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ABSTRACT 

Butler, Jerome W., Modeling and Molecular Dynamics Simulations on the in situ Murine 

Cytochrome P450 4F System . Master of Science (Chemistry), August, 2020, Sam 

Houston State University, Huntsville, Texas. 

 

Cytochrome P450s are major participants in the maintenance and well-being of 

cellular function and have important roles in the health and disease of living creatures. 

The ω-hydroxylation, catalyzed by CYP4 family members, has been observed to be an 

important metabolic pathway for the homeostasis of mammalian cells as it regulates 

inflammatory processes with the eicosanoid cascade of metabolites of the ω-6 

polyunsaturated fatty acid, arachidonic acid. Many human CYP4F and murine Cyp4f 

subfamily members have recently gained interest for their usage as potential cancer 

biomarkers as the expression of these proteins are modified in tumor cells. 20-HETE, the 

ω-hydroxylated product of arachidonic acid, has gained attention for being the chief 

metabolic product of interest in vascular function, tumor progression and propagation. 

Whether or not individual Cyp4f isoforms are responsible for the production of this 

metabolite is of great interest to medicine as such insight could provide researchers with 

new avenues of study in the fight against cancer. One particular Cyp4f isozyme, 

Cyp4f13, has received relatively little study until only very recently and is the focus of 

the work presented in this thesis, as it has not fully had its role in eicosanoid metabolism 

understood. Using a combination of computational chemistry approaches, this study 

focuses on exploring the murine cytochrome P450 4f13 system and its active site using 

all-atomistic Molecular Dynamics Simulation of a homology model. With the embedded 

protein solvated and in situ environment replicated, the resting state of the substrate-free 

Cyp4f13 system was generated. Solvation of the active site was performed to explore the 
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inner active cavity of the P450 system, with subsequent molecular docking and mutation 

of active site residues performed in order to gain insight into the interactions present in 

the protein-substrate complex. Protonation state changes were observed to have 

significant effects on both protein structure and arachidonate binding through 

electrostatic interactions. Leu137, Arg237, and Gly327 were modified and displayed 

drastic effects on predicted regiospecificity on the P450 substrate. With the insights 

obtained, we hope to further the understanding of murine Cyp4f13-catalyzed ω-

hydroxylation of arachidonic acid. 

KEY WORDS: Cytochrome P450; CYP4F; Fatty acids; Eicosanoids; AA, Arachidonic 

Acid; 20-HETE, 20-Hydroxyeicosatetraenoic Acid; Omega-hydroxylases; Inflammation; 

Cancer; MD, Molecular dynamics; Homology model 
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PREFACE 

As I write this, I am settled in my parked Ford Fusion, Aphelion, aptly named 

after the science-fictional star cruiser. I sit beside the terabytes of my research data, 

stored cozily inside of a small hard drive. My faithful gaming laptop, 8 years old and still 

running like an champ, packed away in its bag.  

It has been an absolutely crazy past two years and I feel justified in saying so. As 

of today, several months have passed since the announcement of a global threat in the 

form of the COVID-19 pandemic, caused by the SARS-CoV-2 coronavirus in December 

of 2019. In a time like this, the words of many great past thinkers come to mind. In 1995, 

Carl Sagan warned against the celebration of ignorance that he had started to observe in 

America. In an era of misinformation and growing obliviousness, the study of biological 

systems, as with COVID-19, performed by researchers such as myself and my peers 

grows in its importance. Not the work we might be performing currently, but our 

contributions to the world as scientists in the form of new knowledge and understanding 

to the field of chemistry and biology. Pseudoscience and ignorance cannot have a place in 

the general public, as it makes for a poor environment for the future scientists of the 

world. The next guard of researchers, thinkers, and teachers depend on us to do right in 

these times of uncertainty and terror.  

I have grown so much as both a researcher, and as a person in these years of my 

time at Sam Houston. This thesis has caused me to have a lot of inner reflection as it has 

certainly run me ragged in the wake of my defense.  It seems hard to imagine that only a 

few weeks ago I stared at a skeletal outline of the document, horrified and heavily 

discouraged. How to begin? What had I done in the past two years? 
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Fast forward to this week, where I have logged almost 60 whole hours dedicated 

to nothing but writing, discussing, and evaluating my results.  Seeing it all cobbled 

together, yet slowly taking shape, I was driven to tearful laughter at one point. 

The work presented in this thesis has my own hard-keyed, hunch-backed, sworn 

and cursed upon, sweat and tears and I couldn’t be happier in being able to share it with 

you. The simulations and calculations I ran were nasty feats; some lasted for weeks and 

mind you, if I had done something wrong in the creation process, I wouldn’t be able to 

find out until the computational desktop at the Chemistry Department crashed out. Do 

you have any idea how horrifying it is to crash something worth more than your entire 

car? It is not pleasant to say the very least. 

To further my anxiety, a lot of my work was done through brute-force, trial and 

error on my part. If something broke in the simulation, it was because of me. I had to 

figure out what the problem was and chalk up ideas on how to fix it, as resources 

available online were extremely limited. It is not very useful to just google search, “How 

to fix W problem, with X protein, in Y force field, using Z program?” 

Not to mention the fact that the computer I was using had an entirely different 

Operating System, Linux, that I had never used before in my life. As a result, the hard 

drive devoted to my studies contains 15 folders: 8 of which were successful workspaces, 

and you can guess what the rest were. 

I must say, however, that it was fun. It was exciting to learn the method as it was 

everything I had hoped for in learning about computational chemistry from my 

undergraduate Physical Chemistry course.  The research process taught me a lot about 

myself, certainly that I work better under the pressure, with nothing to compare than that 
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of graduate school. This past week has been a sort-of ‘writer’s high’ for me as I fervently 

took to the task to empty my mind, heart, and soul onto the thesis document. 

This experience cannot be replaced; it has set me on a path that I am stoked to be 

a part of. The challenging world of academia, while foreboding in nature, is where I 

continue to set my sights. With the research I have performed and present in this thesis, it 

has opened so many doors that seemed like unimaginable only so long ago. Having been 

accepted into the Ph.D. program for Medicinal Chemistry at the University of 

Washington, I have had an opportunity to lend my skills in molecular docking and 

enzymology as I was able to work in collaboration with UW in the testing of drug 

candidates to aide in the fight against the current COVID-19 outbreak.   

I am excited to see what the future has in store for me, so without further ado, 

here is the story of my two-year long adventure with my painstakingly crafted virtual 

cytochrome P450, Cyp4f13. 

 

Hobey-ho, let’s go.  

 

 

 

 

 

 

In an empty parking lot on a damp Sunday evening 
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CHAPTER I 

Introduction 

Cytochrome P450 

General Background and Nomenclature 

The cytochrome P450 (CYP, P450) family of monooxygenases are the enzymatic 

powerhouses accountable for a large percentage of molecular biotransformation in the 

human body.1–3 These enzyme systems serve as excellent biological model proteins to 

study and are responsible for a wide variety of physiological roles in living species; from 

drug metabolism, to hormone synthesis and cellular signaling.4 Modern biochemistry, 

biophysics and molecular pharmacology have extensively studied these systems for their 

attractive potentials as therapeutic targets due to their dominance in human drug 

biotransformation.5   

Eukaryotic P450s exist mostly as membrane-bound heme-thiolate 

monooxygenases that increase the rate of oxidation of a variety of molecular targets such 

as non-polar compounds, bioactive or inactive pharmaceuticals, and other noxious 

xenobiotics.6 They primarily behave as monooxygenase enzymes and, through the 

activation of molecular oxygen, are tasked with modification of molecular functional 

groups in attempt to aid a biological organism in the clearance of potentially toxic 

compounds.7 The P450 enzyme system is usually comprised of several components: the 

heme-thiolate catalytic domain, a hydrophobic N-terminal anchor, and an electron source 

in the form of flavin-bound reductase domains with their own membrane anchor with 

which these proteins are found affixed to a phospholipid bilayer.8 
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The name ‘Cytochrome P450’ first appeared in 1962 as the biomolecule was first 

characterized as being a novel “microsomal carbon-monoxide binding pigment”.9 This 

was before any physiological functions were known for the protein system and had 

derived from the characteristic peak shift in optical absorption when carbon monoxide 

was present from around 420 nm to 450 nm as its name describes.10  As research 

expanded surrounding the hemeprotein’s function as an oxidase, a large amount of 

literature has been devoted to this superfamily. The genes coding for P450 enzymes span 

all branches of life; their expression can vary between tissue types, developmental stages, 

and even between individuals within a species in the form of polymorphisms.11,12  

The nomenclature of cytochrome P450 enzymes was established in order to keep 

categorical indices of different, yet similar, relatives and clans of the superfamily.13 The 

root symbol CYP is what is used to designate the hemeprotein as being a cytochrome 

P450 enzyme. The case of the designation is related to the species being referred to. The 

case is completely uppercase for all species (i.e. human CYP3A4) except for murine and 

fruit fly systems where the designation is in sentence case (i.e. mouse Cyp4f13). This is 

an artifact of historical significance and has no other implications.14 

Cytochromes are organized by several characters following the root symbol CYP. 

The first is a number denoting the family of the individual P450 protein. The second is a 

letter that denotes the subfamily which might give insight into the function or substrate 

specificity of individual isoforms. The last portion is another numeric value given to 

individuals within a subfamily. The designation of CYP3A4 refers to the human 

cytochrome P450 belonging to the 3rd family, ‘A’ subfamily, 4th individual P450 

discovered within that subfamily. The naming convention is useful in comparisons 
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between different isoforms within and between species in the use of understanding 

substrate specificity, function and physiological role for each P450 enzyme. 

 

Mechanism of the P450 Catalytic Heme Domain   

The catalytic domain of cytochrome P450s houses the heme-thiolate prosthetic 

group and is covalently bound by a conserved cysteinyl thiolate ligand as opposed to the 

imidazolyl nitrogen as found in hemoglobin and other cytochromes.15  

 

Figure 1. Licorice representation of the heme-thiolate cofactor in cytochrome P450 

enzymes. Slightly obscured is the thiolate cysteine residue that serves as the distal axial 

ligand to the heme-iron center. 

 

This different electronic environment, in collaboration with the conjugated pi 

network of the surrounding porphyrin ring system, gives the heme-iron an interesting 

variety of redox chemistry it can perform. Neighboring amino acid residues and 

backbone elements serve to stabilize protein structure and dictate substrate specificities 

between P450 isoforms.15 The only conserved residue between all cytochrome P450 

proteins is the heme-thiolate cysteine while common motifs of amino acid residues are 

conserved within familial clans.16,17 After extensive research on the active site of more 
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highly studied P450s, the catalytic site has been observed to have a large amount of 

substrate plasticity, meaning it is to adapt to bind different molecular structures when 

certain conditions are met. Individual residues play important roles and vary widely 

between individual isozymes, even within the same subfamily.1,11 It has become clear 

through site-directed mutagenesis and experimentation that the residue makeup of the 

active site in these systems is key in substrate binding, catalytic function, and successful 

enzymatic turnover.18,19 

In the P450 reaction mechanism, the activation of oxygen is required in order to 

insert a single oxygen atom into a C-H bond, leading to the designation of 

monooxygenase. The source of the oxygen is atmospheric dioxygen, and results in the 

reduction of the remaining oxygen atom into water.20 In the case of microsomal P450s, 

the monooxygenase reaction catalyzed by the heme domain of cytochrome P450 systems 

requires an auxiliary electron source usually in the form of membrane-bound flavin-

containing reductase units. These cytochrome P450 reductase (CPR) proteins have two 

separate flavin domains, one containing flavin adenine dinucleotide (FAD), and another 

containing flavin mononucleotide (FMN) cofactors. The reductase takes electrons from 

the cytosol in the form of the phosphorylated reducing agent, nicotinamide adenine 

dinucleotide phosphate (NADPH).  
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Figure 2. Schematic of the P450 catalytic cycle. The hydroxylation of an aliphatic C-H 

bond is depicted. 

 

The catalytic cycle of cytochrome P450 monooxygenase system begins with the 

catalytic heme domain in a resting state on the surface of the endoplasmic reticulum 

membrane of a liver cell. In this +3 oxidized resting state, as seen in the top of Figure 2, 

the heme-thiolate iron is coordinated by an axial water molecule trans to the proximal 

cysteinato ligand. This coordination site is occupied by different water molecules that 

access and egress from the solvated protein using pathways throughout the folded tertiary 

structure. These ‘channels’ are used by small molecules, substrates included, to access 

the catalytic site of the protein and are unique between isoforms.21  

Depending on the nature of the substrate and the individual P450, substrate 

binding is the next step and requires the navigation and positioning of a substrate into the 

active site via hydrophobic forces, de-solvation effects, and favorable electrostatic 

interactions.22 This binding to substrate shifts the absorption peak of the heme-thiolate 
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metal center by changing the geometrical arrangement of the iron electronic environment. 

This slight change in configuration has a large effect on the system as a whole, as the 

hydrogen bonding network of the neighboring helices are disrupted and changed as well. 

The tugging on the P450 I-helix changes the folded structure and consequently tightens 

the protein’s hold onto the substrate.22 

The displacement of water from the iron center changes the relative energies of 

the metal ion orbitals.19,23,24 The loss of the water from the heme iron results in a five 

coordinate species that is subsequently easier to reduce as its redox potential shifts from 

the change in spin state. The removal of a pi basic ligand like water from the low spin (S 

= 1/2) octahedral resting state of the heme iron results in the lessening of the 

destabilization of the metal d orbitals which results in the reconfiguration of the electrons 

of the iron into a high spin state (S = 5/2). 

The high spin iron metal center with the substrate nearby, as shown in Figure 2, 

can now be acted upon by the flavin-bound reductase domain through an electron transfer 

that reduces the iron(III) to iron(II). What follows is the binding of dioxygen to the open 

coordination site of the iron center, immediately resulting in yet another change in the 

electronics of the iron metal center. The resultant ‘oxyferrous’ complex, more 

appropriately referred to as an ferric-superoxo species, contains an iron(III) center with a 

superoxide (O2
-) ligand. The second electron from the reductase domain is transferred to 

the iron complex which reduces the superoxo species into a peroxo complex.  

The aforementioned hydrogen-bonding network acts as a proton relay that 

facilitates the next step of the mechanism: the protonation of the peroxide ligand. This 

protonation results in a hydroperoxyl-ligated iron species that contains a lengthened 
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oxygen-oxygen bond. The species is protonated again from water molecules in the active 

pocket and the resulting oxonium intermediate breaks down into the final reduction 

product, water, leaving behind the ultimate oxidant species: the oxyferryl complex.  

Such a complex has garnered a lot of discourse and discussion as formal counting 

procedures place the iron center in an oxidation state of +5 25; however, with such a 

highly oxidized metal center in the center of delocalized electronic pi system of the 

porphyrin ligand, this seems unlikely. The intricacies present in the P450 catalytic cycle 

have been put through thorough investigation using computational methods by Shaik et 

al.26 The general consensus among P450 researchers is the occurrence of a ligand-metal 

transfer of an electron, resulting in an iron(IV) metal center with a radical cation 

delocalized into the porphyrin system. This was found to be reinforced by theoretical and 

computational chemistry methods on the system using quantum mechanics approaches.26 

This oxyferryl complex is extremely electrophilic: in a sense, it serves as a 

molecular blowtorch ready to oxidize or ‘burn’ nearby substrates or even active site 

residues in its immediate vicinity. The electrophilic oxo ligand abstracts the nearby 

hydrogen atom from a substrate (or side chain) leaving behind a radical on the alkyl 

substrate. In span of femtoseconds, alkyl groups can either rearrange or have the 

hydroxyl group reattach to the carbon radical, resulting in a hydroxylated product in a 

process referred to as ‘radical rebound’. The polar product serves as a weakly bound 

ligand to the iron metal center and is swiftly replaced by a water molecule restoring the 

enzyme back to its resting state, ready to start the cycle anew.  

At multiple steps along this catalytic cycle reside chances for side reactions to 

occur; potentially harmful reactive oxygen species (ROS) can dissociate from the iron 
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center, to be lost to the cytosol and wreak havoc on organic structures.27 Some suggest 

that the evolutionary development of the superoxide dismutase enzyme family originated 

in part from the production of reactive oxygen species from cytochromes.  

This catalytic cycle generalization cannot sufficiently detail the intricacies that the 

P450 structure plays during the mechanism. Several highly conserved amino acid 

residues dictate substrate binding, control selectivity, act as salt bridges, and aide in the 

activation of dioxygen. These sequence motifs, or residue patterns, are conserved 

between the clans of the P450 superfamily.16 Some important conserved sequence motifs 

between P450s have been discussed and mutations in these regions lead to pronouncedly 

interesting effects. Some effects observed include enhanced activity, altered substrate 

specificity, increased protein stability, increased generation of reactive oxygen species, 

and even novel activity.19 

 

Structure of Cytochrome P450s 

It is often stated that half of the structure of P450s is conserved between all 

known crystal structures, however it should be noted that the non-conserved regions 

show just as much significance.16,17 The variance allotted by individual mutations have 

led to the coining of the term “plastic” when describing these regions.28 This plasticity 

permits the wide substrate specificity and enhanced environmental tolerance for some 

isoforms observed across all branches of life.  
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Figure 3. Secondary structure of rabbit CYP4B1 represented by ribbon. Color used to 

distinguish the individual secondary structural elements: yellow for B-sheets, purple for 

alpha helices, blue for 3-10 helices. 

 

The structure of eukaryotic P450s consists of a globular heme domain with a 

transmembrane anchor in the form of an N-terminal alpha helix. The globular heme 

domain, an example of which shown in Figure 3, is built from several alpha helices and 

several beta sheets in parallel, antiparallel, or even mixed forms. The transmembrane 

anchor is comprised of nonpolar residues that allow it to integrate into lipid bilayers. The 

heme prosthetic group is sandwiched in the hydrophobic core of the protein in a pocket 

between two alpha helices, with solvated access channels allowing for passage to or from 

the active site. The type B heme cofactor is not solely an innocent bystander; the 

propionate “substituents” or groups act as gates for water influx into the active pocket.19  

One extensively researched system in the study of cytochrome P450 structure is 

P450BM-3 (CYP102A1) of the bacterium Bacillus megaterium.29 Unlike eukaryotic P450s, 

the bacterial cytochrome is a self-sufficient protein, capable of efficient electron transfer 

and high catalytic turnover. This is owed to the backbone linkage of the two flavin-bound 
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reductase and its heme domain.30–32 It serves as an excellent representative of the class of 

enzymes due to its unique fused architecture.33–35 This allows the system to be entirely 

soluble and thus not localized to a membrane bilayer. Another unique feature of this 

bacterial enzyme system is the dimerization that enhances the choreographed catalytic 

sequence. P450BM-3 will combine with another of its kind, tightly placing the FMN 

binding domain between their partner’s heme and FAD domains.36 This greatly enhances 

the coupling of the electron transfer between the enzymes’ subunits thus leading to a 

higher amount of successful turnover. 

This soluble and self-sufficient nature has led to this system being easier to 

express as recombinant protein in other bacterial models such as Escherichia coli than its 

eukaryotic counterparts.23,30,37 This makes it a more attractive alternative than the other 

monooxygenases of the superfamily. Such ease of use and high catalytic performance has 

led to study and usage of P450BM-3 as its application in protein engineering has garnered a 

large amount attention from biochemical, biotechnical, medicinal, and even material 

chemistry fields.19,38,39 Furthermore, directed evolution on this protein was used as the 

grounds for pioneering the use of engineered enzymes for catalysis leading to the 

development of the work that earned the Nobel prize in 2018 in the field of chemistry.40 

It is regarded as one of the most studied enzyme systems and serves as a model system in 

the understanding and elucidation of structural and function of P450 enzymes. 

The structure of P450BM-3 has garnered a large amount of attention and is 

commonly studied through a variety of spectroscopic and mutagenic methods.19 Several 

amino acid residues have been singled out for their strategic purpose and function in 

successful monooxygenation of the P450’s substrate.41–43 Not every side chain residue 
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can have its role reduced to being that of purely structural; many active site residues have 

been targeted for their involvement in substrate binding, selectivity and catalytic activity. 

Within the active pocket of P450BM-3, the alcohol-acid pairing between Glu267 and 

Thr268 behave as organizers for a proton transfer to the activated oxygen of the catalytic 

cycle.19 Another noteworthy residue is that of Phe-87, which has been studied extensively 

due to its impact on substrate oxidation by mutagenesis.19 Modification of this residue 

has been observed to shift substrate specificity, making it an important mutation for study 

in its functional role on modulating P450 activity and catalytic efficiency. 

Mutations in P450BM-3 on the Phe87 and Ala82 positions have led to their 

identification as key residues in binding and regioselectivity in fatty acid substrate 

binding. It is thought that they achieve this by moderating access to the heme center and 

altering and diversifying the substrate selectivity however the mechanism is still not well 

understood. Most of the information gained about the influence of these mutations are 

acquired through X-ray crystallographic methods. These methods depend on 

considerations of the experimental method, such as solvent tolerance of the protein and 

other experimental parameters. A theoretical approach might be needed to further explain 

and analyze experimental observations and the questions raised by crystallographic 

structures. Molecular Dynamics (MD) simulations serve as an excellent prospective 

method as they have shown to be powerful approaches when combined with experimental 

data in investigation of P450BM-3 for their function and properties.44–46 

 

 

 



12 

 

Localization and Lipid Membrane Topology of P450 Systems   

In mammalian cells, cytochrome P450s are located in either the inner membrane 

of mitochondria or found affixed to the endoplasmic reticulum surface. The globular 

heme domain protrudes into the cytosol while its N-terminal helix and a portion of its 

surface remain buried in the membrane of the organelle.  

Biomembranes contain, separate, and form barriers between cells and their inner 

components. The major composition of biological membranes found throughout human 

tissue cells are the glycerophospholipids. These lipids contain two hydrophobic acyl fatty 

acid chains, attached to a phosphorylated glycerol hydrophilic “head” group. Due to their 

amphiphilic nature, containing both polar and nonpolar groups, these compounds readily 

arrange and form bilayers which give them important roles in biology. A prime example 

of these compounds found within the endoplasmic reticulum are the di-oleoyl 

phosphatidylcholine (DOPC) lipids, as it contains a large composition of them (65%) in 

addition to a variety of other phospholipids, both charged and neutral.47,48 

 

Figure 4. Cartoon depiction of the localization of mammalian cytochrome P450 system. 

Only the P450 catalytic heme domain and membrane anchor is shown for brevity.  
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The hydrophobic transmembrane (TM) anchor of eukaryotic P450s is the first 

aspect to consider when discussing membrane localization, however, it is not the only 

one. N-terminal TM-truncated cytochrome P450 enzymes have been found associated to 

membranes, binding even in the absence of the transmembrane helix that normally spans 

the bilayer.49–53 This phenomenon was studied by a variety of methods and it is 

understood that a portion of the protein surface contains several nonpolar loops or 

secondary structures that assist in the protein in adhering to the lipid bilayer. This results 

in the slight descent of the heme domain beneath the membrane surface, potentially 

aiding in substrate access and even optimizing contact with its likewise membrane-bound 

reductase domains.54–56  

 

Figure 5. Example of a membrane-localized P450, human CYP3A4 embedded into a 

phospholipid bilayer. Pink ribbon is used to represent the protein structure. Blue spheres 

represent the ammonium of the choline groups, and brown for the phosphate groups. 

Structural coordinates were generated in a the study conducted on CYP3A4 and lipid 

charge by Otyepka et al.47  



14 

 

The membrane bilayer is not innocent in enzymatic catalysis as almost every 

aspect, from its composure to its charge, shows impact in some way or another on protein 

function.57 The composition of the membrane around the P450 system is of interest to 

researchers as it has been observed to influence catalytic activity for individual isoforms. 

Different compositions have been observed to have measurable effect on P450 

localization and catalysis, such as the net charge and the amount of cholesterol in the 

membrane.48  

Lipid composition and membrane orientation of the P450s have been studied 

using a variety of experimental and theoretical methods.47,48 Both have concluded that the 

lipid membrane is not a purely passive environment for the P450 enzyme. Membrane 

characteristics affect the orientation, localization, ligand binding and even catalytic 

activity of the cytochrome P450 heme domain.48 It is even understood that certain 

membrane interactions facilitate better or worse electron transfer between the catalytic 

domain and their redox partners due to electrostatic interactions. The order or disorder of 

a membrane has a standing impact on cytochrome behavior as certain isoform 

preferences dictate better catalytic efficiency. 

While the protein-protein interaction between the cytochrome P450 catalytic 

domain and the reductase domains are important, they are beyond the scope of this thesis. 

For further reading, these protein-protein and protein-membrane interactions are 

discussed at great length by many of the top researchers in the P450 symposium report in 

2016.57 Understanding the interactions of mammalian cytochrome P450s and their 

membrane environment would provide valuable information in the study of these 

membrane-bound proteins and their lipid substrates.  
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Physiological Roles Performed by P450 Superfamily 

 

Chemical Toxicology and Drug Metabolism   

The study of chemical toxicology can best be understood as the biochemical basis 

of survival that stems from an organism’s need of nutrients from its natural, and 

commonly dangerous, environment. The oxidative respiration that cells undergo in order 

to provide essential nutrients and necessary energetic factors, such as adenosine 

triphosphate (ATP), is the biochemical drive that steers every branch of life that has 

spawned after the oxygenation of Earth’s atmosphere. This respiration is commonly 

achieved through the oxidation of carbon-based compounds, carbohydrate in nature or 

otherwise. Lower life form organisms, such as plants, make for excellent sources for 

these compounds as they lack the ability to maneuver or find safety from natural 

predators. Complex organisms can be observed seeking lesser or weakened forms of life 

in order to satisfy their own nutritional needs.7 

In order to circumvent this unavoidable power play in an ecological system, 

certain lifeforms developed chemical means of defense, countermeasures, in the form of 

toxins. These compounds, commonly of low molecular weight, produce a negative, 

altering, or potentially lethal effect on a predatory target. This led to the evolutionary 

drive to develop biochemical methods of detoxification and elimination of these 

compounds for an organism. Such an interesting back-and-forth in nature has garnered 

what might be one of the most studied corners of biochemistry: molecular 

biotransformation and drug metabolism. 
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In this field, categorization serves as an excellent resource for scientists to begin 

to understand why, and the also interesting question when, a species engineers a method 

to deal with environmental stressors in the form of chemical xenobiotics.2,58 The general 

flow of xenobiotic drug metabolism consists of absorption, distribution, metabolism, and 

finally excretion of a small molecule. The field of pharmacokinetics and pharmacology 

refer to this series as the acronym, “ADME” and serves as the framework for almost any 

foreign compound, natural or otherwise, introduced to a species’ homeostatic system.58,59  

The enzyme factors responsible for these steps in the metabolism series have been 

separated into two phases: Phase I enzymes are generally oxidizing enzymes utilizing 

atmospheric dioxygen and consist of a final reduction product being water and an 

oxidized substrate, and Phase II enzymes are responsible for preparing of a polar 

metabolite formed from the first phase for elimination.7 

 The Phase I enzymes include Flavin-containing Monooxygenases (FMOs), 

cytochrome P450s within mitochondria or endoplasmic reticulum, and other enzymes 

such as epoxide hydrolases (EHs). Each of these serves a purpose as either transforming a 

functional group or activating generally unreactive groups into more reactive ones. 

Examples of these sorts will be discussed throughout this thesis as the substrates of 

cytochrome P450s contain electronically stable C-H sigma and C-C pi bonds that are 

transformed into hydroxyl or epoxide groups.59 The major goal of these enzymes is to 

begin to make nonpolar toxins more water soluble by these oxidative means, to aid the 

second phase of metabolizing enzymes. 

The Phase II enzymes are commonly distinguished as being ‘transferases’, those 

that transfer additional chemical groups such as acetyl, sulfate, and glutathionyl groups to 
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the sites generated by the Phase I enzymes.7 These bulky, more water-soluble groups 

almost always inactivate the harmful effect employed by a xenobiotic toxin due to 

interruptions in the intermolecular interactions that govern biomolecular recognition. 

They also prepare the compound for conjugation by an organism and assist in the ensuing 

elimination.  

Cytochrome P450s make for excellent models to study in their roles in drug 

metabolism due to their relatively elegant system that is not dependent on too many 

external factors. However, their study comes with a cost of complexity; due to their 

numbers and prevalence across species, tissue, sex, life stage, etc., their individual 

activities and functions are easily lost to obscurity. Furthermore, many of these enzymes 

are considered promiscuous in nature, contorting their active site volumes in order to 

metabolize large collection of structurally distinct substrates.1,2,58 This attractive feature 

serves as a great tool for nature in order to cleverly aid in the biochemical warfare in 

ecological realms, however it serves additionally as a nightmare for a researcher curious 

about individual roles and function of these P450 systems.  

A recent avenue of research in the field of molecular pharmacology has been in 

the development of personalized pharmacotherapy based on genetic expression of these 

cytochrome P450s in individuals. Within a population, a large variety of polymorphisms 

(varied forms of the gene with slightly different sequences) can exist. The stage of life of 

an individual is another factor as well. The different expression levels of CYPs leads to 

widely varied effects from prescribed medication.11,60 The existence of ‘orphan’ 

cytochrome P450s with catalytic functions currently unknown or not fully elucidated 

could prove useful to further these prospective targets in the fight against disease.3 
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Hormone Biosynthesis and Signal Clearance 

Hormones, such as steroids, and the large number of derived or related 

compounds play an indispensable role in cellular and biological function. While at first 

glance, they appear to play benign roles as purely non-participatory components of 

membrane bilayers, serving only physical roles as modulatory factors for membrane 

fluidity.7,57 However, one look at how much energy nature invests into the creation of 

compounds like cholesterol, as is observed in human cells, might imply a deeper 

connected role in cellular homeostasis.   

Steroids and other biologically-important sterols are characterized by their 

polycyclic structure with additional modifications and accessories, such as aliphatic 

hydrocarbon groups, distinguishing them from each other in name and in function.7 To be 

considered a sterol, the nonpolar lipids contain a hydroxyl group either on the root ring 

structure or on aliphatic attachments. 

These compounds make for exceptional human P450 substrates, favorably 

binding the nonpolar substrates with their relatively hydrophobic active sites.61–63 The 

interactions between these compounds and P450 subfamily members has been explored 

and new information is still being gathered on the roles these molecules play on the 

physiology of living beings.  

