
International Journal of Knowledge Engineering, Vol. 3, No. 2, December 2017

Android System Partition to Traffic Data?

Brittany Byrd, Bing Zhou, and Qingzhong Liu

Abstract—The familiarity and prevalence of mobile devices 
inflates their use as instruments of crime. Law enforcement 
personnel and mobile forensics investigators, are constantly 
battling to gain the upper-hand at developing a standardized 
system able to comprehensively identify and resolve the 
vulnerabilities present within the mobile device platform. The 
Android mobile platform can be perceived as an antagonist to 
this objective, as its open nature provides attackers direct 
insight into the internalization and security features of the most 
popular platform presently in the consumer market. This paper 
identifies and demonstrates the system partition in an Android 
smartphone as a viable attack vector for covert data trafficking. 
An implementation strategy (comprised of four experimental 
phases) is developed to exploit the internal memory of a 
non-activated rooted Android HTC Desire 510 4g smartphone. 
A set of mobile forensics tools: AccessData Mobile Phone 
Examiner Plus (MPE+ v5.5.6), Oxygen Forensic Suite 2015 
Standard, and Google Android Debug Bridge adb were used for 
the extraction and analysis process. The data analysis found the 
proposed approach to be a persistent and minimally detectable 
method to exchange data.

Index Terms—Android forensics, factory reset, system 
partition, AccessData MPE+, oxygen forensic standard suite, 
android debug bridge.

I. Introduction

It is estimated that roughly more than 1.08 million of the 
world's population use smartphones [1]. And Android is now 
the most popular operating system platform in the world. 
Hence, Android forensics (a subset of mobile forensics) has 
been introduced to mitigate these challenges and offer the 
digital forensics community support - with the key areas of 
concern listed as the how, what, and wheres of data storage [2]. 
There exists work that demonstrates and classifies 
anti-forensics tools and techniques (e.g., data destruction, 
data hiding, counterfeiting data, and more) against the 
capabilities of digital forensics tools [3]-[10].

Android smartphones use NAND flash memory to store 
persistent data on the device (e.g., the operating system, 
applications, and user data). Investigators are painstakingly 
aware that the internal flash memory of a mobile device can 
be extracted and examined with the use of forensics tools, and 
that despite its non-volatile nature this data can be arbitrarily 
erased at the discretion of the device user via the factory reset 
feature. However, not all areas of the internal flash memory 
(e.g., the boot and system partitions) are affected by the

Manuscript received August 2017; revised November 2017. This work 
was supported in part by the Sam Houston State University (SHSU) Office of 
Research and Sponsored Programs, the SHSU College of Sciences and the 
SHSU Department of Computer Science.

The authors are with the SHSU Department of Computer Science, 
Huntsville, Texas, USA (e-mail: bas050@shsu.edu, bxz003@shsu.edu, 
liu@shsu.edu).

application of the factory reset on the device, and provide 
fundamental operations mandatory to function the 
smartphone... so why not target one of these core partitions 
for manipulation?

The purpose of this work sought to demonstrate that 
legitimate and marginally traceable means can be used by 
attackers to exchange data (nefarious or otherwise) through 
the openness offered by the Android mobile platform.

The following contributions were made:• An implementation strategy was proposed that exploits 
the system partition of an Android smartphone, to offer a 
persistent and undetectable method to exchange data.• Highlighted a potential attack vector inherent to the 
openness presented within the Android platform, 
concerning superuser privileges.• Identified the need for mobile forensic tools to better 
manage the vast amount of data stored on Android 
smartphones, to enable data detection anomalies with 
precision.

The remainder of this paper is organized as follows:
Section II focuses on the broad topic of android forensics, 

Android structure and internalization, extraction tools, 
Android security and more. Section III outlines the 
implementation strategy created to undermine the removal 
and recovery of the data intentionally written to the system 
partition. Significant findings are presented in this section. 
Lastly, Section IV offers a brief conclusion.

II. Overview of Android Forensics

A. Android Forensics and Android Structure
—Android is a fast growing, feature-rich, and exciting 

mobile platform. The combination of features, connectivity, 
and popularity naturally lead to a growing need for Android 
forensics” [2]. Android forensics is a subset of mobile 
forensics that focuses predominantly on challenges 
concerning data storage and acquisition methods specific to 
the Android mobile device platform [2], [11].

