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Abstract. With the increased assimilation of technology into all aspects of everyday life, rootkits pose a credible threat to
individuals, corporations, and governments. Using various techniques, rootkits can infect systems and remain undetected for
extended periods of time. This threat necessitates the careful consideration of real-time detection solutions. Behavioral detection
techniques allow for the identification of rootkits with no previously recorded signatures. This research examines a variety of
machine learning algorithms, including Nearest Neighbor, Decision Trees, Neural Networks, and Support Vector Machines, and
proposes a behavioral detection method based on low yield CPU power consumption. The method is evaluated on Windows 7,
Windows 10, Ubuntu Desktop, and Ubuntu Server operating systems along with employing four different rootkits. Relevant
features within the data are calculated and the overall best performing algorithms are identified. A nested neural network is then
applied that enables highly accurate data classification. Our results present a viable method of rootkit detection that can operate
in real-time with minimal computational and space complexity.
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1. Introduction

Rootkits are malicious programs that acquire root privileges on a computer. Hooking techniques allow
rootkits to hide within a system without detection from traditional security mechanisms [6]. As defined
by the Microsoft developers network, a hook is “a point in the system message-handling mechanism
where an application can install a subroutine to monitor the message traffic in the system and process
certain types of messages before they reach the target window procedure” [38]. There are, generally,
two reasons for deploying a rootkit. The first is establishing remote command and control of a system
and the second is eavesdropping on a system [28]. Over time rootkits have evolved, and are still used
in modern attacks. In 2015 it was revealed the Chinese cybercriminal group Winnti was using rootkit
technology in their attacks [45]. In 2016, Check Point Mobile Threat Prevention identified the mobile
rootkit HummingBad, which could install more than 50,000 fraudulent apps each day, and display 20
million malicious advertisements [9]. According to Kaspersky Security, in 2016 the third most prominent
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banking malware family (Trojan.Win32.Neurevt) employed rootkit technology [56]. Rootkits are also
employed in advanced persistent threat scenarios, as demonstrated by Stuxnet. Stuxnet used a Windows
rootkit, the first ever PLC rootkit, process injection, and code hooking to damage centrifuges at the
Natanz uranium enrichment plant in Iran [20,60]. When coupling this information with the increasing
integration of technology into the automotive world [8], the aviation industry [42], critical infrastructure
and legal environments [4,7,40,62], it stresses the need to identify methods that will discover rootkits
before they can cause damage.

Methods proposed for identifying rootkits generally fall into three categories [55]. The first cate-
gory is signature based detection, which looks for previously recorded byte patterns of known rootkits
[55]. While this method is very effective, it cannot detect rootkits that have not yet been identified and
recorded. The second category is integrity detection which involves periodically checking the system
for unauthorized changes to file systems and operating system components [55]. The last category is
behavioral detection and the focus area for this research. Behavioral detection involves identifying the
presence of a rootkit by collecting data on the behavior of the system under normal conditions, and then
uses the data as a baseline to identify deviations [10]. This process typically involves the use of machine
learning or statistical models. In fact, a recent article noted that machine learning is the primary method
for almost all non-signature based detection techniques, including network intrusion, spam identifica-
tion, fraudulent activity, and malicious activity in general [39].

The contributions of this research are as follows. First We demonstrate the performance of a rootkit
detection solution using power measurements from the host CPU. The experimental results indicate
that this method is on par or supersedes the current work in several aspects, including the accuracy of
the model and the data requirements. The algorithm is effective using data measured at low frequency
random time frames with only information on the initial, minimum, maximum, intervals, and average
power measurement during that time frame. Further, we demonstrate that this method is capable of de-
tecting both user and kernel level rootkits during normal operating conditions and under stress tests.
Our method is tested on four different operating systems: Ubuntu Server, Ubuntu Desktop, Windows 7,
and Windows 10. The data is analyzed and results are reported on a variety of different machine learn-
ing algorithms, including decision trees, nearest neighbor, support vector machines, neural networks,
regression, and ensemble methods. Lastly, a model is created using nested neural networks and discrete
representations of projected data that outperforms other methods. On average, this model achieved 9.4%
higher area under the curve (AUC) and 17.2% higher accuracy than the traditional machine learning
algorithms tested.

The remainder of the paper is structured as follows. Section 2 presents related work in rootkit detection
and learning algorithms. Section 3 discusses the algorithms used in our analysis and Section 4 describes
our data collection environment, as well as any preprocessing techniques used on the data once collected.
Section 5 presents an analysis of the results and Section 6 discusses the implications and future work.
The last section of the paper draws conclusions.

2. Related work

Machine learning techniques have become common place in many applications, including malware
detection. The following subsections describe related work in rootkit detection given specific features.
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2.1. System call behavior

Das et al. [13] proposed an online malware detection method which they named GuardOL. GuardOL
uses system call patterns to classify malware. The frequency-centralized model considers how often
critical system calls are used and builds features by clustering the calls based on a set of rules that
capture the behavior of malicious code. Based on these features, a multilayer perceptron is trained and
used to identify malicious activity at runtime. The data set used contained 472 samples, of which 56
were rootkits. Their model, which was implemented on an FPGA, could detect 46% of malware within
30% of its execution time, and 97% of malware all total.

Dini et al. [18] designed a method for detecting malware on smartphones they called Multi-level
Anomaly Detector for Android Malware (MADAM). Their behavior based method intercepts critical
system calls at the kernel level and records the number of occurrences of the calls over a period of time.
Their one nearest neighbor classifier could detect 100% of the rootkits tested.

Hernandez et al. [27] note cyber-attacks pose a credible threat, citing Stuxnet, which used rootkit
technology. They evaluated a method of event detection based on reconstructing the phase-space formed
by serialized system call timing data. Their algorithm evaluates the dissimilarity among phase-space
graphs over time and successfully indicated anomalous activity.

In our recent work [37], we also evaluated system call timing data for rootkit detection. Our analysis
tested two neural network architectures: feed forward and recurrent. The recurrent neural network could
correctly classify 97% of system calls as either infected or not infected with a rootkit (KBeast). This
accuracy was obtained using only one feature (system call time) and no preprocessing of the data. In
another work [14] we evaluated the same system calls using phase-space analysis.