Several cytochrome P450 family isoforms functionalize the lipophilic compounds 

in membrane environments, making them more water soluble and possibly influencing 

the lipids’ localization in a membrane by adding polar functional groups to them.64 These 

interactions might further modulate cytochrome P450 activity and chemistry as they are 
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observed to have an effect on the structure of membrane-attached drug metabolizing 

P450s.65 

 

Human Cytochrome P450s and their Roles in Disease   

Proteins are the molecular basis for life and failures in their activity lead to the 

dysfunctions that we observe as disease in biological organisms.1 It can be through the 

seemingly insignificant action of a small molecule interacting with its physiological 

target that results in a positive effect or pathology for an organism. Furthermore, 

disturbing intermolecular interactions between protein-protein complexes or other 

biomolecules can have disastrous or altering effects. The role of proteins in maintaining 

cellular function cannot be understated: from regulation of growth and differentiation to 

homeostasis and other biological processes, it remains clear that the key to improve 

understanding and treatment of disease lies with the study of proteins. 

When diving into the literature surrounding human health and disease, one cannot 

go far without coming across a drug-drug interaction, or a compound activated or 

inactivated through catalysis by a cytochrome P450 enzyme. The role of cytochrome 

P450 enzymes in disease are studied and understood in general, with several families 

namely CYP1, CYP2, CYP3, and CYP4 enzymes showing more prevalence in 

study.5,60,66 However, there are smaller clades and groups of P450s that have only causal 

or implied interactions with disease through either variability in gene product or 

mutation.  

Some of these mutations that appear benign or unimposing for life function, 

however, are clearly present and impactful in other situations. Some examples exhibit 
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vastly impaired growth factors such as seen in XY chromosomal sex reversal and 

hypercalcemia67, while others impact specific regions of the body like the heart tissue and 

coronary artery disease. More impactful examples are Bietti crystalline corneoretinal 

dystrophy, and lamellar ichthyosis type 3, as the process of normal human development 

is detrimentally affected or even prevented, as in the case of lethality in embryo.68–70 

Such a wide variance in pathology indicates that the roles these enzymes play in 

maintaining and moderating signal-molecules and other endogenous or exogenous 

compounds is essential for a long, healthy life for an organism. These enzymes also 

perhaps play another more intangible role in the lifespan of organisms by the production 

of reactive oxidant species (ROS) as mentioned before.27 

These factors make up the framework for why the cytochrome P450 enzyme 

system is so rigorously studied in its roles in drug metabolism and disease as they are 

very well-defined therapeutic targets for drug design. The major conflicting factor is the 

sheer number of individual proteins within each tissue. Individual studies on P450 

isoforms provide a wealth of information for researchers, however, the insight gained 

often appears incompatible with the promiscuity (some of these enzymes will oxidize an 

incredible number of different substrates) and active site flexibility that these proteins 

display. 

 

Eicosanoid Metabolism   

This thesis will focus on the metabolism of eicosanoids, a class of endogenous 

compounds which are used as signaling molecules in several tissue types belonging to 

mammalian organisms. Eicosanoids are essential biomolecules important for maintaining 
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homeostasis in biological systems.71 Their metabolism involves an elaborate network of 

metabolic pathways from multiple enzymatic systems such as cyclooxygenase (COX), 

lipoxygenase (LOX), and finally the cytochrome P450 monooxygenase pathway (CYP) 

which will be explored in detail in this work.5,72,73 Eicosanoids are lipid-based 

compounds derived from dietary sources and endogenous phospholipids. Most 

eicosanoids originate from arachidonic acid (Figure 6), also known as (5Z,8Z,11Z,14Z)-

5,8,11,14-eicosatetraenoic acid, a polyunsaturated ω-6 fatty acid with four cis double 

bonds located at the 5, 8, 11, 14 positions.74  

 

Figure 6. Licorice representation of arachidonic acid. Shown is the deprotonated form, 

arachidonate, as is present in physiological conditions. Of note, degrees of unsaturation 

are not shown in this graphical representation. 

The usage of phospholipid-liberated arachidonic acid is commonly observed in 

intracellular signaling, its purpose is generally reserved as a secondary messenger 

molecule for inflammatory processes and cellular function71,74–77. The production of these 

physiologically important derivatives is referred to as the “arachidonic acid cascade” 

owing to the parent molecule of the metabolites.71,78  

Eicosanoid metabolism is extensively studied for its role in human disease and 

illness with the more prevalent examples being their roles in human diabetes, 
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hypertension, renal disease, and cancer progression. Different enzymatic pathways result 

in a large variety of metabolites formed by oxidation reactions performed on arachidonic 

acid. Cyclooxygenase (COX) and lipoxygenase (LOX) pathways generally result in the 

formation of prostaglandins, thromboxanes, leukotrienes, and internal hydroxylation 

products.72,79–81 The CYP pathways result in terminal or near terminal hydroxylation and 

epoxidation products.82–84 These products have been observed to have a high amount of 

importance in the maintenance of organ function and their relative ratios are mediated by 

specific cytochrome P450 subfamily members. The CYP 4A and 4F subfamilies are 

responsible for most of these oxidations and only very recently have been explored as 

potential therapeutic targets for disease.85–87  

 

Cytochrome P450 4 Clan and their Roles in Human Health 

 

The Cytochrome P450 4 (CYP4) Family 

The CYP4 family of cytochrome P450s have a preference for oxidation of 

terminal carbon atoms on saturated and unsaturated fatty acids of varying lengths.88–91 

This catalytic process is referred to as ω-hydroxylation, as the C-H bond on a primary 

carbon atom furthest from the carboxylate is transformed and functionalized into a 

terminal hydroxyl group.  

This specificity is in direct contrast to what is commonly observed in other P450 

enzymes and is especially the case for most drug metabolizing P450 systems that 

regularly hydroxylate internal or even more exotic C-H bonds such as those found on 

aromatic compounds.92 The C-H bonding orbital of a primary carbon compared to that of 
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a secondary or tertiary species is lower in energy, making it relatively unreactive.93,94 In a 

typical fatty acid, there are approximately ten times as many of the more reactive 

secondary C-H bonds in the fatty acid substrate, so specificity for oxidizing the ω-carbon 

is remarkable. This is generally explained by the relative stability of the resulting 

secondary radical being formed in the radical rebound mechanism of the P450 being 

more than that of a primary radical. With the ω-regiospecificity of CYP4 enzymes 

commonly facilitating these kinds of reactions, it makes it clear that the enzyme’s active 

site plays a crucial role in overcoming these energetic hurdles. 

More importantly to the physiology of organisms, the site of oxidation plays a 

critical role in a real-world sense. The CYP4 family members act as the chief enzymes in 

ω-hydroxylation of long chain fatty acids and their derivatives such as the 

eicosanoids74,95,96, as well as a number of catabolic roles with essential vitamins97–99 and 

several xenobiotic biotransformations.100–102 These compounds can have vastly 

contrasting roles in the body. With one oxidation performed, a CYP4 enzyme can 

transform an endogenous polyunsaturated fatty acid into either a potent vasoconstrictor or 

a vasodilatory signal, producing major changes in blood pressure and blood flow.103–105 

Structurally distinct from the high-plasticity drug-metabolizing P450s, the CYP4 

family of enzymes constrain access to their catalytic sites through residue interactions 

that result in a narrow channel that allows for only the terminal carbon atom of an 

aliphatic substrate to reach the heme center.106,107 Their binding of long chain and polar 

headgroup containing compounds makes them remarkably different from most P450 

enzymes which have hydrophobic, small molecular weight target substrates.  
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Another method that these CYP4 enzymes employ to achieve this preference for 

ω-hydroxylation is through modification of their heme group. The CYP4 family of 

monooxygenases covalently bind their heme cofactors through an additional ester linkage 

through a heme methyl group and a conserved carboxylic acid sidechain positioned 

within the individual CYP4 isoform. This feature is an important aspect of this family for 

the work in this study and will be discussed in greater detail in the next section.  

The differences in expression between individuals is an important aspect of their 

roles in health and disease. Within humans, there is a total of 12 genes coding for 13 

CYP4 enzymes.  

 

Table 1 

Subfamily members of the human CYP4 clan, their genes, and the major tissue 

distribution 

CYP4 Gene CYP4 Enzyme Tissue Distribution 

CYP4A11 CYP4A11 Liver, kidney 

CYP4A22 CYP4A22 Liver, small amounts in other tissues 

CYP4B1 CYP4B1 Liver, respiratory system, urinary tract 

CYP4F2 CYP4F2 Liver, kidney 

CYP4F3 CYP4F3A Leukocytes, bone marrow 

 CYP4F3B Liver, kidney, gastrointestinal tract 

CYP4F8 CYP4F8 Epithelium throughout the body 

CYP4F11 CYP4F11 Liver, kidney, heart, muscle 

CYP4F12 CYP4F12 Small intestine, liver, colon, heart 

CYP4F22 CYP4F22 Esophagus, skin, small amounts in other tissues 

CYP4X1 CYP4X1 Brain, heart, kidney, skin, small amounts in other 

tissues 

(continued) 
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CYP4 Gene CYP4 Enzyme Tissue Distribution 

CYP4V2 CYP4V2 Throughout the body, among various tissues 

CYP4Z1 CYP4Z1 Mammary glands 

Note. Tissue distribution information is from the protein and gene knowledgebase, 

UniProt. (https://www.uniprot.org/) 

 

Of these, only a fraction shows fatty acid ω-hydroxylation activities and are 

studied as such. The more commonly studied human isoforms are CYP4A11, CYP4F2, 

and both splicing forms of CYP4F3 (4F3A and 4F3B). While CYP4A11, and CYP4F2 

are understood to be involved in renal and heart function108, CYP4F3A isoforms are 

expressed in neutrophils and are directly crucial in the way chemical signals are 

moderated by the inflammatory system.109  

CYP4F8 is expressed outside of liver tissue and has not shown any activity in ω-

hydroxylation of fatty acids, in contrast to CYP4V2 which did show some activity.70,110 

CYP4F11 and 4F12 performed more traditional P450 roles as xenobiotic Phase I 

enzymes, however 4F11 showed preference for ω-hydroxylation of long chain fatty acids 

and vitamin K.97,111 CYP4F22, infamous for its role in the development of lamellar 

ichthyosis type 3, is a specialized CYP4 with a preference of very long chain fatty acids 

(VLCFA) and it is thought of to be important in the development and formation of skin-

layering bilayers.69 

 

Covalent Heme Linkages in the CYP4 Family 

 The chemistry of the heme-thiolate prosthetic group characterized by the covalent 

attachment through a cysteinyl residue of a cytochrome P450 has been well studied 

through a variety of methods and is well understood as the most universal feature of P450 
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cytochromes. Regardless of how the active site environment of individual isoforms may 

change, they all must still have the signature cysteine residue covalently attached to the 

heme cofactor to be consider a part of the cytochrome P450 superfamily. 

 This principle, seemingly solidified through years of rigorous study in P450 

systems, is not without exception. In the study of several CYP4 enzymes, an analysis 

through the digestion of protein resulted in the discovery of hydroxylated heme 

cofactors.112,113 Initially thought to have occurred through a side reaction or oxidation 

after the digestion process, researchers discovered through experimental methods that the 

heme cofactor was not only covalently held in place by its conserved cysteine, but also 

through an additional covalent linkage. 

 The theorized formation of this linkage is through an autocatalytic reaction of the 

P450s oxyferryl catalytic center. The ultimate oxidant oxyferryl species seemingly self-

catalyzes the hydroxylation of one of the methyl substituents on the iron protoporphyrin 

IX ring. This results in either 5- or 8- hydroxylation, as its site placement is reliant on the 

porphyrin ring orientation in the catalytic pocket.114 Interestingly enough, through a 

conserved glutamic acid residue on the I-helix in the active site pocket, an esterification 

takes place that results in the formation of a covalent bond between the hydroxymethyl 

group of the porphyrin ring substituent and the carboxylate of the glutamate residue. This 

distinctly changes the chemical environment of the active catalytic site and changes the 

protein’s binding activity and specificity.  

 This modification, first observed in experiment, was confirmed through 

quantitative means (mass spectrometry) to occur naturally in vivo and not to be taken as 

an artifact of method or expression through non-native host systems such as humanized 
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rat CYP4s.112 The covalent binding of the heme cofactor has been confirmed for a 

number of CYP4 enzymes, however some appear to have a normal heme prosthetic 

group.112,113,115 The presence of a glutamate residue at the correct position in the amino 

acid sequence almost always results in the formation of the unusual heme linkage. 

Through the addition of their energetic cofactors (NADPH) and their redox 

partners (CPR), CYP4 enzymes with the appropriate glutamate were observed to form 

covalent bonds to their heme. This indicates that the auto-catalytic process occurs 

through a fairly typical mechanism of P450 oxidation, in that it requires reducing 

equivalents (and, of course, molecular oxygen) to occur.113 This process was first 

observed on incubation of recombinant protein under ideal conditions for some rat CYP4 

isoforms. 

Mutations in the active site of CYP4 P450s resulted in the elucidation of 

interesting attributes to the covalent heme attachment. When the conserved CYP4 

glutamic acid residue is mutated into aspartic acid, which is a similar amino acid with a 

shorter chain length, the yield of covalent heme linkage was reduced in CYP4 enzymes 

yet was still present. Interestingly, experiments showed that within the CYP4 proteins 

that did not covalently bind their heme, a hydroxylated heme cofactor was still isolated, 

indicating that the auto-catalysis continued to occur, however the esterification was 

hindered by the reduced reach of the aspartate residue side chain. Isotopic labelling and 

chromatographic methods indicated that this was due to the trapping of the electrophilic 

intermediate by solvent water in the active site, preventing the carboxyl group from 

reacting.114–116  
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The position of the glutamate is occupied commonly by glycine in the CYP4 

family and studied for its impact on secondary structure and the catalytic heme 

environment. When site-directed mutagenesis is performed to change the I-helix residue 

into an acidic side chain, covalent heme binding is observed by CYP4 members that do 

not characteristically contain them.117 

This covalent modification might be a protective feature of the P450 enzyme. The 

presence of the ester carbonyl group might act to modify the chemical environment of the 

heme, preventing additional auto-catalytic side reactions. Reactive oxidant species are 

commonly generated by these systems, and additional oxidation of the organic moiety of 

the heme would result in drastically altered catalysis or complete cessation of catalytic 

function. This sort of fortification can be founded on the protection of N-arylated heme 

products as seen in reactions between drug-metabolizing cytochrome P450s and reactive 

arylhydrazines.118–120 

An alternative, and perhaps more physiologically important, theory on why the 

covalent linkages evolved is the regiochemical argument. The CYP4 family, which are 

predominantly fatty acid oxidases as discussed before, have high levels of regioselectivity 

and when modified to disrupt their heme linkage, no longer show the same ratios of 

product distribution and have lower regioselectivity.113 Another pertinent example of this 

was observed in studies on the rabbit CYP4B1 enzyme, which is the structure in which 

the models developed in this study will be based upon.116 When its covalent linkage was 

disrupted with the glycine mutation in place of the glutamate, the normal ω-

hydroxylation products shifted to ω-1 and ω-2 hydroxylated metabolites.  
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The explanation that heme covalent binding evolved to promote ω-hydroxylation 

has yet to be fully validated as it would be difficult to prove through experiment that the 

presence of the heme modification tunes the reactivity of the oxyferryl species to be more 

favorable for the attack of the primary terminal carbon as opposed to secondary C-H 

bonds in fatty acid catalysis. While its direct impact on the electronics of the heme iron 

metal center are not fully elucidated, the steric interactions imposed by the linkage are 

more recognized. The presence of the linkage restricts access to the oxidant heme species 

in a way that facilitates ω-hydroxylation, or at the very least, limits access of any other 

atoms other than the terminal methyl group of a substrate. This suggests a prerequisite 

condition of a covalent heme linkage and a rigid active site volume for CYP4 enzymes to 

have specificity for ω-hydroxylation, however this cannot be solely due to the heme 

modification. Experiments on covalently-bound CYP4s with similar active site 

construction resulted in a dominating amount of ω-hydroxylated product in the 

distribution of hydroxylated products of lauric acid, a 12-carbon chain saturated fatty 

acid.121 

Further research, like what is presented in this thesis, is important to fully 

elucidate the impacts of the covalent linkage and their relevance in determining 

physiological roles of individual CYP4 isoforms in a species. 

 

CYP4 Enzymes and Inflammation   

In human physiology, the body walks a fine line of balance for the inflammatory 

cascade. The eicosanoid metabolites of arachidonic acid can be grouped into several 

categories, either resulting in proinflammatory or anti-inflammatory signals. These 
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compounds lead to an inflammation amplification event or to the ensuing relaxation for 

an organism. Prostaglandins (PGs), leukotrienes (LTs), and 20-hydroxyeicosatetraenoic 

acid (20-HETE) are the metabolites responsible for promoting inflammation in the body, 

while the deactivated 20-hydroxyleukotriene-B4 (LTB4), lipoxins (LXs), and 

epoxyeicosatrienoic acids (EETs) are observed in having anti-inflammatory effects.79,122–

124 

20-HETE is an ω-oxidized product of interest for studying the biological crosstalk 

of eicosanoid metabolism and inflammation. The terminally hydroxylated product of 

arachidonic acid by metabolism through P450 activity, it acts as a powerful 

vasoconstrictor signal molecule and is understood in having a role in renal vascular 

regulation and the inhibition of ion transport leading to organ failure for an 

organism.103,125–128 

In human liver and kidney cells, CYP4F2 and 4F3 are the major producer of this 

metabolite which indicate an inherent role in inflammatory exacerbation by these 

enzymes. However, more is to be studied and understood as they also deactivate 

proinflammatory sub-terminal hydroxylated eicosanoids through ω-hydroxylation as 

well.79,82,129 The formation of epoxyeicosatrienoic acids is mediated predominantly by the 

CYP2C and CYP2J subfamilies, however these are also well-known substrates for 

metabolism and breakdown by CYP4 enzymes.75 ω-Hydroxylation to their respective 

hydroxyepoxyeicosatrienoic acids (HEETs) are catalyzed by the CYP4F2, and 4F3 

isoforms.130 This dual role of mediating vasodilation and constriction has led to a large 

amount of study in the CYP4F subfamily as the ratio of eicosanoid metabolites (20-

HETEs:EETs) can be used as gauges of inflammation in a clinic.108 
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CYP4 Enzymes and Cancer   

Pharmacological interest in the CYP4-derived eicosanoid metabolites has 

increased over the past few years as the demand for new screening methods has grown. 

The need for early cancer detection methods has led scientists to identify both the CYP4 

ω-hydroxylase enzymes and their primary metabolite, 20-HETE, as potent cancer 

biomarkers.83,87,131,132  

The expression of P450s is heavily modified in cancer cells which has led to 

significant study. Due to the increase in inflammatory moderators by tumorous tissue 

cells, most drug metabolizing P450s are downregulated, showing drastically decreased 

expression and transcription.125,126 However, in stark contrast, several CYP4 enzymes are 

unaffected or even experience enhanced expression and gene upregulation.87 This has 

been theorized to be due to a not-yet understood relationship between 20-HETE, 

angiogenesis and subsequent cancer cell proliferation. 

CYP4F members have shown a large amount of promise as biomarkers for cancer 

progression. In several human cancer cell tissue types, CYP4F2 expression upregulation 

was observed at the level of mature messenger RNA, which is the form ready to be 

translated by a ribosome into protein. Actual translation of the mRNA varies widely 

among cell types and individuals, thus mRNA could not be used to definitively indicate 

enhanced expression.83 This upregulation was also observed for other CYP4 members 

such as CYP4A11 and CYP4F3, further demonstrating the ability of CYP4 ω-

hydroxylase enzymes as biomarkers for tumor growth.127 The rat model also provided for 
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this conclusion with the expression of CYP4F1 measured and notably increased in rat 

liver cells with aflatoxin B1-induced tumors.128 

20-HETE and its production through the CYP4 family has been heavily linked to 

cancer cell metastasis through neovascularization, the formation of new blood vessels. 

This process gives precious resources and nutrients from the host’s systematic supply 

directly to new tumor cells further worsening the prognosis and status of the cancer; this 

has an additional effect of allowing the transport of mobilized tumor cells to different 

localized regions of the body.133 This spread, referred to as metastasis in medicine, almost 

always results in a higher rate of mortality for the host and makes the treatment of a 

condition extremely difficult.134 

While a direct protein target receptor for 20-HETE has not been elucidated, 20-

HETE has been shown to interact with growth factors and promotes the proliferation of 

cells, making it more difficult for a cell to undergo apoptosis and controlled 

destruction.135 The production of arachidonic acid-based eicosanoid metabolites by CYP4 

enzymes is a currently developing story and using both experimental and theoretical 

methods, medicinal chemists and biochemists alike are working to map out these 

interactions as they relate to cancer prognosis and treatment. 

 

Functions of Murine Cytochrome P450 4f Subfamily Members 

Murine models make up a large percentage of modern-day drug design, and 

medicinal chemistry. Through the use of recombinant human P450s in murine models, 

and ‘humanized’ mouse methods that involve transplantation of (P450-containing) 

human liver cells into murine systems, medical research seeks to expand the advance of 



33 

 

medicine through research on these hybridized systems.136 Furthermore, mouse models 

are studied as they can still be used to gain insight into metabolic function and 

physiological roles of related human P450s. The study of the evolutionary relationship of 

CYP4F subfamily members and their roles in health and disease in both humans and mice 

serves in the development of medicine.  

In the study of proteomes, it is commonplace to compare the collection of proteins 

that are or can be expressed by individual cell types, tissues, or organisms. Genes coding 

for protein that originate from a common ancestor are said to be homologous, while 

genes that share origin but are from different species are said to be orthologous. With 

humans having 6 individual 4F isoforms, and mice having 9, locus comparisons have 

been made however the pairings are difficult to make reliably, as shown in Table 2.137  

Figure 7 shows an evolutionary tree of the Cyp4f isoforms, and as to be expected, 

only a small amount of evolutionary relationship is suggested between some human 

CYP4F isoforms and murine P450s. One distinction is found between human and mice as 

only a single orthologous relationship is observed between the genes of human CYP4F22 

and murine Cyp4f39. In contrast, murine cytochrome P450 4f13-4f18, 4f37, and 4f40 

genes all have no clear orthologous pair with human P450s. This number of individual 

genes not having a clearly defined analogous partner between species indicate the 

probable existence of a single ancestral P450 gene that resulted in independent evolution 

into multiple genes across the mammalian CYP4F genes. 



34 

 

 

Figure 7. Circular phylogenetic tree of the genes coding for the human and murine 

cytochrome P450 4F subfamily. The PHYLIP tree building method was used to create the 

phylogenetic tree for several of the CYP4F subfamily members and resulted in a diagram 

that indicates evolutionary relationship between isoforms.138 

 

Table 2 

Pairings of individual human CYP4F and murine Cyp4f genes, excluding pseudogenes or 

detritus genes 

Human Gene Mouse Gene Orthologous Pair 

CYP4F2 Cyp4f13 None known 

CYP4F3 Cyp4f14 None known 

CYP4F8 Cyp4f15 None known 

CYP4F11 Cyp4f16 None known 

CYP4F12 Cyp4f17 None known 

CYP4F22 Cyp4f18 None known 

 Cyp4f37 None known 

 Cyp4f39 Human CYP4F22 

 Cyp4f40 None known 

Note. The CYP4F cluster and gene listing is from the work by Nelson et al. 2003.137 
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Tissue-specific, gender-specific, and species-specific expression of murine Cyp4f 

subfamily members vary widely. In the tissue distribution of Cyp4f13, the highest 

amount of expression was found in the liver of both sexes of mice, with relatively high 

amounts also observed in the ovaries, uterus, kidneys, and intestines. In contrast, 

Cyp4f14 was detected in moderate amounts only in the small intestine but was 50% 

higher in females than male mice.139 

Much is still unknown about the role of individual murine Cyp4f isoforms. 

Among the members, only the catalytic function of Cyp4f14 and 4f18 is known, both 

catalyzing the hydroxylation of leukotriene B4.122,140,141 The catalytic functions of the 

other mouse Cyp4f isoforms are currently unknown; however it is theorized that there 

may be unique roles for some individual isoforms in the formation of 20-HETE based on 

structural patterns and level of expression. 

The murine Cyp4f family members have been studied for their physiological 

substrate targets, as well as their regulators of expression.142 Some degree of substrate 

commonality has been found for the 4f subfamily members with individual isoforms 

showing high amounts of substrate specificity for several classes of compounds, possibly 

serving as targets for drug development and medicinal research. The activity of 

peroxisome proliferators like the fibrate family of compounds have been observed in 

regulating the CYP4F enzymes in an isoform specific manner.143 Some data has been 

collected on the catalysis of oxidation of long chain polyunsaturated fatty acids and 

eicosanoid metabolites like leukotriene B4 by murine Cyp4fs, allowing researchers to 

study the inactivation pathways involved in inflammation by these CYP4F enzymes.129  
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One notable exception is the murine Cyp4f13 which until very recently had no 

known substrates, inducers nor repressors. In 2016, the murine Cyp4f13 had been 

observed in influencing the production of oxidized metabolite formation of specialized 

lipids in the brain indicating some role in neurological and metabolic disorders. 

Overexpression or complete knockout of murine P450 4f13 isozymes exhibited drastic 

effects to the formation of downstream metabolites.144 An established P450 CYP4F 

inhibitor, HET0016, has been used to prevent the formation of ω-hydroxylated products 

such as the 20-HETE formed by human CYP4F isoforms and appears to show activity as 

an inhibitor on murine Cyp4f13.145  

 

Scope of this Thesis 

Cytochrome P450-dependent metabolism plays a key role in human health and 

disease. Examining even one subfamily of related P450s results in a web of 

interconnected metabolic pathways that cells employ in order to maintain homeostasis. 

As a major Phase I enzyme responsible for the numerous biotransformations in the body, 

P450s exist as targets for study for many fields of chemistry as their interactions with 

novel therapeutic agents can lead to progress in drug design and discovery.  

In contrast to earlier studies, which have been focused on the more 

physiologically prevalent isoforms that are responsible for drug metabolism, the work in 

this study has been focused on more elusive P450 members that still show potent roles in 

health and disease. This aspect is what inspired the work presented in this thesis, as the 

physiological roles played by CYP4F enzymes are not yet fully understood. The primary 

enzyme investigated in this research is the murine cytochrome P450, Cyp4f13. 



37 

 

Expression and purification of these delicate enzyme complexes is very difficult 

as the membrane-localized proteins become dysfunctional in the formation of microsomal 

bodies. Little progress has been made in common-practice bacterial models as they 

commonly fail to produce significant amounts of protein, or any at all. Insect cell-based 

protein expression systems have been employed in studying these protein systems to 

some success, however, still have trouble producing quantitative amounts.146 

With a better understanding needed; theoretical chemistry methods and 

simulations are another means of attempting to answer these questions. Theoretical 

methods allow chemists to probe and observe the biomolecular cosmos on a level not 

available to experimentalists. Modern computational methods have shown proficiency in 

investigating some of the more subtle aspects of the P450 isoforms. Both computational 

methods and direct experimental methods are needed in order to piece together the puzzle 

posed by nature. One aspect of these P450 systems of particular interest is their ability to 

shift role and seamlessly moderate the production or degradation of crucial cellular 

signaling molecules. Experimentally, through active site mutagenesis and other means of 

probing, the substrate flexibility of these enzymes has been observed but not fully 

explained by routine instrumental methods of analysis.  

Therefore, it is of great interest for chemists to exploit the powerful field of 

theoretical chemistry in order to elucidate the important interactions of active site 

residues, or substrate that facilitate such a phenomenon. In this thesis, I plan to discuss 

my observations of the interactions between arachidonic acid and the murine cytochrome 

P450 Cyp4f13 system embedded into a lipid membrane bilayer. Through the construction 

of a structural ensemble resembling that of its native environment, this study will provide 
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insight into the structural forces at play in enzymatic production of ω-hydroxylated 

oxidized metabolites. 

Because the metabolites of these enzymes play a crucial role in disease and 

cancer, one of the main goals of this work is to provide understanding in the CYP4F-

catalyzed fate of the physiologically important eicosanoid, arachidonic acid. In addition, 

we have also carried out additional simulations that act as informed probes of the active 

site by examining the role of residues in positions found to be important in substrate 

interactions on more well-studied cytochromes such as P450BM-3.  

One of the primary motivations of this work is the fact that the expression of 

murine Cyp4fs is altered in several forms of cancer manifestation and due to the common 

usage of mouse models in medicinal research, a more clear understanding of murine 

biochemistry is needed. While there has been some success in the study of recombinant 

enzymes and their metabolite profiles from subcloning, there has been relatively little 

computational study on active site characterization on individual murine Cyp4f members. 

No crystal structures of any CYP4F subfamily members have been isolated and the 

finicky nature of these membrane-embedded proteins make it very difficult to express 

them in useful amounts without modifications that can alter substrate specificity and 

other properties. 

Specific amino acid residues will be chosen and mutated within the Cyp4f13 

active site, selected based on their predicted effect of the mutated amino acid-residues on 

the catalytic function and binding specificity of the enzyme. To further characterize the 

murine Cyp4f13 active site, the role of covalent heme linkage will also be studied. 
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Through these simulations and resulting insights obtained, we hope to further the 

understanding of murine Cyp4f13-catalyzed ω-hydroxylation of arachidonic acid. 
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CHAPTER II 

Experimental Method and Theory 

This chapter presents the theoretical methods and foundations used in this work. 

First, an introduction to physical theories and the different computational approaches, 

such as quantum chemical methods (QM), Density Functional Theory (DFT), with 

Molecular Mechanics (MM) and statistical mechanics. Next, Molecular Dynamic (MD) 

Simulations will be introduced as well as a description of potential energy forms (force 

fields), parameterization, thermodynamic ensembles, and a summary of the process 

behind running molecular dynamic simulations. Finally, a comprehensive description of 

the homology modeling process used to develop the murine cytochrome P450 4f13 

structural ensemble will be provided.  

 

Physical Theory and Computation 

Physical theoretical methods can be resolved to a combination of quantum 

physics and statistical thermodynamics. The first component describes the interactions 

between atoms and subatomic particles, whereas the second explains the thermodynamic 

behaviors exhibited by large systems. Computational chemists utilize these theoretical 

methods in order to arrive at quantum mechanical descriptions of the electronic states for 

a given molecular system. Currently there are three major approaches, and all are based 

on approximations as electronic repulsion makes any system far too complicated for 

exact solutions. 