The Android architecture primarily includes the operating 
system, a middleware, and set of applications. The Android 
mobile platform is comprised of core components that are 
consistent, regardless of device type or version that support 
features common among Android devices, and enable users to 
store data externally via SD card or internally using NAND 
flash [2].

1) NAND flash
NAND flash will be discussed in detail, as gaining 

superuser privileges to the Android device permits users to 
access the internal memory of the device and exploit the 
system partition.

doi: 10.18178/ijke.2017.3.2.084 37

mailto:bas050@shsu.edu
mailto:bxz003@shsu.edu
mailto:liu@shsu.edu


International Journal of Knowledge Engineering, Vol. 3, No. 2, December 2017

An Android device is comprised of two primary types of 
memory: random-access memory (RAM) and NAND flash 
memory that are built into a single component referred to as 
the multi-chip package (MCP) to manage data stored in the 
device [12]. The RAM is volatile memory so its state cannot 
be sustained following a power lost or reboot, making it a 
poor location to insert data that requires persistence. Whereas, 
NAND flash memory is nonvolatile so its data is saved after 
the device has been powered off or rebooted, supporting 
persistence. NAND flash is responsible for storing the 
bootloader, the operating system and system files, and large 
portions of user-generated data [2].

2) Memory Technology Device (MTD)
The MTD provides Android with the necessary Flash 

Transition Layer (FTL) interacting with the NAND flash. The 
MTD is represented by partitions [2], [12]:• boot - the boot partition includes the Android kernel and 

ramdisk, without the boot partition the device will not 
boot.• system - the system partition includes the entire Android 
operating system: Android GUI and all the core 
pre-installed system applications (excluding the kernel 
and ramdisk).• recovery - the primary purpose of this partition is to 
perform backup operations. An alternate for the boot 
partition, the recovery partition allows the device to boot 
into a recovery mode to perform advanced recovery and 
maintenance operations.

The partitions outlined below are all affected by the factory 
reset function and upon its execution all user-generated data 
and subsequent modifications thereof should be erased from 
each partition to regain the original factory settings [12], [13]:• data - referred to as the userdata partition, the data 

partition includes all user created data (e.g., contacts, 
SMS settings, installed applications).• cache - the cache partition stores frequently accessed 
data and application components. The data stored in this 
partition is acquired from common used of the device.• misc - this partition includes miscellaneous system 
settings in the form of on/off switches.

Mobile forensics tools specifically target the data stored in 
the NAND flash memory of the mobile device.

B. Extraction Tools
There are a number of mobile forensics extraction tools 

available in the forensics market - the majority are 
commercial tools, which can be difficult to obtain given cost 
and security considerations, the remainder are open source 
tools. Commercial mobile forensics tools can provide for 
logical acquisition of thousands of mobile device platforms, 
while physical acquisition is only offered on a limited basis 
for specific device platforms [14].

Android forensics techniques are either logical or physical, 
each with the key goal to avoid altering the original state of 
the targeted device during the investigative process. 
Therefore, the majority of Android forensics tools and 
techniques eliminate the need to detach the flash memory by 
directly connecting the phone into a forensics hardware tool 
or a computer running the forensics software, to perform a 

logical or physical acquisition [2], [11]:
1) Logical acquisition
Logical forensics techniques are limited to the bit-by-bit 

extraction of allocated (not deleted) data accessible on the file 
system (e.g., files and directories). A logical acquisition does 
not require root access, only that USB debugging be enabled. 
In Android forensics the most common logical technique 
cannot enable direct access to the file system, but only 
performs at a more abstract and less-effective level than the 
traditional logical techniques performed on computers. This 
limitation prevents logical forensics techniques targeting the 
Android platform from acquiring all allocated data directly 
from the file system.

2) Physical acquisition
Physical techniques are sub-divided into two main 

categories: hardware and software, and target the physical 
storage medium directly, bypassing the file system to gain 
accessibility to both allocated and unallocated (deleted) data. 
Root access on the targeted device is needed for forensic 
techniques that acquire physical images, permitting 
exponentially more data to be extracted from the device [8].