2.2. API behavior

Pirscoveanu et al. [50] note that attackers have a strong incentive to increase the complexity of mali-
cious code to improve obfuscation and decrease the likelihood of being detected by anti-virus software.
They suggest a method of detection based on dynamic analysis of system behavior. The behaviors used
in their research included DNS requests, accessed files, mutexes, registry keys and Windows APT’s. Us-
ing a Random Forest classifier, they could detect trojan malware at .98, adware at .95, and rootkits at
.97 areas under the curve (AUC). They also note their classifier had a higher number of false negatives
when classifying rootkits as opposed to other forms of malware.

Alazab et al. [1] compared eight classifiers for detecting rootkits based on API features. They tested the
performance of Naive Bayes, K -Nearest Neighbor, Sequential Minimal Optimization with a Normalized
PolyKernel, Sequential Minimal Optimization with a PolyKernel, Sequential Minimal Optimization with
Puk, Sequential Minimal Optimization with a Radial Basis, Backpropagation Neural Networks, and J48
decision trees. Their results indicate Support Vector Machines with a normalized PolyKernel performed
best (98.5% true rate), and the Neural Network using backpropagation performed the poorest.

2.3. Hooking behavior

Ramani et al. [52] proposed rootkit detection based on hooking. They evaluated nine classifiers to
identify which performed the best. Of the nine classifiers, the most accurate was one proposed by Ra-
mani and Jacob called the Correlation Bayes Algorithm. The correlation Bayes Algorithm yielded a
classification accuracy of 87.4% using 10-fold cross validation. A Random Committee algorithm came
in second with an accuracy of 86.2%, and third was Logistic Regression with 85.1%.
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Lobo et al. [36] suggested a method for rootkit detection called Rootkit Behavioral Analysis and
Classification System (RBACS). This method analyzes Windows process affected by rootkit hooking
techniques and the API functions that were hooked. Their analysis used 78 rootkit samples obtained
from the Offensive Computing website [46] that produced 11,159 inline function hooks. Using the Ex-
pectation Maximization (EM) and 10-Fold Cross Validation algorithms, their method could categorize
the different rootkits into one of five categories based on labels assigned by antivirus software.

2.4. Other characteristics

Demme et al. [17] define malware as any software designed with the intention of compromising a
system or the privacy of an individual or business. Their research uses behavioral characteristics from
performance counters and machine learning classifiers such as K-Nearest Neighbor and Decision Trees
to identify the presence of Android malware and Linux rootkits. Their method, which uses hardware
modifications to support dynamic analysis, yielded an accuracy of nearly 90%.

Arslan et al. [3] performed a thorough review of machine learning methods used in the detection of
mobile attacks, including rootkits. They cited over 20 published works that employed machine learn-
ing classifiers, including Support Vector Machines, Artificial Neural Networks, Random Forrest, Naive
Bayes, K Nearest Neighbors, and others to identify the presence of a threat. They note these methods
are most advantageous when employed against malicious code that has not yet been identified and has
no recorded signature. They also identified three phases of malware detection using machine learning:
feature extraction, feature selection, and classification.

Dubey et al. [19] proposed a three-step learning algorithm using K Means clustering, Bayesian classi-
fiers, and Neural Networks with backpropagation training as a method for intrusion detection systems. Of
the attacks they studied, some of them included User-To-Root attacks (U2R), where an attacker exploits
vulnerabilities within a system to gain root access, which is similar to a rootkit. Using data acquired from
the 1998 DARPA Intrusion Detection Evaluation program, they could correctly classify 98% of rootkit
style attacks. Lakshmi et al. [35] also investigated the application of machine learning to intrusion detec-
tion systems based on User-To-Root attacks. Their analysis used a subset of the KDD CUP 99 data set,
which contained 52 User-To-Root attacks, each with 41 attributes. After various preprocessing methods
were employed, such as normalization and Principal Component Analysis, the data was tested on several
different classifiers. Of the classifiers tested, the best results came from Rule Induction, Decision trees,
and Naive Bayes.

2.5. Power characteristics

Shropshire [54] used statistical analysis of power measurements to identify hypervisors that had been
compromised. He notes that while attackers can hide unauthorized activity by modifying specific compo-
nents within a system, they cannot manipulate external measures of energy consumption. The proposed
system, named PowerCheck, measures power consumed by a server using an external sensor, as well as
the hypervisor’s reports of CPU load, network activity, and memory use. It then identifies anomalous
activity by comparing predicted consumption against the actual usage. The model could detect small
discrepancies in energy consumption and had minimal false positives.

In our recent [15] work we utilized power supply voltage measurements collected using a multimeter
and current clamp, then extract time-serial system dynamics through the application of a phase-space
algorithm. Examination of phase-space graph features between nominal and infected data during stress
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test on an Ubuntu Server OS were used to classify the state of the system. Our results indicate that the al-
gorithm could successfully detect a rootkit through power measurement analysis. The current manuscript
extends this work by evaluating different operating systems, different rootkits, different hardware, and a
variety of learning algorithms.

3. Algorithms

The learning algorithms used in this research can be broken down into seven categories: tree based
methods, regression, support vector machines, nearest neighbor, discriminant analysis, neural networks,
and ensemble classifiers. A general description of these methods is provided in the following subsec-
tions. During training, all algorithms used 5-Fold cross validation, which is a method used to estimate
how well a predictive model generalizes to different data sets [33]. This section provides a general back-
ground for readers not familiar with the above algorithms. Readers familiar with statistical and machine
learning prediction and classification algorithms may skip this section.

3.1. Decision trees

Decision trees are hierarchical models that split data into homogenous groups based on recursively
applied rules [51]. The training objective is to find a set of decision rules that can be used to predict a
class label. Our research uses the Gini-Simpson index (1) of diversity [24]:

k
Gw)=1-Y p} (1)
j=1

Here, v; represents the possible values of a given attribute, and p; the fraction of points containing said
attribute belonging to a set of classes j € {1, ..., k}. The Gini-Simpson index represents the probability
of a given class occurring at a given node in the decision tree, and is based on the cumulative proportion
of a given unit. Various size trees with limitations on branching factors were evaluated in our analysis.
The trees in our analysis labeled complex have a maximum branching factor of 100, the medium trees
have a maximum branching factor of 50, and the simple trees have a maximum branching factor of 20.

