study analyses is 
performed on a corpus of 4597 known benign 
Android apps and 6000 malicious Android apps, with 
comparison to a popular AV engine (VirusTotal) 
based on four different single algorithm ML 
approaches. The balance of the paper provides 
background and related work (Section 2) and a 
description of the case study methodology (Section 
3). Section 4 presents data from the analysis of 
commercial anti-virus (AV) engines, as well as 
effectiveness results of ML algorithms. Section 5 
draws conclusions based on the results and identifies 
future work related to this research.

2. Background

The influx of mobile devices and applications is 
pressing the need for mobile security research. 
Android applications are deployed in an Android 
Package Kit (APK) format, which relies on 
traditional ZIP compression [4]. Repackaging is a 
significant threat because malicious reverse 
engineering of APK files is relatively easy given 
readily available standard open source tools [5]. In 
the traditional attack model, repackaged apps use 
cloned code along with inserted ads that redirect 
advertisement revenue [5-7]. Likewise, repackaged 
apps can have inserted malicious code on top of 
benign code that will be spread by unsuspecting end­
users [8]. Malware detection approaches are broadly 
categorized as static and dynamic. Static approaches 
use parts of the APK file without running the 
application, while dynamic approaches require some 
type of sandbox or emulation environment to execute 
the app for collection of data [9]. Heuristic methods 
utilize rule-based inference to model apps as 
malicious or benign.

2.1 . Android Architecture

The Android software stack, illustrated in Figure 
2, provides a layered approach for supporting 
Android applications. Android app are compiled from 
source code, data files, and resource files using the 
Android Software Development Kit into an APK, an 
Android package, which is an archive file with a .apk 
suffix [9]. An APK file contains all the required 
content of an Android application and is the file that 
is used for application installation. All components of 
the application must be accounted for in a single 
AndroidManifest.xml file that resides in the APK 
archive.

Figure 1: Android OS Architecture [23]
This research focuses on using the manifest file as 

input to chosen machine learning algorithms. The 
manifest file also stores a large amount of 
information such as permissions required by the 
application [10]. The exact contents of the manifest 
file vary based on the application: an example of an 
Android permission statement is shown in Figure 2. 
Developers may also define custom permissions.

<manifest ... >
<uses-permission android:name="android.permission.SEND_SMS'/>

</manifest>

Figure 2: Manifset Permissions Labelling [9]

2.2 Android Malware

The landscape of Android malware is ever­
changing. In March 2019, Kaspersky Labs released 
its annual evaluation of mobile malware showing that 
its services detected over 5.3 million malicious 
installation packages [11]. McAfee released a report 
in the first quarter of 2019, indicating that they had 
detected nearly 2 million samples of new mobile 
malware in quarter four of 2018 alone [12]. Some 
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common types of malware seen throughout 2018 
were: Adware [13], Banking Trojans [14], Mobile 
Crypto Miners, and Repackaged applications [15-16]. 
The malicious datasets used in this research come 
from a wide variety of virus categories, but with no 
specific classification given to their family or type. 
Thus, the results of the research represent a true 
random sampling of potential Android malware that 
may be encountered in the wild. Section 3.1 provides 
more detail about malicious APKs used in this 
research study.

2.3 Static Detection

Static analysis is a process by which a program is 
analyzed without execution. The most common form 
of malware detection in AV programs is based on 
signature analysis. Signature-based detection works 
by scanning a file and then generating a unique 
identifier, a signature, for that specific file. The 
signature creation process varies between anti-virus 
programs. Typically, a hash of the file is created and 
compared against a table of the hashes of known 
malicious files. If the hash of the scanned file 
matches that of a known malicious file in the 
database, then it can be assumed to be malicious. 
Items that frequently undergo review in static 
analysis processes are as follows: source code, assets, 
manifest files, string patterns, and files that are 
known to be malicious. The shortcoming of 
signature-based detection methods is that if no 
signature exists for comparison, then nothing can be 
said about the file in question.