Typically, mobile forensics extraction tools advertise that 
the following data can be obtained from the mobile device, up 
to and including [15]: text messages (SMS/MMS), contacts, 
call logs, e-mail messages, GPS coordinates, photos/videos, 
web browser history, and calendar appointments.

C. Android Security
The Android platform uses a multilayered security 

structure that supports the open platform of the Android 
architecture and is designed to protect the device user. Mostly, 
Android security mechanisms are predominantly concerned 
with the installation and permissions setting of applications 
on the device [16]. Additional security mechanisms 
concerning data storage exists that both internally and 
externally limit where on a device, data can be written and 
sustain persistence against a factory reset - which is defined 
as the primary method of securely returning the device to its 
original factory settings, by erasing all device settings, user 
data, and third party applications [14], [16], [17].

III. Implementation Strategy

The implementation strategy undermines the open nature of 
the Android market, by gaining superuser permission via root 
access to write data into the system partition to serve as a 
covert data trafficking method - see [18] and [19] on how to 
root a HTC Desire 510.

The strategy consists of four phases. In summary, the 
objective of Phases One and Two were to identify and gain 
access to the attack vector located within the targeted device. 
Phase Three describes how the data was inserted and 
modified to sustain persistence and minimize detectability. 
Lastly, Phase Four discusses the purpose in executing the 
factory reset against the device to further undermine suspicion 
and gain legality (if desired).

The case study conducted in this paper used the 
commercial tools: adb application via Android SDK and 
AccessData MPE+ to provide images that contain allocated 

38



International Journal of Knowledge Engineering, Vol. 3, No. 2, December 2017

and unallocated data, and the Oxygen Forensics Standard 
Suite mobile forensics tool to provide a logical image, from 
the targeted Android smartphone. Provided below is a brief 
summary of each tool:

Android Debug Bridge (adb) [2], [15]
The Google Android Operating System provides a 

Software Development Kit (SDK) to assist application 
developers in communicating with an Android device via 
USB. The Android Debug Bridge adb tool is one of the 
available proprietary tools in the SDK. The adb application 
tool is a client-server executable - a daemon runs in the 
background per device instance. The adb tool can execute 
several commands on the Android device.

Oxygen Forensic Suite 2015 Standard [14], [15]
A standard license for personal use of the Oxygen Forensic 

Suite can be freely obtained upon request from the company. 
The standard suite can support over 10,350 different mobile 
devices and platforms. The standard suite installs a client 
application, Oxygen Agent into the external memory of the 
phone to extract data from the device onto the computer. The 
forensics software is equipped with a built-in HEX, text, and 
multimedia viewer for files. Data parsing, unicode support 
and data integrity verification are also provided.

AccessData Mobile Phone Examiner Plus (MPE+)
The following MPE+ overview was provided by the vendor 

[20]: Mobile Phone Examiner Plus (MPE+) is a stand-alone 
mobile device investigation solution that includes enhanced 
smart device acquisition and analysis capabilities. MPE+ 
offers support for over 10,000 mobile devices, platforms and 
operating systems and provides the following features: 
deleted data recovery, device password bypass, data carving, 
and more.

A controlled environment was created using an Android 
HTC Desire 510 4g smartphone. The smartphone lacked a 
contract and was not activated during its use as a data 
trafficking device to avoid stipulations from a 
telecommunications provider, provide anonymity to the 
communicating parties, and offer an easy means to both 
acquire and discharge the device without concern. The 
TeamWin Recovery Project utility was used to flash the 
SuperSu.zip binary file as a custom ROM, permitting 
superuser privileges to access the entire file system on the 
device. The application of the proposed technique is 
evaluated in a case study and summarized.

For simplicity purposes, only one trial experiment will be 
discussed in detail: The “NanumGothic-Bold.ttf” trial since 
the results provided are reflective of all the trials conducted, 
as shown in Tables III and IV and outlined in the Significant 
Findings.

A. Phase One — Device Exploration
In this phase a cursory overview of the Android device is 

completed. Using Oxygen and MPE+ mobile forensics tools, 
and the adb application a viable attack vector on the device is 
identified to enable data insertion and hiding. Note: USB 
debugging must be enabled prior to using any of the 
referenced tools - see [21].