 

 



41 

 

Quantum Mechanical Methods (QM) 

Quantum mechanics refer to the behavior of matter being described by discrete 

physical phenomena such as the properties exhibited by waves or particles like energy 

and momentum. The mathematical formalisms for quantum mechanics were developed at 

the beginning of the 20th century and resulted in functions that could explain for almost 

all the shortcomings of classical physics. The cornerstone of quantum chemistry lies with 

the famed Schrödinger’s equation and is the basis for most of theoretical chemistry; all 

ground-state quantum chemistry is founded on solving the time-independent 

Schrödinger’s equation for an atomic system, given by the following equation.147 

 

 𝐻̂𝜓 = 𝐸𝜓 (1) 

 

Where 𝐻̂ is the Hamiltonian operator, 

 E is the energy eigenvalue, 

 𝜓 is the electronic wavefunction 

 

This mathematical function can only be exactly solved for single electron systems 

and would result in a scalar multiple of the input with a clear significance: the energy 

levels of the electronic system that the operation was applied to. This equation would 

pave the way for the advances in quantum chemistry to come. Given a system with a 

single particle as an input, distinct energy eigenstates, which can be considered as 

‘atomic orbitals’, could be resolved. However, one of the major consideration was that 

the ease of the integration was heavily dependent on the size of the system. While 

Schrödinger’s equation results in the exact solution for single-electron atomic systems, 
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such as in the case of a hydrogen atom or a helium cation, the equation becomes 

unwieldy for multi-electron systems and to a greater extent for molecules. For every other 

instance, assumptions and numerical approximations are necessary. The general time-

independent Schrödinger’s equation can be separated into kinetic and potential terms, as 

seen in the following equation for spherically symmetric systems as seen in the 1s orbital 

of a hydrogen atom. 

 

 −ℏ2

2𝑚
∇2𝜓 + 𝑉(𝑟, 𝜃, 𝜙)𝜓(𝑟, 𝜃, 𝜙) = 𝐸𝜓(𝑟, 𝜃, 𝜙) 

(2) 

 

  

Where 𝑟, 𝜃, 𝜙 are the spherical coordinates of an electron in a system, 

−ℏ2

2𝑚
∇2𝜓 is the Laplacian of the kinetic energy term, 

  𝑉(𝑟, 𝜃, 𝜙)𝜓(𝑟, 𝜃, 𝜙) is the potential energy term 

 

These terms can be further broken down to subsequent terms that describe each of 

the interactions between subatomic particles and lead to one of the key principles for 

quantum mechanics: the Born-Oppenheimer approximation.148 When solving for 

electronic wavefunctions, it is generally understood to consider nuclei as static particles 

with external potentials. Protons are about 1,800 times more massive than electrons and 

their kinetic energy terms are unnecessary to numerically describe which reduces the 

amount of integration. This approximation also serves useful in fully separating the 

kinetic and potential energies of systems and their subatomic elements. Eq. 3 illustrates 

the three remaining components considered in quantum chemistry. 
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𝐻̂(𝑟, 𝑅) = 𝑇̂𝑛𝑢𝑐(𝑅) +

𝑒2

4𝜋𝜖0

𝑍𝐴𝑍𝐵

𝑅
+ 𝐻̂𝑒𝑙𝑒𝑐(𝑟, 𝑅) 

 

(3) 

 

 

Where r and R are electron and nuclear positions, 

 𝑇̂𝑛𝑢𝑐(𝑅) refers to the kinetic energy of individual nuclei, 

 
𝑒2

4𝜋𝜖0

𝑍𝐴𝑍𝐵

𝑅
 is the coulombic repulsion of the two nuclei, 

𝐻̂𝑒𝑙𝑒𝑐(𝑟, 𝑅) is the summation of the kinetic, repulsion, and mutual 

attraction to nuclei from each electron in a system. 

 

The numerical approach is the use of approximate wavefunction forms to describe 

molecular orbital theory. Numerical approximations use ordinary differential equations 

that can be considered solutions to the complex partial differential equations of quantum 

theory. This works precisely and accurately only for the hydrogen atom and works 

reasonably so for very small molecular systems but is impractical and computationally 

expensive for most larger systems. This approach uses approximate wavefunction forms 

of electrons for interacting systems, which represents one of the drawbacks with this level 

of theory. For example, Slater determinants are expressions used to describe many-

particle systems and act as educated guesses for the Schrödinger’s equation but lack an 

electron repulsion term.149 The Hartree-Fock method150 and later combinations of other 

theoretical methods would tackle some of these problems but their usages on large 

biomolecular systems are currently held back by the computing power of modern-day 

technology.  
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Density Functional Theory (DFT)   

The quantum mechanical approach employed by most computational methods is 

based on the use of the electron density, as opposed to the electronic wavefunction, as the 

independent variable for a function. This ‘functional’, defined as a function of a function, 

is the basis for Density Functional Theory (DFT).151 This form of theory is widely used 

throughout computational chemistry and has led to a vast amount of research and 

understanding in the last century. Density Functional Theory uses the ground-state 

electron density for a system as all the electronic information of the ground-state 

wavefunction. 

While being a powerful method of studying the electrochemical, chemical 

bonding and reactivity in small molecules, it remains unfeasible to use for the dynamics 

of proteins as the time scale necessary for physiological relevance is in the nanosecond 

ranges. This limitation relegates DFT to being used to study specific biochemical 

ensembles, such as catalytic sites of metalloproteins, and can be used as a powerful probe 

for the mechanistic aspects behind enzymatic reactions. When used with experimentally-

derived data, this method is commonly used to generate parameters for less rigorous 

forms of simulation as will be discussed in the next section. 

 

Molecular Mechanics (MM) 

The final approach is the Molecular Mechanics (MM) method which bridges the 

divide between massive biological systems and computational chemistry.152 Molecular 

mechanics approximates the energy of a system using functions with empirically 

obtained parameters referred to as force fields. In quantum mechanics, a wavefunction 
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describes the kinetic and potential energy of a molecular system, while in MM, a set of 

potential functions describe the energy of a molecular system with empirical information 

and classic phenomena, such as a harmonic oscillator for bond vibrations.  

Computer simulation of massive biomolecular environments, such as seen in 

bacterial representations, are the next logical leap in progression for the field of 

computational chemistry.153 There are several challenges for the field, namely the cost of 

calculation. As the amount of physical detail increases in a simulation, so too does the 

computational power necessary to perform such calculations. More detailed theories can 

describe complex phenomena and offer higher accuracy. Molecular mechanics is less 

detailed which allows for simulations of larger systems and for longer timescales; as a 

result, MM-based force fields are the method of choice in the simulation of biomolecules. 

Computational chemistry packages such as Gaussian154 and GAMESS155 are commonly 

used in order to perform quantum mechanics, DFT, and molecular mechanics 

calculations. 

 

Statistical Mechanics   

Statistical mechanics, while normally used to study macroscopic physical 

phenomena, is commonly used to explain thermodynamic behavior in complex 

microscopic systems such as the states of biomolecules.156 The foundation of statistical 

mechanics is based on the existence of a state of a system, biochemical or otherwise, and 

the integration of motion that acts upon the state, progressing it in time. Examples of 

these motions are those found in classical mechanics such as Newton’s laws of motion, or 

quantum mechanics through use of the Schrödinger equation.  
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Calculation of the probabilities of these states is commonly performed in a variety 

of methods in the form of statistical ensembles, which are collections of all virtual states 

a system can possibly exist in. As microscopic variables differ between individual states, 

these aptly named microstates are collected and the density of states is used to draw 

conclusions about the system. The average of the states over time, circumstances, and 

mechanistic differences result in vastly different outcomes from seemingly similar initial 

conditions. This probabilistic method results in an infinite space of outcomes from which 

sampling is performed in order to approximate solutions. 

Computer simulations of molecular dynamics rely on the averages of all possible 

states of a molecular system with a specified internal energy.157 These so-called statistical 

ensembles, also known as micro-canonical ensembles, also consist of a fixed composition 

(set number of particles) as the commonly allotted degrees of freedom are either in 

pressure or volume. 

Many methods of integrating randomness or stochastic behavior in these systems 

are performed through additional modifications to a system. While this is actively 

changing or possibly destroying information about a system with its chaotic or 

pseudorandom influences, in practice it provides researchers a way to get a more realistic 

sampling of ensembles. These practices are necessary to reduce abnormal chemical 

phenomena to subtle correlations. Commonly used methods of this in theoretical 

chemistry are the reinitialization of atomic trajectories and velocities, and the cycling of 

thermal excitation with pseudo-randomly generated seeds.  
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Molecular Dynamic Simulations 

QM approaches are used in certain fields, photochemistry for instance, as the time 

steps covered span femtoseconds and can be performed on several atoms at a time. Such 

a small timespan allows for the resolution of minute changes in the atomic scale such as 

bond stretching and vibrational modes. DFT could be used on fast chemical reactions as 

it has a practical timescale of picoseconds and can reliably approximate the behavior of 

many atoms. Molecular mechanics are used on protein dynamics and drug binding as it 

has the capacity to process microseconds to nanoseconds and is able to handle thousands 

of atoms without being too computationally heavy. 

Molecular Dynamics (MD) combines QM and MM with statistical mechanics and 

acts as the leading approach of computational methods for biological systems.158,159 MD 

simulations both utilize potential functions and numerically integrate Newtonian motion 

to large biomolecular systems that can be used to gain information about biochemical 

events through thermodynamic ensembles. These potential functions, referred to as force 

fields, can vary widely between molecular mechanics simulations, such as that of all-

atom approaches used in this work, to that of coarse-grained systems which are used for 

even larger molecular complexes. Molecular Dynamic Simulations have been commonly 

used to evaluate the substrate binding interactions and specificities in P450s.160–163 

Several MD software packages are available and are designed specifically to 

handle biomolecular systems, such as AMBER164 and CHARMM165. These two 

originated as merely force fields for the study of biomolecules, eventually leading to the 

development of entire simulation software packages. Later software implementations 

sought to capitalize in the advances made in computing by the strides taken in the late 
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20th century. Some simulation software packages such as LAMMPS166 were created to 

investigate macroscopic material modeling and have shown exceptional use in chemical 

engineering and material science. Others, like GROMACS167 and NAMD168, were 

designed to utilize preexisting force fields as functional forms of potential energy to 

study large biomolecular systems, and now are a commonplace method in the simulation 

of biochemical phenomena.  

 

Functional Forms of Potential Energy   

Force fields are the empirically determined representation to the potential energy 

function of a molecular system. Many force fields have been developed in the field of 

computational chemistry and many have been tailored to meet the needs of the 

biomolecular systems. All interatomic interactions are approximations based and are 

obtained through experimental data, thus the term empirical. However, these methods 

prove to be too reductive in nature and resolve chemical reactivity to simplistic 

mechanical movement, leading to failures to fully replicate electrostatic potential charge 

distributions and the polarization of atomistic environments. Furthermore, protein 

structure predicted or created by these force field methods are heavily reliant on rigorous 

validation and refinement. A common phrase uttered throughout the field of computer 

science is the famed, ‘Garbage in, garbage out’. In essence, if initial molecular structure 

based on threading algorithms is not refined through human or machine-based learning, 

the simulations and the subsequent results can be taken to be unusable. Despite these 

deficiencies, the fields of computational chemistry and structural biology have seen a 

large amount of use and work being produced through these methods as the force field 
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methods have done much to develop understanding of molecular interactions leading to 

advances in biomaterial science, drug design and medicine.  

Several force fields are designed with different considerations in mind and are 

used for different purposes. Classical, polarizable, real-time reactive, and more reductive 

coarse-grained functional forms of potential energy are all examples of developed 

methods in molecular design software. GROMOS, AMBER, and CHARMM exist as 

some of the forerunners of molecular dynamics of macromolecules; developed primarily 

for energy minimization and dynamic simulations for peptides, small molecules and 

macromolecules.  

The development of force fields in the field of biomolecular modeling has grown 

extensively over the years. One of the most commonly used in the study of protein 

structure is the previously mentioned Chemistry at HARvard Macromolecular Mechanics 

(CHARMM) force field.169 

The following equations (4-6) for the potential energy function is what is used in 

the CHARMM22 force field, which was released in 1991.170 

 

 𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑏𝑜𝑛𝑑𝑒𝑑 + 𝑉𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 (4) 

 𝑉𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑏𝑜𝑛𝑑𝑠 + 𝑉𝑎𝑛𝑔𝑙𝑒𝑠 + 𝑉𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦 + 𝑉𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠 + 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 

 

(5) 

 𝑉𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑 = 𝑉𝑣𝑑𝑊 + 𝑉𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑖𝑐 (6) 

 

In what is commonly referred to as the functional form, the potential energy 

function for a system can be defined as the summation of the bonding and non-bonding 

interactions between the constituent atoms. For the bonding interactions, different pair 

wise atom-atom interactions can be described as functions of displacement of atomic 
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distances, angle and energy in form of force constants. The non-bonding interactions are 

contained within electrostatic potentials and van der Waals interactions.  

 

Figure 8. Schematic depiction of the interactions that the CHARMM force field utilizes. 

20-Hydroxyeicosatetraenoic acid is the molecule used in the representative scheme. 

 

These functions are designed to reproduce molecular geometry and properties 

using empirical methods and are used to describe the time evolution of the different 

interactions between atoms in a system, as shown in Figure 8. Constants allowing 

calculation of the energies of these interactions are referred to as parameters and are 

obtained from experiment and re-verified through successive optimization cycles.  

 

Bonding Interactions   

The bonding interactions encompass all the covalent bonding in a molecular 

system, taking into consideration certain attributes such as hybridization through use of 
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simple harmonic terms that describe stretching and bending modes. Torsional strain 

introduced by rotation about single bonds can be described as well as deviations in the 

planarity of groups of atoms.  

 

Bond Stretching   

 𝑉𝑏𝑜𝑛𝑑𝑠 = ∑ 𝑘𝑏(
𝑏𝑜𝑛𝑑𝑠 

𝑏 − 𝑏0)2 (7) 

Eq.7 refers to the oscillations of the covalent interaction between two atoms in a 

molecular system. These terms are assumed to be approximately harmonic and derived 

from Hooke’s law which linearly relates the force required to extend or compress a stiff 

spring by a distance to a constant factor determined by the character of the spring. In the 

situation of that between atoms, the magnitude of displacement away from equilibrium 

bond distance is an energetic penalty. This is analogous to that observed in other elastic 

bodies in response to applied forces. However, while this a reliable first-order 

approximation, it has limitations and does not exactly model the Morse potential of a 

diatomic molecule. The values for the force constants and equilibrium bond lengths are 

obtained from experiment, such as crystallographic diffraction data, spectroscopic data, 

or even theoretically from quantum mechanics calculations. 

 

Angle Bending   

 𝑉𝑎𝑛𝑔𝑙𝑒𝑠 = ∑ 𝑘𝜃(

𝑎𝑛𝑔𝑙𝑒𝑠

𝜃 − 𝜃0)2 
(8) 

Eq. 8 represents angle bending in a similar approach; equilibrium bond angles 

between three-body systems with defined bending force constants result in energetic 

penalties when a system is acted upon by external forces.  
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 𝑉𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦 = ∑ 𝑘𝑢(

𝑈𝑟𝑒𝑦−𝐵𝑟𝑎𝑑𝑙𝑒𝑦

𝑢 − 𝑢0)2 

 

(9) 

Eq. 9 shows another related parameter, the Urey-Bradley component. It is used 

for 1,3 non-bonded interactions for atoms separated by four bonds like as seen in allylic 

strained compounds. This component is generally underused in the study of biomolecule 

simulation as it is not easily analogized and is poorly transferable. However, this term is 

largely inconsequential for overall simulation sampling as its impact is more modest than 

incorrect charges or poorly optimized dihedral angles. 

 𝑉𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠 = ∑ 𝑘𝜔(

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

𝜔 − 𝜔0)2 

 

(10) 

Eq.10 represents the improper angle bending, produced by atoms bending out-of-

plane formed by groups of atoms. It is modelled by this function in a similar fashion to 

the other representations of optimal bond angle displacement. 

 

Torsional Rotation   

 𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 = ∑ 𝑘𝜙[1 + cos (𝑛
𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠 

𝜙 − 𝛿)] 

 

(11) 

Eq. 11 represents torsional rotation about a dihedral bond, which are common 

features in peptide structure, are important stereochemical considerations when modeling 

protein structure. In the refinement process of homology models, it is commonplace to 

create Ramachandran plots that plot all the dihedral torsional angles of the constituent 

amino acid residues within a protein. Failure to establish optimized and permitted 

dihedral angles leads to incorrect protein structure prediction and is a major consideration 

for scientists as they hope to obtain insight into the structure of proteins. 
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Non-bonding Interactions  

Van der Waals Interactions   

 
𝑉𝑣𝑑𝑊 = ∑ 𝜖 [(

𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

12

− 2 (
𝑅𝑚𝑖𝑛𝑖𝑗

𝑟𝑖𝑗
)

6

]
12−6 𝐿𝑒𝑛𝑛𝑎𝑟𝑑−𝐽𝑜𝑛𝑒𝑠 

 

 

(12) 

Van der Waals interactions are represented as a complex 12-6 Lennard-Jones 

potential term. This term controls the Lennard-Jones well-depth to conform to the Morse 

potential and also contains two inner components; a steep repulsive term, and smoother 

attractive term, representing the London dispersion forces. 

 

Electrostatic Interactions   

 𝑉𝐶𝑜𝑢𝑙𝑜𝑢𝑚𝑏𝑖𝑐 =
𝑞𝑖𝑞𝑗

ϵ𝑟𝑖𝑗
 

(13) 

Electrostatic interactions are modelled with a single Coulombic potential term. 

Attraction or repulsion is decided by the signs of the individual atoms interacting, with 

distance between them influencing the magnitude of the effect. The dielectric constant 

acts to simulate the effective nuclear charge and the shielding effect that atomic nuclei 

exhibit.  

Polarization is simulated by NAMD through using a Drude model oscillator to 

perform its calculations.171 Model oscillators are used to simulate the effects of electronic 

polarizability in the context of a classical molecular mechanics force field. They are 

inspired by the Drude model of mobile electrons and are used in the computational study 

of proteins, nucleic acids, and other biomolecules. The Drude model of electrical 

conduction treats electrons like pinballs that ping from nuclei in a crystal lattice. This 
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results in nonbonded interactions being the most-time consuming part of energy 

calculation. 

 

Integration of Newtonian Motion   

The integration of motion is the key step in simulating the progression of time for 

molecular systems. The methods, while abundant in number, generally resort to the 

calculation of Newton’s second law of motion for each individual particle of a 

simulation.  

 𝐹⃗ = 𝑚𝑎⃗ 

 

(14) 

The classical equations of motion used are deterministic by nature and allow a 

system to describe the positions and momenta of every one of its particles at any given 

point in time. Numerical integration is founded in the basis that given the initial position 

and velocity, a particle’s instantaneous position and velocity can be found as a function 

of time.  

 

Figure 9. Cartoon depiction of the integrator process. A symplectic integrator is being 

demonstrated, with each repeating cycle of integration requiring the set of previous 

position and velocity for each particle. 

 

For the simulation of biomolecules, these integrations would benefit from high 

order approximation, with trajectory correction methods and adaptive time steps so that 

non-important interactions would be given larger timesteps while more biochemically 
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important ones would receive smaller ones. These developing methods would allow for 

faster calculation, and more reliable results with more efficient computer resource use yet 

however, are currently unfeasible for the massive systems commonly simulated by MD. 

Biomolecular simulations have large numbers of degrees of freedom, are computational 

expensive, do not benefit from exact (fully minimized) solutions, and are usually focused 

on long-term averages of states changing chaotically from small perturbations as opposed 

to a final set of coordinates. 

Integrators used in MD simulations benefit from some constraints, such as the 

conservation of both energy and volume within a space. This allows the preservation of 

physical properties and allows systems to be time-reversible. This is useful in calculation 

as the Newtonian equations are reversible and this property allows an integrator to 

eliminate the need for adaptive time stepping. 

The symplectic integrator used in MD simulation, as is demonstrated in Figure 9, 

is a pattern of position updating as a function of previous position and momentum. The 

integrator is given position from atomic nuclear coordinates and a momentum is assigned 

in order to establish a conserved total energy for the system. The integrator then 

determines the new atomic position with the momentum of the previous coordinate used 

and updates the position. This process is performed theoretically ad infinitum, but in 

practice is dependent on the desired time frame of a simulation, and memory storage. The 

positions and charges are used to calculate potentials for each set of positions and 

velocities. These trajectories are stored as output and can be combined with visualization 

software in order to analyze and interpret. One major consideration is the chaotic nature 
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of these simulations. Small differences in the initial conditions quickly lead to very 

different trajectories. 

Velocity Verlet is an integrator method that is based on the simultaneous 

calculation of both position and velocity at the same value of the time variable.172 This 

provides for a more accurate representation than older methods but is still too unreliable 

and inaccurate. Additionally, there is the Beeman predictor-corrector method which can 

be used on systems of larger number of particles.173 It is similar to the Verlet method, but 

requires the tracking of position, velocity, acceleration and previous acceleration vectors 

per particle which can get very expensive for a computation. 

Some parts of the force field are expensive to calculate such as bond and angle 

vibrations within multibody systems, the likes of which are found in catalytic active sites 

of proteins. Others are relatively simpler yet slowly changing, such as long-distance 

electrostatic interactions. Some methods of efficiency have been implemented and are 

used commonly in NAMD simulations such as the SHAKE/Rattle algorithm.174  

The Rattle algorithm employed by NAMD is based on the Velocity Verlet 

algorithm that calculates and predicts the next set of position and velocities of a particle 

from a present point, without requiring information from previous time steps. This 

reduces the amount of memory needed to make these large calculations and satisfies the 

constraints of the system while maintaining adequate precision. Requiring nothing more 

than an input of velocity and atomic position means that velocity rescaling, and system 

modifications to simulate constant temperature and pressure are possible. 
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Rigid bonds and fixed atoms also cut down computational costs, as fixing the 

movement of the fastest but non-essential bonds (non-polar bonds with hydrogen atoms) 

or entire portions of a system greatly reduces the calculation load. 

Integrators such like the ones mentioned are algorithms that accelerate the atoms 

in the direction of the force designated by the force field. More sophisticated algorithms 

include higher order terms for better accuracy. There is one major limiting factor to these 

calculations, and it is due to their dependence on time or more specifically time steps. 

Time-steps are limited by fast degrees of freedom like bond vibrations, which can occur 

in femtoseconds. The use of small time-steps leads to large amounts of computational 

power necessary to simulate and increase the sheer amount of data recorded. 

 

Periodic Boundary Conditions    

Several techniques have been developed to close the gaps between simulations 

and the conditions encountered in real experiments. An important example of these 

improvements are periodic boundary conditions. Periodic boundary conditions are a 

method that increases the effective size of a simulation to theoretically infinite span. The 

defined arrangement of atoms in a simulation can be treated as an image and repeated as 

an endless array of the same image. Each of these periodic units are referred to as ‘cells’, 

an example of which is displayed in Figure 10.175 



58 

 

 

Figure 10. Periodic images of a P450 structural ensemble consisting of protein, solvent, 

ions, and lipid bilayer. Model used was the substrate-free Cyp4f13 homology model, 

whose construction is described in this work. 

 

This allows the simulation to produce results that are more relevant to real 

biochemical behavior, as they are able to be observed in thermodynamic quantities. This 

conservation of processing power and particles also acts as a way to improve 

computational efficiency. Any particle that leaves the defined box of an image is 

simulated as entering from the opposite side of the image. This allows proteins to 

experience force similar to an actual bulk lipid bilayer packed with protein.  

Proper construction of a structural ensemble should be large enough to avoid 

close contact between periodic images to reduce the interactions between proteins and 

their neighboring images. This is done to avoid ‘finite size’ effects by these images. 

Padding in the form of solvent is often employed to prevent such interactions, however 

must be competently constructed as long-range electrostatic interactions play a crucial 

role in many biomolecular processes such as entry/exit channels, and active sites.176 
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NAMD employs methods of calculating electrostatic interactions across images 

through the use of additional solvers: the Multilevel Summation Method (MSM)177 and 

the Particle Mesh Ewald (PME) method.178 Multilevel Summation Method can tackle 

periodic or non-periodic boundaries and is often preferred for systems with non- or semi-

periodic boundaries. Particle Mesh Ewald method uses the periodic boundary conditions 

and behaves well for constant pressure simulations. It consists of the summation of long-

range interactions between particles, first used in studying electrostatics in ionic crystals. 

It consists of a short-range potential component and a long-range summation of Fourier 

transformations of charge density, dependent on the spacing between the particles. This 

serves as an excellent model for forces obeying inverse-square laws such as gravity and 

electrostatics. It requires periodicity as it converges the long-range interaction over all 

space.179  

 

Thermostats and Theoretical Pistons   

 Thermostat and barostat algorithms ensure that the temperature and 

pressure of the system fluctuate around a target value and allow for the MD simulation to 

sample different thermodynamic ensembles. Since kinetic energy and temperature are 

directly related, control of these physical properties is very important for a simulation.  

The Berendsen thermostat method uses velocity scaling but does not produce 

canonical results; it works by increasing the velocities of slow-moving particles and vice 

versa. This leads to a too narrow distribution of velocities and is not representative of 

reality.180,181 
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The Andersen thermostat method uses velocity randomization by randomly 

resetting the momenta of particles.182 This achieves a canonical ensemble but contains a 

major drawback: any kinetic properties and calculations are affected by this 

methodology. This means that it is ineffective for biological systems which are governed 

by kinetics more so than thermodynamics. 

NAMD employs the use of the Langevin dynamics also known as stochastic 

dynamics, in the form of a theoretical piston.183,184  It is very similar to Newton’s 

equations, containing a couple additional components. The components of the Langevin 

piston maintain and control kinetic energy, therefore controlling the temperature and 

pressure. 

Langevin dynamics involve a friction damping term and with a random force that 

acts on the particle to simulate solvent interactions. The amount of damping is used to 

maintain temperature and changed by the discretion of the experiment. If there is too high 

of a damping constant used in a calculation, it may slow the system’s dynamics 

significantly. This is extremely effective at modeling a system wherein a protein is being 

buffeted by solvent molecules in its environment. 

 

Thermodynamic Ensembles   

Sampling from thermodynamic ensembles is where the statistical mechanics come 

into play. A statistical mechanical ensemble allows for simulations to exchange energy 

with an external environment. An ensemble represents all the microstates that are 

accessible to the simulation and provides the probability for a system to be in any given 

microstate. A microstate is a specific configuration of a thermodynamic system that the 
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system can occupy with a certain probability in the course of its thermal fluctuations. The 

canonical ensemble represents only the possible states of a system in a thermal 

equilibrium at a fixed temperature. 

An ideal MD simulation conserves the total energy and entropy, and samples the 

microcanonical ensemble (NVE) where the number of particles, the volume, and the 

energy of the system is held constant. Used commonly for annealing simulations, this 

ensemble sees less use in simulation due to the fact that it far less computationally 

intensive to keep the temperature of a system held constant as seen in canonical, 

constant-volume ensembles (NVT). Another commonly used ensemble is the Gibbs 

ensemble or isobaric-isothermic ensemble (NPT) which requires the use of theoretical 

pistons for varying volume. Conserving both pressure and energy is difficult and 

computationally heavy, even more so if a system is allowed to interchange particles with 

the surroundings. 

 

Nanoscale Molecular Dynamics (NAMD) Simulations   

Nanoscale Molecular Dynamics (NAMD), the package used in this work, is 

commonly used in protein folding simulations and ab initio calculations in which only 

initial physical constants and constraints are given in order to simulate the dynamics of 

biomolecular systems such as protein-protein or protein-substrate interactions.168,185 

NAMD was developed by the Theoretical and Computational Biophysics Group in the 

Beckman Institute for Advanced Science and Technology at the University of Illinois at 

Urbana-Champaign. NAMD has the capacity to read input from a large collection of 

force fields available and comes with its own visualization software in the form of the 



62 

 

Visual Molecular Dynamics programming suite (VMD). This visualization software is 

used to generate graphical representations, prepare molecular structure for simulation, 

and to analyze with a variety of plugins and tools for the examination of protein structure. 

In order to perform Molecular Dynamic simulations, a few forms of input are 

required by the NAMD software. These inputs come in the form of several file types: 

atomic nuclear coordinates files, structure files, electronic topology files, and parameter 

files.  

The Protein Data Bank file format (PDB) is the source of atomic coordinates and 

does not require bonding information or secondary structure for proteins. They can be 

obtained from the shared public database, the Protein Databank (www.rscb.org) available 

worldwide. This service collects and stores a large amount of protein structural data 

procured from a variety of methods such as X-ray diffraction, NMR, as well as the 

recently expanding vista of Cryo-electron microscopy methods.  

Structures obtained from the PDB resource come with drawbacks. Most structures 

originate from crystallographic data and due to the size of hydrogen atoms and the 

wavelengths generally used in X-ray crystallography falling between 1-2 angstroms, 

hydrogen atoms are not able to be resolved in molecular structure. The lack of core 

electrons for hydrogen atoms also means that no X-rays can be diffracted by sub-valence 

electrons.186  

The topology and parameter files are dependent on the force field being used and 

are available for CHARMM for any class of molecule from the University of Maryland 

School of Pharmacy. A compendium of biomolecular components and their necessary 

force field files are available from the MacKerell lab homepage 
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(http://mackerell.umaryland.edu/charmm_ff.shtml). The topology files define how and 

which atoms are connected to one another. Equally as important, partial charges are 

defined in this file type. Parameter files contain the information on the numerical 

constants that NAMD needs in order to generate forces and energies. In molecular 

dynamics, bonds are treated with stiff degrees of freedom; the energy obtained from these 

calculations are accurate only under the assumption that the bond lengths are near 

equilibrium length. Every single type of bond will have a description with the topology 

file and every single bonding interaction will be described by the parameter file. With the 

combination of the two, a completed image of a protein can be created with all the 

structural information in tow. 

The last designation needed to run simulations is the Protein Structure File format 

(PSF). It is a constructed file type that is generated from provided topological and atomic 

positional information. Built-in plugins in the NAMD software exist, like Automatic PSF 

Builder, and generate a structure file based solely on a raw PDB file with initial guesses 

as the states of each of the residues within the structure.  

This can lead to problems for researchers like incorrect protonation state 

assignment on residues or improper chemical bonding. It is the responsibility of the 

researcher to investigate the reliability and accuracy of the guess generated by these 

methods. 