Schmidt et al. [18] developed a method of 
comparing application function calls with the 
function calls of malicious samples using the Prism, 
and Nearest Neighbor Algorithms (PART). Although 
they reported high accuracy for their static detection 
approach, they stated that in a real-world scenario, 
the tasks they performed would be impossible due to 
resource limitations. As a conclusion, they cited the 
need for further work to create time-efficient methods 
of detection.

Desnos [19] states that Android’s open-source 
framework and its Java source code allow for 
malicious authors to tamper with Android 
applications easily. Therefore, they implement a 
method of static analysis using similarity distance to 
determine if an application is malicious or benign. 
Though further optimized than previous work, the 
authors state that there is a need for automated 
behavior analysis and that manual analysis and 
signature-based detection methods are insufficient.

Feng et al. [20] developed Apposcopy, a 
semantics-based method for identifying Android 

malware that aims to steal private user information. 
Apposcopy makes use of static analysis procedures as 
well as analysis of control flow to detect malware. 
Using 1027 malicious samples from 15 different 
malware families, Apposcopy reported an accuracy 
of 90% with 103 false negative (FN) and only 2 false 
positive (FP) results. They also analyzed 11,215 apps 
from the Google Play store, with only 16 reported as 
malware.

There is also current literature that bases static 
detection of malicious Android apps on machine 
learning in general, which is the focus of the research 
presented in this paper. Tam et al. [23] address issues 
about the sandboxed nature of Android applications. 
To access the system, all applications must be 
granted permissions by the Android Permission 
System during installation. Once installed and 
permissions have been given and enforced by the 
kernel, applications can interact with each other 
through the system with the use of API calls. 
Unfortunately, these rules apply to anti-virus 
applications as well and prevent applications from 
being inspected by other applications. Due to this 
reason, signature-based detection methods are the 
most viable [23].

Kang et al. [24] proposed a means of detecting 
and classifying Android-based malware using static 
analysis. Their study centered around three 
significant points. First, detection methods using 
static analysis should be associated with creator 
information. In particular, their approach used the 
serial number of certificates and analysis of app 
components such as permissions to determine 
malignancy. Second, a scoring algorithm was 
implemented that placed malware into families based 
on scores calculated from weights assigned to API 
calls, permissions, and system commands. Third, the 
proposed method was tested on live malware samples 
including 51,179 benign and 4,554 malicious 
samples. Their approach was able to correctly detect 
malignancy in 98% of all samples as well as correctly 
classify samples into corresponding malware families 
90% of the time. Such results show that features 
based on certificate signatures, API calls, 
permissions, and system commands form a promising 
line of research.

2.4 Detection Based on Manifest Files

Our work is not the first to utilize manifest files as 
the source of static analysis or machine learning 
algorithms. The work of Milosevic and 
Dehghantanha [25] utilized static malware analysis 
techniques using both supervised and unsupervised 
machine learning methods. Of similarity to the work 
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in this paper, one of their four experiments utilized 
supervised machine learning algorithms where 
permission-based classification was in focus. For the 
training of their machine learning models, they made 
use of the M0Droid dataset, which includes 200 
malicious and 200 benign Android applications. 
Algorithms tested in this experiment include SVM, 
Naive Bayes, C4.5, and JRIP. The results of their 
permission-based analysis test are shown in Figure 3. 
The case study reported in this paper is similar 
because we also use Random forest, Bayesian 
networks, and SVM for classification based on 
Android permission features, but their result comes 
from a much smaller data set. Further comparison of 
results is provided in Section 4.