Exploration of the device via the execution of varied UNIX 
commands within the adb shell application, identify the 
system partition - specifically, the /system/fonts folder as an 

appealing location to write the hidden message text file, due 
to its unsuspecting and convoluted nature since more than 50 
different font files are observable in the directory.

See [22] for a list of *NIX commands and their functions.
A compilation of the mobile forensics tools: Oxygen 

Forensic Suite 2015 Standard and MPE+, in conjunction with 
the adb application were used to extract a logical image of the 
device and evaluate any limitations concerning the tools data 
retrieval capabilities as shown in Table I. Use of adb requires 
prior installation of SDK Manager and adb drivers [23], [24].

TABLE I: Mobile Forensics Tools Logical Data Retrieval
Capabilities
Oxygen MPE+ adb

Device name yes yes yes
Pre-installed packages no yes yes
/system partition no no yes
List device root status yes no no

B. Phase Two — Device Rooting
In this phase the bootloader is unlocked and root access is 

gained on the Android smartphone - see [18], [19] if using a 
HTC Desire 510. Once, superuser privileges have been 
acquired, manual access to the directories and files on the 
device is permissible. The system partition can now be 
remounted from read only to read-write, and a physical 
acquisition can now be performed on the device. The mobile 
forensics tools: Oxygen Forensic Suite 2015 Standard and 
MPE+, in conjunction with the adb application were used to 
extract a physical image of the device and evaluate any 
limitations concerning the tools data retrieval capabilities as 
shown in Table II.

TABLE II: Mobile Forensics Tools Physical Data Retrieval
Capabilities

Note: Use the adb pull command to retrieve data from the device.

Oxygen MPE+ adb
Device 
name

yes yes yes

Pre-installe 
d packages

no yes yes

/system
partition

no yes yes

List device 
root status

yes no no

Timestamp yes yes yes
Index ID no no yes
HEX view 
display

yes yes no *adb pull

C. Phase Three — Data Insertion and Hiding
Fifteen trial experiments were performed that evaluated the 

application of varied techniques involving data insertion, 
hiding, and manipulation. MPE+ and adb tools were used to 
acquire physical images of the system partition to enable 
forensic analysis and validate the effectiveness of the strategy 
presented in this paper.

1) Write, size and rename
Data insertion via the adb push command is used to write 

the 53 byte text file named “secrettxt” generated on the 
workstation onto the Android device, specifically into the 
/system/fonts folder (the phone must be in 'Recovery' mode to 

39



International Journal of Knowledge Engineering, Vol. 3, No. 2, December 2017

complete this task). A physical acquisition using MPE+ and 
adb reveal that in comparison to “secret.txt” - files 
preinstalled into the /system/fonts directory were larger and 
had a .ttf extension. Hence, modifications were made to 
—secret.txt” as follows:• —secret.txt” is padded with X's to increase the file size 

from 53 bytes to approximately 83KB.• —secret.txt” was renamed to —NanumGothic-Bold.ttf” - a 
non-existent font file name (reflective of the name of an 
existing preinstalled font file —NanumGothic.ttf”) is 
created.

Following the modifications, —NanumGothic-Bold.ttf” is 
written into the /system/fonts folder via the adb push 
command.

2) Index ID
Execution of the ls -li command in the adb shell revealed 

that the preinstalled font files were assigned sequential index 
ID numbers. In comparison, —NanumGothic-Bold.ttf” failed 
to satisfy this consistency and was assigned an outlier index 
ID number. Note: no technique was identified that is able to 
modify the index ID number and MPE+ does not display 
index ID numbers.

3) Timestamp

TABLE III: Probability of Detection — High/Med/Low/None

one

Tri
al #

Write Size Rename Index ID Timestamp
*via touch

1 Low-N 
one

None None Med-Low Med-Low

2 Low-N 
one

None None Med-Low Med-Low

3 Low-N 
one

None None Med-Low Med-Low

4 Low-N 
one

None None Med-Low Med-Low

5 Low-N 
one

None None Med-Low Med-Low

6 Low-N 
one

None None Med-Low Med-Low

7 Low-N 
one

None None Med-Low Med-Low

8 Low-N 
one

None None Med-Low Med-Low

9 Low-N 
one

None None Med-Low Med-Low

10 Low-N 
one

None None Med-Low Med-Low

11 Low-N 
one

None None Med-Low Med-Low

12 Low-N 
one

None None Med-Low Med-Low

13 Low-N 
one

None None Med-Low Med-Low

14 Low-N 
one

None None Med-Low Med-Low

15 Low-N None None Med-Low Med-Low

*Manual examination consists of actively searching through the targeted 
device to observe any noticeable discrepancies.