Molecular dynamics simulations are carried out in four major steps that exist as 

their own individual simulation runs: minimization, heating, equilibration, and 

production. Each require initial atomic coordinates, protein structure, electronic topology, 
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and parameters to be input by a researcher and must be constant through each step of the 

procedure. 

The minimization step is to relieve excess strain on a system, resulting in a 

minimum in potential as bond distances and angles achieve equilibrium value. The 

timesteps needed for this step is dependent on the system but generally within a few 

picoseconds of model time. The minimization process used by NAMD is performed 

using a conjugated gradient method combined with a line search algorithm that finds 

successive search directs along the potential energy gradient that result in a total 

minimization of a system with the limitation of not being allowed to move along same 

directions per each time step. The method then converges these steps in order to arrive at 

a (theoretically) global minima of the system. 

The heating step is performed to raise the total temperature of a system to the 

designated temperature of the experiment. Using the Langevin piston as a control for 

temperature, and allowing pressure to vary, a system can reassign values of velocity to 

achieve a desired temperature. These velocity rescaling methods reinitialize the velocities 

and trajectories of individual atoms, with the resulting change in thermal energy 

calculated for the system at each time step until a set temperature is reached.187 This is 

sometimes performed in annealing loops that cycle above and then back to a target 

temperature in attempt to cross any unpredicted local minima and to decrease the number 

of defects in the model. The actual heating process is performed in hundreds of time 

steps; however, the cycle loop generally takes the total time for this step into the several 

picosecond model-time range.  
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The equilibration step is performed in a constant pressure NPT thermodynamic 

ensemble that is done to equilibrate the system before properties or states can be 

measured. The output of these steps is useful for making decisions on the production run 

but are otherwise are not suitable for drawing conclusion upon. These simulations usually 

last for several nanoseconds and can be shorter or longer, depending on qualitative 

properties of the system, such as membrane bilayer association or active site solvation. 

 Once the model has been minimized, heated, and equilibrated, production runs 

are carried out to convey information about the system being studied. These simulations 

are done in the canonical ensemble (NVT) and can typically range from nanoseconds to 

even fractions of microseconds given the computational power available. 

Methodological challenges define the movement towards refinement and 

improvement in Molecular Dynamics. The challenges in MD are simulation timescale 

and accuracy. Statistical mechanics efficiently samples the ‘correct’ thermodynamic 

ensemble. Algorithms and advances in computer science make the simulations run faster 

by designing faster algorithms and taking better advantage of current hardware, like the 

10x increase in speed brought in recent years for some packages by that advent of 

graphical processing unit (GPU) based computing. Force fields are achieving higher 

accuracy without unduly increasing the complexity of a calculation aided by the further 

development of better parameterization methods. Data analysis research leads to being 

able to process larger volumes of data and help researchers in drawing scientific 

conclusions from their findings. 

Applications of these methods are of great interest to the modern-day scientist. 

With these simulations of biological systems, there is a variety of pharmacological, 
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medical, and toxicological uses. The binding and dynamics of possible substrates to and 

within their potential protein target might provide the foundation for research in both 

experiment and theory. With simulations calculations requiring a ligand repeatedly 

visiting a binding pocket can be made, something that was not feasible with purely QM 

methods. Lots of sampling is required but is a lower throughput than ‘docking’ studies 

and incorporates many more physical effects. 

 

Homology Modeling and Molecular Docking of Biomolecules 

As was previously discussed, homology models are generally constructed through 

the use of crystallographic data. However, with the difficulties that arise from generating 

a crystalline protein sample, the number of structures is limited. There are thousands of 

different cytochrome P450 structures available, originating from a variety of species and 

with several substrates and modifications. However, there are many P450 isoforms with 

no structural data.188  

This vacancy leads to the necessary task of homology modeling. Homology 

modeling refers to the sequence of procedures biochemists take to get fairly accurate 

guesses at the structural makeup of unsolved proteins using related species known as 

target or template structures.189  

This method is generally resolved to a seven-step process: 

1. Template identification and initial sequence alignment 

2. Alignment optimization 

3. Backbone modeling 

4. Loops or deletion modeling 
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5. Sidechain modeling 

6. Model optimization 

7. Model validation 

 

These steps can be performed by protein structure scientists in separate steps with 

bioinformatics tools available such as sequence alignment algorithms like those used in 

the Unipro UGENE190 software or all together through structure prediction and threading 

services like the I-TASSER191–193 server and SWISS-MODEL194 modeling server. 

 

Sequence Alignment and Template Selection    

For researchers to identify regions and patterns in proteins or genetic information 

that might be functional, structural, or imply evolutionary relation, the unique sequence 

of biomolecules is commonly arranged and used to compare. This arrangement is 

typically performed in order to align residues or nucleotide base pairs between sequences 

so that identical or similarities can be more readily observed.  

The amount, or degree, of similarity is a common metric for studying 

bioinformatics as it can be taken to be a rough measure of how much a sequence has been 

maintained by natural selection or by lineage. This level of sequence similarity, usually 

reported as a percentage, gives biomolecular scientists an ability to quickly observe 

patterns of repeated residue motifs and chart an evolutionary history for an enzyme’s 

protein sequence. These generational sequences are powerful tools in the study of 

proteomics as the groups of highly conserved regions can indicate structural or functional 

importance. Absence or mutation is also important for understanding biochemical 
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properties for a protein, as modifications that are retained across species show potential 

for research or investigation.  

Aligning sequences by hand was important at one time but has generally fallen to 

computer programming and data science, however, can still be done on smaller or highly 

similar sequences. Alignment can be done locally or globally referring to the selection of 

the alignment; local alignment consists of smaller stretches of sequence, while global 

alignment considers an alignment of every item in a sequence. Other alignment methods 

of protein sequenced include those that are based on 3D structure and ‘best-fit’ 

superpositions of protein backbones, such as seen in the Structural Alignment of Many 

Proteins (STAMP) package. 

Iterative algorithms are used to speed up the alignment process, rapidly 

comparing pair-wise residues of a protein sequence to another of interest. Similarities of 

chemical environment such as charge, polarity, and acidity are used as metrics to analyze 

the individual differences between protein sequences. Motifs are commonly distinguished 

by these methods and can indicate secondary structure, binding domains, to analogous 

matches across species. They are used by the field of bioinformatics to quickly compare 

possibly related protein sequences, or even to predict possible relation or function. 

Alignment methods in modern day bioinformatics are heavily reliant on sequence 

and structural alignment software. Many are built on hybrid fundamentals that integrate 

local and global searches, with multiple pairwise sequencing such as BLAST195, 

MUSCLE196, or CLUSTALW.197 Some integrate computational phylogenetics software 

such as PHYLIP to use comparative methods of cross-analysis to study the convergent or 

divergent evolution of proteins and genes.138  
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Analysis and assessment of these methods are still reliant on researcher 

intervention as they can be prone to error. Credibility and significance are common 

metrics used to evaluate alignment and are represented in data science as scoring 

functions. Scoring functions, in general, assign penalties for sequence elements that are 

either misaligned, have a changed chemical environment, such as a polar residue in place 

of a hydrophobic one, or if a gap is necessary to achieve a higher overall rating for the 

alignment.  

Template selection for homology modeling requires two major considerations: a 

high rate of similarity between the target protein sequence and a template sequence, and 

the need of an experimentally obtained structure (usually X-ray crystallography or NMR) 

for said template. Alignment and subsequent selection of a template sequence can be 

performed with ease by a protein structure scientist; however, it is limited by the amount 

of crystallographic or structural data present in online protein databases. Homology 

models themselves are poor templates as the propagation of error theoretically increases 

by a large amount but can still provide rough estimates for protein structure. 

 

Structural Threading and Refinement 

Generally, this method is performed through the use of online services provided 

by dedicated web-servers or institutions such as the I-TASSER (Iterative Threading 

ASSEmbly Refinement) server created by the Zhang lab of the University of 

Michigan.191–193,198,199  

Many of these servers go through an iterative algorithm-based model prediction 

of 3D protein structure. The target protein sequence to undergo the homology modeling 
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process is given as input to the service and solutions usually takes several days or weeks, 

dependent on the length or complexity of a sequence and the number of job requests in 

line.  

The protein structure prediction protocol begins with an initial backbone 

threading approach. The method used by the I-TASSER server is that of a locally 

installed meta-threading approach (LOMETS) where the protein sequence of interest is 

compared to similar structures within all available PDB libraries using a variety of 

threading methods.200,201 Once several target protein structures have been identified, the 

amino acid sequence of the homology target can be threaded along the top models and 

result in a large number of templates generated. These go on to be processed by restraints 

such as secondary structural confinements based on residue torsional angle strain before 

the next step can proceed. Clusters of conformationally satisfied templates are collected 

and put through another restraint process, in the case of I-TASSER defined by energetics. 

This method of alignment must be done carefully as such work is prone to error or 

inconsistencies in the prediction of structure. Typically, programs are used that optimize 

hydrogen bonding networks to have the lowest energetic state, such as the REconstruct 

atomic MOdel (REMO) package used in I-TASSER, to verify and refine initial 

structures.202 Clusters of these now-refined structures are now ready to be further refined 

through cycles of energetic restraints and other refinement simulations. 

 The resulting cluster of predicted optimized structures are ready to be compared 

again to known crystal structure using a pairwise structural alignment algorithm, such as 

the TM-align algorithm used by the I-TASSER service.203 This results in a root-mean-

squared-deviations in atomic coordinates to be calculated for each model created. A set of 
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final models are then sent to the user along with additional data about their predicted 

function, enzyme classification (EC), and even binding pocket or site information. 

A scoring element is commonplace for this method as well, with some examples 

such as I-TASSER modeling service’s ‘C-score ‘and ‘Z-score’. C-score is a confidence 

value used to estimate the quality of the prediction models generated by the I-TASSER 

platform. It is calculated by the significance of the threading template used and the 

convergence of parameters of the structure assembly simulations. The Z-score functions 

as a more threading program specific value; this scoring unit is based on the difference 

between the raw and average scores of each threading technique in the units of standard 

deviation. Now that the backbone of the homology model is in place on what is to be 

assumed to be a reliable 3D protein structure, the next problem to overcome is that of 

structure refinement and patching.  

A common refinement technique is through measuring the displacement of atomic 

positions from a point of reference, either from crystallographic data, or from template 

structures. The root-mean-squared-deviation of atomic coordinates (RMSD) is a metric 

commonly used to evaluate a threading technique, as large displacements indicate a poor 

result of the homology modeling procedure.  

 

RMSD(r, s) = √
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(15) 

Equation 15 is a common representation of the RMSD used in structural biology, 

where ‘r’ and ‘s’ are the positions of atomic positions for the backbone heavy atoms of a 
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template and of a target structure. RMSD is expressed in units of angstroms for 

displacement and has an associated error in the same units of measure. Issues observed 

here generally originate from artifacts in the protein crystallography method, such as 

truncation or poor resolution. 

The final template provided by some service platforms, such as I-TASSER, are 

based on crystallographic information which leaves many templates without hydrogen 

atoms due to their poor resolution in data collection. This may seem trivial for situations 

where the hydrogens can be placed reasonably so such as amide backbone hydrogen 

atoms or aliphatic residue sidechains. However, this becomes more problematic for 

residue sidechains with multiple protonation states, such as L-histidine with its three 

possible forms, (protonated on either side, or both). 

Another refinement technique that is used to solve this problem are predictive 

services, used to determine the protonation states of ionizable groups in a protein 

structure. PROPKA is an example of a web service that utilizes the 3D electrostatic 

environment of the protein structure to make its predictions.204  

Post-translational modifications and unique covalent linkages such as 

phosphorylation, protein glycation, or metal binding must also be affixed in this step of 

the homology modeling process. This is done through a patching process in which 

specific chemical bonds are designated in protein structural files, through use of explicit 

coding or through integrated plugins on molecular dynamics software packages. One last 

consideration for these modifications is that their exotic nature usually leads to the 

occurrence of improper or missing force field parameters. 
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The I-TASSER server provides functional prediction services in addition to some 

ligand binding predictions based on a method of comparing the threaded models with 

establish protein structures in order to draw conclusions on possible function, ligand 

binding sites, and classification. One of the protein characterization services used by I-

TASSER and through its own web-server is the Computed Atlas of Surface Topography 

of proteins (CASTp) which goes through a similar process of comparing against curated 

protein databases.205,206 

 

Parameterization using Quantum Mechanics and Molecular Mechanics 

As mentioned previously, each term of the potential energy function used in the 

CHARMM force field describes a value designated to belong between atoms and the 

constants for each interaction are dependent on which atoms are interacting. Each 

interaction between specific atom types must have an empirically determined force 

constant and an equilibrium distance or angle. These values are referred to as parameter 

sets and the process to create them is called “parameterization”. 

Force field parameterization is necessary to complete molecular models and their 

simplified description of reality. Most models have incomplete physics; many models 

place fixed point charges on atoms with no ability to demonstrate electronic polarization. 

Classical mechanics are currently unable to consider isotopic effects as is observed in 

experiment. Fixed bond topology prevents the fundamental chemistry of molecular 

systems from occurring. Bonds are rigid; the breaking and forming of bonds are 

disallowed. Despite these drawbacks, much can be recovered through the use of 

parameters. Modification of partial charges can recover some semblance of polarization 
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effects, additionally by tuning van der Waals parameters some systems show 

improvement in predicted density or other physical phenomena. Some force fields have 

even been observed to exceed the accuracy of quantum methods: the use of QM methods 

will result in thermodynamic phase behavior of water that is not seen in experiment, 

whereas the correct behavior is observed using multifaceted MD calculations.207 

As an example displayed in Figure 11, the bond angle found on the center sp3 

carbon atom of propane would need a much different potential energy function to 

represent it than that of a ring-strained cyclopropane carbon. 

 

Figure 11. Ball-and-stick representations of propane (A) and cyclopropane (B). The 

angle strain imposed by the C-C-C bonding within cyclopropane molecule is apparent 

when compared to the linear propane molecule. 

 

The parameterization process is reliant on high levels of model chemistry and 

incorporates almost all forms of computational chemistry in order to generate appropriate 

results. Quantum theory is used for the electronic aspects of bonding arrangements such 

as partial charge and bonding optimization. Density Functional Theory is used as an 

initial guess on geometry optimization with novel parameters, as it is less 

computationally expensive and will be further refined with more robust levels of theory. 

Multilayered calculations utilizing both quantum mechanical and molecular mechanical 



75 

 

methods are used to quickly converge on equilibrium bond distances and angles. These 

QM/MM output values can be added into simulations as additional force field parameter 

files.  

Within CHARMM 36 format, there is a collection of a variety of chemical 

bonding interactions parameterized for almost every amino acid side chain imaginable. 

There is only need for parameterization of novel protein modifications, such as the 

covalent heme linkage of the CYP4 family of enzymes. This parameterization is 

commonly performed through computational chemical program suites like Gaussian and 

molecular dynamics software packages such as the Force Field Toolkit plugin of VMD 

and can be performed using the modular CHARMM general force field 

(CGenFF).154,208,209  The CGenFF is a force field consisting of a general variety of 

generic atom types and their non-bonded interaction parameters for simulation of new 

biomolecular systems.209 

The parameterization process can be broken down into 5 overarching steps: 

1. Identification of Missing Parameters 

2. Initial Geometry Optimization by DFT  

3. Partial Charge Optimization through QM Water Interaction  

4. Bond and Angle Optimizations through QM/MM 

5. Dihedral Optimization by Torsional Scanning with QM/MM 

 

After this process is performed, the results are compared to analogous compounds 

to ensure significance and relevance. Mistakes in this portion of the MD simulations will 
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not appear until after calculations are completed, making it a very important step in the 

modeling of biochemical ensembles. 

 

Automatic PSF Builder, Solvate and Autoionize Plugins  

Standard examples of peripheral plugins used in the simulation of biomolecules 

are those of Automatic PSF builder, Solvate and the Autoionize plugins contained in the 

VMD program suite. 

Automatic PSF builder takes the atom types and charges in the form of the 

topology file and the atomic coordinates of a biomolecule that is segmented into 

individual portions (protein, co-enzymes, lipid bilayers, etc.) and generates a structural 

file that encompasses all of the individual bonding interactions in a program-friendly 

format. Written in a format more friendly for computing, this filetype serves as a part of 

the key files necessary to perform molecular dynamics simulations in addition to 

CHARMM force field parameters that dictate atom-atom interactions. 

Proteins do not behave well in in-vacuo environments; therefore it is necessary for 

computational simulations to have solvent present. Through either implicit or explicit 

representation of solvents, proteins require the polar and collisional influences facilitated 

by solvent molecules. In the case of almost all biological realms found on planet Earth, 

water is the major solvent. 

Several theoretical models for water have been designed with many 

considerations in mind. Some have been created with multiple representations of polarity 

through the addition of dipole functions. Others have dummy atoms to represent centers 

of mass for physical chemical purposes, and even rigid or flexible bonds to allow for 
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vibrational modes to be simulated. In the CHARMM force field, the TIP3P water model 

is used as an explicit solvent and can be added to protein systems in a myriad of ways and 

volumes. Spheres and cuboids of water solvent can be modelled and generated in the 

concentration designated by a user. The Solvate plugin calls for user input in the 

placement and geometrical arrangement of the added water, generating segmented atomic 

coordinate files for use in simulation. 

Proteins are inherently susceptible and sensitive to the ionic strength of 

surrounding polar solvents. In order to buffer the electrostatic interactions of the 

structural ensemble, ions are added to completely neutralize the system.  Additional ions 

are added to replicate the cytosolic concentration of ions in biological systems. 

This is also is a requirement for the way that certain MD simulations are 

performed. The summation of electrostatic interactions, as calculated by the particle-

mesh Ewald (PME) summation, requires the system to have a charge of zero. The 

Autoionize plugin queries from the user what ions are to be used, allowing for full 

customization of both cations and anions, as well as the preferred final concentration of 

salt in the final solution produced. 

 

Molecular Docking through Automated Docking Tools    

 The process of molecular docking is imperative for understanding intermolecular 

forces, such as noncovalent interactions like electrostatic or steric, and is commonly used 

to study proteins and their ligands for use in rational drug design and discovery. 

Molecular docking methods utilize binding free energy to evaluate the stability of 

protein-substrate complexes, as well as identify conformations that might be of 
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importance to a researcher. They are performed using automated docking software or 

program suites such as AutoDockTools.210,211 

Much like MD simulations, molecular docking uses its own set of parameters to 

describe the rigid protein structure, the flexible ligand to be docked, and the protein-

ligand complex. The parameters typically consist of binding free energy and is 

determined through the summation of the net interactions within both the individual 

molecules as well as their interactions with one another. This includes bond distance, 

angle and torsional free energy while also taking into account total internal energy of the 

system before and after binding. The more biologically relevant interactions are 

calculated, with the highest amount of resources being used to approximate hydrogen 

bonding, electrostatic, dispersion and desolvation energies.  

The general docking process consists of utilizing either a crystallographic protein 

structure or a homology model to define a protein as a receptor macromolecule. Next, a 

ligand must be chosen to dock to the receptor and can be collected from libraries and 

repositories online in a multitude of file formats.  

To perform the binding of the substrate, the creation of a ‘grid’ of the target 

macromolecule is required to be mapped in the next step. This calculation results in a 

topological mapping of the receptor and is used to dock the target ligand, as the input 

only contain partial charges and atomic coordinates. Instead, it uses grid maps that 

describe desolvation and electrostatic interactions. These interactions are calculated using 

a probe atom of each specific atom type of the ligand, to record the energies and produce 

a corresponding grid map. 



79 

 

Search algorithms are used to find conformations of a ligand docked to the grid 

maps generated. Search algorithms seek to optimize the binding interactions between the 

ligand and grid maps, exploring different conformations of the ligand to result in better 

solutions. It searches the designated grid selection for the best conformations of the 

ligand and categorizes the results based on binding energy, produced from nonbonded 

interactions and desolvation.  

Some examples such as genetic algorithms are iterative methods, based on 

‘mutation’ and ‘recombination’ of previous solutions. Another example is that of the 

Monte Carlo simulated annealing, which is based on probabilistic optimization with 

neighboring conformations evaluated as possible solutions.212 Hybrid search algorithms 

exist that combine searching techniques such as with Lamarckian Genetic Algorithm 

(LGA) which is a hybrid of a genetic algorithm and a Monte Carlo method.213  

The two general approaches to molecular docking are shape complementary 

methods and simulation approaches. Shape complementary methods are quick and 

involve rapid scanning of possible orientations of a ligand within a predefined boundary 

assigned to a target molecular receptor. Simulation approaches are more intensive and 

involve placement of the ligand a distance away from the targeted binding site and 

performing calculated movement through time as the ligand is allowed to bind to the 

target receptor. Both methods have provided researchers with invaluable information on 

the usages of small ligand molecules in the study of in silico drug discovery. 

Flexibility of both the receptor’s binding site and the ligand are challenges present 

in the molecular docking process. The convention used in many methods is to designate a 

rigid receptor and allow for the small molecule ligand to be flexible around designated 
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bonds. This raises an issue in the study of biomolecules as the concept of the induced fit 

model of enzymes displays subtle changes in protein structure to bind a substrate. 

More often than not, automated docking methods result in non-physiologically 

important results such as the binding of a ligand to the non-active surface of a protein 

receptor. The prevalence of these results is based heavily on the grid map work 

performed on a receptor, as larger grids result in more impractical binding conformations 

of a ligand. 

Assessment of molecular docking results, like in homology modeling and 

molecular simulation, is required in order to determine the confidence in its predictive 

ability. One challenge that hinders automated docking methods is the lack of a 

standardized scoring function. What is commonly used is binding free energy, however 

this metric varies widely in value between methods and techniques. Benchmarking with 

confirmed binding modes produced by X-ray crystallography is a common method of 

evaluation of docking programs. 

 AutoDockTools is a program suite of automated molecular docking tools.210 It is 

commonly used across the fields of study and has shown application in chemical 

mechanism studies, protein-protein interactions, structure-based drug design, and even 

organic synthetic chemistry. AutoDockTools is an example of shape complementary 

methods and encompasses several docking programs.  

AutoDock Vina is a quicker method of docking for most proteins, as the 

automated program creates predefined grip maps for the user, limiting the amount of 

research influence and customization possible.214 The major drawback is that due to these 

predefined maps, only the canonical 20 amino acids can be used in the receptor, allowing 
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no room for post-translational modifications, metal ions, or adducts to be represented. 

This makes it largely unusable for phosphorylated, glycated or metal-binding proteins. 

AutoDock is the more modular method and has less limitations placed on it, 

allowing a user to use a gridding software, AutoGrid, to create custom grid maps for any 

macromolecule imaginable. This gives the researcher the ability to model binding 

interactions with metal cations present, or covalently bound modifications through 

explicit descriptions of the receptor. 

These methods seek to further the understanding in specific interactions between 

small molecule ligands their biomolecular targets. Their roles in the activation or in-

activation might lead to computational insight gained in the prospective pharmacological 

importance of small compounds. Molecular Docking is used to screen large databases to 

rapidly detect potential drug interactions in silico with confidence. It is also can be used 

to predict and improve how future modifications to a drug might impact and improve its 

physiological activity; thus, leading to the creation of more potent and selective analogs. 

This method was used in the pandemic of the novel coronavirus disease 2019 

(COVID-19) as the interaction between the small molecule remdesivir was flagged as an 

early potential therapeutic as it acted as a nucleotide analog to disrupt the interactions 

between the SARS-CoV-2 viral RNA-dependent RNA polymerase and their target viral 

nuclear information.215 
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CHAPTER III 

Molecular Dynamics Simulations of Substrate-free Cyp4f13 in DOPC bilayer 

 

Introduction 

This chapter presents the process, results, and findings in the creation and 

simulations of the murine substrate-free Cyp4f13 structural ensemble. The resting state of 

the murine P450 catalytic cycle needed to be modelled and put through simulation to 

obtain a structure ready for the molecular docking procedure in the next set of 

experiments. This work was necessary as the molecular docking of the substrate of 

interest required use of a sufficiently equilibrated model of the protein’s catalytic site, 

able to portray physiological significance. Another focus of this work was to gain 

qualitative understanding on the dynamics that the substrate-free P450 exhibits while 

being embedded in its native environment of a DOPC lipid bilayer. The intention is to 

develop insights that will allow for a better understanding of the dynamic binding 

interactions between the murine P450 Cyp4f catalytic domain and its fatty acid substrate.  

 

Computational Method and Details 

 

Template Selection with use of UGENE Sequence Alignment Toolkit   

The free bioinformatics software UGENE by Unipro was used to perform 

multiple sequence alignment, analysis, and subsequent template selection for use in 

homology modeling. Sequence similarity consisted of Hirschberg (KAlign) alignment, a 

pairwise method that bases its sequence similarity off of a string-matching algorithm.216 
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The alignment of P450 CYP4F subfamily members was performed in order to elucidate 

common structural motifs amongst the isoforms as well as across species. Further 

alignment of murine P450 Cyp4f13 was performed on a set of more studied P450s within 

the PDB database in order to identify possibly target templates for homology modeling. 

The specific P450 isoforms used in the alignment will be presented in the results. 

The alignment was performed with the MUltiple Sequence Comparison by Log- 

Expectation (MUSCLE) method of multiple sequence alignment. A phylogenetic tree for 

the CYP4F subfamily was built using the PHYLogeny Inference Package (PHYLIP) 

neighbor-joining tree building method. Consensus and phylogenetic analysis were 

performed using the UGENE software interface. 

 

Initial Alignment and Backbone Threading using I-TASSER 

In the creation of the cytochrome P450 structural ensemble, several components 

need to be constructed and prepared for molecular dynamic simulation. The first and 

foremost moiety of this ensemble is the protein structure of the homology model of 

murine cytochrome P450 4f13.  

The murine cytochrome P450 4f13 model was assembled from structural analogs 

in the PDB library using the I-TASSER service for protein structure prediction. The best 

structural analogs were evaluated for their relevance and similarity then were used to 

thread the Cyp4f13 sequence to, resulting in an initial structure. After refinement and the 

usage of sequence similarities to predict function, the best model is determined by the 

criteria of RMSD of atomic positions and transmembrane anchor position.  
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Using the FASTA format of the Cyp4f13 protein sequence, a request was sent to 

the I-TASSER server in the early months of this research. After a brief waiting period, 

several homology models were produced by the service. The models were individually 

assessed using a variety of criteria, one of which was the state of the transmembrane 

anchor. The position of the transmembrane anchor being parallel with bilayer leaflets 

would result in a shorter equilibration period for subsequent molecular dynamics 

simulations, so the model with the most appropriately positioned anchor was selected for 

the homology model. This model would be used as the P450 catalytic domain segment 

(CYP) in all the ensemble construction and simulations. 

 

Homology Model Refinement   

The homology model produced by the I-TASSER process would have predicted 

coordinates for the position and protonation of the residues based on crystallographic data 

which do not contain information on the nuclei of hydrogen atoms. This would lead to 

results that might not be representative of the protonation states present in the biological 

environment. The protonation states of the homology model would need to be refined and 

were externally predicted by the PROPKA 2.0 web-server (http://www.propka.org). This 

holoenzyme model would then be ready for covalent attachment with its heme cofactor 

through patching. The Computed Atlas of Surface Topography of proteins (CASTp 3.0) 

web-server was used in addition to visual inspection methods to assign residue make-up 

of channels within the Cyp4f13 homology model active site. Several sites were identified, 

including the heme cofactor binding site. 
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The prosthetic heme cofactor must be additionally supplied in the form of atomic 

coordinates, force field parameters, and electronic topology in order to prepare the 

protein for simulation. As was previously discussed, the covalent attachment of the heme 

moiety and the acidic residue in the I-helix in other CYP4 enzymes is absent in native 

murine Cyp4f13 and was not necessary for this series of simulations. The parameter files 

and topology necessary for the heme-thiolate patch were derived and developed from 

previous work adapted from the AMBER force field and determined by quantum 

chemical calculations on simplified heme models.217 

To achieve an optimal fitting of the heme moiety, the X-ray crystal data available 

for the heme domain of P450BM-3 was used with STAMP structural alignment in order to 

collect atomic coordinates. The STAMP structural alignment, although outputting 

sequence alignment information, only uses 3D structure in its alignment and is an 

appropriate method to align the Cyp4f13 and P450BM-3 heme domains. Once positioned, 

the atomic positions of the heme cofactor were copied from the P450BM-3 coordinate file 

and placed into the Cyp4f13 active site with no steric conflicts. Ligand docking methods 

were available, however spatial alignment gave no steric conflicts and served as an 

acceptable alternative. 

 

Embedding of Homology Model into Lipid Bilayer    

There are several methods such as the VMD plugin Membrane Builder that can be 

used to create membrane lipid layers and bilayers. After successful creation, membrane-

anchoring alpha helices can have their atomic coordinates placed into the crafted 

membrane and conflicting lipid molecules can be removed through command line in the 
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Tk console in the VMD program. Brute-force methods like these are necessary in the 

absence of crystallographic data of these biological ensembles.  

Fortunately, through a personal communication, a cytochrome P450 embedded 

into a lipid bilayer was obtained by Professor Michael Otyepka from Palacky University 

Olomouc of the Czech Republic. The structure contained the cytochrome P450 3A4 

catalytic heme domain integrated with a lipid bilayer composed purely of di-oleoyl 

phosphatidylcholine (DOPC).  

 

Molecular Dynamic Simulations of Substrate-free Enzyme System   

Each step of the molecular dynamics was performed in separate simulations, run 

in bulk through basic shell commands used in the Linux operating system. The 

parameters and topology used were the CHARMM36 protein, lipid and solvent files 

obtained through the MacKerell lab homepage of the University of Maryland School of 

Pharmacy. Modification of the topological file for hemeproteins was performed in order 

to simulate the heme-thiolate with an iron(III) oxidation state. 

After removal of the overlapping or colliding nuclear coordinates and proper 

segmentation of the lipid bilayer, the solvent plugin for VMD was applied. This action 

was performed to the designated to-be simulated region of space that contained the 

protein and membrane bilayer. It extended past the bilayer for 10 Å and above the protein 

catalytic unit by 25 angstroms in the Z axis while confined to the dimensions of the lipid 

bilayer in both the X and Y directions. This would allow for the proper application of 

periodic boundary conditions in order to simulate a more real impression of a P450 

embedded into the endoplasmic reticulum, which is crowded with neighboring proteins.  
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The periodic boundary conditions applied to a 130 by 130 by 150 angstrom 

defined space size. These dimensions were determined after the solvation step through a 

script that uses the volume of the solvent box in order to find cell basis vectors and a 

point of origin. 