Algorithm Precision Recall F-Score
C4.5 decision trees 0.827 0.827 0.827
Random forest 0.871 0.866 0.865
Bayes Networks 0.747 0.717 0.747
SVM with SMO 0.879 0.879 0.879
JRip 0.821 0.819 0.819
Logistic regression 0.823 0.822 0.821

Figure 3: Permission-Based Classification 
Using Single ML Algorithms [25]

In a 2016 study, Kumaran and Lee [38] report 
results of a study of 500 benign and 500 malicious 
apps. They focused on 183 features derived from 
requested permissions, declared permissions, and 
intent filters in the Android manifest file, which 
formed the basis of three data sets. Their reported 
best accuracies of various ML algorithms across the 
three sets were 63.6% for intents, 90.5% for 
permissions, and 91.7% for combined permissions. 
For the combined dataset, 6 different ML algorithms 
were studied (of which SVM is also considered in our 
study) and the following accuracies using ten-fold 
cross-validation were reported: Linear Discriminants 
(82.6%), Cubic SVM (91.7%), Weighted KNN 
(91.4%), Complex Tree (89.3%), Linear SVM 
(89.2%), Course KNN (79%). True Positive Rate 
(TPR)/False Negative Rate (FNR) of benign apps 
was reported as 94.2%/5.8% and TPR/FNR rates of 
malicious apps was reported as 89.2%/10.8%. In 
comparison, our case study uses a larger data set and 
three different ML algorithms, and only considers 
permissions. Further comparison of results is 
provided in Section 4.

In a 2017 study, Wang et al. [39] report 
development of Mlifdect, which provided a holistic 
study of parallel machine learning processing with 
combined classification of manifest information. 
Closer to the data set in this research, Mlifdect 
performance was evaluated on app dataset of 3,982 
malicious and 4,403 benign apps using ML 

algorithms with 10-fold cross validation. Unlike this 
work, their approach fused information from 3 
different ML algorithms (KNN, J48, and Random 
Forest) computing in parallel on 2 different features 
sets. One feature set used a combination of API calls, 
requested permissions, intents, and components and 
the other feature set contained command, hardware, 
protected strings, and network URLs. Our approach 
only focuses on permission and uses two of the same 
ML algorithms: K-means (similar to KNN) and 
Random Forest. However, we only consider the 
efficacy of a single algorithm instead of fusing 
combined results. Wang et al. [39] extracted 65,000 
features covering eight categories of Android 
manifest permissions. Reported accuracy from 
Android benign and malware apps with Mlifdect was 
99.7%.

In 2013, Sanz et al. [40] reported results of 
Android malware analysis using MAMA, based on 
manifest analysis. They consider both permissions 
and “uses” features found in the manifest file, where 
we only consider permissions in this study. They 
used variations of Naive Bayes, Bayesian Network 
(K2 and TAN), Support Vector Machine (Polynomial 
and Normalized Polynomial Kernel), J48, KNN (K = 
1, 3 and 5), and Random Forest (N = 10, 50 and 100). 
Figure 4 shows their reported TPR/FPR and accuracy 
results for permissions-only analysis. Best results 
were with Random Forest, using a population of 100 
trees, achieving an 87% detection accuracy. Of note, 
their study down-selected a balanced set of 333 
benign and 333 malicious apps for analysis, whereas 
our study is on a larger and more modern set of apps. 
Further comparison of results is provided in Section 
4.

Algorithm TPR FPR AUC Accuracy 
(%)

Naive Bayes 0.87 0.42 0.77 72.78
BN K2 0.90 0.41 0,79 74.49
BN TAN 0.91 0.41 0,85 74.99
SVM: Polynomial 0.74 0.07 0,83 83.34
Kernel
SVM: Normalized- 0.79 0.05 0-87 87.14
Polynomial Kernel
KNN K =1 0.80 0.06 0.93 87.28
KNN K =3 0.77 0.10 0.93 83.77
KNN K =5 0.76 0.10 0.92 83.14
KNNK=10 0.73 0.20 0.89 76.65
J48 0.72 0.10 0.87 80.90
Random Forest 10 0.80 0.06 0.94 87.07
Random Forest 50 0.79 0.05 0.95 87.28
Random Forest 100 0.80 0.05 0.95 87.41

Figure 4: Permission-Based Classification 
Using Single ML Algorithms [40]

2.5 Dynamic and Heuristic Analysis

Dynamic analysis methods are less frequent in 
commercial anti-virus scanners due to their intense 
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resource requirements and complex nature. Burgera 
et al. [21] developed an approach for automated 
dynamic analysis as a means of malware detection in 
Android devices, called Crowdroid. The detector 
relies on traces submitted from many users across 
many different types of devices. While Crowdroid 
did implement a method of automatic detection, the 
process still relied on signatures collected from users. 
In addition to being resource-intensive, the dynamic 
analysis also has the drawback that a large number of 
false positives may be generated.