3.2. Regression

Logistic regression is a special case of regression where the dependent variable is dichotomous. There
are different methods of logistic regression for classification, including ordinary least square, weighted
least square and maximum likelihood estimations [2]. Our analysis focuses on maximum likelihood
estimation, which attempts to find a value for an unknown parameter to maximize a function. In this
case the function corresponds to the likelihood function, which is the function produced by reversing the
roles of parameters in the Probability Density Function (PDF). For binary classification (41, —1), the
logistic regression function for the positive (2) and negative (3) class respectively are as follows:

1

1 + e—G0+X; 6ix))
1
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P(C=—-1|X)= (3)
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These equations read ‘The probability of the class label C being a binary value given a set of records X
and a set of parameters ®’, where 6, represents a bias term and 6; is the weighting coefficient of each
feature.

3.3. Support vector machines

Support Vector Machines, or SVMs, are a technique for classification and outlier detection. SVMs seek
to find an optimal hyperplane to separate classes by maximizing the margin between the closest points
among classes [41]. For a feature vector X where X, corresponds to the ith training point, a vector W
corresponding to the normal direction of the hyperplane, and a bias b, the hyperplane is calculated with
the following formula (4):

W-X+b=0 4)

For binary classification, values greater than 0 belong to the positive class, and values less than 0 belong
to the negative class. A hyperplane of a p-dimensional space is a flat affine (does not pass through origin)
subspace consisting of p — 1 dimensions [31]. When perfect separation is not possible, points that occur
in the incorrect class are assigned lower weights as to reduce their impact. This technique uses what
are called soft margins rather than optimal margins. SVMs also employ kernel techniques to classify
nonlinear data that is not easily separable by projecting the data into higher dimensions. The kernel
functions of a SVM are a type of similarity function used to calculate decision boundaries in projected
space [31]. Our analysis evaluates the performance of four support vector machines each with a different
kernel: linear (5), quadratic (6), cubic (7), and Gaussian radial base (8).

f&xr, ..., x0) =b4+aix; + -+ apxg ®))
f(x):ax2+bx+c (6)
fx)=ax®+bx*+cx+d (7)
F(lx = xll) = e ®)

3.4. Nearest neighbor

The nearest neighbor classification method is one of the most well-known techniques in machine
learning. Despite its simplicity, it is one of the most widely used algorithms in many aspects of data
mining [34]. Data is divided into samples and is represented by an attribute vector. This vector contains
features that describe the sample [25]. Classification is achieved based on the similarity or distance
function used in the algorithm. The accuracy of the K -Nearest Neighbor algorithm is strongly dependent
on the choice of similarity or distance function [58]. In this research, we evaluated 3 distance functions:
Euclidean (9), Minkowski (10), and Cosine (11).

d(p.q) = ©))
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dip.q) =" (10)

> (g — p)"
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Here, O and P represent feature vectors. In our analysis, all nearest neighbor algorithms used & = 10.

For Minkowski distance, the parameter m was assigned a value of five, which is equal to the number of
dimensions in the feature vectors.

cos(f) = (1)

3.5. Discriminant analysis

Discriminant analysis seeks to determine which variables or features discriminate between two or
more groups. It generally assumes the observations in each class are generated by a probability distri-
bution specific to said class [22]. Our analysis considers two types of discriminant analysis: linear and
quadratic. Linear discriminant analysis assumes a multivariate normal distribution and is used when the
variance—covariance matrix does not depend on the sampled population. Classification rules are based
on a Linear Score Function of the population means for each population. Quadratic discriminant analysis
follows a similar method, but is used for heterogeneous variance—covariance matrices [22]. The score
functions for Linear (12) and Quadratic (13) Discriminant analysis are as follows:

P
SF(x) =dio+ Y _ dijx; +log p; (12)
i=1
0 1 1 =\/,—1 =
§¢ () = =5 logloil — > (x — )/ (x — %) + log pi (13)

3.6. Ensemble classifiers

Ensemble classification methods evaluated in our analysis include Boosted Trees and Bagged Trees.
The method of Bagged Trees takes small bootstrap samples, which are data sets consisting of randomly
drawn instances of the original data set [24], and builds a decision tree. Then, the process is repeated
several times, building many different trees from many different sets of data. Classification is based on
the average predictions from all trees. Boosting originated from the AdaBoost algorithm [23]. Boosting
uses a collection of weak classifiers to yield one strong classifier [16]. The ensemble tree methods have
a maximum branching factor of 20 and use 100 learners.

3.7. Neural networks

Neural networks have been widely used for function approximation, classification, clustering, and dy-
namic system modeling [61]. There are generally three aspects of a neural network: the architecture,
training method, and transfer function. Network architectures include feed forward, cascade, recurrent,
and many others. Some examples of training methods are scaled conjugate gradient descent, Levenberg—
Marquardt, and Bayesian regularization backpropagation. There are also many types of transfer func-
tions. Of those, the most common are the sigmoid functions. The general layout for a sigmoid transfer
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function is:

o
)= — f 14
s(x;) T + € (14)

Specific examples of transfer functions in this format include the logistic and hyperbolic tangent func-
tion. The neural network used in our analysis was a feed forward network with one input layer, three
hidden layers, and an output layer. The input layer consisted of five neurons corresponding to the five
points in each feature vector, the hidden layers consisted of 31 neurons (30 neurons and one bias), and
the output layer was a single neuron. The first hidden layer used a radial base transfer function, while
the next two hidden layers used a hyperbolic tangent transfer function. The output layer used a linear
step function. The network was trained using the Levenberg—Marquardt algorithm (LMA), which is a
method for solving non-linear least squares. As part of our proposed method we also employ self or-
ganizing maps. Self Organizing Maps (SOM) are a type of unsupervised neural network that clusters
data by projecting the input on-to a 2-dimensional grid based on similarity and topology of the feature
vectors [57]. Our analysis employed a SOM with a four-by-four (4 x 4) grid.

4. Methodology

The following subsections describe the equipment, hardware, and software used in our analysis. It also
describes the steps involved in data collection.

4.1. Data collection equipment

Power data was collected and recorded using a Fluke 289 Multimeter with a Fluke i30 AC/DC cur-
rent clamp. The multimeter records changes in power readings given a certain threshold. The default
threshold of the Multimeter is 4% and was not adjusted.