A minimization process of 20 picoseconds was used on the system. Afterwards, a 

heating step of 30,000 timesteps was used to climb to 310 K using the velocity rescaling 

temperature coupling scheme for 12 ns before locking in temperature for a total of 60 ns 

of simulation time. This was performed in an NVE thermodynamic ensemble, controlling 

the volume with the use of the Langevin dynamics used by NAMD. Next, the 

equilibration step of 30 ns was performed using an NPT isothermal-isobaric ensemble 

and was immediately followed an unrestrained 300 ns NVT canonical ensemble 

production simulation.  

An integrator timestep of 2 was used (2 fs per timestep), and rigid hydrogen 

bonds were applied to the entire system, including solvent TIP3P water molecules. This 

was necessary as rigid bonds are required by the integrator when using larger timesteps. 

The cutoff for non-bonded interactions was 12 angstroms for all simulations. The Particle 

Mesh Ewald method was used in order to retain full-system periodic electrostatics and 

recover long-range interactions between the periodic images. The grid spacing for the 

PME summation was set to 1 Å as it is the default for this method. The theoretical 

Langevin piston was set to have a pressure of 1 atm (1.01325 bar) for the equilibration 

run with a default dampening coefficient set to the same temperature of 310 K. The 

trajectory of every particle was saved every 2 picoseconds and all velocities for the 

simulation were generated with pseudo-random seeds. 



88 

 

 

Results and Discussion 

 

Template Selection of Cyp4f13 Homology Model  

The sequence alignment of the I-helix of cytochrome P450 4F subfamily 

members was performed to verify which of the CYP4 proteins contained a covalently 

bound heme. This portion of the I-helix, as seen in Figure 12, corresponds to the location 

of a conserved glutamic acid residue in CYP4 enzymes, the residue that forms the ester 

linkage, indicated by the abbreviation of E in the alignment. 

 

Figure 12. Sequence alignment of the I-helical region between cytochrome P450 4F 

enzymes. Enzymes from human and murine origins are included, along with a simple 

consensus of the sequence above the alignment. The case of the consensus indicates the 

level of conservation for a residue. 

 

Important to note is that several mouse isoforms have a glycine residue, indicated 

as a G, with the notable example being murine Cyp4f13. This is important as CYP4 
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enzymes are generally considered ω-hydroxylases in function, and its catalytic ability to 

do so is dependent on the presence or lack thereof the crosslinked heme. 

Drug metabolizing and bacterial P450s are the majority of P450 structures 

available within the Protein Databank due to their use in drug discovery and biomolecular 

sciences. A portion of the alignment of these structures with murine Cyp4f13 is shown in 

Figure 13. While a large variety were selected, some individual isoforms, such as rabbit 

CYP4B1, were selected due to the property of maintaining a high amount of structural 

similarity (>40%) owing to belonging to the same family. 

 

Figure 13. Sequence alignment of murine Cyp4f13 and several P450s with crystal 

structures available. The “+” consensus indicates that there are multiple residues with 

high levels of frequency in the alignment. 

 

 

Table 3 

The Similarity Percentages of P450s with crystallographic data and murine Cyp4f13 
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P450 enzyme Sequence Similarity Percentage 

Bacterial CYP102A1BM-3 20% 

Human CYP1A1 19% 

Human CYP1A2 18% 

Human CYP2A6 16% 

Human CYP2B6 17% 

Human CYP2D6 18% 

Human CYP2E1 18% 

Human CYP3A4 22% 

Human CYP3A5 22% 

Rabbit CYP4B1 42% 

Human CYP17A1 16% 

Human CYP19A1 17% 

Note. The entire sequence of P450BM-3 was used in the MUSCLE sequence alignment. 

Sequence Similarity Percentage was calculated using the KAlign sequence matching 

algorithm. 

  

Table 3 displays a surprising amount of similarity for the bacterial CYP102A1 

(P450BM-3) as the fused protein contains a much larger sequence with its redox active 

domains a part of its residue chain. The heme domain of P450BM-3 shows a relatively high 

amount of sequence similarity (>20%) between itself and the murine P450 4f13 isoform, 

though this is reasonable as P450BM-3 has been shown to be an active participant of fatty 

acid hydroxylation similar to the CYP4 family. This observation is important as the 

soluble bacterial protein structure has more in common with the murine cytochrome P450 

4f13 than many of the membrane-localized eukaryotic P450s, making it an important 

metric in order to investigate individual residue roles in catalysis as mutant BM-3s have 

been extensively studied. 
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Threading of the Murine Cyp4f13 Protein Sequence  

The top three identified analogs were the mammalian rabbit CYP4B1218, human 

microsomal CYP3A4219, and the heme domain of bacterial cytochrome P450BM-3
21.These 

were used to generate several possible models with varying levels of viability. Their 

scoring, according to the TM-align algorithm for sequence independent structure 

comparisons where 1 is a perfect fit, were 0.898, 0.791, and 0.790 respectively.  

The model with both the highest amount of statistical probability and optimal 

transmembrane anchor position was chosen; this model (Model1) was used for the 

molecular dynamic simulation runs in the experiment. 

Figure 14. Structural overlay of the template P450, CYP4B1 and Model1 threaded by the 

I-TASSER service. The template structure and homology model are represented in green

and pink ribbon, respectively. The RMSD difference between the N-terminal

transmembrane anchor positioning between the two is relatively small with optimal

positioning.
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Figure 15. Structural overlay of the template P450, CYP4B1 and Model2 threaded by the 

I-TASSER service. The template structure and homology model are represented in green

and pink ribbon, respectively. A tucked-in N-terminal transmembrane anchor is observed,

indicating it as a poor choice for the homology model.

Figure 16. Structural overlay of the template P450, CYP4B1 and Model3 threaded by the 

I-TASSER service. Poor fitting is displayed along some of the secondary structure with

an outwardly extended N-terminal transmembrane anchor.
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The C-score for Model1, shown in Figure 14, is 0.05 with a range of -5 to 2 and 

the best threading method indicated by Z-scoring through LOMETS was the MUSTER 

method.220 The RMSD of Model1 superimposed to the 3D structure of the rabbit 

CYP4B1 is 0.43 Å; this indicates a good fit of the backbone to the template and ready for 

heme-thiolate patching and bilayer anchoring. 

Several ligand binding locations were identified for the model, predicted by the 

TM-Align algorithm of the I-TASSER service. Notable examples were that of a heme 

binding domain, to little surprise, and that of a few small molecule binding predictions. 

Figure 17. Cluster of the predicted heme binding sites on Model1 I-TASSER generated 

Cyp4f13 homology model.  
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While providing as an excellent template for homology modeling, the crystal 

structure used in the threading process was based on the rabbit cytochrome P450 4B1, 

which contains the covalent heme linkage indicated as being important in substrate 

binding. While serving as the best choice, the presence of that linkage should be 

considered as it might impact the threading results produced.  

Initial template selection was performed before a 2018 study resulted in 

marginally better crystallographic data of a mutant CYP4B1 enzyme without the covalent 

heme linkage, which could have provided as a better initial structure for the native 

Cyp4f13 isoform.221 Later Cyp4f13 homology models produced in this study would 

utilize this newer model as a template and the differences observed appear to not be 

significant or are resolved by the simulation process. 

 

Model Refinement: Protonation States and Heme-thiolate Prosthetic Group 

As determined by the PROPKA service, several histidine residues were predicted 

to have differing protonation states (HSD, HSE, or HSP) than the default (HIS) residues 

that the homology model process generated. A listing of these predicted protonation state 

changes are in Table 4. 

Table 4 

Listing of Histidine Residues within Cyp4f13 and their Protonation State Changes 

Residue Index in P450 Cyp4f13 Protonation State 

20 HSD 

63 HSE 

79 HSP 

(continued) 
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Residue Index in P450 Cyp4f13 Protonation State 

82 HSP 

85 HSD 

88 HSE 

103 HSE 

146 HSE 

147 HSD 

156 HSE 

175 HSD 

194 HSE 

236 HSE 

264 HSE 

308 HSD 

329 HSD 

346 HSD 

391 HSE 

427 HSD 

428 HSD 

Note. HSD refers to the protonation of the delta nitrogen, HSE refers to the 

protonation of the epsilon nitrogen, HSP refers to the bi-protonation of a histidine 

residue. 

With the homology model of the holoenzyme produced, the heme cofactor would 

need atomic coordinates in appropriate positions within the heme-binding catalytic 

domain of the P450. The conserved heme-thiolate bond found in all P450s would have 

crystallographic data within wild-type protein structures and its spatial coordinates should 

vary amongst them due to different catalytic states being captured by the crystallization 

process. These variations, while important, are not too large in magnitude and can be 

resolved with subsequent MD simulation in order to refine their positions. The heme-

domain of cytochrome P450BM-3 was used with STAMP structural alignment capability 
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of the Multi-seq plugin that is commonly used to compare protein structure in the VMD 

program suite.  

In the covalent attachment of the characteristic heme-thiolate prosthetic group, 

‘patching’ was performed to create an appropriate protein structure file. Patching is a 

process built into model generation where residues can be fused or otherwise altered. The 

patching was done through three distinct steps: the removal and reassignment of charge 

of the conserved cysteine residue (Cys467) in the murine Cyp4f13 enzyme, the 

reassignment of charges for the entire heme-thiolate cofactor, and then the addition of a 

new Fe-S covalent bond formation between the biomolecule and the cofactor with a final 

charge reassignment. This was done using a script in the Tk console of the VMD program 

suite and the successful heme-thiolate cofactor is shown in Figure 18. 

 

Figure 18. Structural view of the murine Cyp4f13 apoprotein with the heme-thiolate 

prosthetic group represented in a licorice cartoon to show distinction. The bond between 

the heme-iron and the Cys467 is observed, indicating proper patching of the cofactor. 

 

Positioning of Transmembrane Anchor into Membrane Bilayer 

Using STAMP structural alignment, Model1 was aligned to the position of the 

CYP3A4 embedded in the DOPC membrane that was received from P450 researchers, 

pictured in Figure 19. While this contribution was significant in helping the progression 

of the ensemble creation process, it came with a few difficulties. The membrane bilayer 
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had truncation at the ends of the lipid region and contained missing segments and 

indexes. These would need to be removed or modified as their presence would result in a 

failure in the creation of the protein structure file. This problem was overcome by using 

atomselect tcl commands and removal of offending lipid units. 

 

Figure 19. Structural view of the CYP3A4 catalytic heme domain model embedded in 

DOPC bilayer. The coordinates of the CYP3A4 enzyme and bilayer were received 

through personal communication with the authors from the 2018 paper on interactions 

between CYP3A4 and the lipid bilayer.47 Protein structure shown in pink ribbon, and 

lipid in modified ice blue licorice models. Phosphate and ammonium groups are 

represented by yellow and blue van der Waals sphere respectively. 

 

Another problem was that the large size of the lipid bilayer coordinate file did not 

allow for the re-indexing by Automatic PSF Builder to perform correctly and resulted in a 

fatal error in the construction process. To overcome this obstacle, a script was run that 

segmented the file into chunks of 8-10 DOPC lipids and then afterwards output their 
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coordinates through use of the atomselect and writepdb functions in the Tk console of 

VMD.  

 

Figure 20. Structural view of a single DOPC lipid segment (PC10) containing 10 di-

oleoyl phosphatidylcholine lipids.  

 

Each of these segments, an example of which demonstrated in Figure 20, were 

localized to the working directory of the constructed model and would be used by 

Automatic PSF Builder to generate the membrane embedded murine P450 model. 

 

Figure 21. Structural view of the membrane embedded murine Cyp4f13 homology 

model. vdW radii were added to distinguish phosphates (yellow) and ammonium (blue) 

groups. 
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The next step was to remove lipids that overlapped with the embedded protein, 

occupying the same space. The transmembrane anchor of the murine P450 packed into 

the same region as the human CYP3A4 did, and thus resulted in a low amount of the 

membrane lipids needing to be removed. Removal of entire lipid molecules was 

performed, as opposed to individual atoms, as the later would have resulted in errors in 

the indexing of the files and missing parameters.  

Figure 22. View of the excision region surrounding the truncated transmembrane anchor 

of the murine Cyp4f13 homology model before solvation and ionization procedures were 

applied. The protein ribbon is colored in magenta, with DOPC lipids displayed as 

quicksurf models in an ice blue coloring and represent the calculated electronic 

isosurface.  

As shown in Figure 22, large portion was carved and removed from the atomic 

coordinates. This cylindric region, shown in Figure 22 and measuring roughly 10 

angstroms in diameter, would need to be taken into account as the solvation protocol 

would result in solvent being placed in the absence of the removed DOPC lipids. 
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Solvation and Ionization of Cyp4f13 Embedded in DOPC Membrane  

The solvent plugin for VMD was applied and successfully added 27 additional 

segments of water molecules, each containing several molecules of TIP3P water models. 

The pre-equilibration structure file is shown in Figure 23. The solvent box was set 

slightly larger than the dimensions of the lipid bilayer, resulting in extraneous water 

being added to nonpolar regions, which would need to be allowed to vacate during the 

equilibration run. 

Figure 23. Side view of Cyp4f13 homology model after TIP3P solvent box was added. A 

surface was added with light blue coloring to all water molecules with transparency. Van 

der Waals radii were added to phosphate and ammonium groups of the DOPC lipids. 

Licorice representations were used on the di-oleoyl acyl groups. 
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The autoionize plugin of the VMD software was used to add counter ions to the 

system. The plugin was set to add potassium and chloride ions to balance charges to a 

total of 0 net charge for the system and to result in a concentration of 100 mM to 

approximate physiological conditions. This resulted in a non-integer total net charge but 

was approximately 0 with 108 K+ and 108 Cl- ions being added, pictured in Figure 24. 

 

Figure 24. The locations of counter ions in the Cyp4f13 system with van der Waals radii 

representations for individual potassium and chloride ions.  

 

 

Molecular Dynamics Simulations on Substrate-free Cyp4f13 Structural 

Ensemble   

To gain computational insight into ω-hydroxylation of arachidonic acid by murine 

cytochrome P450 4f13, a representative snapshot with the ligand-free Cyp4f13 needed to 
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be created from the homology model structure. The final coordinates of the production 

simulation on the murine Cyp4f13 homology model were to be used as this snapshot, 

provided that adequate equilibration and active site solvation was achieved. The entire 

simulation procedure consisted of the structural ensemble, which contained explicit 

solvent, membrane bilayer, P450, and ions being subjected to an initial minimization, 

heating, equilibration and long timeframe production simulation.  

The minimization simulation was observed to be a success as relative total energy 

plateaued to convergence within several hundred 2 fs timesteps of the calculation. The 

entire process lasts for 20 picoseconds of simulation time, with the first 100 

femtoseconds shown in Figure 25. 

Figure 25. NAMD Plot of the calculated total energy for the system during the 

minimization stage. Total energy consists of each of the bonded and non-bonded 

energetic components summated for their contributions. 
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To enhance the mimicry of the natural physiological environment of the murine 

protein, heating of the system was performed to ensure that the appropriate biological 

temperature (310 K) was reached. Average temperature varied but remained consistent as 

the system reached body temperature, as is observed in Figure 26. 

Figure 26. NAMD Plot of the theoretical temperature of the system during the heating 

stage.  This simulation was performed in an NVE thermodynamic ensemble with volume 

as the constant variable. A constant rise to 310 K is observed with reasonable fluctuations 

after the initial climbing procedure. 

To achieve best results in the molecular docking portion of the experiment, a 

well-equilibrated model should be used as a best first approximation to use as input for 

the docking procedure. Another consideration is the presence of a vacuum generated by 

the membrane positioning from the ensemble creation process. This sort of event is not 

commonly something that occurs in a cellular membrane as it would be expose an 
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organelle to a change in pressure or environment and needed to be worked out in the NPT 

equilibration step of the simulation.  

 

Figure 27. Top view of the membrane bilayer before (A) and following (B) the NPT 

equilibration simulation run on the Cyp4f13 homology model. The excision vacuum 

produced by removal of the conflicting DOPC lipids has closed around the protein 

structure, represented by the truncated Cyp4f13 transmembrane anchor in a ribbon 

representation. 

 

The equilibration shown in Figure 27, appeared successful as the lipid membrane 

exuded the water molecules from around the transmembrane anchor of the Cyp4f13 

homology model. This meant that the system now adhered to proper requirements 

necessary for the periodic boundary conditions. 
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Figure 28. View of the murine Cyp4f13 structural ensemble images after equilibration 

simulation. Note that water has completely vacated the nonpolar region, as periodic 

boundary conditions have led to the complete formation of a lipid bilayer 

After some optimization of cell boundaries, periodic boundary conditions were 

successfully achieved and no breaches in the membrane layer were observed after 

equilibration run. Important to note that water has completely vacated the nonpolar 

region, as is observed in Figure 28, as periodic boundary conditions have led to the 

complete formation of a lipid bilayer. 

In a previous run, some periodic cell boundary distances resulted in the formation 

of lipid nanodiscs and are available as supplementary material. While amusing, these 

P450 nanodisc ensembles do not make for a good representation of their physiological 

environment in the endoplasmic reticulum. An error made in creating the periodic cell 

boundaries appeared to be the causing factor, as a solvent box much larger than the 

membrane patch resulted in hydrophobic forces to dominate the interactions. The 

interactions of the water with the polar headgroups of the lipids caused the charged 
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phosphate and ammonium groups to face the bulk water while pressuring the nonpolar 

oleoyl substituents towards the center, resulting in the formation of a nanodisc-like lipid 

capsule. Reassuringly, these geometries are what one would expect in the case of 

phospholipid confined to a small space without enough lipid to form a full lipid bilayer, 

providing some validation of the lipid dynamics in the system. A script was run to 

generate more refined descriptions for cell origin and periodic boundary dimensions 

based on the solvent water box and not the lipid bilayer and these optimized boundaries 

were used for all subsequent simulations. 

Figure 29. Structural view of the properly produced periodic images of the murine 

cytochrome P450 4f13 heme domain embedded into the DOPC bilayer. Periodic images 

in the Z dimension, additional repeating units in the X and Y dimensions, counter ions, 

and water not shown. The periodic cell repeats infinitely in the X, Y, and Z dimensions in 

the full calculation model. 

Arrival at the Resting State of the P450 Catalytic Cycle  

The next goal was to use the production run of the simulation to solvate the active 

site of the Cyp4f13 homology model, to produce the resting state of the P450 catalytic 



107 

cycle. In this state, a solvent water molecule has been found to occupy the open 

coordination site of the heme-thiolate metal center.21 What would also need to be 

performed is solvation of the protein’s natural internal access and egress channels. This 

was be achieved by allowing the simulated solvent water molecules to map and cave the 

protein’s native channels. To visually inspect this, the trajectories of every TIP3P water 

molecule in a region around the heme cofactor segment was represented as van der Waal 

spheres and tracked over the 300 ns timeframe of the production simulation, as seen in 

Figure 30.  

Figure 30. Pocket produced by simulation of water molecules within the Cyp4f13 active 

site of the homology model. The trajectories of all water molecules within a distance of 3, 

5, and 7 angstroms from the heme cofactor were mapped in strides of 50 frame intervals 

for the entire 300-ns simulation and are indicated in red (A), green (B) and blue (C) 

respectively. 

Solvent accessibility is a commonly used metric to study the characteristics of 

protein active sites. With many P450s having integral function dependent on the vicinity 

of nearby water molecules next to the substrate, proper channel evaluation would need to 
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be assessed. Visually inspecting water trajectory is a common method used in theory; 

however, prediction services are also used by researchers in addition to expedite the 

process.  

Several channels of the Cyp4f13 homology model were found utilizing both 

methods of visual inspection and through software by inputting the final coordinates of 

the Cyp4f13 homology model into the CASTp 3.0 web-service. Figure 31 shows the 

amino acid residues lining the assigned access channel (A) and the solvent egress channel 

(B). 

Table 5 

Channel assignment and residue makeup of the Cyp4f13 homology model made by visual 

inspection 

Channel 

Assignment 

and Opening 

Residue Name and Index 

Access 

Channel (Into 

lipid bilayer) 

Trp37, Asn44, Pro55, Trp59, Phe60, Trp61, Gly62, Leu64, Leu66, 

Met67, Lys68, Ile77, Leu80, Ser90, Trp91, Val92, Gly93, Pro94, 

Tyr96, Pro97, Ile98, Arg100, Lys120, Glu121, Thr123, Leu124, 

Tyr125, Phe127, Leu128, Leu137, Val232, Val233, Arg235, Arg237, 

Gln238, Pro239, Tyr242, Phe326, Gly327, Thr331, Val394, Leu396, 

Ile397, Ser398, Arg399, Cys400, Gly416, Asn417, Ile418, Val420, 

Pro501, Glu502, Leu503, and Ile504. 

Solvent Egress 

Channel (Out 

to cytosol) 

Leu128, Trp131, Leu132, Leu136, Leu137, Leu151, Phe155, Leu160, 

Tyr163, Val164, Phe167, Met191, Phe192, Ile195, Ser196, Met198, Thr199, 

Leu200, Leu203, Ile207, Phe208, Tyr221, Ile222, Ile225, Leu226, Ser229, 

Val263, Thr267, Ile271, Phe297, Ile298, Leu301, Ile317, Arg318, Glu320, 

Ala321, Asp322, Thr323, Phe324, Met325, Phe326, Gly328, Asp330, 

Thr332, Thr333, Ser334, Leu336, Ser337, Ile468, Phe472, Ala473, Ser475, 

Glu476, Ile477, Val479, Ala480, Arg506, Ala507, Gly510, and Leu511. 

Note. Residue identification was performed by using solvent accessibility of residues 

within the active cavity and network of accessible channels out of the protein structure 
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Figure 31. Distribution of amino acid residues selected by visual inspection as channel 

residues. Residues for the substrate access and solvent channels are placed along the 

ribbon protein structure and are represented as orange and red licorice models 

respectively. 

Several residues were indicated by the CASTp service as predicted to have an 

important role in substrate binding, however further study would be done to investigate 

their potentials, as the docking with substrate would be more indicative than the solvated 

substrate-free active site. 

Table 6 

Predicted residue makeup of the Cyp4f13 active pocket by the CASTp 3.0 analyst service 

Binding Site 
Residue Name and Index 

Predicted 

Active Site 

Cavity 

Trp37, Asn44, Phe60, Trp61, Gly62, Leu64, Leu66, Met67, Lys68, Phe76, 

Ile77, Leu80, Ser90, Trp91, Val92, Gly93, Pro94, Tyr96, Pro97, Ile98, 

Arg100, Val102, Lys120, Glu121, Thr123, Leu124, Tyr125, Phe127, Leu128, 

Trp131, Leu132, Leu137, Phe192, Ser196, Thr199, Leu200, Leu203, Ile 222, 

Ile225, Leu226, Leu228, Ser229, Ser230, Val232, Val233, Lys234, Arg235, 

Arg237, Gln238, Pro239, Tyr242, Val263, Thr267, Asp322, Met325, Phe326, 

Gly327, Gly328, Asp330, Thr331, Thr333, Val394, Leu395, Leu396, Ile397, 

Gly416, Asn417, Ile418, Val420, Ser422, Lys500, Pro501, Glu502, Leu503, 

Ile504, and Arg506. 

Note. The CASTp service predicted a large number of mouth and pockets within the 

Cyp4f13 structure, only the highest volume pocket was chosen to be assessed. 
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Figure 32. Visual representation of the Cyp4f13 homology model active site pocket 

through the CASTp 3.0 analyst service interface. A pocket volume of about 2000 cubic 

angstroms is predicted by the analyst service. Residues predicted to be involved in 

formation of protein mouth or pocket structure are represented in purple licorice models. 

The last goal of this section of the experiment was to arrive at a model of the first 

step of the P450 catalytic cycle which is generally considered to include the ligation of a 

solvent water molecule to the open coordination site of the iron(III) species of the heme-

thiolate. 

Figure 33. Close-up view of the Cyp4f13 active site before the equilibration procedure. 

Licorice and van der Waals representations were used for the heme, heme-iron and water 
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molecules within 4 angstroms from the cofactor. A vacant coordination site on the heme 

cofactor is observed. 

 

As seen in Figure 33, before NPT simulation was performed the catalytic site of 

the heme cofactor displayed an empty coordination site at the axial position of its metal 

coordination sphere. Coordination of water molecule was observed quickly through the 

simulation process, resulting in the ligand association seen in Figure 34. 

 

Figure 34. Same close-up view after the equilibration procedure on the Cyp4f13 

homology model. The vacant site is now occupied by a ligand water molecule after the 

equilibration MD simulation. 

 

It is important to note that MD simulations, such as the ones performed in this 

study, do not take phenomena such as orbital interactions into consideration. The force 

field can replicate the formation of coordinate bonds through Lewis acid and base 

interactions based on only coulombic electrostatic interactions. The orientation of the 

TIP3P water molecule, while reassuring for the relevance of this model, produced by the 

simulation is due to nonbonded interactions between the iron(III) and the oxygen of the 

water, with no information available about orbital interactions between the two. 
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Figure 35. Structural representations of the heme cofactor and the interactions of its 

propionate groups with active site residues. Licorice representations for the nearby 

charged protein residue sidechains are colored by element. 

 

The interactions between the propionate groups of the heme-thiolate prosthetic 

group are known to be very important in the formation of channels for water to enter and 

access the catalytic site. These aqueducts are known to shift and change formation due to 

the arrival and binding of substrate and will be important to monitor as the simulations of 

the docked arachidonic acid are performed. Salt bridging interactions between the heme 

propionates, Arg399, Arg465, Lys120, and several water molecules are observed in the 

substrate-free state. 

With the first stage of the catalytic cycle modeled and channels and tunnels of the 

protein structure mapped and investigated, the substrate arachidonic acid could then be 

docked to the simulated murine Cyp4f13 homology model. 
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Summary 

In this chapter the constructed substrate-free murine cytochrome P450 4f13 

structural ensemble is discussed and studied in two components: the globular catalytic 

domain embedded into the pure-phospholipid bilayer composed of DOPC, and the active 

site.  

The simulations of the substrate-free cytochrome P450 4f13 system were 

performed to prepare the structure for molecular docking, and as a refinement technique 

for subsequent simulations. The substrate-free enzyme also acts as a control in order to 

compare the successive simulation results with to study the binding interactions, and 

potential tertiary structure effects of the substrate on its biomolecular target. Simulations 

of the binding interactions of the P450 system and its substrate can be produced and 

studied with model systems. Both experimental and computational studies of model 

cytochrome P450 systems have elucidated the nature of interactions that occur in real 

systems. The study of substrate interactions with P450s with Molecular Dynamics 

simulations has been the subject of much discussion in the literature.  

Arguments are made against using these methods to model protein systems that 

include concerns about the difficult to model nature of the complex native physiological 

environment. The work in this thesis hopes to address some of these considerations 

through the construction of this model and its validation by comparison to results 

predicted by chemical theory or by experimental findings available in the literature. The 

resultant findings for this new model have been discussed in this chapter, indicating 

success for the simulation as the water-coordinated, heme catalytic resting state was 

found to be prevalent within the allotted simulation and equilibration time. The protein 
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structure remained intact, did not destabilize, and the protein’s embedding in the 

membrane had the expected orientation and general geometry. However, the conclusions 

made on the production simulation require consideration of the nuances in using this 

computational method. The simulations are only a thermodynamic sampling of the 

possible solvated states of the Cyp4f13 active site. Longer timeframe simulations, in the 

microsecond range or longer, would be necessary to reduce the impact of the potential 

differences in protein structure and conformation of sampled states. 



115 

CHAPTER IV 

Molecular Dynamics Simulations of Substrate-bound Cyp4f13 in DOPC bilayer 

Introduction 

This chapter presents the process, results, and findings in the simulation of the 

substrate-bound murine Cyp4f13 structural ensemble. This work was necessary as the 

probing of the active site relies on a deep level of understanding of the molecular 

interactions behind substrate binding on an atomistic scale. The substrate-free state of the 

murine P450 catalytic cycle was to be modelled appropriately and docked with several 

conformations of the substrate of interest, arachidonic acid. Additionally, the oxidized 

eicosanoid metabolite, 20-hydroxyeicosatetraenoic acid (20-HETE), was used to 

investigate predicted product interactions with both active site residues and solvent.  

With substrates docked, several hundred nanoseconds of simulations were 

performed on two physiologically relevant conformations of the arachidonate substrate, 

with one performed on the oxidized product. The focus of this work was to investigate 

residue interactions of importance within the active pocket, in addition to exploring the 

structural characteristics of the murine Cyp4f enzyme. The intention is to develop 

insights that will allow for well-informed decisions to be made on mutations that might 

alter catalysis and binding activity. This is done to further the understanding of the 

binding interactions between the murine Cyp4f13 catalytic domain, its fatty acid 

substrate, and its products. 
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Computational Method and Details 

 

Substrate Docking of the Cyp4f13 Homology Model   

The representative structural ensemble from the first production run was selected 

for analysis and subsequent molecular docking. The final coordinates of the 300-ns 

production simulation on the substrate-free P450 system (filename: Cyp4f13-memb-solv-

ion) were stored in order to be used as the rigid macromolecule to be used in the docking 

procedure employed by the AutoDockTools (ADT) software.  

The target ligand for molecular docking would be that of the polyunsaturated fatty 

acid substrate of interest, arachidonic acid. The molecule was constructed in Gaussian 

09w using the GaussView 05 graphical user interface. Initial geometry optimizations 

were carried out at the Density Function Theory (DFT) level, using the B3LYP functional 

with the 6-31G(d) basis set. 222  

Preparation of the rigid Cyp4f13 receptor for docking consisted of several steps to 

generate and calculate the grid maps for the protein-ligand interactions. Foremost, the 

water, lipid bilayer segments, and counter ions were removed to ensure proper ligand 

binding interaction energy calculation. Second, all nonpolar hydrogen atoms were 

merged or removed, and polar hydrogen atoms were added or remain unchanged for 

every residue in the structure, as the failure to do this results in a mismatch of atom types 

and will result in a crash. Next, charges are calculated and added through the Gasteiger 

method which is based on electronegativity equilibration rather than distinct template 

values used by other methods. These charges and coordinates are saved into a new 

filetype (PDBQT) which is the input AutoDock uses for the molecular docking process. 
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Finally, a similar formatting method is applied to the target ligand, with the 

addition of rotatable bond designations on the ligand to be docked. For arachidonic acid, 

14 rotatable bonds were found. A root is identified by AutoDockTools as the ‘central’ 

atom that the rest of the molecule is built from. This has more of an application on larger 

or rigid-body aromatic ligands but was still necessary to be performed in order to 

generate an acceptable PDBQT file. 

