

mailto:jtmcdonald@southalabama.edu
mailto:glisson@shsu.edu
mailto:nbh1001@jagmail.southalabama.edu
mailto:rbenton@southalabama.edu
https://hdl.handle.net/10125/71460




common types of malware seen throughout 2018
were: Adware [13], Banking Trojans [14], Mobile
Crypto Miners, and Repackaged applications [15-16].
The malicious datasets used in this research come
from a wide variety of virus categories, but with no
specific classification given to their family or type.
Thus, the results of the research represent a true
random sampling of potential Android malware that
may be encountered in the wild. Section 3.1 provides
more detail about malicious APKs used in this
research study.

2.3 Static Detection

Static analysis is a process by which a program is
analyzed without execution. The most common form
of malware detection in AV programs is based on
signature analysis. Signature-based detection works
by scanning a file and then generating a unique
identifier, a signature, for that specific file. The
signature creation process varies between anti-virus
programs. Typically, a hash of the file is created and
compared against a table of the hashes of known
malicious files. If the hash of the scanned file
matches that of a known malicious file in the
database, then it can be assumed to be malicious.
Items that frequently undergo review in static
analysis processes are as follows: source code, assets,
manifest files, string patterns, and files that are
known to be malicious. The shortcoming of
signature-based detection methods is that if no
signature exists for comparison, then nothing can be
said about the file in question.

Schmidt et al. [18] developed a method of
comparing application function calls with the
function calls of malicious samples using the Prism,
and Nearest Neighbor Algorithms (PART). Although
they reported high accuracy for their static detection
approach, they stated that in a real-world scenario,
the tasks they performed would be impossible due to
resource limitations. As a conclusion, they cited the
need for further work to create time-efficient methods
of detection.

Desnos [19] states that Android’s open-source
framework and its Java source code allow for
malicious authors to tamper with Android
applications easily. Therefore, they implement a
method of static analysis using similarity distance to
determine if an application is malicious or benign.
Though further optimized than previous work, the
authors state that there is a need for automated
behavior analysis and that manual analysis and
signature-based detection methods are insufficient.

Feng et al. [20] developed Apposcopy, a
semantics-based method for identifying Android

malware that aims to steal private user information.
Apposcopy makes use of static analysis procedures as
well as analysis of control flow to detect malware.
Using 1027 malicious samples from 15 different
malware families, Apposcopy reported an accuracy
of 90% with 103 false negative (FN) and only 2 false
positive (FP) results. They also analyzed 11,215 apps
from the Google Play store, with only 16 reported as
malware.

There is also current literature that bases static
detection of malicious Android apps on machine
learning in general, which is the focus of the research
presented in this paper. Tam et al. [23] address issues
about the sandboxed nature of Android applications.
To access the system, all applications must be
granted permissions by the Android Permission
System during installation. Once installed and
permissions have been given and enforced by the
kernel, applications can interact with each other
through the system with the use of API calls.
Unfortunately, these rules apply to anti-virus
applications as well and prevent applications from
being inspected by other applications. Due to this
reason, signature-based detection methods are the
most viable [23].

Kang et al. [24] proposed a means of detecting
and classifying Android-based malware using static
analysis. Their study centered around three
significant points. First, detection methods using
static analysis should be associated with creator
information. In particular, their approach used the
serial number of certificates and analysis of app
components such as permissions to determine
malignancy. Second, a scoring algorithm was
implemented that placed malware into families based
on scores calculated from weights assigned to API
calls, permissions, and system commands. Third, the
proposed method was tested on live malware samples
including 51,179 benign and 4,554 malicious
samples. Their approach was able to correctly detect
malignancy in 98% of all samples as well as correctly
classify samples into corresponding malware families
90% of the time. Such results show that features
based on certificate signatures, API calls,
permissions, and system commands form a promising
line of research.

2.4 Detection Based on Manifest Files

Our work is not the first to utilize manifest files as
the source of static analysis or machine learning
algorithms. The work of Milosevic and
Dehghantanha [25] utilized static malware analysis
techniques using both supervised and unsupervised
machine learning methods. Of similarity to the work

Page 6978






resource requirements and complex nature. Burgera
et al. [21] developed an approach for automated
dynamic analysis as a means of malware detection in
Android devices, called Crowdroid. The detector
relies on traces submitted from many users across
many different types of devices. While Crowdroid
did implement a method of automatic detection, the
process still relied on signatures collected from users.
In addition to being resource-intensive, the dynamic
analysis also has the drawback that a large number of
false positives may be generated.