*High = high probability of detection (90% or greater) when using any 
forensics tool capable or performing a manual examination that displays the 
disparate data.

*Med = medium probability of detection (between 11-89%) only if using 
a tool capable of displaying the disparate data; a manual examination did not 
display any disparate data.

*Low = detection is low to minimal (10% or less) when using a forensics 
tool and/or manual examination.

*None = zero probability of detection (0%) when using the provided 
forensics tool and/or manual examination.

Typically, a file has three main timestamps: 'creation date', 
'date modified', and 'last accessed'. A physical acquisition via 
MPE+ of the /system/fonts folder after data insertion revealed 
that data written to the system partition have a 'creation date' - 
whereas, the preinstalled files do not. MPE+ is able to display 
all three main timestamps. However, adb only displays one 
timestamp (either the 'date modified' or 'last accessed'). No 
technique was identified that is able to modify the 'creation 
date' timestamp of a file. However, the touch command can 
change the 'date modified' and 'last accessed' timestamps. The 
applied modifications were as follows:

The following touch commands were used to change the 
—NanumGothic-Bold.ttf” text file timestamp from the current 
date to reflect the timestamp identical to that of the 
preinstalled font files, respectively:

#touch -m -t 201408131149.00
/system/fonts/NanumGothic-Bold.ttf

#touch -a -t 201408131149 .00
/system/fonts/NanumGothic-Bold.ttf

Table III demonstrates the likelihood of detection, in using 
each described technique to insert, hide, or manipulate data.

The application of Phase Four serves to provide legality, 
ensure anonymity of the communicating parties, and sustain 
persistence through the execution of the factory reset in the 
Android device. For the purposes of this paper, this phase is 
included to substantiate the findings demonstrated in Table 
IV.

TABLE IV: Level of Persistence — High/Med/Low

*High = none of the inserted file content was erased after reset

Tri
al #

Write Size Rename Index ID Timestamp

1 High High High N/A High
2 High High High N/A High

3 High High High N/A High
4 High High High N/A High
5 High High High N/A High

6 High High High N/A High

7 High High High N/A High

8 High High High N/A High
9 High High High N/A High
10 High High High N/A High
11 High High High N/A High
12 High High High N/A High
13 High High High N/A High

14 High High High N/A High
15 High High High N/A High

*Med = the inserted file content was partially erased after reset
*Low = all of the inserted file content was erased after reset

D. Phase Four — Factory Reset
The factory reset is applied to evaluate persistence. An 

attacker seeking to further evade detection and add a layer of 
legality could simply write the message to the system partition, 
issue a factory reset on the device, then sell it to a company 
that recycles electronics. The intended recipient purchases the 
device, retrieves the message, and destroys the smartphone - 
and no one would be the wiser, since the smartphone never 
has to be activated - see [25] on how to execute a factory reset 
on an HTC Desire 510 smartphone.

40



International Journal of Knowledge Engineering, Vol. 3, No. 2, December 2017

In summary, it is favorably presumed that in the event of an 
investigation, the initial placement of a hidden file in the 
unsuspecting /system/fonts directory will substantially 
minimize detection, but there is no guarantee. The proposed 
technique presented in this paper, serves to provide a 
persistent and marginally detectable means to covertly exploit 
the system partition for use as a message delivery system. In 
addition, legality by way of selling the smartphone to an 
electronics recycle/resell company can be established to 
further undermine the efforts of forensics examiners. The 
findings support that the techniques used to both establish 
sustenance and undermine detection (as demonstrated within 
the case study) have an estimated high success rate.