With the rigid receptor PDBQT file of the Cyp4f13 catalytic domain selected, the 

location and extent of the search space could be designated. A 3000 Å3 region was 

determined based on the CASTp predicted active site volume. The atom types of the 

ligand were identified, and the grid map creation process was performed by the AutoGrid 

component of ADT. The resultant set of grid maps for the rigid receptor was obtained and 

saved as a Grid Parameter File (GPF) for use in the searching step. The search algorithm 

used was the Lamarckian Genetic Algorithm (LGA) to generate the top 10 conformations 

with a population size of 150 solutions. Between each generation of conformations 

evaluated, only one conformation was set to automatically survive as the best individual.  

Several conformations were predicted for the binding of arachidonate to the 

cytochrome P450 holoenzyme coordinates. These conformations were organized in order 

of their calculated binding energies by the ADT software. Of the 10 conformations 

produced by the searching algorithm, several conformations were rejected due to illogical 

conformations of the arachidonate substrate for oxidation by the heme cofactor. The top 

two conformations of physiological relevance were selected, and their coordinates were 
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used for MD simulations on the Cyp4f13-AA complex (referred to as D1 and D2-

Cyp4f13-AA).  

Product Docking to Cyp4f13 Homology Model  

The oxidized product, 20-hydroxyeicosatetraenoate, was also targeted for docking 

and subsequent simulation. The final coordinates of best conformation of arachidonic 

acid were used as input into Gaussian 09w program suite and hand-modified to add a 

hydroxyl group to the terminal carbon position. As with the substrate, initial geometry 

optimizations were carried out at the DFT level, using the B3LYP functional with the 6-

31G(d) basis set. 

These set of coordinates were once again sent through a docking process using the 

ADT software package and through the same specifications as the arachidonate ligand. 

Of the conformations predicted, only the top individual chosen to be relevant for study 

was selected. The criterion used was that the hydroxylated product would be required to 

have similar carboxylate interactions with the same residues present in the binding of 

arachidonate, as this would allow for comparison between the docked homology models. 

This resulted in a single reasonable docking conformation of the 20-HETE ligand to be 

chosen for simulation (D3-Cyp4f13-20-HETE). 

Molecular Dynamic Simulations of Substrate-bound Enzyme System  

After the initial refinement simulations were performed, the 100-ns MD 

simulations were conducted for the first docked Cyp4f13-AA complex. All refinement 

and longer timeframe production simulations was performed using the same 



119 

 

specifications as the substrate-free simulations. A total of 200-ns of production 

simulation time was carried out for the D1-Cyp4f13 model. Three consecutive 100-ns 

simulations were performed on both the D2-Cyp4f13-AA and D3-Cyp4f13-20-HETE 

models. The simulation on the last two substrate-bound Cyp4f13 complexes were 

performed for identical lengths of time to make comparison easier. The reasoning, results 

and findings will be discussed in the appropriate sections. 

The CHARMM36 lipid/detergent topology and parameter file contained the 

arachidonate compound (ARAN), which was fortunate, as this meant that it was not 

necessary to create topology or parameters for this residue from scratch. The simulation 

of the D3-Cyp4f13-20-HETE differed slightly and required more work to set up. The 

difference was the usage of additionally modified lipid parameter files as the 

hydroxylated product, 20-HETE, contained a unique topology that the CHARMM36 

package did not contain. The creation of a HETE residue in the parameter file was added 

through direct addition by chemical analogy. Ethanol was the analogous compound used 

in the instance of a hydroxylated primary carbon belonging to an aliphatic chain, as is 

present in 20-HETE. The modified parameter file was only used for the simulation of the 

Cyp4f13-20-HETE complex. 

 

Results and Discussion  

 

Molecular Docking of Target Substrates using AutoDockTools   

After the successful creation of the substrate-free resting state for the murine 

Cyp4f13 homology model, the coordinates were used as the rigid molecular target for 
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which to utilize molecular docking procedures upon. This was done to find relevant 

conformations of arachidonate within the active site in the interest of investigating ω-

hydroxylation catalysis by Cyp4f13. 

 

Figure 36. Ball-and-stick model view of the final coordinates of the substrate-free 

Cyp4f13 homology model used in the docking before charges were added and rigging 

was performed. Lipid bilayer, ions, solvent water, and heme cofactor were removed in 

this process. 

 

 

Figure 37. A ball-and-stick representation of the manually constructed arachidonate 

ligand. GaussView 5.0 was used to create the nuclear coordinates along with Gaussian 

09w for initial geometry optimizations. 
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Shown in Figure 37, the geometry optimized structure of arachidonate resulted in 

a non-hairpin conformation with appropriate number of explicit hydrogens by the 

computational method used to generate it. 14 torsional degrees of freedom were detected, 

Gasteiger charges were added, and the C10 carbon was selected as the root by 

AutoDockTools.  

The ten results of the docking procedure ranged in values of -3.7 to -2.0 kcal per 

mole in binding free energy, however many of them were considered not physiologically 

important. Some carboxylate head groups of the arachidonic acid coordinated to the heme 

center. This was an interesting observation, however, did not provide useful for 

investigating the potential role of Cyp4f13 as an ω-hydroxylase of arachidonic acid. 

 

Figure 38. Clustering of the rejected conformational results from the ADT docking 

procedure. VMD was used to visualize and each licorice representation is presented in 

different color codes. 

 

The two best conformations were chosen based on their orientation and 

interactions within the Cyp4f13 homology model active pocket. The best conformation, 
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shown in Figure 39, shows carboxylate binding interactions with only Arg237 and a near 

proximity of the terminal carbon unit of the substrate to the heme-thiolate cofactor. 

 

Figure 39. Structural view of the best conformation (D1-Cyp4f13-AA). Interactions 

between arachidonate carboxylate headgroup and Arg237 are shown in licorice graphical 

representations. 

 

The second-best conformation resulted in an interesting interaction between the ε-

proton on the His236 residue and the carboxylate headgroup of the arachidonic acid. This 

residue was modified by the PROPKA protonation prediction service, and its true 

protonation state remains unknown; not able to be resolved by even crystallographic 

means. What was decided was that in order to investigate whether the protonation state of 

the His-236 residue was important in the binding of arachidonate, the histidine was 

changed to be protonated on both sides of the imidazole sidechain (residue type HSE to 

HSP), resulting in a net positive charge for the residue. This protonation, picture in 

Figure 40, was performed to investigate the substrate-histidine 236 interactions present in 

the second-best conformational model that were absent from the first conformation.  
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Figure 40. Structural view of the second-best conformation (D2-Cyp4f13-AA) with the 

modified histidine 236 (HSP) residue. Interactions between arachidonate carboxylate 

headgroup with Arg-237 and the protonated His-236 are represented with licorice 

models. 

  

 To clarify, this protonation was modified after the molecular docking procedure 

and was not present in the rigid protein file used to dock the arachidonate ligand. This 

was done with the intention that after simulations were performed, convergence of 

binding interactions would be able to discern whether this modification to protonation 

state had an impact on carboxylate binding. 

The docking of 20-HETE to the Cyp4f13 homology model resulted in several 

conformations, like what was observed with arachidonate. The best conformation was 

selected by the metric of having the greatest binding free energy and having similar 

binding mode to arachidonic acid, pictured in Figure 41. 
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Figure 41. Structural view of the top resultant conformation of docked 20-

hydroxyeicosatetraenoate (20-HETE) to the Cyp4f13 homology model. The 20-HETE 

hydroxyl group is pointed away from the heme in the initial docking structure as the 

heme was not present during the docking process. 

 

 

MD Simulations on D1-Cyp4f13-AA complex   

In order to interpret the frames of the dynamic simulations of the D1-Cyp4f13-

AA complex, an analogous criterion was used as described in the paper by Li et al. on a 

similar system (CYP4F2) in 2018.223  

All 100,000 frames of the simulation were collected and analyzed for their 

significance in the indication of ω-hydroxylation of arachidonic acid by the murine 

Cyp4f13 homology model. The atomic distances and angles between: the heme iron, a 

theoretical oxo ligand as is present in the ultimate oxidant state of the P450 catalytic 

cycle, and a hydrogen atom belonging to the terminal carbon unit of the arachidonate 

substrate were used as the metrics for the criteria. The P450 oxyferryl species has a bond 

length of about 1.64 angstroms, slightly shorter than other ferryl species due to its 

electronic environment.223 With the furthest theoretical distance of oxidation by the 

oxidant P450 species being less than 2.8 angstroms, the obtuse triangle formed by the 
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three atoms (Fe-O-H) should have a maximum distance of 4-4.3 angstroms between the 

heme iron and hydrogen atom of the ω-carbon, with a smaller distance improving the 

chances of ω-hydroxylation. This obtuse triangle is demonstrated in Figure 42.  

Figure 42. A schematic illustration of the bonding and angles assessed in the criterion for 

ω-hydroxylation of arachidonic acid by Cyp4f13.  

The trapezoidal shape formed by the iron, oxo-ligand, and C-H bond would have 

a theoretical limit to distance for its larger base of about 4.5-4.8 angstroms apart. The 

tight (4.5 Å) and loose (4.8 Å) criteria would be used to analyze the large number of 

simulation frames to assess the likelihood of each site containing appropriate distance and 

orientation for oxidation. This criterion was tightened based on the number of frames that 

succeeded to show acceptable distance of the heme iron to each of the oxidation sites 

belonging to the polyunsaturated fatty acid substrate. 

To also investigate the occurrence of sub-terminal or possibly olefin oxidation of 

the fatty acid substrate, distances between individual carbon units were collected as well. 

Some indication observed in the results implies the possible formation of an epoxide 
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metabolite, in addition to several sub-terminal hydroxylation products, as seen in Figure 

43 and Figure 44. 

 

Figure 43. Several orientations of arachidonic acid within the active site of the Cyp4f13 

homology model. Hydroxylation products and epoxide products are labeled and colored 

for distinction. 

 

 

Figure 44. Moving average distances between the Cyp4f13 heme-iron and different 

oxidation sites for a portion of the D1 production simulation. Trajectory frames are 

recorded every 1000 timesteps with the total timeframe of 200-ns in length 
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Figure 45. Predicted regiospecificity plot based on the frames that fit the criteria in both a 

tight (>4.5 A) and a loose definition (>4.8 A). The fraction of fit frames, their oxidation 

product formed, and the criterion used are shown. Colored dots are used for reference to 

Figure 43. 

 

The result of the criteria selection, shown in Figure 45, indicate that the ω-

position is the most favorable oxidation site exposed to the heme-iron. Most of the frames 

that satisfied the distance criteria belonged to the terminal carbon site, with substantially 

lower amounts of successful frames from the subterminal sites (ω-1, ω-2) and 14,15 

epoxide formation site. However, some chemical and thermodynamic aspects are not well 

represented by these results. While the steric accessibility remains to be the factor 

assessed in this study, the energetics are important to discuss. 

 Sub-terminal hydroxylation reactions on the aliphatic fatty acid tail would be 

more thermodynamically favored based on being secondary carbon units. The secondary 

C-H bond would have a lower relative bond strength than the primary C-H bonds in the 
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terminal unit, leading to a lower activation energy needed to abstract the hydrogen atom 

in the radical rebound mechanism of the P450-catalyzed oxidation.  

The P450-catalyzed olefin epoxidation is understood to occur readily for several 

P450 isoform substrates, as it undergoes a similar yet distinct process than the radical 

rebound process necessary for hydroxylation. The process generally relies on the same 

concept of attack by the electrophilic oxyferryl or hydroperoxo-iron species belonging to 

a P450. This reaction would not need to abide by the same distance restrictions, as the pi-

orbitals that would be involved in the reaction reach beyond the atomic nuclei by a 

considerable extent. The orbital interactions necessary for the reorganization would 

happen at a quicker rate than the hydrogen atom abstraction used in hydroxylation. 

The vinylic hydrogen positions on the substrate were not considered as targets for 

hydroxylation, as they have a much higher bond strength that that of aliphatic carbon 

units, and thusly, are outcompeted by epoxide production formation. 

 

MD Simulations on D2-Cyp4f13-AA complex  

The same criteria used in the previous section was used to gain insight in potential 

site of oxidation for the arachidonic acid with the noteworthy differences between 

docking 1 and docking 2 of arachidonate conformations was the protonation state of the 

binding residues interacting with the carboxylate head group of the substrate. Histidine 

236 of the murine Cyp4f13 homology model was protonated through a by-hand 

modification, with Automatic PSF builder used to generate atomic coordinates for the 

proton. Charges were reassigned in this step and resulted in a positively charged, 
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protonated histidine that is observed in forming interactions with the arachidonate in D2-

Cyp4f13-AA while not being observed in D1. 

 

Figure 46. Close-up view of the arachidonate residue interacting with the protonated His-

236 (HSP) of D2-Cyp4f13-AA model. The residue type of target histidine was changed 

from HSE to HSP in the structural files. 

 

The desired effect of the additional simulation series on the different 

conformational state of the substrate-bound Cyp4f13 homology model was to have the 

interactions in the binding site converge to a single set of interactions as opposed to the 

several orientations predicted. The successive MD simulations gave a very promising 

result as the interactions between the carboxylate of the arachidonate appeared to 

converge on hydrogen bonding with the Arg237 and Tyr96 residues, as was observed in 

the D1-Cyp4f13-AA runs. The addition of the protonated histidine residue did, however, 

appear to alter some of the binding activity for the arachidonate substrate, as the different 

binding site interactions introduced an observable effect on the active site.  
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Figure 47. Different angle of substrate binding interactions of D2-Cyp4f13-AA 

homology model partway through the production simulation. The complete displacement 

of the aliphatic tail region of the arachidonate, indicating the formation of mid-chain 

oxidation products. 

 

The simulation of D2-Cyp4f13-AA indicated a complete change in substrate 

conformation within the catalytic site. As seen in Figure 47, the aliphatic tail of the 

polyunsaturated substrate repositioned within the active cavity, exposing its internal 

unsaturation sites to the heme-iron, as opposed to terminal or sub-terminal sites as seen in 

the previous simulation. This unexpected conformational change resulted in different 

oxidation sites being presented to the heme-iron, possibly indicating the conversion of 

substrate to internally oxidized product.  
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Figure 48. Two additional oxidation sites along the arachidonic acid substrate in the 

simulation of the D2-Cyp4f13-AA system. The bisallylic carbon (C13) and the 

penultimate unsaturation (11, 12) site are labeled for their product formation. 

 

 

Figure 49. Line plot of the distances of the simulation trials of D2-Cyp4f13-AA heme 

iron and different carbon units. Each set of 100-ns trajectory frames are stacked and 

labeled with their implied metabolite formation. 
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Figure 50. Predicted regiospecificity plot of the simulation frames that met criteria for the 

D2-Cyp4f13-AA system. A collection of all previously mentioned possible oxidation 

sites are shown and colored accordingly. 

 

The high frequency of internal epoxy- or hydroxylation sites that met the same set 

of distance criterion as before indicating that there were several orientations of the 

substrate present and within appropriate distance for the respective oxidation reaction to 

occur. The increased frequency of frames for different oxidation sites that fulfilled the 

criteria suggests a fair amount of flexibility in the active site of the murine Cyp4f13 

system, as the open active site allows for a variety of conformational states for its 

substrate.  
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Figure 51. Comparison of the predicted regiospecificity of the protein-substrate 

simulations. The neutral His236 Cyp4f13 is represented by D1-Cyp4f13-AA, while the 

protonated His236 Cyp4f13 is represented by D2-Cyp4f13-AA. 

When comparing all the relative frequencies of the oxidation sites across the two 

simulation sets, as portrayed in Figure 51, it becomes apparent that the ω-hydroxylated 

site is not site-specific for the Cyp4f13 system. The curling of the arachidonate tail 

presented different sites for possible oxidation to the heme center. What is to be 

understood is that the metabolite profile reported for Cyp4f enzymes is highly selective 

but not specific. Meaning that it is mostly favored for the ω-hydroxylation but not 

entirely dominated by, as these simulations are in agreement with this fact.224 

One interesting observation was that of the frequency of the appropriate distance 

to carbon 13 of the arachidonate chain to the heme-iron. The position of this carbon, 

between two isolated unsaturation points within the polyunsaturated compound, exists as 

a special target for hydrogen abstraction, P450-catalyzed or not. After hydrogen 

abstraction, this position results in the formation of a 1,5-pentadienyl radical species that 
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can rearrange to several isomers that can readily react as sites of hydroxylation. The 

relative stability of this radical indicates that the formation of the species would make it 

very thermodynamically favorable for the enzyme system, as the hydrogen abstraction 

and radical rebound process is a notable feature of the P450 catalytic cycle. 

Role of Binding Site Residues and their Protonation States  

Observed in the first 100-ns trial for the D2-Cyp4f13-AA model, solvent water 

molecules maneuvered their way into the active-site pocket, coordinating to the heme 

center, displacing the fatty acid substrate enough to curl the tail towards a hydrophobic 

fold in the interior of the Cyp4f13 catalytic cavity.  

Figure 52. Structural view of the substrate-bound Cyp4f13 homology model with water 

taking the place on the empty coordination site for the heme-thiolate. Increased solvation 

around His236 is observed in the late stages of the simulation. 

One theory as to why solvent water interactions, viewed in Figure 52, overtook 

the hydrophobic interactions presented by the catalytic site was the introduction of the 

charged histidine residue within the binding site of the Cyp4f13 model. Several factors 

could originate from this inclusion and result in a different amount of solvation being 
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observed. With the positive charge producing a more polar environment, solvent water 

interactions could have entered the binding site, pictured in Figure 53, which would 

normally have had minor amounts of positively charged residues, possibly undermining 

the binding interactions between the protein and substrate.  

Figure 53. Bolus of water surrounding the transmembrane hinge near the protonated 

His236 of the D2-Cyp4f13 homology model. Arg-33 and the protonated His-236 are 

shown in green licorice representations, with yellow used on the arachidonic acid. 

However, this theory appears to have flawed logic as through investigating the 

same location in the previous simulation, D1-Cyp4f13-AA, showed a large amount of 

water activity in that very same vicinity. The similar amounts of protein solvation would 

not have produced the differing effect on the solvation of the substrate observed in the 

simulation. 

Another theory is that of unanticipated tertiary structural impacts. The presence of 

a positive residue in a normally neutral position might have a more impactful influence 

on the secondary structure of the neighboring protein composition than what was 

originally intended. The positive Arg33 of the transmembrane anchor sits in the middle of 

the N-terminal alpha helix and the globular heme domain. It appears to interact 
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repulsively with the protonated histidine, causing a disturbance in protein conformation 

around the hinge of the globular domain. The formation of a gap in the protein structure 

could explain for the increased solvation of the carboxylate binding site, leading to 

further disturbances for binding interactions between the protein and its substrate.  

Figure 54. Distance plot of the guanidinium group of Arg33 and the protonated His236 

over the 300-ns simulation timeframe. Shown are the distances between the α carbon and 

the sidechain of the residues in angstroms over simulation timesteps, with pre-

minimization, heating, and equilibration positions indicated by markers. 

This interesting artifact led to the possibility of a more pertinent role for the 

His236. This varying gap between the membrane anchor and His236 is right where the 

fatty acid substrate is expected to enter the substrate access channel to approach the heme 

iron. With the only actual difference between D1 and D2 homology models being the 

protonation state of His236, more pertinent were the differences observed in structural 

conformation for the two P450 complexes. A large amount of structural alteration was 

observed due to residue interactions between the protonated His236 and nearby charged 

residues. 
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Figure 55. Comparison of frames from the production simulation of D1-Cyp4f13 (A) and 

D2-Cyp4f13 (B). The transmembrane alpha helix and I-helix are represented as pink and 

ice blue cartoons respectively. The neutral histidine (HSE) of the unmodified Cyp4f13 is 

represented in lime and the protonated (HSP) histidine is colored in orange. All charged 

residues within 8 angstroms of His236 in both simulations are shown in licorice 

representations. 

 

As seen in Figure 55a, the Cyp4f13 with the neutral histidine remains largely 

inactive with the carboxylate binding of the fatty acid substrate. It remains turned towards 

solvent, occasionally rotating to influence the binding through purely steric interactions. 

The Arg33 of the transmembrane anchor appears to point towards the inner folds of the 

protein structure, interacting with residues and solvent in the D1-Cyp4f13 complex. For 

the D2 complex, some differences are immediately observed when comparing the 

positions of the same residue side chains. Protonated His236 now is shown interacting 

with the carboxylate headgroup of the substrate, which is to be expected by electrostatic 

considerations. The acidic residue nearby (Glu121) has changed position, possibly from 

the newfound presence of a positively charged amino acid in the vicinity. Arg33 has 

turned towards the lipid bilayer and could possibly have changed its orientation due to 

repulsive electrostatic interactions with the positively charged His236 residue as well. 
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What can be gained from these observations is the possible physiological 

significance they might imply. It is possible that the Cyp4f13 enzyme is utilizing pH-

mediated gating activity of the protein to aid or modify substrate binding. Under more 

acidic conditions, the protein may have had to evolve to allow or disallow substrate 

entering the active cavity through a gating mechanism. Such a finding might also indicate 

the presence of possible interaction changes with the lipid bilayer under different pH 

conditions as well. The charge difference near the lipid-submerged F-G loop of the 

protein might interact differently to changes in lipid composition. The di-oleoyl 

phosphatidylcholine bilayer used in this simulation is a net neutral lipid; perhaps with a 

different bilayer composition, a net-negative lipid such as phosphatidylglycerol, a 

different orientation for the membrane-embedded P450 would be observed. 

 

MD Simulations on D3-Cyp4f13-20-HETE complex   

Like with the D2-Cyp4f13-AA model, three successive 100-ns MD simulation 

runs were performed on the docked oxidized metabolite bound to the Cyp4f13 homology 

model (D3-Cyp4f13). The model indicated the formation of hydrogen bonding 

interactions between the carboxylate of the 20-HETE compound and the very same 

Arg100 and Arg237 residues as the other docking models displayed, pictured in Figure 

56.  



139 

 

 

Figure 56. Structural view of the D3-Cyp4f13-20-HETE model active site before the 

production simulation. Licorice representations for Arg100, Arg237, the heme cofactor, 

and the 20-HETE substrate. 

 

Since the ω-hydroxylated product was added for dynamic simulations, some of 

the expectations made about the simulations were that solvent water molecules would 

enter the active pocket, as they had done so in the previous substrate-bound simulations. 

The favorable water interactions with the hydroxyl group attached to the polyunsaturated 

fatty acid would result in a disruption and solvation of hydrophobic residues residing in 

the active pocket, such as Leu137. These disturbances would compound over the 

theoretical time steps and could possibly result in the movement of the oxidized product 

in a manner that would be indicative of eventual egression or exiting from the catalytic 

site. However, the computable timeframe necessary for this to be observed is expected to 

span fractions of milliseconds.  

What could be done to facilitate substrate egression would be through the use of 

Steered Molecular Dynamics (SMD) simulations. SMD or force probe simulations 

consist of calculations where outside forces or velocities are applied to molecules in a 

studied system in order to manipulate and observe changes in protein structure and 
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dynamics. By tugging on the substrate along a desirable vector, SMD could be used to 

simulate the mechanical egression event. 

Instead of measuring the relative distances between the heme-iron of the cofactor 

and carbon units, the distance between the hydroxyl group oxygen atom and the heme-

iron were used as a metric in order to observe product displacement. However, once 

again the simulations provided for another interesting result with its own fascinating 

share of considerations.  

 

Figure 57. Line plot of the distances of the first 100-ns of the simulation of D3-Cyp4f13-

20-HETE heme iron and the hydroxyl oxygen of the 20-HETE substrate. A ligand 

association event is observed at around one-third of the production simulation timeframe. 

 

Figure 57 shows a distinct drop in distance observed one-third of the way of the 

first 100-ns simulation run between the primary alcohol of the ω-hydroxylated product 

and the iron center. The open coordination site of the heme-iron underwent ligand 

association with the hydroxyl group of the 20-HETE metabolite. In an effort to increase 

the sample size with additional simulation time, the model was set to run for two more 
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additional 100-ns simulation with the intention to allow water to integrate more within 

the active pocket, possibly still achieving some form of displacement for the oxidized 

product. The ligand coordination between the heme-iron and the hydroxyl group was 

maintained throughout the remainder of the simulation. The ligand association of the 20-

hydroxyeicosatetraenoate will be thoroughly explored and discussed in the next section. 

Due to the polar hydroxyl group disrupting the hydrophobic forces that are 

usually necessary to facilitate P450-mediated metabolism of polyunsaturated fatty acids, 

it seems unlikely that the Cyp4f13 enzyme is responsible for the binding of these 

oxidized metabolites. Furthermore, the oxidized metabolites would need to dissociate 

from the protein in order to regenerate the resting state of the heme cofactor, as is 

observed in successful enzymatic turnover. 

However, these interesting observations from simulation should be explored 

experimentally, as many P450s catalyze the formation of dicarboxylic acid metabolites of 

fatty acids by sequential oxidation of fatty acids.225 An occurrence early in the simulation 

presented the substrate in an orientation that might result in the formation of dihydroxyl, 

hydroperoxyl, and even dicarboxylic acid metabolites. These further oxidized derivatives 

of arachidonic acid are amongst the eicosanoid metabolites of physiological and 

pharmacological interest; however, these results are weakly indicated by the Cyp4f13 

homology model simulation runs. 

 

Coordination of Hydroxyl Group to Heme-thiolate Metal Center   

The ligand association of a hydroxyl group over a solvent water molecule is an 

interesting observation. The factors that influence the association and dissociation of 
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ligands are complex and owe to the study of coordination chemistry, as everything from 

orbital overlap, neighboring ligand influence, steric limitations, and bonding angle can 

alter and drive the preference of a metal center for whether or not a ligand can coordinate. 

In the situation of the substrate-bound murine Cyp4f13 homology model, the only 

possibilities for coordination to the metal center would be that of a solvent water 

molecule and the alcohol group on its hydroxylated substrate, as seen in Figure 58. 

 

Figure 58. Structural view of the D3-Cyp4f13-20-HETE model active site displayed after 

300-ns of simulation. The coordination of the hydroxyl group of the 20-HETE substrate 

is preserved up to the end of the simulation.  

 

The first coordination chemistry standpoint to consider is the orbital overlap 

aspect. The difference in electronic environment between the oxygen of an aliphatic 

hydroxyl group and that of a water molecule is relatively small, yet present. Both exhibit 

appropriate hybridization to bear four electron pairs, either in the form of chemical bonds 

or through lone pairs. In the theory of orbital hybridization, this requires a sp3 

configuration of the oxygen atom’s atomic orbitals, resulting in the canonical Lewis dot 

structure representation. However, this representation does a poor job in describing the 

chemical environment of the two possible ligands. Molecular orbital theory is commonly 
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used to explain coordination chemistry phenomena, often employed as Ligand Field 

Theory, as it can describe orbital arrangement, symmetry, and other characteristics in the 

coordination of ligands to metal centers. 

A quick look into the frontier molecular orbitals involved in metal dative bonding 

for a water molecule and a primary alcohol is provided in Figure 59 and would result in 

very similar expectations.  

 

Figure 59. Simplified frontier molecular orbitals for water and ethanol as an example of a 

primary alcohol. Shown are the Highest Occupied Molecular Orbitals (HOMO and 

HOMO-1). 

 

The coordination occurs through primarily a weak sigma donation of electron 

density from the A1-symmetric molecular orbital on water that is below its highest 

occupied molecular orbital (HOMO), the B2-symmetric non-bonding orbital, originating 

from a p orbital of the same symmetry on oxygen. This p orbital is of the right symmetry 

to donate to the metal center and its strength is based on a number of factors such as 

orbital overlap and electronegativity of the donor atom. The oxygen atom contains 

conflicting attributes in this regard as it has 2p valence orbitals that exhibit great overlap 
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with the 3d valence orbitals found on first row transition metals, like the heme-iron in the 

case of the Cyp4f13 cofactor. However, oxygen is also one of the most electronegative 

atoms with small amount of nuclear shielding due to its low number of inner electron 

shells in comparison to its group members. This results in a high amount of effective 

nuclear charge, resulting in an oxygen atom’s tenacity to oxidize other atoms it comes 

into contact with. 

These factors result in the donation ability of oxygen to a metal center to be 

relatively weak, however, these interactions are still present and must be accounted for. 

The symmetrical aspects lend to a weak pi donation, raising the appropriately orientated 

pi orbitals of the metal center resulting in a smaller splitting between its metal d orbitals 

in an octahedral configuration.  

The coordination for a primary alcohol, such as ethanol, occurs in a similar 

fashion. An orbital of primarily oxygen character, below the HOMO, is used primarily to 

sigma donate to the Lewis acidic metal center, with its remaining lone pair able to weakly 

pi donate to the pi symmetry orbitals on the metal center. However, the interactions 

between pi donors and metal centers are generally weaker interaction than the dative 

sigma donating ability of uncharged, monodentate, oxygen donor ligands. 

The next considerations should be made for the electronic environment of the 

oxygen in between the two species. In comparison to the hydrogen atoms in water, 

primary alcohols have a single organic substituent. The presence of a carbon atom, with a 

higher electronegativity (2.55 compared to 2.2 for hydrogen in the Pauling scale), means 

that there is a more covalent interaction in C-O than that of the polar bond between H-O. 

This has an impact on the oxygen’s tendency to be a donor, attenuating its ability to act as 



145 

 

a ligand for a metal center. This difference, however, is very minute for the case of 

monodentate primary alcohols, as the organic moiety only changes the electronic 

environment by a small degree. This can be observed by comparing acidity dissociation 

constants (pKa) of the two species (15.74 for water and 16.0 for ethanol).  This measure 

indicates relatively little change between the Lewis basicity or donation capabilities of 

the oxygen donor atom as both a sigma and pi donor. 

Considering from a viewpoint of an octahedral ligand field, this ultimately results 

in both water and a primary alcohol acting as moderately weak ligands, able to be 

replaced by stronger or more abundant ligands such as additional water molecules. 

With the orbital comparisons made, what must be understood and reiterated is the 

system being analyzed, an MD simulation result. MD simulations do not contain any 

information on the orbital interactions of a molecular system, other than that of purely 

bonded or non-bonded physical characteristics. Orbital overlap and ligand field theory 

cannot be used to explain the results from an MD simulation. Electrostatics and van der 

Waals interactions, taken from force field parameters, are the factors that are modelled 

within a biological MD simulation and should be the considered method of analysis used 

in order to investigate theoretical phenomena.  