4.2. Software

Our analysis focused on three operating systems. The first operating system was an Ubuntu 14.04
Server. Data was collected from the operating system prior to infection and after infection. The rootkit
used on the Ubuntu operating system was KBeast [29]. KBeast is a Loadable Kernel Module rootkit
capable of hiding itself, files, directories, and processes. It is also able to log key strokes and prevent
removal of files and deletion of itself. KBeast is compiled using the setup script and then loaded into
kernel space.

The second operating system was Windows 10 Pro. The rootkit used on the Windows 10 operating
system was FUTo [46]. According to the authors, FUTo can manipulate the PspCidTable without using
any function calls, and uses Direct Kernel Object Manipulation (DKOM) to hide certain objects. The
FUTo file came with a prebuilt executable, and the system was infected by running the executable as an
administrator.

The third operating system was Ubuntu Desktop version 16.04.1. Ubuntu Desktop was infected with
the Azazel rootkit [46]. Azazel is a user level rootkit capable of hiding files, directories, processes,
creating backdoors, and avoiding detection. Azazel was compiled using the scripts provided at Packet
Storm [47].
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Fig. 1. Collection environment for power analysis.

The final operating system used for out of sample testing (Data Collection 3) was Windows 7 Profes-
sional with Service Pack 1. The rootkit was a version of Windows NT rootkit found at [48].

Data analysis was performed using Matlab version R2016A. Specific tool boxes used were the Neural
Network Toolbox, Classification Toolbox, and the Statistics and Machine Learning Toolbox.

4.3. Computer hardware

Figure 1 depicts the collection environment for the power analysis. The current clamps were placed
around the two yellow power cords going from the motherboard to the CPU. The first computer used in
our analysis was a Dell Optiplex 755 with an Intel Core 2 Duo CPU. The hard drive running the Ubuntu
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14.04 Server operating system was a Western Digital WD1600AAJS with 160 gigabytes of memory.
The hard drive running Windows 10 and Ubuntu Desktop was a western digital WD2500LPLX with 250
gigabytes of memory. Hard drives were erased using a Diskology Disk Jockey Pro Forensic Edition. The
Disk Jockey was also used to copy the clean version of Ubuntu Server back to the hard drive. A clean
version of both Windows 10 Pro and Ubuntu Desktop were reinstalled using a bootable image stored on
a SanDisk Ultra USB 3.0.

For out of sample testing (Data Collection 3), we used a Dell Optiplex 790 with an Intel Core 13-2130
CPU with 3.40 GHz. The hard drive used was a Western Digital WD2500LPLX 250GB.

4.4. Data collection

This section describes the different data sets collected for analysis. For clarity, the data sets are sepa-
rated and labeled. Each data set is composed of eight collections. First, two collections are performed on
the uninfected system. Then the system is infected with the appropriate rootkit and two more collections
are performed. Then the hard drives are erased, the appropriate operating system is reinstalled, and the
process is repeated.

4.4.1. Data collection 1

Data collection 1 was collected using the Fluke 289 Multimeter and Fluke i30 AC/DC current clamp.
Again, the data instances were vectors of the following features: initial reading above/below threshold,
duration of reading, minimum reading in the interval, maximum reading in the interval, average reading
in the interval. The number of instances produced by a single collection is based on the number of times
the values go above or below the threshold. This data collection process followed the following steps:

(1) Place the power clamp around the CPU power cords;
(2) Start recording on the Multimeter;
(3) Power on the Computer and log-in;
(4) Create a directory in C;
(5) Create a text file in the new directorys;
(6) Open the text file and type “This is a test for rootkit detection!”;
(7) Save the file;
(8) Return to the C directory;
(9) Delete the created directory;
(10) Power off the computer and stop the multimeter from recording.

This process was performed on the Windows 10, Ubuntu server, and Ubuntu desktop operating systems.
This resulted in three data sets from collection type 1. After logging on-to the computer, we waited until
the multimeter showed little variability before conducting the above steps. This was to ensure that the
initial start-up programs did not contaminate the readings. On average, the recording would begin within
60 to 120 seconds after logging in.

4.4.2. Data collection 2
Rather than a manual process, a stress tested was performed on the computer while the multimeter
was collecting data. This data collection process followed the following steps:

(1) Place the power clamp around the CPU power cords;
(2) Power on the Computer and log in;
(3) Begin recording on the multimeter;
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(4) Begin the stress test;
(5) After a given time frame stop the stress test and multimeter;
(6) Power off the computer.

The stress test lasted approximately five minutes. The stress test used on the Windows 10 operating
system was HeavyLoad [30], and the stress test used on the Ubuntu operating systems was Stress-ng
[32]. This process was performed on the Windows 10 and Ubuntu desktop operating systems. For this
collection we were only concerned with the behavior of the system during the stress test. Therefore,
the multimeter was not activated until after the boot sequence and at the same time the stress test was
initiated. This is because the boot and shut down sequence would be approximately the same as the
collection without the stress test (collection 1). This resulted in two data sets from collection type 2.
Together, collection types 1 and 2 produced five data sets. The details of the collections are described in
Table 1. We note the actual data set sizes may slightly vary due to some samples being unusable.

4.4.3. Data collection 3

Data collection 3 was utilized for out of sample testing. This data collection was the only collection
which used the Windows 7 OS on the Dell Optiplex 790. The following procedure was followed when
collecting the data:

(1) Place the power clamp around the CPU power cords;
(2) Start recording on the Multimeter;
(3) Power on the Computer and log-in;
(4) Open Notepad and type for 5 minutes, then close Notepad;
(5) Open MS Paint and draw/type for 5 minutes, then close;
(6) Open calculator and perform random calculations for 5 minutes, then close;
(7) Open Control Panel and navigate through various files for 5 minutes, then close;
(8) Open MS Paint and draw/type for 5 minutes, then close;
(9) Open Notepad and type for 5 minutes, then close;
(10) Open Word Pad and type for 5 minutes, then close;
(11) Open MS Paint and draw/type for 5 minutes, then close;
(12) Open Control Panel and navigate through various files for 5 minutes, then close;
(13) Open Word Pad and type for 5 minutes, then close;
(14) Power off the computer and stop the multimeter from recording.