Heuristic analysis is a relatively new approach 
[36] and makes use of a wide variety of methods to 
identify components of a program that can be used to 
create an inference as to the nature of the said 
program. A set of rules is established that determines 
the criteria for what flags a file as benign or 
malicious. The rules vary widely, depending on the 
author. However, they are usually generated by using 
pre-created algorithms and models that are used in 
data mining and machine learning. An example of 
such is the work of Suarez-Tangil et al. [22], which 
made use of vector space modeling and text mining 
to compare applications to generalized malware 
samples.

3. Machine Learning Methodology

The goal of this research is to examine efficacy of 
single-algorithm machine learning techniques on 
manifest permissions on a reasonably sized Android 
app data set. The aim is to evaluate performance in 
comparison to commercial AV products to see if 
single aspect detection (manifest permissions) using 
single ML algorithms provide as good or better 
results. Secondarily, the case study approach extends 
prior results on manifest-based feature detection by 
either examining a larger set of more recent apps and 
different ML algorithms. The methodology is divided 
into five phases, detailed next.

3.1 Phase 1: Setup and Data Acquisition

To begin, an environment is created in which 
analysis on malicious applications can be safely 
performed. For the test environment, experiments are 
executed on a Windows10 Pro Edition host machine 
running VMWare Workstation 15 Pro with an 
Ubuntu version 19.10, Eoan, operating system. This 
virtual environment provides the guarded sandbox in 
which all tests are conducted. Scripts used in 
experiments are written in Python 3.7 and Bash. 
Given the setup of the virtual environment, data 
sources are migrated to the environment which 

include a collection of 4597 benign applications from 
the Google Play store that have previously been run 
through anti-virus to verify their benign nature. 
These samples are part of a pre-existing internal 
private repository of APK files that were pulled from 
the Google Play store in 2017 and verified to be 
benign through VirusTotal. The benign samples act 
as the control set of data. In addition to the samples 
collected from the Google Play store, 6000 malicious 
samples are collected from the AndroZoo [28] 
repository. The samples are sourced from both the 
Google Play store and AppChina third-party market, 
and no sample exceeded 30 megabytes (MB) in size. 
The AndroZoo repository hosts a large collection of 
malicious Android applications with classifications of 
malware ranging from adware to repackaged 
applications.

All malicious samples are randomly selected 
applications that are no older than January 1st 2018 
from the AndroZoo repository using the python 
library (AZ) that AndroZoo provides [28]. This 
sampling ensured the malicious set was 
representative of the current Android environment. 
For collection of the applications taken from 
AndroZoo, a script created in Python 3.7.3 is used 
that allows download from the repository. An API 
key must be provided to the script in order to run and 
can be requested by emailing androzoo@uni.lu and 
stating the name of the research institution and the 
name of the individual requesting access. All 
applications for AndroZoo access must be sent from 
a university or research institution email account.

3.2 Phase 2: Evaluating Commercial AV

As part of the research approach presented in this 
paper, performance of machine learnings algorithms 
is compared against performance of typical and 
current anti-virus engines used commercially. In 
order to evaluate the effectiveness of common 
commercial anti-virus engines, the malicious and 
benign data sets are submitted to VirusTotal [32] in 
their entirety. The VirusTotal free API is used for 
such uploads. The free API allows for submission of 
1000 samples per day, and 30,000 samples per 
month. An API key can be requested from 
VirusTotal simply by navigating to the website [32] 
and signing up for a free account. The VirusTotal 
website provides a means to upload samples in batch 
by using the officially supported Windows or Mac 
application.

