Detecting Deception Using Machine Learning




Ceballos Delgado, Alberto Alejandro
Glisson, William Bradley
Shashidhar, Narasimha
McDonald, J. Todd
Grispos, George
Benton, Ryan

Journal Title

Journal ISSN

Volume Title


Proceedings of the 54th Hawaii International Conference on System Sciences


Today’s digital society creates an environment potentially conducive to the exchange of deceptive information. The dissemination of misleading information can have severe consequences on society. This research investigates the possibility of using shared characteristics among reviews, news articles, and emails to detect deception in text-based communication using machine learning techniques. The experiment discussed in this paper examines the use of Bag of Words and Part of Speech tag features to detect deception on the aforementioned types of communication using Neural Networks, Support Vector Machine, Naïve Bayesian, Random Forest, Logistic Regression, and Decision Tree. The contribution of this paper is two-fold. First, it provides initial insight into the identification of text communication cues useful in detecting deception across different types of text-based communication. Second, it provides a foundation for future research involving the application of machine learning algorithms to detect deception on different types of text communication.


Paper co-authored by William Glisson and published in the Proceedings of the 54th Hawaii International Conference on System Sciences in 2021.


Machine Learning and Cyber Threat Intelligence and Analytics, artificial intelligence, deception detection, machine learning


Ceballos Delgado, A. A., Glisson, W., Shashidhar, N., Mcdonald, J., Grispos, G., & Benton, R. (2021). Deception Detection Using Machine Learning. Proceedings of the 54th Hawaii International Conference on System Sciences. Hawaii International Conference on System Sciences, p.7122-7131.