A single clean and a single infected sample were gathered. The recordings lasted approximately 1 hour.

4.4.4. Labeling and normalization

Each data instance (feature vector) was assigned a class label of 1 for uninfected data and —1 for
infected data. There were a total of five test sets and 5 corresponding training sets. Each training set
contained four collections from a specific operating system either during a stress test or during a manual
test and the corresponding test set contained four collections. The four collections were normalized
independently of each other and merged to form one set for training and one for testing. The algorithms
were trained on the individual instances of data. Because each collection followed the same method
described above, each training/test set had approximately the same number of positive and negative
class labels.

Much of the time and computational complexity involved in some machine learning algorithms, in-
cluding those used in our analysis, is in the preprocessing of data. This process can become exponen-
tially more difficult in real time and ‘Big Data’ scenarios. Therefore, one emphasis of this research is



Table 1
Description of individual data collections
Windows 10 Ubuntu Desktop Ubuntu Server
Clean Infected Clean Infected Clean Infected
No Stress
Collection WC1 WC2 WC3 WC4 WII WI2 WI3 WI4 UC1 UC2 UC3 UC4 Ul UI2 UI3 U4 SC1 SC2 SC3 SC4 SI1 SI2 SI3 Si4
Number of 143 45 40 4 60 60 57 62 49 62 58 54 59 62 75 73 96 118 87 95 100 105 96 93
Samples
Total 511 492 790
Stress
Collection WC1 WC2 WC3 WC4 WII WI2 WI3 WI4 UC1 UC2 UC3 UC4 UIl U2 UI3 U4 - - - - - - - =
Number of 189 165 160 184 148 183 160 162 119 121 113 83 82 134 136 133 - - - - - - - =
Samples
Total 1351 921 -
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Table 2
Descriptive statistics of clean versus infected average power measurements on Windows 10 during stress test
Status Min Q1 Mean Median Q3 Max
1. Not Infected 0 .83 .81 .85 .90 .99
2. Infected 0 93 .90 94 .96 1

to identify features and algorithms that need as little preprocessing as possible. To this end, the only
preprocessing performed was standardization and normalization using the following formulas:

X; — mean
s(x;) = —— (15)

o
X; — minimum

s(x;) = (16)

maximum — minimum

The first equation is the standard method of normalization that uses the mean and standard deviation.
In general, the mean value of a data set provides a good measure of central tendency. This is under the
assumption that the data set is reasonably large and there are no outliers. When these assumptions do
not hold, the median will often yield better results. Table 2 is an example of the descriptive statistics for
one data set. Both the infected and uninfected data had a mean and median that were relatively close.
Because of this, and despite the fact that some data sets had outliers present, we still chose to normalize
using the mean. The second equation scales all data points down to the range [0, 1]. After analysis,
we found the Generalized Pareto Distribution was the closest fit, and in most cases the data were right
skewed, as can be seen in Table 2. We note that during our experiments we evaluated both unnormalized
and normalized data, and in every case the normalization improved the results.

A critical aspect of machine learning is estimating the importance and need of specific features. In-
cluding irrelevant features can, at best, slow training time and, at worst, reduce accuracy. In order to
evaluate the features used in our analysis, we employed the RelieFF algorithm, which evaluates and
weights the importance of features using a K Nearest Neighbor method [53]. In our case, we chose K
to be 10. Figure 2 shows the results of RelieFF on a Windows 10 data set during a stress test. The fifth
feature (minimum value during the interval) is assigned the highest weight, and is, therefore, consid-
ered the most important. The remaining features are all within a small range of importance. Because all
weights were greater than zero, we choose to include all features in our analysis. The remaining data
sets followed similar patterns.

5. Analysis

The following subsections describe the in sample and out of sample testing performed on the data.
5.1. In sample test

Table 3 presents the results of the analysis of data collection 1 from an Ubuntu Server operating
system. The best performing algorithms were the neural networks and tree methods, and of the tree

methods, the best were the ensemble tree methods. The nearest neighbor using Euclidean distance also
performed well.
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Table 3

Analysis of Ubuntu server
Method Accuracy AUC Train Time (s)
1. Complex Tree 87 9 4
2. Medium tree 87 .93 7
3. Simple Tree 78 .76 .6
4. LDA 50 .52 1
5. QDA 48 .49 7
6. Logistic Reg 50 Sl 3
7. Linear SVM 50 52 29
8. Quadratic SVM 52 .53 222
9. Cubic SVM 50 .5 171
10. Gaussian SVM 75 .82 9
11. NN-Euclidean 84 .84 1
12. NN-Minkowski 78 .86 57
13. NN-Cosine 61 66.0 .62
14. Boosted Tree 88 95
15. Bagged Tree 89 .96
16. Neural network 99 .99 37

Table 4 illustrates the results of the analysis of data collection 2 from the Windows 10 operating
system. Like the Ubuntu Server, the neural network, tree based methods, and ensemble tree methods
performed the best. The support vector machines with linear and quadratic kernels also performed well,
although the quadratic SVM required significantly more training time. The nearest neighbor algorithm
using Euclidean distance also performed well.

Table 5 shows the results of the analysis on the Windows 10 operating system using the HeavyLoad
stress test (data collection 2). The stress test was given one of the two cores and run as an administrator
to allow reads and writes to the C drive. Again, the neural network and tree based methods performed
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Table 4
Analysis of Windows 10
Method Accuracy AUC Train Time (s)
1. Complex Tree 81 .83 6
2. Medium tree 82 .84 5
3. Simple Tree 76 .81 5
4. LDA 55 48 8
5. QDA 56 5 8
6. Logistic Reg 59 49 8
7. Linear SVM 85 .83 9
8. Quadratic SVM 87 .88 119
9. Cubic SVM 52 5 78
10. Gaussian SVM 55 .55 6
11. NN-Euclidean 87 .93 1
12. NN-Minkowski 77 .82 1
13. NN-Cosine 82 .88 2
14. Boosted Tree 90 .95 10
15. Bagged Tree 89 .96 10
16. Neural network 93 .95 27
Table 5
Analysis of Windows 10 with stress test

Method Accuracy AUC Train Time (s)
1. Complex Tree 80 .88 2
2. Medium tree 74 .82 1
3. Simple Tree 71 5 1
4. LDA 60 .66 92
5. QDA 59 .65 78
6. Logistic Reg 69 74 1
7. Linear SVM 68 74 55
8. Quadratic SVM 57 75 724
9. Cubic SVM 65 .65 588
10. Gaussian SVM 81 .89 6
11. NN-Euclidean 81 .90 1
12. NN-Minkowski 80 .88 3
13. NN-Cosine 76 .85 3
14. Boosted Tree 78 .87 9
15. Bagged Tree 85 .94 8
16. Neural network 88 .93 181

the best. The support vector machine with a Gaussian kernel also performed well, but required consid-
erably more training time. The nearest neighbor methods performed well, with the Euclidean method
performing best.