To facilitate the upload of the data set used in this 
research, the entire data set is split into smaller 
batches of roughly 900 samples each. This resulted 
in seven batches for the malicious set and five for the 
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benign set. It should be noted that this is solely for 
the purpose of uploading the samples to VirusTotal, 
and that the samples are not split into batches when 
chosen machine learning algorithms are applied 
during the algorithm evaluation phase.

3.3 Phase 3: Data Preparation

In phase three, APK files are decoded as part of 
data pre-processing for machine learning (ML) 
algorithms. The APK files, much like unextracted 
ZIP archive files, are largely useless in a raw form. 
To decode the APK, the Apktool version 2.4.1 
application is used, which represents a common 
command line interface tool used for reverse 
engineering Android applications. Running Apktool 
requires its wrapper script, its JAR file, and a Java 
Runtime Environment (JRE) version of 1.8 or higher. 
Running Apktool against a given APK file produces 
several items: 1) an assets folder containing all the 
application assets; 2) a folder containing metadata; 3) 
SMALI files; and 4) the AndroidManifest.xml file 
(referred to simply as the manifest file). After 
retrieving the file of interest (i.e., the manifest file), 
the manifest file is converted from an XML 
document into a format that the ML algorithms can 
work with, which is a comma separated value (CSV) 
file containing no string data. All APKs in the benign 
and malicious sets are processed in this manner.

3.4 Phase 4: Algorithmic Choice

For testing effectiveness of various ML 
approaches, two options exist for selecting a set of 
features for a given manifest file: 1) manually 
selecting or 2) allowing an individual algorithm to 
place weight on the individual permissions. In this 
research, the latter approach was chosen, allowing 
ML algorithms to place weights on the individual 
permissions to create the set of features. In some 
ways, this approach is similar to the technique used 
by Sato et al. [26], where key malicious features 
identified by those researchers included permissions 
such as BOOT_COMPLETED, SMS_RECIEVED, and 
CONNECTIVITY_CHANGE. Additionally, custom 
permissions are included in this research, which are 
taken from the sample sets created for analysis. 
Additional inspiration for determining features is the 
list of commonly used permissions, which were 
adapted in this research from the work of Sarma et al. 
[27]. Figure 5 shows the twenty most common 
parameter sets. The algorithms utilized for this 
research are: Support Vector Machine (SVM),

Gaussian Naive Bayes, K-Means, and Random 
Forest.

Permission Benign Malicious
INTERNET 68.50(1) 93.38 [1]
ACCESS NETWORK STATE 30.97(2) 42.98 [8]
READ_PHONE_STATE 24.99 (3) 80.99 [2]
WRITE EXTERNAL STORAGE 24.14(4) 59.50 [4]
ACCESS_COARSE_LOCATION 18.17(5) 43.80 [7]
ACCESS FINE LOCATION 17.22(6) 35.53 [12]
WAKE LOCK 13.07(7) 23.14 [18]
VIBRATE 12.84(8) 23.14 [19]
ACCESS_W1FI_STATE 8.09(9) 28.92 [16]
RECEIVE_BOOT-COMPLETED 7.99(10) 23.14 [20]
READ CONTACTS 7.50(11) 47.11 [6]
GET_TASKS 5.32(12) 5.78 [30]
CALL_PHONE 5.10(13) 3l.40[14]
SEND_SMS 4.83(14) 64.46 [3]
SET WALLPAPER 4.75(15) 30.57 [15]
CAMERA 4.35(16) 5.78 [30]
GET ACCOUNTS 4.31 (17) 4.95 [31]
RECEIVE_SMS 4.29(18) 40.49 [10]
WRITE_SETTINGS 3.90(19) 7.44 [27]
PROCESS_OUTGOING_CALLS 3.64 (20) 4.13[36]
READ_SMS 3.43 (21) 47.11 [5]
READ_HISTORY_BOOKMARKS 0(113) 42.14 [9]
WRITE HISTORY BOOKMARKS 0(113) 37.19 [11]
WRITE_CONTACTS 1.99(23) 32.23 [13]
MOUNT_UNMOUNT_FILESYSTEMS 1.25(28) 26.44 [17]