To sum it up, the detection via a compilation of mobile 
forensic tools extraction and analysis efforts is possible, yet 
limited:• Execution of the touch command is proven to be 

persistent following a factory reset.• Modification of a file's size written into the system 
partition is not detectable.• Standard edition of the Oxygen Forensic Suite failed to 
provide a physical image of the rooted device. *May be 
a direct result of the trial version provided, and not 
applicable of the forensic tool as a whole.• Execution of the adb push command to write a file into 
the system partition is detectable, if a forensics tool 
displays sequential index ID numbers for the 
preinstalled files.• Renaming modification of an inserted file to copy the 
file extension of a preinstalled file in the /system/fonts 
directory is not detectable.• Application of a factory reset on the Android device did 
not affect the intentional changes made to the system 
partition - adb pull command verified that the 
“secret.txt” content was not altered either.

IV. Conclusion

In conclusion, the implementation strategy proposed in this 
paper was successful in demonstrating how the system 
partition in an Android smartphone can be exploited to 
provide a persistent and mildly detectable message delivery 
system. The tools and techniques used are readily available 
and require minimal prior technological knowledge to 
successfully execute.

The findings identified in this work serve to bring attention 
to future implications concerning viable means for terrorists 
to stealthily and successfully traffic data, as a direct 
consequence of an inability to develop more advanced tools 
and techniques capable of detecting and analyzing data 
disparities among the vast amount of data stored within 
mobile devices.

Acknowledgment

The authors are grateful to Dr. Karen Murff, Ms. Rachel 
Anderson, Ms. Susan Korn, and Mr. Lee Reiber and Oxygen 
Forensics for providing the trial versions to substantiate the 
findings.

References

[1] Smartphone users around the world—Statistics and facts [Infographic]. 
[Online]. Available: http://www.go-gulf.com/blog/smartphone/

[2] A. Hoog, Android Forensics: Investigation, Analysis and Mobile 
Security for Google Android. Waltham, MA: Elsevier, 2011

[3] I. Sporea, “On the availability of anti-forensic tools for smartphones,” 
International Journal of Security, vol. 6, no. 4, pp. 58-64, 2012.

[4] A. Distefano, “Android anti-forensics through a local paradigm,” in 
Proc. the 10th Annual Digital Forensic Research Workshop (DFRWS 
'10).

[5] P. Albano, “On the construction of a false digital alibi on the android 
OS,” in Proc. the 2011 Third International Conference on Intelligent 
Networking and Collaborative Systems. Washington DC.

[6] P. Albano, A. Castiglione, G. Cattaneo, and A. De Santis, “A novel 
anti-forensics technique for the android OS,” in Proc. BWCCA. IEEE 
Computer Society, 2011.

[7] R. Schwamm, “Effectiveness of factory reset on a mobile device,” M.S. 
thesis, Comp. Science Dept., Naval Postgraduate School, California, 
[Online]. Available:
http://calhoun.nps.edu/bitstream/handle/10945/41441/14Mar_Schwa 
mm_Riqui.pdf?sequence=1

[8] G. S. Cardwell, “Residual network data structures in android devices,” 
M.S. thesis, Comp. Science Dept., Naval Postgraduate School, 
California, 2011. [Online]. Available:
http://faculty.nps.edu/cdprince/mwc/docs/THESIS/2011-08_thesisCa 
rdwell.pdf

[9] L. Simon and R. Anderson, “Security analysis of android factory 
resets,” in Proc. 4th Mobile Security Technologies Workshop (MoST). 
[Online]. Available:
http://www.cl.cam.ac.uk/~rja14/Papers/fr_most15.pdf

[10] K. Munro, Android scraping: Accessing personal data on mobile 
devices. Network Security. [Online]. pp. 5-9. Available: 

 
353485814701114
http://www.sciencedirect.com.ezproxy.shsu.edu/science/article/pii/S1

[11] J. Lessard and G. Kessler. “Android forensics: Simplifying cell phone 
examinations,” Small Scale Digital Device Forensics Journal, vol. 4, 
no. 1, 2010.

[12] A. Folloder, Digital forensics and file carving on the android platform.
[Online]. Available:
http://thehebrew.net/Digital%20Forensics%20and%20File%20Carvin
g%20on%20the%20Android%20Platform.pdf

[13] Android partition details. [Online]. Available:
http://techblogon.com/wp-content/uploads/2013/02/partition-size-in- 
android-device1.jpg

[14] V. Vijayan, “Android forensic capability and evaluation of extraction 
tools,” M.S. thesis, Advanced Security & Digital Forensics, Edinburgh 
Napier University, 2012.