Table 6 list the results of the analysis on Ubuntu Desktop for data collection 1. The neural network,
boosted and bagged trees, and complex tree performed the best, with an average accuracy of approxi-
mately 82%. The remaining two tree-based methods performed reasonably well, as well as the nearest
neighbor method with Euclidean distance. Surprisingly, all methods apart from linear and quadratic dis-
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Table 6
Analysis of Ubuntu desktop
Method Accuracy AUC Train Time (s)
1. Complex Tree 82 .86 2
2. Medium tree 81 .88 1
3. Simple Tree 77 .83 3
4. LDA 51 .49 3
5. QDA 50 .49 3
6. Logistic Reg 51 48 4
7. Linear SVM 52 48 90
8. Quadratic SVM 55 51 269
9. Cubic SVM 53 .60 325
10. Gaussian SVM 67 71 273
11. NN-Euclidean 76 .76 274
12. NN-Minkowski 63 73 278
13. NN-Cosine 63 .69 272
14. Boosted Tree 82 91 282
15. Bagged Tree 84 93 288
16. Neural network 83 .90 39
Table 7
Analysis of Ubuntu desktop with stress test
Method Accuracy AUC Train Time (s)
1. Complex Tree 85 .88 2
2. Medium tree 81 .85 2
3. Simple Tree 70 72 2
4. LDA 58 .64 2
5. QDA 52 .62 3
6. Logistic Reg 88 .87 6
7. Linear SVM 91 .89 58
8. Quadratic SVM 86 94 390
9. Cubic SVM 50 .70 422
10. Gaussian SVM 90 .95 391
11. NN-Euclidean 88 .88 394
12. NN-Minkowski 82 .89 397
13. NN-Cosine 86 .93 397
14. Boosted Tree 86 .93 408
15. Bagged Tree 90 .96 415
16. Neural network 86 93 48

criminant analysis and the support vector machine with a cubic kernel performed well on the Ubuntu
Desktop using the stress test (data collection 2), and the results are listed in Table 7.

Figure 3(a) is an example of the average power measurement reading per interval in one collection
observation on Windows 10 Pro during a stress test after the previously discussed preprocessing tech-
niques used in the analysis. The rootkit influenced the boot and shutdown procedures as well as caused
a higher average reading throughout the stress test.
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Fig. 3. Difference in clean and infected data.

Figure 3(b) shows the duration of the random time intervals for clean and infected Ubuntu Desktop.
The readings for the infected operating system were higher than those of the uninfected system. The
average interval for the uninfected reading was approximately 4.3, and 6.2 for the infected reading. The
largest variation occurred during the boot up and shutdown procedure.

To identify the best performing algorithms for each test, we calculate an average score based on
the order of performance of accuracy, AUC, and training time. As an example, given two algorithms,
algorithm one has the best accuracy, the second-best AUC, and the second best training time. Therefore,
the first algorithm would be (1 + 2 + 2)/3 = 1.67, and the second algorithm would be 2+ 1+ 1)/3 =
1.33. The second algorithm has the lower score, so it is considered better than the first. This is calculated
across all 16 algorithms for each of the five data sets. Based on these calculations, the top five algorithms
that performed best across all five data sets were the neural network, boosted trees, bagged trees, complex
tree, and medium tree.

Intuitively, discriminant analysis methods did not perform well because they are somewhat dependent
on data being approximately normal and covariance homogeneity [21]. We performed the Kolmogorov—
Smirnov test for the null hypothesis that the data comes from a standard normal distribution and found
said hypothesis to be rejected at a 5% significance level, indicating the data was not normally distributed.
Decision trees and neural networks overcome these limitations by making no assumptions about the data.
The intuition behind the nearest neighbor methods performing reasonably well is based on the clustering
of the data. Figure 4 depicts the clustering of the average power values based on interval duration. The
tight clusters with few outliers allow nearest neighbor methods to perform well.

While the accuracy and AUC of the five best performing algorithms showed promising results, it was
anticipated that a method yielding an accuracy greater than 95% would be found. After the initial test
were conducted, we attempted to improve the results using Principal Component Analysis (PCA). How-
ever, after PCA was performed on the data, there was no improvement in any of the models. We sought to
represent the data in a way that would facilitate an increase in performance for any learning algorithm, as
well as a learning algorithm that would be best suited for the specific data sets. The requirements sought
from such a method were low computational costs to facilitate speed and low memory requirements.
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A commonly used method for finding separability in data is by projecting the data into a higher
dimension. This is based on Cover’s Theorem [12], which states that given a set of data which is not
linearly separable, one can transform it into a set that is linearly separable with high probability by
projecting it into a higher dimensional space via a non-linear transformation provided the space is not
densely populated. Kernel methods do this implicitly using specific functions. However, they depend on
a kernel function that is generally not adaptable [5]. Still, it is also possible to explicitly project data into
higher dimensions.

To project the data into higher dimensions, we employ the Self Organizing Map. As previously men-
tioned, SOMs are a type of unsupervised neural network that clusters data by projecting the input on-to
a 2-dimensional grid based on similarity and topology [57]. The SOM algorithm was performed on each
of our data sets using all five features. The SOM topology was a four-by-four hexagonal grid. The re-
sulting output for each input vector was a 16-dimension vector containing a single one and 15 zeros.
The one corresponds to the cluster the input was assigned to. This could be used to project the data into
a higher dimension. By adding the vectors produced by the SOM to the already existing vectors, we
would go from five dimensions to 21 dimensions. However, there are several issues with such a strategy.
When projecting data into a higher dimension, it is possible to project too far, resulting in a decline in
performance. Data that is separable in dimension D may not be separable in dimensions greater than D.
Performance can also decline due to the curse of dimensionality and the cost of training the algorithms
would be increased with the increase in dimensions. To overcome these issues, we treat the 16-dimension
vector as a single binary number. We then translate the binary representations into the base 10 decimal
representation. This yields a single unique value that represents a 16-dimension projection. The data was
then normalized and feature scaled in the same manner as the original data.