Figure 5: Common Permissions [27]

Rationale for choosing these four ML algorithms 
among many other possible choices are delineated 
next. Naive Bayes is one of the simpler classifiers, 
which often results in competitive performance 
despite the assumption of independence between 
attributes; this approach depends on Bayesian 
probability [34,35]. Random Forest has a history of 
strong performance, often leading to near optimal 
results; it also represents a tree-based learning 
paradigm [34,35]. SVMs have a strong theoretical 
basis for their operation, and like Random Forests, 
tend to provide strong results; it is based on 
optimization of hyperplanes [34,35]. K-Means is a 
clustering approach that allows for the discovery of 
natural groupings within the data; by assigning 
"clusters" the label of the majority class, it can be 
converted into an effective classification solution 
[34,35].

3.5 Phase 5: Evaluation

In the evaluation phase, the four chosen ML 
algorithms are exercised against the benign and 
malicious data sets. Results are taken from the 
iterations of testing, which produce a binary 
classification on whether each manifest file is either 
malicious or benign. A malicious file that is correctly 
classified as malicious is counted as true positive 
(TP), whereas a malicious file classified as benign is 
considered a false negative (FN). A manifest file 
from a benign APK that is classified as benign is 
considered a true negative (TN), whereas a benign 
sample categorized as malicious is counted as a false 
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positive (FP). These values form the basis of 
detection rates which are used in further statistical 
measures to assess effectiveness of a given algorithm. 
Detection rates from the four machine learning 
algorithms are compared against the detection rates 
of commonly used anti-virus software featured on 
VirusTotal, which includes over 70 anti-virus engines 
[33]. Data from all evaluations are used to determine 
which methods perform best in terms of specificity, 
sensitivity (recall), accuracy, precision, F1 score, and 
the output of their respective confusion matrices.

4. Experimental Results

This section presents results and analysis of each 
of the four chosen ML algorithms and the evaluation 
of samples using VirusTotal commercial anti-virus. 
Effectiveness of ML approaches are compared 
against this baseline of results for typical commercial 
AV applications, along with prior work.

4.1 Commercial Detection Engine Evaluation

To begin, the benign set of APKs are uploaded to 
VirusTotal. There were issues submitting some 
samples to VirusTotal, as files larger than 32mb in 
size are unable to be loaded. Therefore, these 
samples returned a null value and are excluded from 
analysis results. Of the 4,279 samples successfully 
submitted to VirusTotal from the benign set, there 
were a total of 789 unique false positives, with 2,879 
total instances of a false positive instance occurring 
across all detection engines. 789 unique instances of 
false positives (FP) resulted in a false positive rate of 
18.4%. 2,879 total instances of a false positive 
evaluation out of 253,105 total evaluations yields a 
1.137% false positive rate against all instances of 
evaluation.

While VirusTotal offers support for over 70 
engines in total, not all engines are able to process all 
samples. For a given sample, the number of total 
engines that were able to process the sample were 
recorded. Data collection included a mapping of 
samples to their evaluation engines, detection rates, 
anti-virus engine version numbers, and a full list of 
the SHA256s for each APK file. These raw results 
are stored in a private Github repository, with access 
granted and available upon request [37].

Next, the malicious set of APKs are uploaded to 
VirusTotal in the same manner. These resulted in a 
higher evaluation success rate, but out of 6,000 
samples, only 98 were unable to be submitted due to 
the incompatibility with VirusTotal. The malicious 
data set resulted in 848 unique detections, resulting in 

a unique detection rate of 14.37%. Additionally, 
there were 3,856 total detections across all engines, 
resulting in a detection rate of 1.04% across all 
evaluations computed. Figure 6 provides a summary 
of the TP and FP unique detection rates for the 
benign and malicious sample sets.