Heuristic analysis is a relatively new approach
[36] and makes use of a wide variety of methods to
identify components of a program that can be used to
create an inference as to the nature of the said
program. A set of rules is established that determines
the criteria for what flags a file as benign or
malicious. The rules vary widely, depending on the
author. However, they are usually generated by using
pre-created algorithms and models that are used in
data mining and machine learning. An example of
such is the work of Suarez-Tangil et al. [22], which
made use of vector space modeling and text mining
to compare applications to generalized malware
samples.

3. Machine Learning Methodology

The goal of this research is to examine efficacy of
single-algorithm machine learning techniques on
manifest permissions on a reasonably sized Android
app data set. The aim is to evaluate performance in
comparison to commercial AV products to see if
single aspect detection (manifest permissions) using
single ML algorithms provide as good or better
results. Secondarily, the case study approach extends
prior results on manifest-based feature detection by
either examining a larger set of more recent apps and
different ML algorithms. The methodology is divided
into five phases, detailed next.

3.1 Phase 1: Setup and Data Acquisition

To begin, an environment is created in which
analysis on malicious applications can be safely
performed. For the test environment, experiments are
executed on a Windows10 Pro Edition host machine
running VMWare Workstation 15 Pro with an
Ubuntu version 19.10, Eoan, operating system. This
virtual environment provides the guarded sandbox in
which all tests are conducted. Scripts used in
experiments are written in Python 3.7 and Bash.
Given the sctup of the virtual environment, data
sources are migrated to the environment which

include a collection of 4597 benign applications from
the Google Play store that have previously been run
through anti-virus to verify their benign nature.
These samples are part of a pre-existing internal
private repository of APK files that were pulled from
the Google Play store in 2017 and verified to be
benign through VirusTotal. The benign samples act
as the control set of data. In addition to the samples
collected from the Google Play store, 6000 malicious
samples are collected from the AndroZoo [28]
repository. The samples are sourced from both the
Google Play store and AppChina third-party market,
and no sample exceeded 30 megabytes (MB) in size.
The AndroZoo repository hosts a large collection of
malicious Android applications with classifications of
malware ranging from adware to repackaged
applications.

All malicious samples are randomly selected
applications that are no older than January 1st 2018
from the AndroZoo repository using the python
library (AZ) that AndroZoo provides [28]. This
sampling ensured the malicious set was
representative of the current Android environment.
For collection of the applications taken from
AndroZoo, a script created in Python 3.7.3 is used
that allows download from the repository. An API
key must be provided to the script in order to run and
can be requested by emailing androzoo@uni.lu and
stating the name of the research institution and the
name of the individual requesting access. All
applications for AndroZoo access must be sent from
a university or research institution email account.

3.2 Phase 2: Evaluating Commercial AV

As part of the research approach presented in this
paper, performance of machine learnings algorithms
is compared against performance of typical and
current anti-virus engines used commercially. In
order to evaluate the effectiveness of common
commercial anti-virus engines, the malicious and
benign data sets are submitted to VirusTotal [32] in
their entirety. The VirusTotal free API is used for
such uploads. The free API allows for submission of
1000 samples per day, and 30,000 samples per
month. An APl key can be requested from
VirusTotal simply by navigating to the website [32]
and signing up for a free account. The VirusTotal
website provides a means to upload samples in batch
by using the officially supported Windows or Mac
application.

To facilitate the upload of the data set used in this
rescarch, the entire data set is split into smaller
batches of roughly 900 samples ecach. This resulted
in seven batches for the malicious set and five for the

Page 6980


mailto:androzoo@uni.lu












https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
https://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
https://www.statista.com/statistics/266572/market-share-held-by-smartphone-platforms-in-the-united-states/
https://us.norton.com/internetsecurity-malware.html
https://securelist.com/mobile-malware-review-2017/84139/
https://securelist.com/mobile-malware-review-2017/84139/
https://us.norton.com/internetsecurity-malware-what-is-antivirus.html
https://us.norton.com/internetsecurity-malware-what-is-antivirus.html
https://developer.android.com/guide/platform/
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals



https://securelist.com/mobile-malware-evolution-2018/89689/
https://securelist.com/mobile-malware-evolution-2018/89689/
https://www.mcafee.com/enterprise/en-us/assets/%2520reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/%2520reports/rp-mobile-threat-report-2019.pdf
https://www
virustotal.com/gui/home/upload
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://support.virustotal.com/hc/en-us/articles/115002126889-How-it-works
https://github.com/