The next aspect to consider is the possibility of an error in the parameterization of 

the 20-HETE ligand. As was previously stated, the modified parameter was hard-keyed 

into the CHARMM 36 lipid file and was made through analogy using ethanol, found in 

the CHARMM format. There could have been a mistake made in the partial charge 

assignment to the hydroxyl group of the oxidized substrate. However this does not appear 

to be the case, as the assigned partial charges for both oxygen types (OHL in 20-HETE 
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and OT for TIP3P water) indicate a lower partial charge assigned to the oxygen (-0.65 in 

20-HETE and -0.834 in TIP3P water). This was derived from the CHARMM topology 

values from ethanol and placed a lower amount of charge on the oxygen atom. 

With the possibility of a mis-parameterization ruled unlikely, the last aspect to 

consider is the sheer probabilistic character of the interaction. Water, having a relatively 

miniscule molecular size and weight, is in bulk amount in any biological ensemble. 

Water and small molecule substrates having a similar affinity to form electrostatic 

interactions with an open metal center site would easily result in the much higher 

concentration solvent water molecule occupying sites they compete for. Water should be 

found coordinated in a far more simulation states than the few predicted with a single 

organic alcohol hydroxyl group.  

What is not accounted for in this interpretation, however, is the protein 

architecture of the active cavity. This aspect is what appears to be the key as to why the 

hydroxylated tail of the 20-HETE was found to coordinate and persisted through the 

simulation. An effect of the 20-HETE binding is related to the ‘chelate effect’ observed 

in metal coordination spheres, where through the coordination of a single ligand at 

multiple sites results in a more energetically stable environment. This is performed 

through both a kinetic and thermodynamic manner as the formation of such a complex is 

both entropically favored and driven by the effective concentration of a ligand. This same 

effect is observed, however, executed in reverse in the simulation. The binding of 20-

HETE at multiple locations throughout the protein, the arginine residues of the binding 

site and heme iron center, resulted in a protein-substrate complex portraying very 

favorable energetics.  
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Figure 60. Another look at the structural view of the last frames of the simulation of D3-

Cyp4f13-20-HETE. Water molecule coordinates are drawn within a radius of 5 

angstroms around the I-helix. Several points of interaction are observed for the 20-HETE 

substrate and the protein active site, indicating the formation of a ‘chelate’ to the protein 

structure. 

 

Due to the desolvation of the catalytic site, in combination with appropriate 

substrate binding interactions, there appears to be no access to the heme-iron open 

coordination site from solvent water molecules. The hydrophobic interactions acted upon 

by the active site nonpolar residues have succeeded in shielding the bound substrate from 

the TIP3P water molecules. Aqueducts are still present throughout the protein, as seen in 

Figure 60, however, direct access to the coordination site is restricted in the substrate 

bound state of fatty acid oxidizing P450.  

This resulted in a sufficiently locked coordination of the hydroxylated fatty acid, 

as the active site structure made it near impossible to dissociate and be replaced by water, 

at least in the simulation time allotted. However, it is understood that the spontaneous 

egression of an oxidized fatty acid metabolite  is an event on a timescale of several 
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hundred nanoseconds, which implies that the simulation time presented in this work was 

not adequate enough to allow this to occur.226 

 

Active Site Residues of Interest for the Cyp4f13 Homology Model   

Investigations of the active site also concluded with examination of some of the 

amino acid residues predicted for having a role in substrate binding in the substrate-free 

simulations. The substrate-bound murine Cyp4f13 active site contained many important 

residue side chains, several of which will be used as probes for role in the next portion of 

the experiment. The three residues of significance are the Leu137, Arg237, and Gly327 

residues.  

 

Figure 61. Licorice representation of selected amino acid residues within the Cyp4f13 

homology model. Gly327 is represented in orange coloring, Arg237 is in a purple, and 

Leu137 in green. 

 

Glycine 327, as seen in Figure 61, performs no observable role in the simulations 

other than acting as a flexible point for the α helical I-helix secondary structure of the 

P450. While this residue is seemingly unimportant for catalysis at a first glance, it is in 
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the same position as the conserved glutamate residue found in CYP4 enzymes with 

covalent heme linkage through an ester bond. This would be the first residue of interest to 

mutate and modify to observe the effects of heme linkage on the murine Cyp4f13 system. 

Mutation into glutamate, as opposed to the shorter-chain aspartate, in combination with 

covalent linkage with the heme, could result in a significantly modified steric 

environment for the Cyp4f13 heme and could shift the preference towards ω-

hydroxylation, as is observed in other CYP4 enzymes. 

Arginine 237, shown coordinating to arachidonate in Figure 61, was directly 

involved in carboxylate binding in all docked substrate models, always showing a role in 

the interactions within the substrate binding site and possibly with the retrieval of 

membrane-localized fatty acids. Mutation of this long-chain polar residue to similar 

length, non-polar amino acids is common throughout the study of P450 mutants. As seen 

in the work by Richards et al., arginine-leucine mutations are commonly used, as many 

P450BM-3 mutants employ the modification in order to change substrate specificity.227  

A large number of positive residues sit at the polar headgroup level of the 

membrane around the submerged loops of Cyp4f13. Some quantum chemical methods 

have suggested that the guanidium group belonging to arginine residues has superior 

carboxylate binding ability over other positively charged side chains, such as lysine or 

histidine.228 One possible mechanism for substrate entering the active pocket is through a 

ladder-ratcheting technique as the carboxylate head group of the fatty acid substrate 

climbs its way from surface to interior arginine sidechains present along the P450s 

structure.  More information on the uptake of substrate could be gained through mutation 

of the carboxylate-binding arginine to disrupt the hydrogen bonding interactions that hold 
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the fatty acid substrate in place. This could prove interesting in the investigation of 

substrate binding specificity and regiospecificity of arachidonic acid oxidation. 

Leucine 137, green in the Cyp4f13 homology model pictured in Figure 61, acts as 

a non-polar residue confining the active pocket volume into the shape necessary to 

expose the aliphatic tail of a substrate to the oxidant oxyferryl species. Also observed in 

the work by Richards et al., leucine is commonly mutated to more polar side chains, such 

as asparagine or glutamine in order to change the polarity of the chemical environment of 

the active site.227 Differing residue chain length could possibly result in different 

interactions with the substrate or impact the network of hydrogen bonds orchestrated by 

active site residues and solvent water molecules.  

Some other residues targeted for their potential roles in binding were the 

phenylalanine 326 positioned in manner similar to that of Phe87 of cytochrome P450BM-3, 

isoleucine 504 that appeared to assist in the positioning of substrate through steric 

interactions, tyrosine 330 which is the conserved tyrosine residue that is important in the 

catalytic cycle as a member of the proton network, and leucine 396 which appears to have 

a role in water channel dynamics, acting as a gate. 

MD simulations have been used to aid in the development of P450BM-3 mutants.46 

Hydrophobic active site residues were observed in interacting with substrate allowing 

researchers to characterize their functional and structural relationships within the active 

cavity of P450BM-3. Using mutant libraries of these substrate interacting residue mutations 

led to the rational design of P450s with shifted or improved catalytic efficiency and 

regio- and stereoselectivity.19,42,43,45 The previous work inspired the method of selection 

of residues for the mutation of the Cyp4f13 homology model in this study. 
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Summary 

In this chapter the constructed substrate-free murine cytochrome P450 4f13 

structural ensemble was used to dock two metabolites of ω-hydroxylation of arachidonic 

acid: arachidonate and 20-hydroxyeicosatetraenoate.  

Two conformations of arachidonate were simulated with different protein 

protonation states and used to probe the substrate carboxylate binding interaction of the 

Cyp4f13 system, with the second one containing an extra positively charged His residue 

in attempts to influence the negatively charged polar headgroup of the fatty acid 

substrate. Both sets of simulations converged on a comparable binding mode for the 

carboxylate headgroup, showing favorable interactions with Arg237 and Tyr96.   

The protonation of a residue within the binding site led to interesting observations 

as to the potential evolutionary role of certain specific residue locations and states for the 

Cyp4f13 protein. When protonated, a histidine residue was observed in influencing 

significant displacement of structural elements within the murine P450. More 

specifically, that of the transmembrane anchor in relation to the heme domain, possibly 

indicating an evolutionary pH-gated mechanism for changing the binding interactions 

with its carboxylate substrates. It was theorized that this change in structural 

conformation resulted in a larger opening for solvent water to enter the active cavity, 

changing the interactions between the enzyme and its substrate, however, was found to be 

present in the D1 homology model. Several positively charged residues were observed to 

have changed interactions from this protonation state change and their roles in substrate 

binding should be investigated by future studies. 
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Simulations of the polar hydroxylated metabolite of arachidonic acid resulted in 

the hydroxyl group on the terminal carbon unit of the polyunsaturated fatty acid chain 

coordinating to the metal center and this interaction persevered throughout the lengthened 

simulation time. Coordination chemistry and thermodynamic arguments were used to 

explain these results on the basis that the desolvation of the Cyp4f13 homology model 

active site resulted in a high amount of binding specificity for the 20-HETE substrate. 

This was enough to restrict access to the heme-iron center from the more favorable 

solvent water ligand, with electrostatic charge parameters exceeding that of the hydroxyl 

group. 

Simulations of the binding interactions of the P450 system and its substrates were 

produced and studied with model systems. Relative distances between the carbon units of 

the fatty acid substrate indicate possible sites of oxidation, and potentially metabolite 

profiles for the native protein. However, findings such as those produced by this work 

would need experimental evidence in order to corroborate these conclusions. What can be 

gained is insight into important residue interactions between the substrate and its 

physiological enzymatic target. The residues that were identified were Gly327, Arg237, 

and Leu137. 

The resultant findings have been discussed in this chapter, indicating success in 

proper substrate docking as both simulations of the Cyp4f13-arachidonate complex 

converged on a single binding mode for the substrate. The coordination of the 

hydroxylated product, while interesting, also acted as another indication of proper 

methodology, as the coordination to the heme catalytic resting state was produced. What 

would be expected though, through longer simulation timeframe, would be the egress of 
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the polar substrate back out into the system, or at least to a channel of the protein through 

the solvation of the active pocket. Evidence for preference for an ω-hydroxylated product 

was unable to be obtained from this simulation, as the increase solvation did not ever 

allow the metal center to undergo ligand dissociation with water. The second state of the 

P450 catalytic cycle portrays the displacement of water upon the binding of substrate. 

The complete catalytic cycle is an oxygen-dependent process where dioxygen must bind 

to the reduced iron(II) species in order to produce the oxyferryl state capable of oxidizing 

a C-H bond in the P450 catalytic cycle. This simulation uses the iron(III) species having 

its electronic character only described by a modified parameter and topological files in 

the CHARMM force field format. This would be able to recover some of the electrostatic 

forces, however, can do nothing to resolve the lack of dioxygen simulated in the system, 

oxidation state changes, nor its changes of spin in the catalytic cycle. While the 

mechanism behind the formation of the oxidized product was not the focus of this study, 

it made the data obtained more difficult to draw conclusions from in deciding the role 

Cyp4f13 plays in ω-hydroxylation of its substrates. 

As was mentioned in the previous chapter, the simulations are first and foremost, 

a thermodynamic sampling of the possible states of the substrate-or product-bound 

Cyp4f13 protein. Longer timeframe simulations, such as that of the microseconds range, 

would still be necessary to explore differences in sampled states, such as those proposed 

for the oxidized metabolite. The simulations of the substrate-and product-bound 

cytochrome P450 4f13 system were performed to gain computational insight into the 

active site and to prepare for the structural probing of the system through mutation.  
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CHAPTER V 

Molecular Dynamics Simulations of Mutated Cyp4f13 

 

Introduction 

This chapter presents the process, results, and findings in the simulation of the 

mutated substrate-bound murine Cyp4f13 structural ensemble. This work is necessary to 

improve the understanding of ω-hydroxylation catalyzed by the murine Cyp4f13 system 

which might possibly provide insight into the physiological role of the murine Cyp4f 

enzyme where no clear analogous pairing has been made to a human CYP4F.  

The substrate-bound state of the murine P450 catalytic cycle docked with the 

converged conformation of the substrate of interest (D1-Cyp4f13-AA), was used as the 

basis to generate mutants that were determined to be likely to be relevant to binding 

specificity in the previous chapter. Furthermore, the addition of the covalent heme 

linkage through an esterification by a hydroxymethyl group on the heme and neighboring 

glutamate residue was also generated and patched into the ensemble. As noted earlier in 

this thesis, this is known to have significant impact on regiospecificity of oxidation in 

related P450 CYP4 family members. Parameterization was performed by analogy 

through (1H-pyrrol-3-yl) methyl acetate. Two independent mutations were also generated 

on active site residues deemed important in substrate binding of arachidonic acid, as 

determined in the previous chapter. Drastic changes to chemical environment through 

mutation was carried out to investigate interactions within the active pocket for both the 

substrate and the solvated protein. Hundreds of nanoseconds of simulation were 

performed on all three mutants of arachidonate-bound murine Cyp4f13. The focus of this 
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work was to investigate the impact of specific site mutations on key residues responsible 

for different aspects of substrate binding.  

Also noted are the impact of structural differences within the active pocket as 

electronic conclusions should not be made based on molecular mechanistic behavior. The 

intention is to develop insights that will allow for understanding to be made on isoform-

specific characteristics of the murine Cyp4f13 active pocket. This is done to further the 

understanding of the physiological role and substrate specificities of the murine Cyp4f13 

system. With the information gained in this chapter, future studies can be designed and 

performed to elucidate their metabolic roles, and consequently, as possible therapeutic 

targets for medicine. 

 

Computational Method and Details 

 

Mutagenesis through VMD Mutator Plugin   

Mutagenesis was performed through the VMD Mutator Plugin which requires the 

atomic coordinates of the protein, and its protein structure file. Its requirement of a 

protein structure file means that the data from a previously constructed homology model 

must be used and cannot be performed on purely crystallographic data.  

At this point, a newer rabbit CYP4B1 crystal structure that looked like a more 

optimal homology model template became available.221 A request was sent to the I-

TASSER server and the best resulting homology model produced was used in the R237L 

and L137Q mutations of the Cyp4f13 system. This new structure was of a non-linked 

heme cofactor mutant of the rabbit CYP4B1, making it an improved template for native 
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Cyp4f13. This, however, was not necessary for the modeling of the G327E mutant of 

Cyp4f13 as the covalent heme linkage was the ultimate goal of that portion of the 

experiment. Thusly, the original native Cyp4f13 homology model “D1-Cyp4f13-AA” 

was used for the covalently linked G327E mutant, while the newer model “MX-Cyp4f13-

AA” was used for the R237L and L137Q Cyp4f13 mutants. 

 

Parameterization of Covalent Heme Linkage   

With the covalent heme linkage not having a set of topology or parameter values 

through analogy or otherwise, it would need to undergo the full parameterization process. 

The software used to parameterize the novel linkage in this study is the Force 

Field Toolkit Plugin (ffTK) of the Visual Molecular Dynamics (VMD) program package 

in addition to the Gaussian 09w computational chemistry program suite. This toolkit 

utilizes Nanoscale Molecular Dynamics (NAMD) calculations in addition to QM 

calculations performed by the Gaussian 09w program along with a graphical interface to 

generate CHARMM parameter constants and topological information for theoretically 

any novel residue in the CHARMM format using the CGenFF force field. 

The first step in parameterization of a novel residue is the identification of 

missing parameters. This is done by chemical analogy and is an important step as the 

parameters obtained are heavily dependent on how similar an analogous compound is to 

the target novel residue. The analogous compound used was the (1H-pyrrol-3-yl) methyl 

acetate species, pictured in Figure 62. The species contains the aromatic environment of 

the heme porphyrin moiety in addition to the ethanoate ester formed by the proximal 

glutamate residue in situ. 
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Figure 62. Side-by-side comparison of the novel residue (A) and the covalent heme 

linkage (B). Both models are represented as licorice models with the analogous chemical 

components encircled on the heme cofactor 

 

The compound was constructed using the GaussView 5.0 interface, its coordinates 

exported in a PDB format to be used, analyzed and processed by the ffTK program. For 

each unique bonding between atom types, a blank template was created for the final 

parameter set.  

The CGenFF force field topology and parameter files were used to define van der 

Waals (LJ) constant values for the atom types discovered in the target residue. Each atom 

type discovered by the ffTK was manually updated with the corresponding value found in 

the CGenFF topology file was set from reference. After all the possible values to be 

parameterized were assigned, the parameterization process was commenced using a 

variety of QM methods. 

The initial geometry optimization was performed with DFT on the novel residue 

to arrive at an energetically-minimized, equilibrated state. The level of theory used is 

reliant on the system being measured and is dependent on the level of detail needed by 
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the researcher. Higher levels of theory are generally avoided for initial optimization, as 

molecular mechanistic (MM or MD) approaches result consistently with appropriate 

results with the except of sophisticated transition metal complexes.  

The model chemistry used to create the initial geometry optimization was the 

density functional theory with the B3LYP functional. This functional is commonly used 

in heme-protein systems and provides for a fairly accurate representation of the organic 

moieties of metallo-protein complexes. The Pople 6-31G double zeta split-valence basis 

set was used on the novel residue in combination with a diffuse function on heavy atoms, 

and polarization functions for both heavy atoms and hydrogen. This model chemistry, 6-

31G+(2d, p), was chosen to be a moderate level of rigor to achieve a good starting point 

for the equilibrium geometry for the residue and would be refined using the quadratically 

convergent self-consistent field (SCF) method to assist in convergence. DFT was chosen 

due to its ability to converge more readily than ab initio Hartree-Fock calculations. 

The optimization of partial charges was produced through QM-derived 

interactions with theoretical water models. After assigned hydrogen-bonding donors and 

acceptor atoms on the novel residue, ffTK assigned partial charges to heteroatoms based 

on their optimized interactions with TIP3P water molecules. Single point energy 

calculations were used to optimize the interactions between the polar charge points on the 

rigid water model. The resulting output from the calculation was used to deduct what 

partial charges to assign individual atom types to collect topological information for the 

novel residue. 

The fully optimized bond distances and bond angles were determined through 

combined QM and MM methods. In the search to find the minimized bond strain on the 
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to-be parameterized system, perturbations are performed on the conformer geometries 

that resulted in a potential energy surface (PES). In order to avoid local minima or saddle 

points in the surface, a Hessian (or force) matrix is used to distinguish between stationary 

points on the PES and was performed at a higher model of chemistry.  

The model chemistry used was the Møller–Plesset model (MP2), a second order 

perturbation theory. This ab initio method includes a corrective term for electron 

correlation effects that is neglected in Hartree-Fock calculations. The ‘tight’ self-

consistent field option was used in the Gaussian job so to narrow the convergence 

criteria, allowing for less room for trivial or unwanted solutions to the Hessian 

calculation. 

After the Hessian calculation was performed, the QM portion of the bond distance 

and angle analysis was handed off to molecular mechanics. The ffTK plugin uses several 

quick iterations of MD simulations through the NAMD software, with the values 

obtained from the Hessian QM calculation as a starting point for its parameters. After 

numerous femtosecond simulations are completed, the ffTK plugin saves the resulting 

equilibrium bond distances and angles as another output file to update the in-progress 

parameter file. 

The final step of the parameterization was the dihedral and improper angle 

optimization through torsional scanning. This portion of the method consisted of another 

combination of QM and MM calculations. The ffTK plugin generated two Gaussian job 

input files for every torsional angle between heavy atoms. A 90-degree scan was taken 

for the rotation in the positive (clockwise) and negative (counterclockwise) directions. 

The plugin then used molecular mechanistic simulations through NAMD once more to 
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find a local minimum in the potential energy surface created by the QM portion. The 

values that ffTK designated were used as a local minimum that was set as the initial point 

for additional MD calculations. This process is referred to as ‘refitting’ and this iterative 

method was performed until the energy presented by ffTK increased from the last 

refinement run, indicating the arrival at a global minimum. Finally, with the updated final 

set of parameters optimized, the resulting values for the (1H-pyrrol-3-yl) methyl acetate 

residue could be assessed by comparison to related systems and then added to the 

CHARMM parameter files for MD simulation. 

 

Molecular Dynamic Simulations of Mutant Cyp4f13 

 A different set of specifications was used in the refinement simulations and 

longer timeframe production simulations than the previous simulations. In order to 

simulate a more unrestrained environment to explore interaction changes of the 

individual mutations, a timestep of 1 was used in the integrator, meaning that atomic 

velocities were calculated at twice the rate than previous simulations. Rigid hydrogen 

bonds were only applied to solvent water molecules, allowing for dynamic C-H, N-H, 

and O-H bond motion of the protein structure. This would result in a larger calculation 

wall time but was done in attempt to achieve more reliable results. 
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Table 7 

Table of mutant homology models for the Cyp4f13 structural ensemble 

Model Name 
Residue Mutation Covalent-Bound Heme 

M1Cyp4f13 G327E Yes 

M2Cyp4f13 R237L No 

M3Cyp4f13 L137Q No 

Note. The D1-Cyp4f13 parameter files were used for M2 and M3 homology models 

with M1 receiving the additional parameterized values to be used in the simulation. 

A total of 100-ns production simulation time was allotted for each of the mutant 

Cyp4f13 homology models. The model used to generate the G327E Cyp4f13 mutant was 

the D1-Cyp4f13-AA structure, based off the relevant rabbit CYP4B1 template with a 

covalent heme linkage. A new homology model was obtained using a newer mutant 

rabbit CYP4B1 crystal structure with its covalent heme linkage removed. This was used 

as the basis for the R237L and L137Q models, as they did not contain covalently bound 

heme cofactors. The reasoning, results and findings will be discussed in the appropriate 

sections. 

 

Results and Discussion 

Parameterization of (1H-pyrrol-3-yl) Methyl Acetate   

The results of the parameterization of the (1H-pyrrol-3-yl) methyl acetate residue, 

acting as an analogous representative for the covalent heme linkage, was successful in 

producing values for all the identified missing parameters. Whether or not the values are 

accurate, or at least representative, was examined by comparing the QM-derived bonding 
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geometries and partial charge distribution to similarly related compounds and through 

literature review. 

 

Figure 63. Atom designations for the (1H-pyrrol-3-yl) methyl acetate residue in the 

CGenFF format. A ball-and-stick representation is used for the analogous chemical 

component of the heme covalent linkage. 

 

Using the related amino acid residues, which are contained in the CHARMM 36 

protein parameter files, results obtained from the parameterization of the porphyrin 

moiety were within reason.  

 

Table 8 

Comparison of parameterization results for aromatic C-C bonds and similar chemical 

bonding environments 

Residue 
Aromatic C-C Bond Force 

Constant (kcal/mol/Å2) 

Aromatic C-C Bond Distance 

(Å) 

Novel Residue 365 1.39 

Phenylalanine 440 1.34 

Tryptophan 350 1.43 

Note. Phenylalanine and tryptophan parameter values were obtained from the 

CHARMM36 force field 
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The aromatic carbon-carbon bond on the porphyrin portion of the covalent heme 

linkage residue results are present in Table 8 and show an equilibrium bond distance and 

force constant between that of the CHARMM parameters for benzene of a phenylalanine 

structure and that found in the aromatic indole group in tryptophan. The differences could 

be explained to be due to the different bond angle strain found in the pyrrole ring analogy 

of the porphyrin ring compared to the planar 6-membered benzene, and of the fused 

indole ring of tryptophan.  

 

Table 9 

Comparison of parameterization results for the C-N-C bond angle and similar chemical 

environments 

Residue 
C-N-C Angle Force Constant 

(kcal/mol/rad2) 
C-N-C Bond Angle (Degrees) 

Novel Residue 180 112 

Histidine 145 108 

Tryptophan 85 112 

Note. Histidine and tryptophan parameter values were obtained from the CHARMM36 

force field 

In comparing the C-N-C bond angle for the novel residue in Table 9, similar 

species were chosen from CHARMM protein parameters. The nitrogen-containing 

aromatic amino acids tryptophan and histidine show very similar equilibrium bond angles 

but have varying force constants associated with them. The novel residue shows the 

highest force constant, which could be rationalized by the difference to the larger indole 

ring of the tryptophan and the two-nitrogen containing imidazole found in histidine. This 

would imply a larger energetic component necessary to bend the porphyrin C-N-C bond 
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as opposed to that found of the tryptophan residue. This might be an artifact of the usage 

of low-frequency vibrational modes from experiment to create more accurate physical 

parameters in the CHARMM36 force field.  

The mutation and glutamate residue linkage appeared to have been properly 

parameterized. As an example, the equilibrated angle of the ester C-O-C bond between 

the glutamate and hydroxymethyl group on the heme fell within reason in comparing 

against comparable ester bonds in the glyceride esters in the CHARMM lipid parameters 

(109.6 degrees in the parameterized residue vs. 110 in acyl-acetate ester and 109 in 

methyl acetate). 

Calculated by their interactions as either hydrogen-bonding acceptors or donors, 

the atoms within the residue displayed very reasonable results for partial charges. The 

carbonyl and ester oxygen atoms received a partial charge of -0.625, and -0.503 

respectively. This appeared within reason when compared to the -0.63 and -0.49 to the 

ester found within the di-oleoyl phosphatidylcholine lipid. 

 

Figure 64. Ball-and-stick representation of the TIP3P water-based interactions with the 

novel residue to develop the partial charges for the force field topology files. Hydrogen-

bond distances between the covalent ester linkage are indicated with red lines and labels. 
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Comparing to literature gave satisfactory results; when comparing to a parallel 

study on the homology modeling and MD simulation of a CYP4F system, Li et al. 

reported their parameter values in their supplementary information.223 Their parameter 

values, while in different units and format than used in CHARMM, match up fairly well 

with the results in partial charge and bond geometries produced through ffTK. Their team 

employed used of multilayered QM/MM calculation through the Our own N-layered 

Integrated molecular Orbital and molecular Mechanics (ONIOM) method. This was 

originally going to be within the scope of this study, however calculations of the 

truncated models to be used in the QM/MM calculation never converged and a different 

methodology was considered due to time considerations. 

 

Figure 65. Proposed truncated model of the heme-thiolate covalent linkage. The model 

contains the usual heme porphyrin IX substituent groups, in addition to both the heme-

thiolate cysteinyl residue and the esterified glutamate residue, capped with an N-terminal 

acetyl group and a C-terminal methylamine group. 

 

Figure 65 depicts the more appropriate chemical analogy of the covalent heme 

linkage than the novel residue, however it became too unwieldy to parameterize and 

much of the chemical bonding considerations of the ester moiety could be recovered with 

the parameterization process. With the parameterization of the (1H-pyrrol-3-yl) methyl 
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acetate residue completed, the modifications were added to the CHARMM topology and 

parameter files along with three additional patches, found in the appendix.  

The first patch (HEMED) facilitates the removal of one of the hydrogens 

belonging to the 5- methyl substituent of the porphyrin IX cofactor. It also serves to 

reassign partial charges to that of a methoxy from its methylene origin. With 

physiological glutamate expected in the protein, there is no proton to remove for the 

glutamic acid residue. Instead, the second patch (GUU) does a similar procedure in 

charge reassignment, changing the carboxylate partial charges to that of an ester. It also 

reassigns the atom types of the two carboxylate oxygens to one as a carbonyl oxygen of 

an ester, and the other as the bridging ester oxygen. The last patch (GUUH) directly 

bonds the now ester oxygen of the glutamate residue straight to the carbon of the 

methylene group of the heme. With this, preparation for the MD simulations of the 

covalent linked G327E mutant Cyp4f13 homology model could commence. 

 

MD Simulation of Gly327Glu Cyp4f13 Mutant with Covalent-bound Heme 

A preparatory model for the mutant was created with the removal of the lipid 

bilayer, arachidonate substrate, solvent, and ions of the D1-Cyp4f13-AA model. Using 

the Mutator Plugin of the VMD software, glycine 327 was selected as target for mutation. 

The nuclear coordinates of the new glutamate residue atoms were guessed by Automatic 

PSF builder and assessed by visual inspection. A script was used to load up individual 

sections of the structural ensemble where the patches were incorporated after patching of 

the heme-thiolate cofactor and applied to the resultant glutamate 327 of the mutant 

Cyp4f13 protein. 
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Figure 66. Structural view of the final covalently attached heme moiety of the minimized 

G327E Cyp4f13 mutant homology model. Licorice representations of the involved amino 

acid residues are added for emphasis. 

 

An additional script, similar to the previous preparation scripts, was used to create 

the same DOPC bilayer structural ensemble with the docked arachidonic acid substrate 

in-tow. This final model was simulated for an NVT production run of 100-ns, using a 

smaller integrator timestep and vibrational limitations eased for protein hydrogen bonds. 

 

Figure 67. Structural view of the G327E Cyp4f13 mutant after 100-ns production 

simulation. Water is represented as licorice models and is displayed for those within 3 

angstroms of the heme iron or the arachidonate substrate. 
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The results were less than ideal for the desired effect to be studied in this research. 

The substrate was almost completely displaced from the active pocket by solvent TIP3P 

water molecules, depicted in Figure 67, as their hydrogen bonding network sufficiently 

disturbed the non-polar forces from binding tightly to the arachidonic acid. The fatty acid 

substrate was located too far from the heme iron to be reasonably expected to be 

oxidized. 

Between these results and the past runs, several differences in the simulation 

process were considered and could explain the events observed. The first major different 

was the addition of the glutamate ester linkage of the covalent-bound heme cofactor. 

With the addition of a residue sidechain with sufficiently higher hydrogen bonding 

capability (glycine vs. glutamine), the carbonyl oxygen atom might be extending out into 

the active site enough to have caused sufficient disruption to the non-polar interactions 

necessary for binding specificity. Water found to be hydrogen bond donating to the 

carbonyl group would provide evidence for this hypothesis. However, what might appear 

to be the trivial solution does not appear to be the case as no observable increase in 

hydrogen bond formation with solvent water molecules observed in its structure 

compared to the substrate-free state. 
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Figure 68. Different structural view of a frame from the production simulation of the 

G327E Cyp4f13 mutant. Ball-and-stick representations for the all water molecules within 

a 3-angstrom distance from the iron and substrate are present. 