To identify an optimal model for the data, we evaluated the existing results. The best performing
learning algorithm, over all, was the neural network and the second best was the ensemble tree methods.
Therefore, the algorithm we chose to use on the data to improve the performance was a type of hybrid
ensemble neural network that we call a nested neural network. Nested neural networks consist of an
ensemble of neural networks each of which is dedicated to learning a specific feature. The output of
these networks is fed into a larger neural network that makes the final decision based on the results of
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the smaller networks. This is inspired by biological studies showing that the human brain functions not
as a single massive network, but as a group of small networks each dedicated to a specific task. There
was a total of five smaller networks, each dedicated to its own feature. These neural networks were
recurrent, meaning they contained feedback loops from the previous response into the current input. The
output of these networks formed a binary vector. In the same manner as the SOM, the binary vector was
converted to the base 10 decimal representation.

The nested network is depicted in Fig. 5. The first layer is the original normalized data. This data is
then fed into the second layer, which contains the smaller specialized neural networks and the SOM.
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Table 8
Average performance of top 5 algorithms and proposed model
Method Data Set 1 Data Set 2 Data Set 3 Data Set 4 Data Set 5
Accuracy AUC  Accuracy AUC  Accuracy AUC  Accuracy AUC  Accuracy AUC

Complex Tree 87 .90 81 .83 80 .88 82 .86 85 .88
Medium Tree 87 93 82 .84 74 .82 81 .88 81 .85
Boosted Tree 88 .95 90 .95 78 .87 82 91 86 .93
Bagged Tree 89 .96 89 .96 85 94 84 .93 90 .96
Neural Network 99 .99 93 95 89 93 83 .90 86 .93
Nested Network 99.8 1 99.9 1 99.9 1 99.8 .99 99.5 .99

The SOM received all the features of each vector, while the individual networks received only a single
feature. Then, the two binary vectors are converted to the base 10 representation and fed into the final
neural network.

The recurrent networks were trained by taking all training data sets and combining them into one large
data set. Then, to improve generalization of the network, we generated extra data points by adding or
subtracting random Gaussian noise to the existing points. The random Gaussian noise was in the range
of plus or minus one tenth of the standard deviation. This created 10 extra points for every existing point
in the original data. We also rounded the data points to two decimal places. The final neural network
contained a single hidden layer with 20 neurons containing normalized radial base transfer functions.
Table 8 depicts the results of the top 5 algorithms and the results of the proposed model for all five
data sets. In all cases, the proposed model raised the accuracy to nearly 100%. On average, this model
achieved 9.4% higher AUC and 17.2% higher accuracy than the traditional machine learning algorithms
tested.

One important note is the test and training sets contained both clean and infected data, and there were
approximately the same number of clean and infected samples (see Table 1). In a real-world scenario,
the classifiers would be trained prior to use, and data would be collected and tested at the discretion of
the user. Therefore, test sets would contain only clean data or only infected data. We performed tests to
simulate such an environment using the proposed model. The algorithm was trained on both clean and
infected data and tested on either clean or infected data. The algorithm made a prediction of either 1
or —1 for each instance. The predictions were then averaged to produce a score in the range [—1, 1].
The corresponding result represents the probability of being either infected or not infected. For example,
a score of —.67 means the algorithm believes with a 67% confidence level that the system is infected
with a rootkit. A score close to zero means the algorithm cannot make a meaningful prediction, and a
score close to one means the algorithm believes the data is not infected. For our purposes, we use a
hard threshold of [—1, —.251] as infected, [—.25, .25] as unknown, and [.251, 1] as not infected. After
training, the network was tested on a data set consisting of 200 uninfected points and returned a value of
.91, correctly indicating uninfected data. We then tested against 200 infected points and returned a value
of —.93, correctly indicating an infected data set. This not only illustrates a real-world implementation
of our method, but also shows the algorithm can make meaningful predictions with very small data
sets. Another important factor to consider is the false positive rate. It is reasonable to assume that in a
real world setting there will be more clean data, and infected data would be considered an anomaly. Our
model achieved a false positive rate of .015 on a point by point basis. We believe this is an acceptable rate,
however in a real world setting one would not make judgments based on an individual point. Judgments
would be made based on a group of consecutive points over a given time interval and evaluated in
a manner like the above test. This is because if the computer is infected, then every data point will be
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infected, not just an individual point. Therefore, the likelihood of false positives, both because of the low
rate on a point to point basis, and evaluating multiple data points as above, would be highly unlikely.
To further evaluate the effectiveness and real world applications, we performed an analysis using the
five top algorithms and the proposed model on two extra data sets. The first data set consisted of the three
data sets under normal conditions combined into one and the second data set consisted of the two data
sets using the stress test combined into one. The goal of this analysis was to see if the proposed model
could not only differentiate between clean and infected data, but also data originating from different
operating systems and from different hardware. Among the top five algorithms the average accuracy
was 87% for the combined data set under normal conditions and, for the combined stress test data, an
average accuracy of 85% was achieved. Our proposed model achieved 97% and 96% respectively.

5.2. Out of sample test

A primary concern of any learning algorithm is overfitting. Overfitting occurs when an algorithm
learns a specific training data set too precisely. This often leads to poor performance when new data
is introduced. For the previous test discussed, several methods were employed to overcome overfitting,
including cross validation on the classification models, hold out validation on the neural network mod-
els, rounding data points to lower decimal places, and generating data with random noise added. Still,
validation on completely new data is need to identify how well the algorithm generalizes. To that end
we performed one final test to evaluate the proposed model. Several aspects needed to be addressed to
evaluate how well the model generalized, including 1) a different rootkit, 2) a different operating system,
3) different hardware, 4) different use case.