Figure 6: VirusTotal Detection Rates

4.2 ML Algorithm Evaluation

In this section, we detail the results of the 
computations generated from the four algorithms: 
Random Forest, SVM, Gaussian Naive Bayes, and K- 
Means. All algorithms were implemented using 
Python 3.7, the numpy library (for computations), the 
pandas library (for data analysis and manipulation), 
and the sklearn library (for algorithm 
implementation). Training and test sets were taken 
from the benign and malicious APK sets (referred to 
in section 3.1). Algorithms read in content from pre­
processed CSV files (referred to in section 3.3), 
stores them into a data frame (one for malicious one 
for benign), shuffles their respective contents, and 
then splits them evenly into two data frames. Hence, 
two sets of benign programs and two sets of malware 
programs are created.

Once the data frames have been shuffled and split, 
the benign data frame 0 is concatenated with the 
malicious data frame 0 to produce the learning set; 
the other two data frames produce the test set. For 
results, TP/FP/TN/FN counts are recorded (in a 
confusion matrix) and other key statistical values are 
computed as follows:

• Sensitivity/Recall/TPR : TP / (TP + FN)
• Specificity/TNR: TN/(TN + FP)
• Precision: TP / (TP + FP)
• Accuracy: TP + TN/(TP + TN+ FP + FN)
• F1: 2*(Precision*Recall)/(Precision+Recall)

Figure 7 provides a consolidated view of the 
confusion matrices produced by all four ML 
algorithms and the VirusTotal engine results. Figure 
8 provides a summary of statistical factors produced 
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by each of the four ML algorithms. Figure 9 provides 
a receiver operating curve for all four ML algorithms.

Random Forest. The implementation of random 
forest successfully executed with no issues. The 
algorithm correctly labeled 2,577 samples as 
malicious, our true positive value. The algorithm 
also successfully labeled 1,698 samples as benign, 
our true negative value. Random forest incorrectly 
labeled 547 samples as malicious (false positives) 
and labeled 421 samples incorrectly as benign (false 
negatives). The precision for random forest was 
calculated at 0.8249, or roughly 83%. The recall was 
computed to be 0.8585, or roughly 86%. Accuracy 
was computed to be 0.8153, or roughly 81%. The F1 
score was calculated to be 0.84188, or roughly 84% 
and the specificity is 0.7563 or roughly 76%.

Support Vector Machine (SVM). The 
implementation of SVM successfully executed with 
no issues. The algorithm correctly labeled 2,562 
samples as malicious, our true positive value. The 
algorithm was also successful in labeling 1,626 
samples as benign, our true negative value. Our 
implementation of SVM incorrectly labeled 619 
samples as malicious (false positives) and labeled 
436 samples incorrectly as benign (false negatives). 
The precision for our implementation of SVM was 
calculated at 0.8054, or roughly 80%. The recall was 
computed to be 0.8545, or roughly 85%. Accuracy 
was computed at 0.7987, or roughly 80 F1 score was 
computed to be 0.8292, or roughly 83%, and, the 
specificity is 0.7224 or roughly 72%.

Figure 7: Comparative TP/TN/FP/FN Results

Gaussian Naïve Bayes. Our implementation of 
Gaussian Naive Bayes was successfully executed 
with no problems. The algorithm correctly labeled 
2,961 samples as malicious, our true positive rate. 
The algorithm was also labeled 294 samples as 
benign, our true negative value. Additionally, the 
algorithm labeled 1,951 samples incorrectly as 
malicious (false positives) and labeled 37 samples 
incorrectly as benign. The precision for our 
implementation of Gaussian Naive Bayes was 
calculated to be 0.6028, or roughly 60%. The recall 

was computed to be 0.9876, or roughly 99%. Finally, 
the F1 score was calculated to be 0.7486, or roughly 
75% and the specificity is 0.1313 or roughly 13%.