 

The next difference to be discussed is that of the change in simulation 

specifications. With the usage of smaller timesteps and removal of the hydrogen bond 

vibration constraint for the protein structure, it could be possible that the degrees of 

freedom previously held back water from entering the active pocket due to rigid amino 

acid hydrogen bonds. An additional simulation was run at the newer specifications on the 

older D1-Cyp4f13-AA model to investigate the differences, however, resulted in a very 

similar simulation of proper arachidonic acid binding, with no advanced displacement or 

egress of the substrate. Such a phenomenon was also not observed in the R237L nor the 

L137Q mutant simulations, ruling out this possibility.  
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The final hypothesis presented in this thesis is that the polar carbonyl group 

influenced the active site’s hydrogen bonding network, and perhaps impacted the 

secondary structure in a subtle way as to change the interactions necessary for 

arachidonic acid binding. Further to mention is that of the result of thermodynamic 

sampling, as this could possibly be a result of ‘bad’ initial trajectories. More simulations 

with different initial conditions would need to be performed in order to eliminate this 

possibility. 

 

MD Simulation of Arg237Leu Cyp4f13 Mutant  

Arginine 237 was selected for mutation using the Mutator plugin of the VMD 

software, as the principal residue involved in carboxylate binding of fatty acid substrates 

for the Cyp4f13 system. 

The R237L Cyp4f13 mutant was created using the same preparatory script as the 

previous simulations, however, they did not use the modified parameter files present in 

the G237E Cyp4f13 model. With the glutamate mutation not necessary and covalent 

heme linkage not the focus of this portion of the study, the original parameters used in 

Cyp4f13 simulation were used instead. As was previously noted, this model was 

constructed with the more recent rabbit CYP4B1 crystal structure with a non-covalently 

bound heme. The impact of this mutant P450 and its crystallization is not fully known 

and would provide for some interesting thought as its modification might have 

unpredicted effects on the crystallographic data obtained from it. 
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Figure 69. Structural view of the pre-minimized M2Cyp4f13 homology model structure. 

Purple licorice representation of the mutant Leu237 residue was added for emphasis. 

Residue sidechains within 4 angstroms of the carboxylate headgroup of arachidonate are 

represented as well. 

 

Shown in purple in Figure 69, the R237L mutation of the long, positively charged 

arginine residue to the shorter, non-polar, branched leucine was the first used on the 

newer Cyp4f13 homology model. The expected effect would be that of a drastic change 

to chemical environment for the binding of arachidonic acid for the Cyp4f13 enzyme. 

After 100-ns of simulation time was allotted, the results indicated an interesting finding. 
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Figure 70. Structural view of R237L Cyp4f13 homology model bound to arachidonic 

acid after 60-fs of minimization. Representations were added for the residues near the 

carboxylate of the substrate in the same manner as the previous figure. An arginine 

residue (Arg100) in observed in substrate binding, as the substrate has migrated away 

from the mutated leucine residue. 

 

 A change in binding modes is observed as the carboxylate headgroup migrated 

several Å away to another arginine residue, Arg100. Depicted in Figure 70, Arginine 100 

appears to be the new principal residue responsible for the binding interactions with the 

carboxylate of the substrate. This is not entirely surprising as the simulation on the 20-

HETE metabolite within the D3-Cyp4f13 homology model in the previous experiment 

was also found to form hydrogen-bonding interactions with both Arg100 and Arg237. 

 This mutation displayed additional effects that are of interest in the scope of this 

research. Better orientation of the polyunsaturated fatty acid resulted in the favorable 

positioning to facilitate the ω-hydroxylation of its substrate. The distance between the 

terminal carbon and the heme-iron indicate an appropriate distance to have an oxidation 

event take place, as the oxygen of the oxyferryl species would protrude out from the 
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plane of the heme and is sometimes observed to be within close proximity of the primary 

carbon of the substrate. However, the space between the heme-iron and the ω-

hydroxylation site is impeded by several water molecules. 

 

Figure 71. Structural view of the solvent environment within the R237L Cyp4f13 

homology model active site near the end of the production simulation. Substrate and 

water molecules within a distance of 5 angstroms of the heme cofactor are represented in 

van der Waals models. 

 

 Figure 71 shows the final frames of the simulation which reveal that several 

TIP3P water molecules are observed in close proximity to the catalytic site; with one 

directly coordinating to the heme-iron, and others observed in a cluster forming 

hydrogen-bonding interactions with the protein structure and heme propionate groups. 

The majority of the active pocket of cytochrome P450s are lined with non-polar residues 

like leucine, isoleucine and non-polar aromatics to interact favorably with their 

hydrophobic substrates. These interactions, however, appear disturbed by hydrophilic 

forces on the binding of substrate and are observed in the simulation.  
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This is not a grim omen for the simulation, as the P450 catalytic cycle in vivo 

requires water to be accessible to the active site to have a protonation event to occur. This 

happens through water entering via a gated aqueduct near one of the propionate groups 

on the heme.22 The gated mechanism occurs through a concerted hydrogen bonding 

interaction between the backbone of the protein and the salt bridge formed by the heme 

propionate with the arginine of the conserved P450 heme-binding motif. The water 

channel and proton relay formation of P450s is well studied with computational methods 

as seen in the work by Dubey and Shaik.22 

 

 

Figure 72. Side-by-side comparison of the R237L Cyp4f13 homology model heme 

propionate binding site. The frames shown are from the beginning (A) and end (B) of the 

production simulation of 100-ns. Water is drawn in van der Waals models within 4 

angstroms of the heme cofactor in both frames. 

 

The position of the salt bridge between the heme propionates and positive 

residues, as seen in Figure 72, within the heme binding site still indicate substantial 

interactions with the positive residues of the mutant Cyp4f13 model. This makes it 

difficult to conclude that the proton relay formation is what is being portrayed by the 
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simulation, as this interaction is dissolved by the tugging of the arginine residue by a 

backbone amide hydrogen.  

  However, what is not being observed in this simulation is the departing of water 

molecules from the coordination site due to the binding of a substrate. As reported by 

Dubey and coworkers, a simulation time of 350 ns was used to simulate the P450BM-3 

system and its interactions with N-palmitoylglycine. This might mean that the results 

presented in this thesis are too early of a sampling in the simulation of these interactions, 

indicating the need for additional simulation time to be performed on the system in order 

to observe such an effect. 

 The distinct channel relocation observed in P450 systems when binding to 

substrate appears to be still underway in the simulation of the mutant Cyp4f13 model, 

and conclusions are hard to make on the impact of the R237L mutation on substrate 

specificity. What can be said, however is the definitive rearrangement of hydrogen-

bonding interactions for the binding of the carboxylate head group of arachidonic acid to 

the protein structure. The clear path forward for this research that could provide insight 

into the observations of these trajectories would be running much longer calculations. 

Channel relocations and proton relay formation could be observed in microsecond 

timescales, as opposed to the nanoseconds used in these simulations. With the necessary 

resources, long timeframe simulations with unrestricted TIP3P water models could result 

in a desolvation of the active pocket and formation of appropriate aqueducts around the 

heme group, indicating complete substrate binding. 

One additional consideration that is implied from the results of this mutation is 

the uptake of the substrate into the active pocket. Lined with many positive residues, the 
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Cyp4f13 access channel to the membrane bilayer serves as the mode of entry for its 

potential eicosanoid substrates. Whether or not Cyp4f13 catalyzes oxidations on free fatty 

acids or acyl arachidonate esters from phospholipids has not been elucidated as of yet. 

However, how its substrates are taken up by these membrane-bound proteins is an 

interesting question. With the removal of the arginine at the membrane surface, the 

simulations might imply better substrate binding; however, they might indicate a 

worsening of substrate (kinetic) uptake. 

 It is proposed that the way hydrophobic substrates are taken up by microsomal 

P450s is through becoming dissolved in the membrane bilayer. A nonpolar region of the 

P450 heme domain sits beneath the plane formed by the polar head groups of the 

phospholipids in the membrane and positive residues line the surface of the protein 

adjacent to the hinge of its transmembrane anchor.229  

 

 

Figure 73. Zoomed out view of the mutant membrane-embedded Cyp4f13 homology 

model and nearby DOPC lipids. The R237L mutant in represented in purple and blue 

licorice was used to distinguish the arginine residues near the DOPC lipids. 
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The F-G loop region in the murine Cyp4f13 is enriched in arginine sidechains, 

such as observed in Figure 73, which serve as binding coordinators for substrates. This is 

performed through electrostatic attractions to dissolved carboxylate headgroups of free 

fatty acids, or possibly negatively charged phosphate groups of the surrounding 

phospholipids. It is currently unknown whether cytochrome P450s can oxidize esterified 

long chain (>20 carbon units) fatty acids still attached to their diacylglyceride 

phospholipid carriers. The angle in which the heme-domain of cytochrome P450s is 

studied and the work performed by Otyepka et al. has been referred to in prior sections. 

With the mutation event changing the charged environment of the P450s F-G loop, 

significant changes in membrane-orientation might be observed over simulation time. 

 

Figure 74. Close-up view of the membrane-embedded portion of the mutant Cyp4f13 

system. Phosphate groups are indicated by yellow van der Waals sphere. The R237L 

mutant is represented in purple and the arginine residues in proximity to lipid bilayer are 

in blue. 
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The postulated model for fatty acid binding could require the presence of that 

mutated arginine 237 residue, as the molecular docking and subsequent simulation 

produced enough evidence to suggest the residue as being important in arachidonic acid 

binding to the P450 system. While the binding observed in the mutant, showing favorable 

interactions with the carboxylate of the substrate and arginine 100, is preserved, the 

uptake of the fatty acid by the protein might have been negatively affected. One possible 

experiment that could be used to answer the question posed by this mutation would be to 

simulate the coordinates of the arachidonic acid substrate a small distance away from the 

transmembrane anchor hinge and access channel of the protein, and allow sufficient time 

to observe uptake into the nonpolar active pocket of the mutant Cyp4f13 model. This 

mutation and its effects on the membrane-orientation, protein-membrane interaction, and 

substrate binding could provide useful in the study of these mammalian cytochromes. 

 

MD Simulation of Leu137Gln Cyp4f13 Mutant  

 As one of the non-polar residues responsible for hydrophobic interactions with the 

cytochrome P450 4f13 substrate, arachidonic acid, leucine 137 was chosen to be mutated 

in order to observe its effects on binding interactions.  

The L137Q Cyp4f13 homology model was created using the same preparatory 

script as the previous set of simulations and like with the R237L mutant, did not use the 

modified parameter files present in the G327E Cyp4f13 model. The original CHARMM 

parameter files were used instead. As before, this model was constructed with the more 

recent rabbit CYP4B1 crystal structure with a non-covalently bound heme. 
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Figure 75. Structural view of the minimized L137Q Cyp4f13 homology model structure. 

Ball-and-stick representations of the changed residue were added for emphasis. 

 

 The expected effect of this L137Q mutation, depicted in green in Figure 75, of the 

nonpolar aliphatic leucine residue to the polar glutamine is that it should produce a 

considerably different chemical environment for the binding of arachidonic acid for the 

Cyp4f13 enzyme. With the amide group of the glutamine sidechain providing for a large 

increase in hydrogen-bonding capability for the active site residue, a perturbation of the 

substrate interactions by solvent water molecules is predicted, as there would be increase 

in polar interactions present in the predominantly nonpolar catalytic site. Since the 

previous two simulations on mutant Cyp4f13 homology models were observed in having 

pronounced solvation of the active cavity, as seen in Figure 68 and Figure 71, a more 

exaggerated event was predicted to occur with this L137Q mutation. 

 The 100 ns NVT simulation gave contrary results, as the modification did not 

appear to increase the solvation of the active site any more so than the previous 

mutations, and furthermore resulted in a relative increase in desolvation of the protein’s 

active site around the hydrophobic substrate. The simulation displayed less water activity 
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within the cavity, shown in Figure 76, which goes against initial predictions. The 

glutamine mutation did however find interaction with water molecules and this persisted 

throughout the simulation. 

 

Figure 76.Water within active site for the L137Q Cyp4f13 homology model after 

production simulation. Licorice representations for the heme cofactor, arachidonate 

substrate, mutant glutamine and vdW water molecules within 4 angstroms of the heme 

are present. 

 

 Water was found coordinating to the amide carbonyl of the mutant L137Q 

residue, interacting with the backbone of the protein as well. Shown using large trajectory 

stride steps along the production simulation in Figure 77, the polyunsaturated fatty acid 

substrate remained confined from solvent interaction for the vast majority of the 

simulation frames. 
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Figure 77. Clustering of arachidonic acid binding conformations for the L137Q Cyp4f13 

homology model during production simulation. The trajectories are drawn in strides of 

100 for the 10,000 simulation frames. Ball-and-stick representations were added for the 

substrate and the mutated glutamine residue, in addition to licorice representations for the 

amino acids involved in substrate binding. 

 

  

 

Figure 78. Structural view of the L137Q Cyp4f13 homology model active site. The 

mutated glutamine residue is shown with a licorice representation along with nearby vdW 

water molecules (within 4 Å) showcasing several hydrogen-bonding interactions. 
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 Only a relatively small number of water molecules entered the catalytic site, as 

observed in Figure 78, appearing to interact with the glutamine or heme propionate 

groups, however, the majority of the water interactions were observed around the 

carboxylate binding domain of the protein. The 100 ns of simulation indicated a 

significant amount of desolvation for the substrate. The spatial region occupied by the 

mutation appears to have an influence on the access to the heme catalytic site, as only the 

substrate and a few errant solvent water molecules show ability to enter the vicinity of 

where the oxidant species would be located. 

 

Metabolite Product Insights from Simulation Studies   

Managing and analyzing the large amount of data in these trajectory files comes 

with its own set of challenges as it comes time to present them in a comprehensible 

manner. Analyzing trajectories by standard parameters like RMSD from backbone 

nuclear positions are not very useful in determining product formation or much behind 

the biomolecular interactions in a system. Some structural insight can be gained by 

analyzing displacements of the protein backbone, however, are noisy and prone to error 

propagation.  

Analyzing the results of each individual mutation and their impacts on the 

metabolite production implied by the simulation would be performed by a similar method 

of analysis as the previous chapter. Using bond distances and the angle formed by a 

theoretical oxygen atom attached to the heme-iron as is observed in the ultimate oxidant 

state of the P450 catalytic cycle and aliphatic carbon-hydrogen bonds on the substrate, 

correlations can be made on the different mutations. These correlations will come with 
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their own sets of considerations in the sampling indicated by the 100 ns MD simulations 

of the mutant Cyp4f13 structural ensembles.  

 Unfortunately, in the case of G327E mutant, not much is to be said about 

predicted metabolite formation. Within the timeframe of the production simulation, water 

molecules completely invaded the active cavity and the arachidonic acid was beginning 

to fully egress from the site. This made it difficult to gain predicted oxidation potential as 

most of the trajectory frames failed to meet neither the tight nor loose established 

distance criteria. This was disappointing, however in the scope of this thesis, these result 

appear to agree with the null hypothesis that the presence of a covalently bound heme 

cofactor through the glutamate residue was the not the primary factor in ω-hydroxylation 

of arachidonic acid by murine Cyp4f isoforms. There would be need to be a deeper 

explanation for the evolutionary advantages to the lacking of the covalent heme linkage 

for the Cyp4f13 protein, and should be studied further. 

 However, what can be said is that through introducing the hydrogen bond 

accepting residue into the native Cyp4f13 active site, a significant amount of solvation 

facilitated the clearance of the fatty acid substrate from the catalytic site. This disturbance 

in the protein cavity architecture might be a factor in the mutation event that resulted in 

glycine being the residue selected for in the evolution of the murine Cyp4f13 system. 

This also implies that there might be additional underlying factors that influence the site 

of oxidation of the arachidonic acid by Cyp4f isoforms. 
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Figure 79. Structural view of the bolus of TIP3P water molecules filling the active cavity 

of the mutant G327E Cyp4f13 homology model. Water molecules within a region of 8 

angstroms from the core of the protein active site are represented by vdW spheres. 

 

While disappointing, it is worth mentioning that this result indicates the need of 

more simulation time, perhaps with different initial velocities through a different pseudo-

randomly generated seed for the NAMD integrator. A more favorable steric environment 

was envisioned by this mutation, as it should have resulted in a more potent orientation 

for substrate to facilitate ω-hydroxylation by the mutant Cyp4f13 enzyme.  

For the R237L mutant, the terminal carbon unit was indeed the closest to the 

heme-iron than any other site on the fatty acid chain, however, the presence of several 

water molecules coordinating to the active site prevented the substrate from progressing 

deeper into the cavity. However, this is observed in other P450 systems, as the substrate 

binding tightly leads to a series of structural changes that result in the displacement of 

water, not full desolvation of the catalytic site.  
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Another consequence from this mutation was now that the fatty acid carboxylate 

headgroup had migrated over to arginine 100, it had a different conformation within the 

active cavity, and due to the steric influence of leucine 395 and leucine 396, the 

polyunsaturated fatty acid wrapped around the nonpolar sidechains, limiting its ability to 

reach the catalytic site of the heme-iron. 

 

Figure 80. Structural view of the R237L mutant Cyp4f13 catalytic site with leucine 

representations emphasize their impact on arachidonic acid binding. Leucine 395 and 396 

are shown in yellow licorice, in addition to the Arg100 residue binding the carboxylate of 

the arachidonate substrate. 

 

 While these interactions are normally present in the native protein, they become 

intrusive in this mutant as the carboxylate head group must reach around them to interact 

with the arginine 100 within the interior of the protein, as seen in Figure 80. This limits 

the amount of exposure for the terminal carbon unit has to the oxidant state of the P450 

and could impact the product formation in a detrimental way as well. While binding may 

be enhanced in an overall sense, it is possible that the rate of successful product 

conversion and egression would be negatively affected by this mutation. 
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For the L137Q mutant, the simulation provided for interesting results in terms of 

proper substrate orientation for ω-hydroxylation of the arachidonic acid. The simulation 

frames were aligned, pictured in Figure 81, and showed a relative distance between the 

heme-iron and the hydrogen atoms of the terminal carbon fluctuating around the optimal 

distance (>2.8 angstroms) to where the electrophilic oxyferryl species would have its 

oxygen located. Predicted regiospecificity is shown in Figure 82 and indicates enhanced 

ω, ω-1, and ω-2 hydroxylation, with negligible frames of epoxide formation present. 

With both the terminal and sub-terminal site so readily available, it seems likely that the 

thermodynamic product of secondary C-H bond oxidation would be preferred by the 

system. 

 

 

Figure 81. Overlay cluster of arachidonic acid binding conformations for the L137Q 

Cyp4f13 homology model during the final 100-ns of NVT simulation. The frames are 

drawn in strides of 100 for the 5000 simulation frames. Ball-and-stick representations 

were added for the substrate and the mutated glutamine residue, in addition to licorice 

representations for the amino acids involved in substrate binding. 
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Figure 82. Predicted regiospecificity for the L137Q mutant Cyp4f13 homology model. 

The substrate consistently remained exposed to the heme in the same vicinity throughout 

the entire simulation, as evidenced by the relatively dominant amounts of terminal or 

subterminal oxidation. 

 

While initially theorized to produce the most amount of perturbations to 

orientations in substrate binding to catalyze ω-hydroxylation, this mutant proved to be the 

least disruptive. The L137Q mutation introduced a large amount of hydrogen bonding 

through the amide of its mutated sidechain, however its usage is questionable when 

comparing the modified residue to its predecessor in the native protein. 

Leucine has three heavy atoms (non-hydrogen) along its residue sidechain 

extending from the alpha carbon of its amino acid backbone. This makes glutamine a 

dissimilar residue to use as it has four heavy atoms along its sidechain. Asparagine, a 

related amino acid structure with a three heavy atom sidechain as well, would make for a 

better choice in mutation. The selection of the glutamine over the more appropriate 

asparagine would have an impact in volume taken up by the residue by a small but 

prominent amount. The volume added by the additional methylene side chain would have 
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a different steric environment in the protein’s native cavity. Water channels could be 

disturbed in a way that the asparagine might have impacted less so. 

This residue was chosen based off previous studies on mutant P450s. In the paper 

by Richards et al., the team of researchers used a library of P450BM-3 mutants. Included in 

almost every construct was the L188Q mutation shown to have a significant effect on the 

ability of P450 to bind its non-polar drug substrate noscapine. This might have also been 

an artifact of the generation of cloned mutants, as mutation was made easier through a L-

to-Q codon change. This appears to be the case as the codon switch between the two 

amino acids is one base pair (CUA to CAA). If the researchers wanted to change the 

mutation to the more appropriate-length asparagine, they would need to perform at least 

2-3 base pairs in order to mutate the sidechain from leucine to asparagine. 

As computational mutation does not share this experimental hardship, potential 

future work should consist of mutation of the leucine to asparagine and perform a similar 

simulation to observe its possible effects on the structural formation of the Cyp4f13-

arachidonic acid complex. 

 

Summary 

In this work, we demonstrate that the residues within the active site of the 

Cyp4f13 homology model have important interactions that control substrate binding and 

metabolic product formation. The homology model simulations revealed that Cyp4f13 

interacts with the arachidonate substrate though several side chains, including the Arg237 

and Leu137 residues. Additionally, the lack of a covalently bound heme through an ester 

bond formed by a proximal glutamate residue and a hydroxylated heme methyl 
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substituent at the Gly327 position, has a role in the site for oxidation of the P450s fatty 

acid substrate. Importantly, these interactions were preserved in the previous set of MD 

simulations when different conformations and substrates were introduced.  

In these series of experiments, the effects of mutating the putative interacting 

residues Gly327, Arg237, and Leu137 were studied. These mutations significantly altered 

the interactions of the active cavity whether through introducing hydrophilic interactions 

in the form of solvent water presence, or through enhancing hydrophobic forces, leading 

to better desolvation of the active site. To theoretically corroborate these findings, longer 

time frame simulation would be necessary to gain a large amount of sample size in order 

to draw more reliable conclusions. Notably, the G327E mutation with the parameterized 

novel heme linkage had an interesting effect, as it was theorized that its steric influence 

would be the primary mode of action of altering substrate binding and oxidation 

regiochemistry of the arachidonic acid substrate. The G327E constructs had a substantial 

increase of polarity of the active site as solvent TIP3P water models filled the cavity 

volume in the 100 ns time frame of the constant volume MD simulation. The R237L 

construct resulted in a change of the binding mode of the fatty acid substrate, as the 

carboxylate head group of the arachidonate migrated to Arg100, preserving throughout 

the remainder of the simulation. The terminal carbon remained the nearest site for 

oxidation, however mostly remained out of theoretical reach for the P450 radical rebound 

catalytic mechanism to possibly occur (>4.8 angstroms). Lastly, the L137Q construct 

resulted in an enhanced desolvation of the active pocket, indicating a higher amount of 

binding of the substrate, as solvent water molecules interacted only with the additional 

hydrogen bond acceptors and donors of the amide moiety from Gln137. While all mutant 
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Cyp4f13 constructs demonstrated sufficient substrate binding of arachidonic acid, we 

observed significant differences in their predicted formation of product. Wild-type 

interactions were heavily altered by the introduction of the additional covalent heme 

linkage and the three site mutations: G327E, R237L, and L137Q. Thus, we theoretically 

demonstrate that the mutation of several important residues of the native Cyp4f13 

influences the binding mode, binding specificity, active cavity solvation, and alters water 

channel formation. Additional work should incorporate longer time frame simulation, 

different initial thermodynamic conditions, in addition to further mutation of key residues 

within both the binding and catalytic sites of the murine Cyp4f13 enzyme. 
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CHAPTER VI 

Conclusions and Future Work 

In this thesis, all-atom molecular dynamics (MD) simulations have been used to 

investigate the binding of arachidonic acid to a constructed P450 structural ensemble for 

the murine Cyp4f13 enzyme. We employed use of homology modeling, parameterization, 

residue mutation and MD simulations to investigate the active site and different 

conformational states of prospective metabolites for the murine Cyp4f13 system. The 

homology model for Cyp4f13 was produced using I-TASSER service and was subjected 

to consequent MD refinement techniques to generate a model ready for molecular 

docking. Molecular docking was employed to determine conformations of the target 

substrate, arachidonic acid, for the Cyp4f13 homology model. A pair of conformations 

were selected and used to investigate the binding mode of the polyunsaturated fatty acid 

within the enzyme’s active site. Additionally, the ω-hydroxylated metabolite of clinical 

significance, 20-HETE, was also modelled and put through simulation in order to observe 

its possible evacuation from the active site. Through individual mutation, the active site 

was probed for its role in substrate binding and oxidative regiochemistry with three 

specific mutations: G327E, R237L, and L137Q. For the G327E mutant, a covalent heme 

linkage, observed to have an important role in ω-hydroxylation of substrates, was 

parameterized in the CHARMM force field format, and patched into the system in order 

to observe its effects on binding and site of oxidation. 

Template selection was made through sequence alignment and similarity 

comparison. Refinement consisted of method validation through scoring of threading 

methods, RMSD analysis of the protein backbone, protonation state prediction, prosthetic 
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group patching, energy minimization, annealing, and thorough equilibration to ensure 

proper embedding into simulated DOPC lipid membrane bilayer. Solvation and counter 

ions were added to the system in order to produce an electrostatic environment of the 

virtual protein in its chemical setting. Molecular Dynamics Simulations were calculated 

by the Nanoscale Molecular Dynamics (NAMD) software. Molecular docking was 

performed using the AutoDockTools automated docking tool package. Quantum 

chemical calculations, QM or otherwise, were performed using the Gaussian 09w 

program suite. Visualization was performed using Visual Molecular Dynamics (VMD) 

program package and the GaussView 5.0 interface. Trajectories were analyzed using the 

RMSD Trajectory tool and NAMDPlot plugins of the VMD package. Mutation, structural 

alignment, and residue selection was performed using the Mutator, Multiseq and 

Sequence Viewer addons for VMD. 

Homology modeling of the Cyp4f13 system presented in this work appeared to be 

successful, as the initial resting state of microsomal P450s was produced in the substrate-

free model and persisted throughout its constant volume production simulation. Proper 

docking of the arachidonic acid resulted in a small collection of conformations of the 

arachidonate ligand to the Cyp4f13 model, with only relevant states chosen to have 

significance to the ω-hydroxylated product formation of the eicosanoid substrate. 

Computational chemistry software was used to modify the arachidonic acid to produce 

the necessary coordinates for the simulation of the 20-HETE metabolite as well. 

Simulation of these docking conformations resulted in the identification of several amino 

acid residues that were observed to have important interactions with the eicosanoid 

substrate with the binding and catalytic sites of the Cyp4f13 homology model. Mutation 
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was introduced to the Cyp4f13 system as a method of probing the active site and resulted 

in different binding activity for the protein-substrate complex. The modifications to the 

polarity of the active pocket resulted in altered solvation of the inner cavity of the 

Cyp4f13 active site and perturbation of the native protein’s tertiary structure. The 

interactions observed with the active site and solvent water molecules between the native 

protein and the mutants were remarkably different, as the hydrophobic interactions with 

the protein and substrate were disturbed by a pronounced presence of water, or lack 

thereof in the case of the L137Q mutant.  

The simulation timescales and sampling required to obtain physiologically 

relevant binding activity for the Cyp4f13 homology models and mutant variants bound to 

the eicosanoid substrate serve as the limiting factor in the accuracy of these results. 

Conclusions were drawn from thermodynamic sampling of the dynamics presented by the 

wild-type and mutant Cyp4f13 structural ensembles. Relative distances, non-bonding 

interactions, and energy considerations were used to assess and characterize the Cyp4f13 

active site. Simulations such as those presented in this thesis are always difficult to 

precisely reproduce due to the pseudo-random nature of initial velocity integration. 

Caution should be exercised with extracting properties and characteristics of molecular 

systems from trajectory calculations such as these. An original goal of this study was to 

achieve a method to predict the metabolite profiles based on the simulation frames, 

however, this became unrealistic based on the issue of computational time and of 

reproducibility of these calculations. It is hoped, however, that the simulations and 

outcomes presented in this thesis will provide the foundations for future work that could 
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be performed that would provide better insight into the dynamics of both murine and 

human CYP4F subfamily of P450 monooxygenases.  

There is much to be done in terms of future work. The most pressing 

consideration that deserves study would be the simulation of the ultimate oxidant, 

Compound I, of the P450 catalytic cycle. The proper parameterization would make it an 

interesting model for use in investigating the potential fates of oxidized eicosanoid 

metabolites by the CYP4F enzymes. The ferric iron(III) species used in this study acts as 

a great model of the resting state, however, its electronic environment greatly changes 

with the reduction of the metal center by its redox partners, and subsequent spin-state 

change orchestrated by substrate binding. This is especially the case after dioxygen 

binding and successive protonation results in the extremely electrophilic oxyferryl 

species. 

The introduction of the cytochrome P450 reductase FAD and FMN domains 

would also lead to an interesting avenue of research. The addition of the two structures 

and their interactions with the heme domain should result in a change of conformational 

state for the P450, as is observed to be the case in several microsomal P450s. This might 

alter substrate binding with its protein-protein interaction that is not observed in the 

solitary globular heme domain of the P450. 

A known CYP4F inhibitor, HET0016, has been observed to have an observable 

effect on murine Cyp4f13, making it one of the only known compounds confirmed to 

inhibit the enzyme.145 Modeling and docking of the inhibitor into a homology model of 

the murine Cyp4f could prove useful in drug design, as these proteins are theorized to 

play a role in inflammation, cancer, and could potentially be used as a biomarker 
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Understanding the interactions of small molecules and the active sites of their 

physiological targets is imperative in the engineering and design of novel therapeutics.87 

As was previously mentioned, further work on mutant Cyp4f13 models would 

also be interesting to perform, as the work presented in this thesis indicated a drastic 

change in substrate binding activity. Possible mutation of leucine 137 to the more 

appropriately length asparagine residue could produce a less dramatic alteration to the 

active site while maintaining the same change in polarity that the L137Q mutation 

introduced. 

More simulation time might be necessary to investigate the direct impact in the 

addition of the heme covalent linkage of the G327E mutant. Longer time frame 

simulations, such as in the microsecond range, could result in a desolvation of the active 

site and might indicate the possible formation of an ω-hydroxylated product of the 

eicosanoid substrate by the Cyp4f13 isoform. 

The individual roles of murine Cyp4f proteins are currently still being 

investigated, as their roles in inflammation and cancer are increasingly suggested by 

mounting evidence in experimental methods.90 What remains to be seen are the 

computational insights that could be gained using all-atom dynamic simulation to 

understand what clinical results are found using subcloning and recombinant methods. It 

is hoped that such developments may well lead to the more common use of these 

computational methods, such as MD,  to aid in the interpretation of metabolomic data by 

researchers and as such, provide for a better understanding of the biochemical cosmos for 

the fields of biochemistry, and medicinal chemistry.  
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