The nested network was trained and validated on the data from Windows 10 and Ubuntu desktop, and
tested on the data from collection 3. A total of 322 data points were collected. Of those, 216 came from
the infected operating system, and 106 came from the clean operating system. Of the 216 infected data
points, the algorithm correctly identified 201 as infected, corresponding to a true positive rate of 93%
and a false negative rate of 7%. Of the 106 clean data points, the algorithm correctly identified 83 as
clean, corresponding to a true negative rate of 78% and a false positive rate of 22%. The overall accuracy
of the model was 88%.

These results reflect several promising features of our proposed model. First, the algorithm can cor-
rectly classify anomalous data from an unknown rootkit. Because new malware is generated every day,
the ability to generalize and identify unknown malware is required. Second, the accuracy of the algo-
rithm is platform independent in both hardware and software, which would be required for any large
scale or commercial use. Lastly, the algorithm performed well under a different use case than previously
tested. This is necessary to accommodate systems with multiple users. In all, these results show that
CPU power is both a reliable feature and able to generalize to many different situations.

6. Discussion and future work

While we have performed a number of successful test, the question still remains if this method could
function in a real-world setting. Given the number of possible applications that could be running on a
computer at any given time, modeling and simulating every possibility is not possible. In this research we
intentionally analyzed data during boot, normal use, and shut down as a proof of concept. However, in a
real-world setting, the data would likely be gathered during boot before other applications were loaded,
and therefore not contaminate the data. This was the method used in our previous works [14,15,37],
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which were successful. We are confident this method would work given the difference in the data we
observed at boot (see Fig. 3a and b). An alternative would be to run a specific script during known down
times and gather data then. Another possible application could be to monitor supervisory control and
data acquisition (SCADA) systems. These systems have minimal third-party applications, do not update
to different software often, and only do specific task which are already known. In any case, it would be
necessary to gather data on the system and adapt the already trained learning algorithm to fit the specific
system better in order to achieve accuracy > 98%. This is clear given the slight decline in performance
during our out of sample testing.

Future work will include further testing and tuning of various machine learning algorithms to attempt
to achieve higher accuracy. Many current machine learning algorithms, such as deep learning, do not
require preprocessing of data. This could alleviate the need for normalization, and therefore increase
the effectiveness of real time monitoring. However, these methods often increase the amount of training
time required.

One issue not addressed in this research is adaptive adversaries. Adaptive adversaries purposely ma-
nipulate data to compromise machine learning algorithms [11]. The algorithms can be attacked during
training of the model parameters or during testing when classifying samples [26]. The mitigation of
these adversarial inputs remains an open problem. A primary strength of using CPU power data features
is that the data collection takes place at a base-level making it difficult to implement adaptive adversary
techniques. In addition, this research implements a methodology that captures data via a side channel
analysis that operates independently from the system being monitored to mitigate adversarial activities
further. Often, the success of an attack depends on available resources [49]. For example, attack success
can be dependent on system access and algorithm knowledge. A benefit of the side channel approach
implemented in this research is that it can be run independently and offline from the monitored system.
Hence, the attacker would not have access to I/O pairs. The success of the attack is also dependent on the
attacker’s knowledge of the algorithm. The results of this research demonstrate that the proposed method
works on many different learning algorithms. Thus, using multiple models consecutively, or alternating
models at random would decrease the likelihood of an attacker’s success. Another approach is to design
the models themselves to be robust to attacks, which recent research has proven successful [59]. Future
research will investigate effective and efficient solutions that mitigate adaptive adversarial techniques
along with the viability of other solutions like artificial intelligence concepts.

Another option would be to use methods that are time dependent, such as recurrent neural networks
and autoregressive models to evaluate the entire data set at once. We also intended on evaluating other
stress test, such as cross platform test that work on most operating systems.

Another interesting aspect would be to consider adding additional features to the data to attempt to
improve performance. These could include other side channels, such as temperature fluctuation, power
measurements from other parts of the computer, or sensor arrays measuring many aspects of the com-
puter simultaneously. While other measures may slightly improve performance, it is likely the improve-
ment would be menial. It has been shown that computers are complex nonlinear dynamical systems [44].
It has also been shown [43] that in practice, there is no advantage to adding more features when evalu-
ating complex systems. This is assuming one chooses a single signal that can truly represent the state of
the whole system, which we believe is captured by the CPU. A better solution would be to combine this
method with signature based methods capable of identifying known rootkits and other malware, which
will be evaluated in future work.

In this research we focus on rootkits as part of evaluating an initial hypothesis on whether power
side channels can be used to detect malicious software execution. Our original hypothesis was that
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rootkits, those that use system call hooking or alter normal system resource interfaces, by nature include
more code than normal system calls or system access routines. Rootkits typically execute the original
functionality of system/kernel level functions and then add additional code which is designed to hide
their presence or provide exfiltration or system alteration. Additional code, theoretically, would translate
to more machine code instructions, more CPU cycles, and thus more CPU power. General malware has
a larger variety of functionality and potential usage and encompasses a much larger corpus of potential
samples. Our future and next work in using this technique will be evaluation of general malware families.
An external physical device will be implemented that can monitor the CPU to detect the presence of
malware in near real time, and this device will be tested on real-world production servers for general
evaluation.

7. Conclusion

This research presents a method of rootkit detection based on CPU power consumption. By measur-
ing the power consumed by a CPU, we can detect the presence of malicious rootkits with high accuracy.
The data sets used in the analysis were small enough to allow for fast training while not sacrificing reli-
ability. Further, the data instances produced in the analysis were quite vague, providing little more than
a minimum, maximum, average, and interval duration. Despite these restrictions, this method showed
promising results. The results of the research demonstrate that this method can detect rootkits on four
different operating systems, namely Windows 7, Windows 10, Ubuntu Desktop, and Ubuntu Server.
It also shows the effectiveness of the proposed algorithm on different hardware, as well as four dif-
ferent rootkits, namely FUTo, KBeast, NT, and Azazel. This method can detect both user level and
kernel level rootkits. The research results also demonstrate the detection capability on several different
machine learning algorithms. Of those, the best performing algorithms were neural networks, decision
trees, ensemble methods, and nearest neighbor methods. Furthermore, the capability of this method was
demonstrated on two different tests, first under normal operating conditions and then during a stress
tests. Lastly, a model inspired by biological studies of the human brain, called a nested neural network,
could classify all data sets at 99% accuracy.
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