[15] Compare oxygen forensic suite editions. [Online]. Available: 
http://www.oxygen-forensic.com/en/compare/

[16] S. Hobarth and R. Mayrhofer, “A framework for on-device privilege 
escalation exploit execution on Android,” in Proc. IWSSI/SPMU 2011: 
3rd International Workshop on Security and Privacy in Spontaneous 
Interaction and Mobile Phone Use, Colocated with Pervasive 2011.

[17] Android security overview. [Online]. Available:
https://source.android.com/devices/tech/security/

[18] Brian, How to unlock the bootloader for the htc desire 510. [Online]. 
Available: 

 
r-the-htc-desire-510/
http://briansprojects.net/2014/10/26/how-to-the-unlock-bootloader-fo

[19] Brian. How to root the HTC desire 510. [Online]. Available: 
http://briansprojects.net/2014/12/21/how-to-root-the-htc-desire-510/

[20] Mobile phone examiner plus. [Online]. Available:
http://accessdata.com/solutions/digital-forensics/mpe

[21] D. Cogen, How to set up ADB/USB drivers for android drivers 
(updated 7/15/2014). [Online]. Available:
http://theunlockr.com/2009/10/06/how-to-set-up-adb-usb-drivers-for- 
android-devices/

[22] Brian, How to install android fastboot and ADB on windows. [Online]. 
Available: 

 
nd-adb-on-windows/
http://briansprojects.net/2015/06/24/how-to-install-android-fastboot-a

[23] A. Bednarz. HTC desire 510 enable or turn on developer options 
development & usb debugging. [Online]. Available: 
https://www.youtube.com/watch?v=2IUCbXRpFB0

[24] Basic UNIX commands. [Online]. Available:
http://mally.stanford.edu/~sr/computing/basic-unix.html

41

http://www.go-gulf.com/blog/smartphone/
http://calhoun.nps.edu/bitstream/handle/10945/41441/14Mar_Schwa
http://faculty.nps.edu/cdprince/mwc/docs/THESIS/2011-08_thesisCa
http://www.cl.cam.ac.uk/%7Erja14/Papers/fr_most15.pdf
http://www.sciencedirect.com.ezproxy.shsu.edu/science/article/pii/S1
http://thehebrew.net/Digital%2520Forensics%2520and%2520File%2520Carvin
http://techblogon.com/wp-content/uploads/2013/02/partition-size-in-android-device1.jpg
http://www.oxygen-forensic.com/en/compare/
https://source.android.com/devices/tech/security/
http://briansprojects.net/2014/10/26/how-to-the-unlock-bootloader-fo
http://briansprojects.net/2014/12/21/how-to-root-the-htc-desire-510/
http://accessdata.com/solutions/digital-forensics/mpe
http://theunlockr.com/2009/10/06/how-to-set-up-adb-usb-drivers-for-android-devices/
http://briansprojects.net/2015/06/24/how-to-install-android-fastboot-a
https://www.youtube.com/watch?v=2IUCbXRpFB0
http://mally.stanford.edu/%7Esr/computing/basic-unix.html


International Journal of Knowledge Engineering, Vol. 3, No. 2, December 2017

[25] Resetting HTC desire 510 (Hard reset). [Online]. Available: 
. 

html
http://www.htc.com/us/support/htc-desire-510-cricket/howto/550842

Brittany Byrd graduated from the Department of Computer Science of Sam 
Houston State University with a master's degree in digital forensics. Her 
research interests include digital forensics and cyber security.

Bing Zhou is an assistant professor in the Department of Computer Science, 
Sam Houston State University, USA. She received her Ph.D from University 
of Regina, Canada. Her publications cover various topics on pattern 

recognition, intelligent security data analysis, soft computing, rough set 
theory, data mining, and machine learning. She has served as a program 
committee member of many international conferences and workshops. She is 
a reviewer of many reputable international journals and an editorial board 
member of several books.

Qingzhong Liu is currently an associate professor in computer science at 
the Sam Houston State University. His research interests include multimedia 
forensics, information assurance, data mining, bioinformatics, and 
intelligent computing applications.

42

http://www.htc.com/us/support/htc-desire-510-cricket/howto/550842