Figure 8: Comparative Performance Results

K-Means. Our implementation of K-Means was 
successfully executed without issue. The algorithm 
correctly labeled 2,562 samples as malicious, our true 
positive rate. The algorithm also correctly labeled 
1,626 samples as benign, our true negative value. In 
addition, the algorithm incorrectly labeled 619 
samples as malicious (false positives) and 436 
samples as benign (false negatives). The precision 
for our implementation of K-Means was calculated to 
be 0.80541, or roughly 80%. The recall was 
calculated at 0.8545, or roughly 85%. Finally, the F1 
score was calculated to be 0.7486, or roughly 75% 
and the specificity is 0.72428 or roughly 72%.

Figure 9: Reciever Operating Curve
In terms of comparison with other ML approaches 

that focus in some way on manifest-based 
permissions, Table 1 provides a summary of the 
experimental results of this work and a comparative 
with related studies. Of note, our sample size is larger 
than other comparative work and on a more recent set 
of generalized malicious Android apps. The focus of 
this work was to evaluate primarily the efficacy of 
single ML approaches on manifest permissions alone, 
whereas comparative work has achieved higher 
accuracy when ensemble methods or information 
fusion approaches are used [25,39].
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6. Conclusions and Future Work

The substantial prevalence of Android powered 
mobile devices in the global market share makes 
Android platforms an attractive target for malware 
authors. The efficient and reliable detection of 
malware in the Android environment is a complex 
problem that doesn’t seem close to being solved. The 
first goal of this research was to present an evaluation 
of commercial anti-virus tools and how well they 
perform at classifying samples as malicious or 
benign. The findings indicate that when presented 
with a sample set of recently discovered malware 
(under two years), commercial anti-virus software 
proves woefully inadequate in terms of detection 
rates. The malicious set, consisting of 5902 samples, 
had only 848 unique detections (14.37%). It should 
also be noted that the benign set of 4297 samples had 
a false positive rate of 18.4%, or 789 samples

Table 1: Comparative ML Approaches
B M ML Acc Best

Milosevic, 
Dehghantanha 
[25](2017)

200 200 6 89% SVO
SVM

Kumaran,Lee 
[38] (2016)

500 500 6 90.5% Cubic
SVM

Wang et al. 
[39] (2017)

4,403 3,982 8 99.7% Fused

Sanz et al. 
[40](2013)

333 333 13 87.4% Random
Forest

Case Study 
(2020)

4,597 6,000 4 81% Random
Forest

B = Benign Samples, M = Malicious Samples 
ML = # of ML algorithms, Acc = Accuracy

The second goal of this research was to provide an 
evaluation of the effectiveness of several commonly 
implemented machine learning algorithms, namely, 
Random Forest, SVM, Gaussian Naive Bayes, and K- 
Means, when applied to the APK manifest file alone. 
The findings showed that compared to the detection 
rates of anti-virus engines readily available, all of the 
ML algorithms that used just the manifest file alone 
offered significant improvements, with Random 
Forest having the highest precision (0.8249), 
accuracy (0.8153), and F1-score (0.8418), specificity 
(0.7563) as well as the second highest computed 
recall (0.8153). The only algorithm that offered less 
than desirable results was Gaussian Naive Bayes. 
Gaussian Naive Bayes had the lowest precision 
(0.6028), accuracy (0.6208), and F1 score (0.7486) 
and specificity (0.1313). Compared to relative work 
(seen in Table 1), this work also reaffirms that 
Random Forest and SVM are best at classification 
when permissions are in view.

Future work will be focused on the creation of a 
novel algorithm that is more finely tuned towards the 
detection of malware, as opposed to the use of 
general-purpose algorithms. Ensemble approaches 
and the use of additional ML algorithms are also in 
view for static detection using manifest permission 
features. There are also many other static features 
associated with APKs that are elaborated in the 
current literature that could be easily combined with 
a manifest file approach to form a greater feature set. 
From results of this research, a natural follow-on step 
would be to classify Android malware into families 
based on permissions. Finally, adversarial machine 
learning will be considered to account for attacks 
where adversaries target manifest permission features 
to deceive ML algorithms.
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